Under review as a conference paper at ICLR 2026

WHERE LLM AGENTS FAIL AND HOW THEY CAN
LEARN FROM FAILURES

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) agents, which integrate planning, memory, re-
flection, and tool-use modules, have shown promise in solving complex, multi-
step tasks. Yet their sophisticated architectures amplify vulnerability to cascading
failures, where a single root-cause error propagates through subsequent decisions,
leading to task failure. Current systems lack a framework that can comprehen-
sively understand agent error in a modular and systemic way, and therefore fail
to detect these errors accordingly. We address this gap with three contributions.
First, we introduce the AgentErrorTaxonomy, a modular classification of failure
modes spanning memory, reflection, planning, action, and system-level opera-
tions. Second, we construct the Agent Error Benchmark, the first dataset of sys-
tematically annotated failure trajectories from ALFWorld, GAIA, and WebShop,
grounding error analysis in real-world agent rollouts. Third, we propose Agent-
Debug, a debugging framework that isolates root-cause failures and provides cor-
rective feedback, enabling agents to recover and iteratively improve. Experiments
on AgentErrorBench show that AgentDebug achieves 24% higher all-correct ac-
curacy and 17 % higher step accuracy compared to the strongest baseline. Beyond
detection, the targeted feedback generated by AgentDebug enables LLM agents
to iteratively recover from failures, yielding up to 26% relative improvements
in task success across ALFWorld, GAIA, and WebShop. These results establish
principled debugging as a pathway to more reliable and adaptive LLM agents.

1 INTRODUCTION

LLMs are increasingly capable of interacting with external environments, leveraging tools, and rea-
soning over memory, which enabled a new paradigm: LLMs Agents (Schick et al., 2023; Qin et al.,
2023; Packer et al., 2023; Shinn et al., 2023; Liu et al., 2025). General purposed LLMs agents have
driven advances across diverse domains, including embodied control, scientific discovery, open-
ended web interaction, and research support (Zhou et al., 2023; Li et al., 2025; Hong et al., 2025; Zhu
et al., 2025b). Despite these achievements, current agents remain imperfect and insufficiently ro-
bust. They frequently exhibit errors—ranging from misinterpreting instructions and misusing tools
to breaking down in long-horizon reasoning. These shortcomings underscore that, while promising,
existing LLM Agents still lack the reliability required for real-world deployment. This observation
motivates us to ask: Where do LLM agents fail ?

While prior works have investigated the failures of LLM-based agents (Ji et al., 2024; Sung et al.,
2025; Ning et al., 2024; Cemri et al., 2025; Zhang et al., 2025), they have largely focused on enu-
merating error types or providing qualitative case studies. However, these analyses stop short of
offering systematic mechanisms to trace failures back to their root causes, and importantly, do not
enable agents to fix these discovered failures based on such insights. To close this gap, we modular-
ize error analysis with the explicit goal of tracing failures to their underlying causes. We conduct a
large-scale study over hundreds of trajectories, decomposing each rollout into four operational mod-
ules: memory, reflection, planning, and action. By attributing each failure to its root module, we
derive the AgentErrorTaxonomy — a comprehensive taxonomy of failure modes designed to ground
systematic error detection and guide the development of robust mitigation strategies.

Our analysis reveals a critical bottleneck in LLM agents: error propagation. As illustrated in Fig-
ure 1, a single root-cause failure (b) can cascade into successive errors (c), compounding degrada-

Under review as a conference paper at ICLR 2026

(a) (b) (C] (d)

=l
[©4

i i Flight Details
Flight Details A AgentDebug
e it) = =
Ve ~¢ C 'l 7~ N
Flight - - Flight Flight
— — Booking < = Booking - Booking —>
Error: CSS selector 4
4 #confirm-btn not found. 4
Booking Confirmation Booking Confirmation

Figure 1: Motivation for AgentDebug: A single root-cause failure (b) can propagate through sub-
sequent steps (c), compounding errors and leading to task failure. AgentDebug (d) addresses this
bottleneck by tracing failures back to their source and providing actionable feedback that enables
agents to evolve into more robust versions.

tion and leading to task failure. This challenge is especially acute in long-horizon tasks, where early
mistakes distort later reasoning and actions, making recovery difficult. These insights motivate our
central question: How can LLM agents refine from failures?

Recent progress in LLMs agent enhancement has largely centered on expanding the reasoning search
space—through chain-of-thought (Wei et al., 2023), tree-of-thought (Yao et al., 2023), and graph-
of-thought (Besta et al., 2023) approaches—or on incorporating step-level self-reflection (Yao et al.,
2022b; 2023; Besta et al., 2023), which allows agents to deliberate more thoroughly and locally
revise their actions. While these advances improve flexibility and reasoning depth, they typically
treat the trajectory as a sequence of isolated steps rather than as a coherent, interdependent process.

To address this challenge, we propose AgentDebug, a debugging framework that decomposes a tra-
jectory into decision steps, isolates the minimal set of root-cause failures, and provides corrective
feedback back to the responsible states or actions. This process not only reduces noise from ir-
relevant errors but also highlights the key weaknesses that hinder successful task completion. As
illustrated in Figure 1 (d), AgentDebug enables agents to iteratively evolve into more robust ver-
sions by learning directly from their failure cases. To rigorously evaluate whether models can detect
critical errors and produce actionable feedback, we also construct the AgentErrorBench. This bench-
mark grounds the taxonomy in real-world trajectories, offering the first standardized testbed for error
detection and debugging.

We evaluate AgentDebug on AgentErrorBench, where it achieves 24% higher all-correct accuracy
(24.3% vs. 0.3%) and 17% higher step accuracy (45.0% vs. 28.0%) compared to the strongest base-
line. Beyond detection, the targeted feedback generated by AgentDebug enables agents to iteratively
recover from failures, yielding up to 26% relative improvements in task success across ALFWorld,
GAIA, and WebShop. Ablation studies further confirm that focusing on root-cause errors, rather
than attempting to fix every surface-level mistake, is key to efficient debugging and meaningful
performance gains. Overall, our contributions are summarized as follows:

* We analyze failed trajectories of LLM agents across diverse benchmarks and show that error
propagation—early mistakes cascading into later failures—is the key bottleneck to robustness.
From this study, we derive the AgentErrorTaxonomy, a unified taxonomy of failure modes span-
ning planning, tool use, memory, and reflection.

* We introduce AgentErrorBench, the first curated dataset of systematically annotated failures from
ALFWorld, GAIA, and WebShop. Each trajectory is labeled with fine-grained error categories,
providing a standardized testbed for studying, benchmarking, and comparing agent debugging
methods.

* We present AgentDebug, a debugging framework that identifies critical errors and provides ac-
tionable feedback. AgentDebug achieves high root-cause detection accuracy, exceeding strong
baselines by 24%, and improves task success rates by 26% across embodied reasoning, web
interaction, and decision-making domains.

2 WHERE DO LLM AGENTS FAIL?

To lay the foundation for our study of agent failures and debugging, this section introduces two
proposed components. Section 2.1 presents the AgentErrorTaxonomy, a structured framework that

Under review as a conference paper at ICLR 2026

organizes recurring failure modes into coherent modules. Section 2.2 then describes the Agen-
tErrorBench, which grounds this taxonomy in systematically annotated trajectories from multiple
environments.

LLMs Agent Failure Taxonomy Critical Error Feedback \gentErrorBench
gralllectlorv Identification Development

ollection

— - - - @ , ,@ — e :
E % - v A

L0 Human % Human GO @.’.S = .f: £ l H o x+ i }a

LJ Analysis Discussion Fhof~ =P a] Critical Critical Critical How to Error

Step Module error refine? Trajectory Annotations

Figure 2: Pipeline of proposed AgentErrorTaxonomy and AgentErrorBench. Failed trajectories
are collected, analyzed to develop a taxonomy of errors, and then annotated with root causes and
actionable feedback to form the benchmark.

2.1 AGENT FAILURE ANALYSIS
To systematically investigate how agents fail, we collected over 500 failed trajectories from ALF-

World, WebShop, and GAIA, and conducted detailed human analyses to uncover recurring patterns.
This study revealed the following central insight:

Key Insight. Error propagation is the primary bottleneck in LLM agent reliability. Early mis-
takes rarely remain confined; instead, they cascade into subsequent steps, distorting reasoning,
compounding misjudgments, and ultimately derailing the entire trajectory.

Building on this insight, we introduce the AgentErrorTaxonomy, a structured taxonomy that or-
ganizes recurring failure modes into five modules. Four capture the core operations of an
agent—memory, reflection, planning, and action—while a fifth category accounts for system-level
errors that arise from external tools or infrastructure. This modular view not only enumerates com-
mon error types but also clarifies how weaknesses in one stage can cascade into others, enabling a
principled approach to tracing and diagnosing failures.

Memor Errors in recalling or retrieving information (false recall, omission, retrieval fail-
Y ure) that distort subsequent reasoning.
. Failures in monitoring progress or interpreting outcomes (progress misassess-
Reflection
ment, outcome misinterpretation), blocking course correction.
, Logically unsound or infeasible strategies (impossible actions, constraint igno-
Planning . - :
rance, incoherent subgoals) that cascade into missteps.
Action Mistakes in executing operations (malformed outputs, incorrect parameters, miss-
ing arguments) that are visible but often mask upstream errors.
Failures outside reasoning, such as tool crashes, API mismatches, or exceeding
System-level . e .
step limits, highlighting system robustness issues.

The AgentErrorTaxonomy is designed not merely as a catalog of errors but as a causal lens for understanding
how failures originate, propagate, and interact across modules. Full definitions are provided in Appendix A.2.

2.2 AGENT ERROR BENCHMARK

To rigorously evaluate whether models can detect critical errors and produce actionable feedback, we con-
struct the AgentErrorBench. This benchmark grounds the taxonomy in real-world trajectories, offering the first
standardized testbed for error detection and debugging.

The construction pipeline is shown in Figure 2. We curated 200 representative trajectories: 100 from ALF-
World, 50 from WebShop, and 50 from GAIA. Ten expert annotators—graduate students with prior experience
in NLP and LLMs agent research—labeled each trajectory using the AgentErrorTaxonomy schema. Annotation
proceeded at the decision-step level: every action, reflection, or plan was reviewed, and annotators tagged its
error type(s) according to the taxonomy. In addition, they were tasked with identifying the minimal set of root-
cause failures that explain the downstream error cascade, rather than exhaustively flagging all surface mistakes.
This root-cause focus was emphasized through detailed guidelines and calibration examples, refined iteratively
over three rounds of pilot annotation.

Under review as a conference paper at ICLR 2026

To ensure consistency, annotators first completed a training phase with feedback from the authors, followed by
independent double-annotation on a shared subset of trajectories. Disagreements were adjudicated collectively,
leading to several clarifications in category definitions (e.g., distinguishing “retrieval failure” under memory
vs. “constraint ignorance” under planning). The final protocol balanced granularity with reliability, aiming for
concise but causally meaningful tags. Inter-annotator agreement, measured using Cohen’s , reached k = 0.55
across modules, indicating substantial agreement.

The resulting dataset provides a quantitative view of how agents fail in practice. Figure 13 shows how errors
emerge across steps, modules, and error types in the AgentErrorBench. It shows most failures cluster in mid-
trajectory steps (6—15), where early missteps often cascade downstream. Memory and reflection dominate, with
retrieval failures, hallucinations, and progress misjudgments leading to flawed planning. Action and system
errors occur less frequently but remain critical, as malformed outputs or step-limit exhaustion can immediately
terminate trajectories. The complete error type distribution is attached to Appendix A.4.

I Step 1 (18) Hallucination (13) I

Memory (38) Memory Retrieval Failure (4) Il
BN
Step 2 (28) \ Over Simplification (22)
Causal Misattribution (5)
I Step 3 (1), Reflection)(39) Outcome Misinterpretation (13)
Progress Misjudge (20)
Step 4 (31) AN

Constraint Ignorance (14)

I Step 5 (14) ‘
— Plan (78) Impossible Action (16)

Step 6-10 (48)
Inefficient Plan (48)

Action (22)

Format Error (6) [l

=-Step 16-20'(2) Invalid Action (2) ==
/ T spene Misalignment (10) I
Step 21+ (25) Parameter Error (4) Il
LLM Limit (1)
Environment Error (7)

Step Limit (10)
Tool Execution Error (4)

Figure 3: Distribution of failure cases in LLM agents on the AgentErrorBench

Together, AgentErrorTaxonomy and AgentErrorBench provide both the conceptual foundation and the empirical
infrastructure for advancing robust LLM agents.

3 How 1O REFINE LLM AGENTS FROM FAILURES?

Building on our analysis of agent failures, we aim to develop method that actively refine themselves by learning
from mistakes. We first formalize the key modules of an LLM-based agent in Section 3.1, and then present our
proposed framework, AgentDebug, in Section 3.2.

3.1 KEY MODULES OF AN LLM AGENT

As illustrated in Figure 4, we consider an agent that interacts with an environment over a sequence of steps.
At each step, the agent observes a state and produces an action, forming a trajectory of state—action pairs.
Each action is generated through four sequential modules: Memory, which recalls relevant past information;
Reflection, which evaluates progress and interprets feedback; Planning, which formulates the next strategy;
and Action, which executes the low-level operation. Errors can occur in any of these modules, and mistakes
made early often propagate through later stages, compounding into larger failures. This modular rollout design
not only mirrors the agent’s internal decision process, but also provides a natural structure for human annotators
to align errors with specific modules, making the diagnosis of agent failures more transparent and interpretable.

Under review as a conference paper at ICLR 2026

LLMs Agent Rollout AgentDebug
Step 1 s Stage 1. € Stage 3.
Action a q
Fine-grained Analysis Iteratively Debuggin -
__________________________________) =5
Step 2~N O freration 1 Re-rollout l D‘
. N ‘/Actionable
Reflection . > —> —> Feedback
-~ Taxonomy Analysis -~
Action () OQO%()
ﬁ Stage2. .
Critical Error Detection Iteration 2~N
State tracking, Initial Planning, = PE-Ty
Retrieval mechanism Next Action Planning W \‘ Critical R —» %_, ’@
00~ w &]
Action Reflection / =7
Tool Execution, Progress Evaluation, or withinRren‘:;(artuilfmoofattem ts
Parameter Handling Outcome Analysis O_> %. 4

Figure 4: Overview of AgentDebug. (Left) LLM agent rollouts alternate between memory, plan-
ning, reflection, and action. (Right) AgentDebug debugs trajectories in three stages: (1) fine-grained
analysis across steps and modules, (2) detection of the critical error that triggers failure, and (3)
iterative re-rollouts with actionable feedback to turn failures into successes.

Algorithm 1: AgentDebug Inference Procedure

Input: Trajectory 7 = {(st, at)}?zl; Error taxonomy Exgr; Critical-error criterion Cerii; Max Iterations [
Output: Corrected trajectory 7% or Failure
/* Stage 1: Fine-grained Analysis with AET */
fort < 1to7 do

foreach m € {mem, plan, refl, act} do

‘ ey' < MapToAET(s¢, at, M, EAET) // Assign error type per module
if Eval (7) = 1 then
‘ return 7 // Trajectory already successful
/* Stage 2: Critical Error Detection via LLM (no rollout/counterfactuals) */
C « {7, {ei" }+,m, Eatr, Curit } // Pack analysis, taxonomy & criterion
(T*, M*, 2*,$9) « DetectCriticalErrors(C) // LLM (fine-grained prompt)
if 7 = @ then
‘ return Failure // No critical error found
t* < min(7") // Earliest critical step

// T*: set of critical steps; M": modules per critical step; Z*:
error-types per critical step

/* Stage 3: Iterative Debugging with Targeted Feedback */
70 7
for k < 1to I do

70 ReRollout(T(’“l),t*,qﬁ(k*l)) // Re-execute from t* with feedback

if Eval (T<k)) = 1 then

| return 7

#*) < UpdateFeedback(r®, k=) // Refine guidance if still failing
return Failure // Max Iterations Reached

3.2 AgentDebug FRAMEWORK

We propose AgentDebug, a debugging framework that enables single-LLM agents to diagnose and recover from
their own failures across diverse environments. As illustrated in Fig. 4, AgentDebug analyzes complete trajec-
tories to (i) assign fine-grained error types to each step and module, (ii) identify the earliest critical error that
directly causes the final failure, and (iii) provide actionable feedback to guide re-rollouts. The central intuition
is that correcting a single root-cause mistake can often flip an otherwise failing trajectory into a successful one.

As presented in Algorithm 1, the inference procedure of AgentDebug consists of three stages:

Stage 1: Fine-grained Analysis with AgentErrorTaxonomy. For each step in the trajectory, we ana-
lyze all four modules—memory, reflection, planning, and action. Each module is mapped to an AgentErrorTax-

Under review as a conference paper at ICLR 2026

onomy error type, grounding the analysis in interpretable categories such as “constraint ignorance” or “format
error.” This produces a structured, module-level error profile for the trajectory.

Stage 2: Critical Error Detection via Counterfactual Reasoning. If the trajectory is already suc-
cessful, no debugging is required. Otherwise, we invoke an LLM-based detector that reasons counterfactually
over the annotated trajectory from Stage 1: for each step, it simulates how the outcome would change if the
errors at that step were corrected, and infers which step is most likely to flip the final result from failure to
success. We define the critical error as the earliest step whose hypothetical correction is judged sufficient to
prevent the final failure. Unlike superficial mistakes or errors that are later compensated for, the critical error is
treated as the root cause that determines whether the overall trajectory ultimately succeeds or fails—capturing
both when and why the agent goes irreversibly off track.

Stage 3: Iterative Debugging with Targeted Feedback. Once the critical error is identified, the sys-
tem generates feedback that specifies the error type and provides actionable guidance for refining subsequent
actions and plans. The agent then re-executes (re-rolls out) the trajectory under this feedback. If the rollout
still fails, the feedback is refined with more specific guidance, and the process repeats up to a fixed budget
of attempts. Grounded in the AgentErrorTaxonomy taxonomy, the feedback is both targeted and forward-
looking—resolving the root cause while shaping how the agent approaches future steps.

4 EXPERIMENTS AND RESULTS

4.1 CRITICAL ERROR DETECTION

Dataset. We evaluate critical error localization on AgentErrorBench (Sec. 2.2), which consists of 200 annotated
failure trajectories. These trajectories are drawn from three representative benchmarks: ALFWorld (Shridhar
et al., 2020), GAIA (Mialon et al., 2023), and WebShop (Yao et al., 2022a).

Baselines. We compare against three strategies: (1) Direct Prompting, which queries the LLM directly for
error localization without any structured search; (2) Brute Force, which examines steps sequentially from t=1
to 7', substituting a corrected action at each step and stopping once the rollout succeeds, thereby identifying
the earliest critical step; and (3) Binary Search, which applies a divide-and-conquer procedure by probing the
midpoint of the trajectory and recursively halving the search space until the critical step is isolated.

Implementation. We use GPT-4.1 as the base model, with the temperature set to O for deterministic outputs.
The full prompt template is provided in the Appendix A.5.

Evaluation Metic. We evaluate critical error detection at multiple granularities, capturing both partial and
complete localization ability. Specifically, we measure Step accuracy, the ability to identify the exact step
where the first critical error occurs; Step+Module accuracy, the joint prediction of both the correct step and
its module; and All Correct (Step+Module+Error Type), a strict metric requiring the exact step, module, and
error type to all be correctly identified.

Experiment Results Table 1 shows that AgentDebug consistently surpasses baselines across datasets and met-
rics. On average, AgentDebug is 24% more accurate in the All-Correct metric (24.3% vs. 0.3%) and improves
Step accuracy by 61% (45.0% vs. 28.0%). The gains are especially pronounced on GAIA, where Step accuracy
nearly doubles (58.0% vs. 30.0%) and All-Correct triples (38.0% vs. 12.0%).

ALFWorld GAIA

Method N S+M ALL N S+M ALL

Direct Prompting 28.0% 14.0% 1.0% 30.0% 6.0% 0.0% 260% 10.0% 0.0% 28.0% 10.0% 0.3%
Brute Force 10.0% 5.0% 0.0% 8.0% 0.0% 00% 18.0% 8.0% 00% 120% 4.3% 0.0%
Binary Search 20.0% 6.0% 1.0% 14.0% 8.0% 0.0% 22.0% 10.0% 00% 18.7% 8.0% 0.3%
AgentDebug 35.0% 28.0% 21.0% 420% 220% 14.0% 58.0% 440% 380% 450% 31.3% 24.3%

Table 1: Comparison of methods across three environments (ALFWorld, WebShop, GAIA) and their
average performance. Our method consistently outperforms baselines in all settings. Metrics shown
are Step Exact (S), Step+Module (S+M), and All Correct (ALL).

4.2 DOWNSTREAM DEBUGGING ON SINGLE-AGENT BENCHMARKS

We next evaluate whether improved error detection leads to higher task success, testing if localizing root-cause
failures enables agents to recover more effectively than baselines.

Under review as a conference paper at ICLR 2026

Datasets. Follow the previous experiment setting, we choose the evaluation data from three widely used single-
agent benchmarks that cover complementary domains of reasoning and interaction: ALFWorld (Shridhar et al.,
2020), GAIA (Mialon et al., 2023), WebShop (Yao et al., 2022a).

Baselines. We compare AGENTDEBUG against several strong approaches. The first is Self-Refine, where
the agent iteratively revises its outputs without explicit causal diagnosis of errors. The second is a Vanilla
Debugger, which applies naive post-hoc corrections to failed trajectories without identifying the critical error
taxonomy. Finally, we include strong test-time scaling baselines: Tree-of-Thought (ToT) and Best-of-N. To
ensure fairness, the max number of attempts of all baselines is matched to AGENTDEBUG by total token usage,
so any observed gains can be attributed to targeted error recovery rather than higher resource allocation.

Implementation. We implement AGENTDEBUG with up to N = 5 re-rollouts, each beginning precisely at
the identified critical step. This design enables the agent to explore alternative continuations directly from the
point of failure rather than restarting from the beginning of the trajectory, thereby concentrating computational
effort where it is most impactful. For backbone models of LLMs Agent, we evaluate across three representative
systems of varying scales and architectures: GPT-40-mini, Qwen3-8B, and Qwen3-Next-80B.

Experiment Results. Figure 5 reports the performance of AgentDebug on the ALFWorld benchmark across
three backbone LLM agents. On GPT-40-mini, AgentDebug boosts success from 21 (first attempt) to 55; on
Qwen3-8B, from 48 to 74; and on Qwen3-Next-80B, from 60 to 84. These results show that AgentDebug
consistently outperforms all baselines and can effectively help LLM agents improve regardless of the backbone
model, with especially large relative gains for smaller models.

GPT-40-mini Qwen3-8B Qwen3-Next-80B
100 100

80

Score (0-100)
Score (0-100)
Score (0-100)

@ 60 w0 O an qurd @ 60w O an o @ 60w O ean qurd
s \‘a“'\\\a'oegesvd'“ ge\f—“éebuqko e Qa«\\\a’ozes‘”"“ ge\f—“éebuqko s Qa«\\\aﬂ:esvo““ ge\f—“:éebuqko
pge® pge® pge”

Figure 5: Downstream debugging performance on ALFWorld. Results are shown across three back-
bone models (GPT-40-mini, Qwen3-8B, Qwen3-Next-80B) and differnt methods. AgentDebug con-
sistently outperforms strong baselines.

To further assess the generalizability of AgentDebug, we move
beyond ALFWorld and extend our evaluation to two additional 14.0
benchmarks that stress complementary dimensions of agent rea- ~ Average {147
soning: GAIA, which requires integrating open-domain knowl-

|18.7

edge and w.eb-based. t(?ol use, and WebShop, Whlch evalu- Websm—‘“ 10

ates agents in a realistic e-commerce setting with structured 16

constraints and transactional goals. Together, these bench- 0 o AerPeeTou
marks provide a diverse testbed spanning embodied interaction, GAIA 14 | Bestern
knowledge-grounded reasoning, and goal-directed web naviga- 1

tion. Given the higher computational demands of these settings, 126

ALFWorld |20

we focus on comparing AgentDebug against the two strongest
baselines from our earlier experiments—Self-Refine and Best-
of-N—which represent state-of-the-art approaches to iterative Improvement(%)

refinement and test-time scaling, respectively. The results,) .

shown in Figure 6, demonstrate that AgentDebug consistently ~Figure 6 Performance improvements
delivers the largest gains across all three benchmarks. In partic- comparison.

ular, it achieves improvements of up to 26% on ALFWorld and

strong average performance on GAIA and WebShop, underscoring its robustness across diverse environments
and confirming that targeted error detection and correction can outperform broader but less focused strategies
such as scaling rollouts or unguided self-revision.

|26

Findings. AgentDebug consistently outperforms strong baselines in both error detection and downstream
task success. Its ability to precisely localize root-cause failures (50.0% step accuracy and 42.5% all-correct
accuracy) translates into substantial improvements in task performance, achieving up to 26% relative gains
across ALFWorld, GAIA, and WebShop.

Under review as a conference paper at ICLR 2026

5 ANALYSIS AND DISCUSSION

5.1 ABLATION STUDY

To better understand the contribution of each component in our framework, we conduct a series of ablation
studies. Specifically, we analyze the following factors.

Max Number of Attempts Allowed. We vary the maximum number of attempts of AgentDebug with different
base models— GPT-40-mini, Qwen3-8B, and Qwen3-Next-80B—to examine how sensitive performance is
to the chosen point of intervention. Results in Figure 7a show that additional attempts yield consistent gains
across all backbones, with especially pronounced improvements on smaller models such as GPT-40-mini. This
highlights the value of targeted re-rollouts in boosting task success.

AgentDebug Base Models. We replace the base model of AgentDebug with several alternatives to assess
their impact on error localization and downstream success. As shown in Figure 7b, GPT-4.1 substantially
outperforms other models, achieving 42% step accuracy and 32% strict all-correct accuracy. Competing base
models such as Llama-3.3-70B, GPT-40-mini, and Qwen3-Next-80B perform markedly worse.

Rollout Strategies. We compare several rollout paradigms—ReAct, Reflection, Act-only, and Mem-
ory+ReAct—against our proposed Modular strategy on Alfworld under the zero-shot setting. As shown in
Table 7c, AgentDebug’s Modular rollout achieves the highest score (0.38), outperforming both reasoning-only
and memory-augmented baselines. This result highlights the effectiveness of structured modularization is more
reliably than alternative rollout designs.

Base Model Step Error Step+M All
1001 Llama-3.3-70B 16.0 16.0 6.0 2.0
=8— Qwen3-8B ..
-8 - Qwen3-Next-80B s trar GPT-40-mini 14.0 10.0 4.0 2.0
—A— GPT-4o-mini z:uw.:w éiu:.+£:; ———a Qwen3-Next-80B 4.0 14.0 2.0 2.0
80 76 (+16) e —— '
| "o’ GPT-41 20 440 320 32.0

.~
-
-

63 (+5)
58 (+10)

6ol (b) Base Model Performance Comparison.

55 (+7)

40t A

Accumulative Success Rate

- Rollout Strategy ~ Success Rate
30 (+9), -~ -

a =" + Memory+ReAct 0.34
20 & Reflection 032
ReAct 0.26
0 i ﬁ é :1 é. Act Only 0.10
Attempt Number Modular 0.38

(a) Success rates on Alfworld across five attempts. (c) Rollout Strategy Comparison.

Figure 7: Ablation study results. (a) Success rates on Alfworld, (b) comparison of detector models,
and (c) rollout strategy analysis.

5.2 ERROR PROPAGATION

A key challenge in building robust LLM agents lies in understanding how small mistakes evolve into large-scale
failures. Our analysis examines the phenomenon of error propagation—cases where an early misstep triggers
a cascading effect that spreads throughout the trajectory. As shown in Figure 8, early-stage mistakes cascade
through later steps across tasks. The outlined cells indicate the first critical error in each trajectory, while pro-
gressively darker red shading reflects the compounding severity and persistence of errors over subsequent steps.
This illustrates how initial failures frequently propagate forward, amplifying downstream task breakdowns.

Moreover, the likelihood and length of cascades vary significantly across modules. Memory and reflection
errors are the most common sources of propagation, typically arising in early or mid-trajectory steps (around
steps 5—15). Once an agent misremembers a fact or misjudges its progress, subsequent planning becomes
systematically distorted, leading to repeated cycles of flawed action selection. Planning errors also contribute
heavily, with constraint ignorance or infeasible strategies compounding as the agent attempts to execute them.
By contrast, action-level errors are more visible and sometimes recoverable, though malformed outputs or
missing parameters can still derail execution. System-level issues such as tool crashes or step-limit exhaustion
act as immediate termination points rather than cascades.

Under review as a conference paper at ICLR 2026

] BRI - = ==]2]3]3]3]3]
| HEE

] R = = [=[=]2]=]2]=]2]2]2]2]2]5]5]
g R > 2]]= 33z]z]s]s]3]3]3]3]3]3]
. BN - == []]3]z]s]s]s]s]s]s]s]s]3]5]
N R - |- ==]=]=]=]=]2 21203]3]3]3]3]a]a]3]
.| EEEEEEEEEEEE e R R

1

10

Task

T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 8: Illustration of Error Propagation: Darker shading indicating compounding failures and
highlighting how initial mistakes amplify downstream breakdowns.

These findings highlight two important takeaways for designing more reliable agents. First, early detection
and correction are critical, since once cascades begin, they are difficult to reverse. Second, mechanisms
that strengthen memory retrieval and reflection—such as external memory, progress tracking, or verification
prompts—can substantially reduce the risk of propagation.

6 RELATED WORK

LLM-based Agentic Systems. Recent advances in LLM-based agents have demonstrated that combining
planning, tool use, memory, and self-reflection can substantially improve performance on complex, multi-step
tasks. The reasoning-acting paradigm, pioneered by ReAct (Yao et al., 2022b), interleaves chain-of-thought
reasoning with grounded environment actions. Test-time search methods such as Tree-of-Thoughts (Yao et al.,
2023) and Graph-of-Thoughts (Besta et al., 2023) further expand the deliberation space through structured
exploration. These systems are strengthened by external tool integration, ranging from self-supervised tool
selection in Toolformer (Schick et al., 2023) to comprehensive tool ecosystems in ToolLLM (Qin et al., 2023),
as well as persistent memory mechanisms that maintain context across long horizons (Packer et al., 2023). A
critical aspect of robustness is the ability to reflect and self-correct: Reflexion (Shinn et al., 2023) introduces
verbal self-reflection to revise future actions, while subsequent work explores richer feedback modalities and
meta-cognitive strategies for deciding when to reflect versus act. Despite recent advances, the community still
lacks a unified view of how agent components interact and fail. AgentDebug fills this gap with a debugging
layer that traces root causes across the plan—act—observe loop, detects failures from tool-use to memory, and
generates corrective feedback that enables agents to improve through their mistakes.

Failure Analyses (Single- and Multi-Agent). Systematic failure analyses are emerging to quantify
where agents break and how errors propagate. In multi-agent settings, recent works examine collaboration and
competition dynamics (Zhu et al., 2025a), role specialization, and emergent failure modes such as coordination
collapse and dialogue drift (Cemri et al., 2025; Zhang et al., 2025; Zhu et al., 2025a; Hyun et al., 2025; Tran
et al., 2025). For single-agent systems, analyses have highlighted planning brittleness, grounding and tool-use
errors, and hallucination-induced cascades (Ji et al., 2024; Sung et al., 2025; Ning et al., 2024). Compared to
these studies, we focus on actionable debugging: moving from descriptive taxonomies to a two-stage detector
that both identifies and helps fix root causes.

Test-Time Scaling for Agents. Scaling test-time compute improves reasoning and success rates by allo-
cating more deliberation to challenging instances. In agents, this includes tree/graph search in thought space
(Yao et al., 2023; Besta et al., 2023), best-of-/N sampling with self-consistency, and test-time compute scaling
strategies Li et al. (2025). Our experiments position AgentDebug orthogonally to compute scaling: even at fixed
compute, targeted debugging recovers substantial performance, and when combined with scaling, it channels
extra compute to the right failure points.

7 CONCLUSION

In summary, our work identifies error propagation as the central bottleneck to building robust LLM agents and
introduces AgentErrorTaxonomy, AgentErrorBench, and AgentDebug as principled solutions. By tracing and
correcting root-cause failures, AgentDebug achieves substantial performance gains and establishes debugging
as a foundation for agents that can continuously learn and evolve from their mistakes. While our work has
limitations (see Appendix A.1), it paves the way toward more reliable and adaptive LLMs Agent.

Under review as a conference paper at ICLR 2026

ETHICAL STATEMENT

This work focuses on analyzing and improving the robustness of LLM-based agents. Our study does not involve
human subjects, sensitive personal data, or information that could directly identify individuals. All experiments
were conducted on publicly available benchmarks (ALFWorld, GAIA, and WebShop) under their respective
licenses. While our findings aim to advance reliability and transparency in LLM agents, we acknowledge that
more capable debugging frameworks could potentially be misused to strengthen harmful or malicious agents.
We encourage responsible use of our methods, with applications limited to domains that respect safety, fairness,
and accountability.

ACKNOWLEDGMENT

We want to thank the AMD team for providing AMD MI300X and DevCloud platform for those experiments.
We also want to thank the OpenManus team, including Chenglin Wu, Jiayi Zhang, Xinbing Liang, and Jingyu
Xiang, for their valuable assistance in the discussion and for providing some resources.

REFERENCES

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. Graph of thoughts:
Solving elaborate problems with large language models. arXiv preprint arXiv:2308.09687, 2023.

Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt Keutzer,
Aditya G. Parameswaran, Dan Klein, Kannan Ramchandran, Matei Zaharia, Joseph E. Gonzalez, and Ion
Stoica. Why do multi-agent llm systems fail? arXiv preprint arXiv:2503.13657, 2025.

Yining Hong, Rui Sun, Bingxuan Li, Xingcheng Yao, Maxine Wu, Alexander Chien, Da Yin, Ying Nian Wu,
Zhecan James Wang, and Kai-Wei Chang. Embodied web agents: Bridging physical-digital realms for
integrated agent intelligence, 2025. URL https://arxiv.org/abs/2506.15677.

Jonathan Hyun, Nicholas R. Waytowich, and Boyuan Chen. CREW-WILDFIRE: Benchmarking agentic multi-
agent collaborations at scale. arXiv preprint arXiv:2507.05178, 2025.

Zhenlan Ji, Daoyuan Wu, Pingchuan Ma, Zongjie Li, and Shuai Wang. Testing and understanding erroneous
planning in llm agents through synthesized user inputs. arXiv preprint arXiv:2404.17833, 2024.

Bingxuan Li, Yiwei Wang, Jiuxiang Gu, Kai-Wei Chang, and Nanyun Peng. Metal: A multi-agent framework
for chart generation with test-time scaling, 2025. URL https://arxiv.org/abs/2502.17651.

Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun Zhang,
Kaitao Song, Kunlun Zhu, Yuheng Cheng, Suyuchen Wang, Xiaogiang Wang, Yuyu Luo, Haibo Jin, Peiyan
Zhang, Ollie Liu, Jiaqi Chen, Huan Zhang, Zhaoyang Yu, Haochen Shi, Boyan Li, Dekun Wu, Fengwei
Teng, Xiaojun Jia, Jiawei Xu, Jinyu Xiang, Yizhang Lin, Tianming Liu, Tongliang Liu, Yu Su, Huan Sun,
Glen Berseth, Jianyun Nie, Ian Foster, Logan Ward, Qingyun Wu, Yu Gu, Mingchen Zhuge, Xinbing Liang,
Xiangru Tang, Haohan Wang, Jiaxuan You, Chi Wang, Jian Pei, Qiang Yang, Xiaoliang Qi, and Chenglin
Wu. Advances and challenges in foundation agents: From brain-inspired intelligence to evolutionary, col-
laborative, and safe systems, 2025. URL https://arxiv.org/abs/2504.01990.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia: a benchmark
for general ai assistants. In The Twelfth International Conference on Learning Representations, 2023.

Kaiwen Ning, Jiachi Chen, Jingwen Zhang, Wei Li, Zexu Wang, Yuming Feng, Weizhe Zhang, and Zibin
Zheng. Defining and detecting the defects of the large language model-based autonomous agents. arXiv
preprint arXiv:2412.18371, 2024.

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and Joseph E. Gonzalez.
MemGPT: Towards llms as operating systems. arXiv preprint arXiv:2310.08560, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, Bill
Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan
Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use tools. arXiv
preprint arXiv:2302.04761, 2023.

10

https://arxiv.org/abs/2506.15677
https://arxiv.org/abs/2502.17651
https://arxiv.org/abs/2504.01990

Under review as a conference paper at ICLR 2026

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. arXiv preprint arXiv:2303.11366, 2023.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre COté, Yonatan Bisk, Adam Trischler, and Matthew

Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv preprint
arXiv:2010.03768, 2020.

Yoo Yeon Sung, Hannah Kim, and Dan Zhang. VeriLA: A human-centered evaluation framework for inter-
pretable verification of llm agent failures. arXiv preprint arXiv:2503.12651, 2025.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and Hoang D.
Nguyen. Multi-agent collaboration mechanisms: A survey of LLMs. arXiv preprint arXiv:2501.06322,
2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023. URL https:
//arxiv.org/abs/2201.11903.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-world

web interaction with grounded language agents. Advances in Neural Information Processing Systems, 35:
20744-20757, 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. arXiv preprint arXiv:2305.10601,
2023.

Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiguang Han, Jingyang Zhang, Beibin Li, Chi Wang,
Huazheng Wang, Yiran Chen, and Qingyun Wu. Which agent causes task failures and when? on automated
failure attribution of 1lm multi-agent systems. arXiv preprint arXiv:2505.00212, 2025.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan Bisk,
Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building autonomous agents. arXiv
preprint arXiv:2307.13854,2023. URL https://webarena.dev.

Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong Wang, Cheng
Qian, Xiangru Tang, Heng Ji, and Jiaxuan You. MultiAgentBench: Evaluating the collaboration and com-
petition of LLM agents. arXiv preprint arXiv:2503.01935, 2025a.

Kunlun Zhu, Jiaxun Zhang, Ziheng Qi, Nuoxing Shang, Zijia Liu, Peixuan Han, Yue Su, Haofei Yu, and

Jiaxuan You. Safescientist: Toward risk-aware scientific discoveries by 1lm agents, 2025b. URL https:
//arxiv.org/abs/2505.235509.

11

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://webarena.dev
https://arxiv.org/abs/2505.23559
https://arxiv.org/abs/2505.23559

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LIMITATION

Our work is not without limitations. First, while AgentErrorBench covers three representative benchmarks
(ALFWorld, GAIA, and WebShop), it remains limited in scale and domain diversity; extending to multimodal
environments, longer-horizon tasks, or safety-critical applications (e.g., healthcare, finance) is an important
direction for future work. Second, collecting sufficient data to train a dedicated debugging model would be
prohibitively expensive in low-resource academic settings, given the costs of large-scale human annotation. To
mitigate this, we instead designed a cost-efficient workflow that leverages prompt engineering with existing
LLM:s, though this approach may still fall short of the performance achievable with a fully trained, specialized
model.

12

Under review as a conference paper at ICLR 2026

A.2 AgentErrorTaxonomy

Over-simplification /
Incomplete Summary

Memory

a0
WS o

uonsneyx3
Jwr das

Halluc,-,,a tion

P
%

Agent Error Taxonomy

Planning

Impossible Action

o @
Y U,
ﬂ/% 2
%,
%

@ o
o &
o\“c‘g&‘b

2
e o
' S

progress

"
Visassess™e"

P,
“amete Error

e
v
o,

Figure 9: Error Taxonomy across all modules: The hierarchical taxonomy organizes agent errors
into five core modules—Planning, Action, Reflection, Memory, and System. Each outer ring category
specifies representative error types, such as constraint ignorance or inefficient planning (Planning),
parameter or format errors (Action), causal misattribution or outcome misinterpretation (Reflection),
oversimplification or false memory (Memory), and tool execution or environment errors (System).
This taxonomy provides a holistic view of where and how failures emerge within modular LLM

agents.

13

Under review as a conference paper at ICLR 2026

Module Error Type Definition / Explanation
Memory Over-simplification / Incom- Summarizes past info too crudely, ignoring details;
plete Summary leads to flawed reasoning.

Memory Hallucination (False Memory) Recalls events or states that never happened, filling
missing gaps with fabricated info.

Memory Retrieval Failure Relevant info exists but is not retrieved when needed.

Reflection Progress Misassessment Incorrectly evaluates progress (too optimistic, too pes-
simistic, or misses completion).

Reflection Outcome Misinterpretation Executes an action but misreads the immediate result or
environment feedback.

Reflection Causal Misattribution Correctly notes failure but blames the wrong cause,
misguiding subsequent plans.

Reflection Hallucination Reflects on events/results that never occurred.

Planning Constraint Ignorance Ignores limits (time, budget, space, etc.) when forming
plans.

Planning Impossible Action Plans a step that is physically/logically impossible
given current preconditions.

Planning Inefficient Planning Plan is overly long or illogical; wastes steps and risks
hitting limits.

Action Planning—Action Disconnect ~ Chosen actions do not align with the stated plan intent.

Action Format Error Produces syntactically invalid actions.

Action Parameter Error Generates unreasonable or malformed parameters.

System Step Limit Exhaustion Fails due to reaching the maximum step cap despite rea-
sonable behavior.

System Tool Execution Error External tool/API misbehaves or errors, causing down-
stream failures.

System LLM Limit Fails due to API/model constraints (e.g., timeouts, to-
ken limits).

System Environment Error Simulator/environment ~ breaks expected rules

(bug/crash/network), not agent’s fault.

Table 2: AgentErrorTaxonomy Definitions

14

Under review as a conference paper at ICLR 2026

A.3 AGENTDEBUG EXAMPLE

Normal Agent

/Task Scenario: \

Find two saltshakers and put them in a cabinet.

Step 0:
Observation: Welcome to TextWorld, ALFRED! You
lare in the middle of a room ...
Memory: Kitchen context; two saltshakers
Reflection: Not started; no progress
Plan: Go to cabinet 1
Action: Go to cabinet 1
Reward: 0.0

Step 4:
Observation: Cabinet 2 is open; bowl 2 inside.
Memory: Cab1 empty; Cab2 closed —
opened. No saltshakers found.
Reflection: Goal unmet; partial progress.
Plan: Close Cab2; check sequentially (3 — 4
— ... > 10).
Action: Close cabinet 2 °
Reward: 0.0

Step 29:

Observation: Saltshaker 1 moved to countertop 2
Memory: Saltshaker 2 visible on countertop 2
Reflection: Goal incomplete; progress
Plan: Take saltshaker 1, then saltshaker 2

Action: Take saltshaker 2 from countertop 2

N ©/

Ours: AgentDebug

Task Scenario:
Find two saltshakers and put them in a cabinet.

Step 0:

Observation: Welcome to TextWorld, ALFRED! You are in the middle of a room ...

Memory: Kitchen context; two saltshakers
Reflection: Not started; no progress
Plan: Go to cabinet 1

Action: Go to cabinet 1

Reward: 0.0

Step 4:
Observation: Cabinet 2 is open; bowl 2 inside.

AgentDebug Detect
Error Type: Plan Module - Inefficient Plan
Advice: The agent fixated on cabinets, ignored likely surfaces;
fix by expanding early to countertops/tables.

Memory: Cab1 empty; Cab2 closed — opened. No saltshakers
found.
Reflection: Goal unmet; partial progress. Cabinet-only search
inefficient; expand locations.
Plan: Go search countertop 1 for saltshakers. 0
Action: Move to countertop 1 to search.
Reward: 0.0

Step 24:

Observation: Cabinet 2 open; bowl2 and salt1.
Memory: Salt1 already in cabinet 2; holding salt2.
Reflection: Goal incomplete; place salt2 in cabinet.
Plan: Move salt2 to cabinet 2 now.

Action: Move saltshaker 2 to cabinet 2.

Reward: 10.0; task completed, success.

9

Figure 10: AgentDebug example on ALFWorld: Comparison between a normal agent (left) and
our method AgentDebug (right). AgentDebug successfully pinpoints the critical error in the Plan
module (inefficient cabinet-only search) and provides actionable feedback (expand to countertop-
s/tables). This guidance allows the agent to recover from failure and complete the task successfully.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 FAILURE ANALYSIS ACROSS REPRESENTATIVE LLMS AGENT BENCHMARKS

Format Error (6) I
Invalid Action (2) W
Misalignment (6) I

Environment Error (2) Il
Step Limit (10)

Tool Execution Error (1) ==

Figure 11: Distribution of failure cases in LLM agents on the Alfworld benchmark.

| Misalignment (1)
Action (2) Parameter Error (1) Il

System (5) Environment Error (5) I

Figure 12: Distribution of failure cases in LLM agents on the Webshop benchmark.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

‘

Action (6)
Misalignment (3) I

System (4) Parameter Error (3) I

.. LLM Limit (1)

Tool Execution Error (3) I

Figure 13: Distribution of failure cases in LLM agents on the GAIA benchmark.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.5 PROMPT

18

Under review as a conference paper at ICLR 2026

Detector Prompt

Prompt Overview: Detect whether a specific module output (Memory, Reflection, Planning, Action, or
System) contains a defined error, and justify the decision with evidence and reasoning.

Prompt Content (Verbatim):

You are an expert at detecting errors in agent trajectories.

TASK: {task_description}
ENVIRONMENT: {environment}
CURRENT STEP: {step_num}

INPUT AND CONTEXT:
{context}

MODULE TO ANALYZE: {module_name}

MODULE OUTPUT (What the agent produced for this module):
{module_content if module_content else "No content found for this
module"}

ENVIRONMENT RESPONSE AFTER THIS STEP:
{env_response if env_response else "No response"}

{error_definitions}

Based on the SPECIFIC error definitions provided above:

1. Identify if there is an error in this module by checking if the
output

matches any error definition

2. If yes, specify which exact error type based on the definitions
3. Provide evidence from the content that directly relates to the
definition

4. Explain your reasoning showing how it matches the specific
definition criteria

SPECIAL RULES:
— The "Current Step Input" contains the full user message including
conversation history
- Evaluation criteria for each module:
*+ Memory: Should correctly summarize/recall from the current step
input only
+ Reflection: Should correctly reflect based on current input + this
step's Memory output
«+ Planning: Should plan reasonably based on current input + this
step's Memory & Reflection outputs
«+ Action: Should execute correctly based on current input + this
step's Planning output
- Each module builds on previous modules' outputs FROM THE SAME STEP
- System errors (step_limit, tool_execution_error, etc.) should be
identified separately

REQUIRED OUTPUT FORMAT (JSON) :
{

"error_detected": true/false,

"error_type": "specific_error_type or no_error",

"evidence": "Quote or description from module content supporting
the detection",

"reasoning": "Explanation of why this is (or isn't) an error based

on the definition"

}

Be precise and base your detection on the actual content and error
definitions.
.

J

Figure 14: Detector Prompt used to identify specific error types with evidence and reasoning,
returning a strict JSON schema.

19

Under review as a conference paper at ICLR 2026

AgentDebug Prompt

Prompt Overview: Identify the earliest root-cause error that made success impossible and provide iterative
follow-up guidance. Produces a structured JSON report of the critical step, module, error type, evidence,
root cause, and cascading effects.

Prompt Content (Verbatim):

You are an expert at identifying critical failure points in agent
trajectories and providing high-priority, iterative follow-up
instructions that MUST be followed across all subsequent steps.\n
TASK: {task_description}\nTASK RESULT: FAILED\n\n
DEBUG ITERATION CONTEXT:
- Current debug attempt index: {attempt_index}
— Previously issued follow-up instructions:\n
STEP-BY-STEP ERROR ANALYSIS:\n{all_steps}\n
ERROR DEFINITIONS:\n{error_reference}\n\n
Your job is to identify the CRITICAL ERROR - the earliest and most
important error that led to task failure, and produce an iterative
follow-up instruction that will help avoid similar mistakes in future
attempts.\n\n
CRITICAL ERROR IDENTIFICATION APPROACH:\n You must take a HOLISTIC,
GLOBAL perspective to identify the true root cause of failure.
Do NOT rely on any predetermined severity weights or rankings\n
ANALYSIS GUIDELINES:
1. Consider the ENTIRE trajectory from a global perspective - understand
the task goal and how the agent's path diverged from success
2. Find the EARLIEST point where the agent made a decision or error that
set it on an irreversible path to failure
3. Early exploration steps (steps 1-3) are often normal and should NOT
be marked as critical unless there's a clear, fundamental error
4. An error is critical if:
— It represents the ROOT CAUSE that made task success impossible
— It caused a cascade of subsequent errors
— The trajectory could have succeeded if THIS specific error had
not occurred
— IMPORTANT: Correcting this specific error would fundamentally
change the trajectory toward success
5. Focus on causal chains - trace backwards from the failure to find
the origin point
6. IMPORTANT: Step 1 only has planning and action modules - no
memory or reflection is possible at step 1 since there's no history yet
- Do NOT mark step 1 memory/reflection as critical errors
- Early steps without memory/reflection modules are expected
7. Consider System and Others categories as potential critical errors:
- System errors (step_limit, tool_execution_error, 1llm limit,
environment_error) may also be the true cause of failure
- For example, if the agent was performing correctly but hit
step_limit, that IS the critical error
— Others category captures unusual failures not covered by standard
error types\n
Identify the TRUE ROOT CAUSE that made the task unrecoverable.\n
REQUIRED OUTPUT FORMAT (JSON) :\n{

"critical_step": <step_number>,

"critical_module": "<module_name: memory|reflection|planningl|action]|
system|others>",

"error_type": "<specific_error_type_from definitions>",
"root_cause": "Concise description of the fundamental problem",
"evidence": "Specific quote or observation from trajectory
supporting this identification",

"correction_guidance": "Actionable advice for the agent to avoid the
same mistake in that step",

"cascading_effects": [{ "step": <step_number>,

"impact": "description" }]}

Figure 15: AgentDebug Prompt used to locate the root cause of task failure and issue structured
correction guidance.

20

Under review as a conference paper at ICLR 2026

Baseline Prompts

Prompt Overview: Prompts used as baselines, including Tree-of-Thought (ToT) value scoring and proposal,
a vanilla debug template, and a Self-Refine feedback prompt.

Prompt Content (Verbatim):

1. Prompts for TOT value prompt

base_prompt = (
f"You are evaluating candidate NEXT actions for an agent in
{self.env_type}.\n"
f"Rate how promising each action is for achieving the goal from the
CURRENT state.\n"
f"{history_section}Current observation:\n{obs}\n\n"
f"Candidates (JSON list): {cand_json}\n\n"
"Scoring rubric (strict) :\n"
"- Use the FULL 0.0{1.0 range. Do NOT give all 1.0 or all equal
scores.\n"
"- 0.9{1.0: Directly and obviously advances the goal with minimal
risk.\n"
"- 0.7{0.9: Strongly promising next step.\n"
"- 0.4{0.7: Plausible but uncertain; depends on missing
preconditions.\n"
"- 0.2{0.4: Weak progress or likely redundant.\n"
"- 0.0{0.2: Invalid, circular, or contradicts recent
history/admissible options.\n"
"- Penalize repeating the same action that just failed, no-ops,
or irrelevant moves.\n"
"Return ONLY a JSON array of floats, aligned to input order, length
equals number of candidates.")

Propose prompt: prompt = (
f"You are choosing the agent's next action in {env_type}.\n"
f"{history_desc}Current observation:\n{obs}\n\n"
f"Propose up to {k} different, concrete next actions the agent
could take next.\n"
f"Each proposal must be a single executable action string in the
exact format expected by the environment.\n"
f"Avoid repeating ineffective or redundant actions from the
history above.\n"
f"Return only a JSON list of strings, no extra
text.{diversity_desc}")

2. Prompts for vanilla debug

PROMPT_TEMPLATE = ("Trajectory :\n{trajectory}\n\n"
"Your task:\n"
"l. Identify the earliest step whose action, plan, reflection, or
memory directly leads the agent off track or repeats ineffective
behaviour.\n"
"2. Reference that exact step number (0O-based) as shown in the
trajectory. Do not shift to later steps of that error.\n"
"3. Explain why the chosen step is wrong, citing relevant
observation/action details.\n"
"4 . Suggest a concrete alternative for that same step that would
move the agent toward success
(e.g., a specific action to take instead).\n\n"
"Respond strictly in the following format (single spaces around
colons, no extra text):\n"
"step: <number>\n"
"reason: <one concise, specific sentence>\n"
"suggestion: <one actionable suggestion for that step>\n")

3. Prompts for Self-Refine
PROMPT_TEMPLATE = ("Current result: {trajectory}\n\n"
"Why is this trajectory not finished the task?\n\n" "Feedback:")

Figure 16: Baseline Prompts. Includes Tree-of-Thought value and proposal prompts, a vanilla
debug template for earliest error localization, and a Self-Refine feedback prompt.

21

Under review as a conference paper at ICLR 2026

Environment Rollout Prompt - ALFWorld

Prompt Overview: This is the environment rollout prompt for ALFWorld.

Prompt Content (Verbatim):

ALFWORLD_TEMPLATE_NO_HIS = """

You are an expert agent operating in the ALFRED Embodied Environment.
Your task is: {task_description}

Your current observation is: {current_observation}

Your admissible actions of the current situation are:
{admissible_actions}.\n

Please begin by analyzing the situation and planning your approach:\n
<plan>\n Plan the next step:

- Given what I've learned, what should I do next?

— Please explain why this plan is helpful for the next action?

— What do I expect this action to achieve?\n</plan>\n

<action>\n

Finally, choose ONE admissible action for the current step and choose

it within {admissible_actions}. \n</action>
mmow

ALFWORLD_TEMPLATE = """ You are an expert agent operating in the ALFRED
Embodied Environment. Your task is to: {task_description} Prior to

this step, you have already taken {step_count} step(s). Below are

the most recent {history_length} observaitons and the corresponding
actions you took: {action_history} You are now at step {current_step}
and your current observation is: {current_observation} Your admissible
actions of the current situation are: {admissible_actions}.\n

Now it's your turn to take an action.\n

You should first recall relevant past experiences and reason from our
conversation history, then MUST summarize within <memory> </memory>
tags like this:\n

<memory> \n

Look at the past observations and actions from our conversation history.
— Please retrieve the most relavent memory for this step including the
relevant observation and action in a RAG style along with step number.
— These memory shall be helpful milestones to solve this task.</memory>

After that, you should reflect on the last action and its outcome,
then MUST summarize within <reflection> </reflection> tags like this:

<reflection>

Reflect on the last action and its outcome

— Did I complete the task goal?

- Was last action successful or did it encounter issues?

- Am I making progress toward the task goal?

- If the action did not go as expected and did not result in progress,
provide constructive feedback to guide the next planning step.
</reflection>

After that, you should plan next step based on memory and reflection,
then MUST summarize within <plan> </plan> tags like this:

<plan>

Plan the next step based on memory and reflection

- Given what I've learned, what should I do next?

— Please explain why this plan is helpful for the next action?
- What do I expect this action to achieve?

</plan>

<action>
Finally, choose ONE admissible action for the current step and choose it
within {admissible_actions}.

</action>
mmow

Figure 17: Environment Rollout Prompt used for ALFWorld.

22

Under review as a conference paper at ICLR 2026

Environment Rollout Prompt - Webshop

Prompt Overview: This is the environment rollout prompt for Webshop.

Prompt Content (Verbatim):

WEBSHOP_TEMPLATE_NO_HIS = """

You are an expert agent operating in the WebShop e-commerce environment.
Your task is: {task_description}

Your current observation is: {current_observation}

Your admissible actions of the current situation are:
{available_actions}.\n

Please begin by analyzing the situation and planning your approach:

<plan> Plan the next step:

— Given what I've learned, what should I do next?

— Please explain why this plan is helpful for the next action?
- What do I expect this action to achieve? </plan>

<action> Finally, choose ONE admissible action for the current step and

choose it within {available_actions}. </action>
mmnw

WEBSHOP_TEMPLATE = """

You are an expert agent operating in the WebShop e-commerce environment.
Your task is to: {task_description}

Prior to this step, you have already taken {step_count} step(s). Below
is a compact summary of all steps: {action_history}

You are now at step {current_step} and your current observation is:
{current_observation}

Your admissible actions of the current situation are:
{available_actions}.\n Now it's your turn to take an action.

You should first recall relevant past experience and reason from the
history context, then MUST summarize within <memory> </memory> tags

like this: <memory> Look at the history context above.

— Please retrieve the most relevant memory for this step including the
relevant observation and action in a RAG style along with step number.

— These memory should be helpful milestones to solve this task.</memory>

After that, you should reflect on the last action and its outcome, then
MUST summarize within <reflection> </reflection> tags like this:

<reflection> Reflect on the last action and its outcome

— Did I complete the task goal?

- Was last action successful or did it encounter issues?

- Am I making progress toward the task goal?

— If the action did not go as expected and did not result in progress,
provide constructive feedback to guide the next planning step.
</reflection>

After that, you should plan the next step based on memory and
reflection, then MUST summarize within <plan> </plan> tags like this:

<plan> Plan the next step based on memory and reflection

- Given what I've learned, what should I do next?

— Please explain why this plan is helpful for the next action?
- What do I expect this action to achieve? </plan>

<action> Finally, choose ONE admissible action for the current step and

choose it within {available_actions}. </action>
mmww

Figure 18: Environment Rollout Prompt used for Webshop.

23

Under review as a conference paper at ICLR 2026

Environment Rollout Prompt - GAIA

Prompt Overview: This is the environment rollout prompt for GAIA.

Prompt Content (Verbatim):

TOOL_USE_TEMPLATE_NO_HIS = """

You are an expert research assistant capable of using various tools to
gather information and solve complex problems.\nTask: {task_description}
Available Tools: {available_tools}\n Current Observation:
{current_observation}\n Instructions:

1. Analyze the task and determine what information you need

2. Use available tools to gather information when needed

3. Reason through the information step by step

4. When you have sufficient information, provide your final answer

in <answer></answer> tags\n Format for tool usage:\n <action> tool:
[tool_name] parameters: {{"paraml": "valuel", "param2": "value2"}}
</action>\n Now it's your turn to take an action. You shall first reason
step-by-step about the current situation. This reasoning process MUST be
enclosed within <plan></plan> tags. Once you've finished your reasoning,
you should either use a tool or provide your final answer within
<answer> </answer> tags.\n """\n TOOL_USE_TEMPLATE_LAST_STEP = """

You are an expert research assistant capable of using various tools to
gather information and solve complex problems.\n Task:
{task_description}\n Prior to this step, you have already taken
{step_count} step(s). Below are the full {history_length} observations
and the corresponding actions you took: {action_history}\n

You are now at step {current_step} and this is the final step.

Current Observation: {current_observation}

You must provide your final answer within <answer> </answer> tags.

Even if the evidence is incomplete, infer the most plausible answer.
Never respond with "unknown", "cannot determine", or similar phrases."""
TOOL_USE_TEMPLATE = """ You are an expert research assistant capable of
using various tools to gather information and solve complex problems.\n
Task: {task_description}\n Prior to this step, you have already taken
{step_count} step(s). Below are the most recent {history_length}
observations and the corresponding actions you took: {action_history}\n
You are now at step {current_step}. Current Observation:
{current_observation}\n Available Tools:{available_tools}\n You should
first recall relevant past experiences and reason from our conversation
history, then MUST summarize within <memory_recall> </memory_recall>
tags like this: <memory>

Look at the past observations and actions from our conversation history.
— Please retrieve the most relavent memory for this step including the
relevant observation and action in a RAG style with the step number.

— These memory should be helpful milestones to solve this task.</memory>
After that, you should reflect on the last action and its outcome, then
MUST summarize within <reflection> </reflection> tags like this:
<reflection> Reflect on the last action and its outcome

— Did I complete the task goal?

- Was last action successful or did it encounter issues?

- Am I making progress toward the task goal?

- If the action did not go as expected and did not result in progress,
provide feedback to guide the next planning step. </reflection>\n

Given from the analysis from the memory and reflection, if we

get the final answer,we should provide it within <answer></answer> tags.
If we don't get the final answer, you should plan the next step based on
memory and reflection, then MUST summarize within <plan> </plan> tags
like this: <plan> Plan the next step based on memory and reflection

— Given what I've learned, what should I do next?

— Please explain why this plan is helpful for the next action?

- What do I expect this action to achieve? </plan>\n

Finally, choose ONE admissible action for the current step and present
it within the <action> </action> tags. <action> action: [tool_name]
parameters: {{"paraml": "valuel", "param2": "value2"}}</action> """

Figure 19: Environment Rollout Prompt used for Webshop.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

A.6 ERROR TYPES EXAMPLES

25

Under review as a conference paper at ICLR 2026

Error Type - Over Simplification

task type webshop

task description Find me women’s sweaters with relaxed fit, long sleeve with color: white, and size:
xx-large, and price lower than 40.00 dollars

critical failure module memory

evidence Evidence: No previous steps are directly relevant to the current observation as
this is step 2 and the first step was a search query without detailed navigation or
selection of products. Reasoning: The memory module output oversimplifies the
history by stating that ’No previous steps are directly relevant,” ignoring that the
initial search query contained all of the task’s complex constraints...

critical step 2

step trajectory

observation: 'Back to Search' [SEP] 'Page 1 (Total results: 50)' [SEP]
'Next >' [SEP] 'BO7DKGJR74' [SEP] 'Amazon Brand - Daily Ritual
Women's 100% Cotton Oversized Fit V-Neck Pullover Sweater' [SEP]
'$20.66 to $29.2' [SEP] 'BO9KRLGSCS5' [SEP] 'SweatyRocks Women's
Oversized Sweater Crewneck Long Sleeve Knit Tops Pullover Jumper
Tops' [SEP] '$25.99' [SEP] 'BO7MGB73NJ' [SEP] 'Viracy Women's Short
Sleeve V-Neck Casual Flowy Tunic Shirt (M-3XL)' [SEP] '$16.99 to
$26.99' [SEP] 'BO9KP78G37' [SEP] 'Women Faux Fur Lined Jacket Coat
Winter Warm Thick Fleece Outwear Trench Zipper Plus Size Long
Sleeve Plush Overcoat' [SEP] '$47.41 to $59.07' [SEP] 'B09QT2369P"'
[SEP] 'Stylish Women's Long Sleeve Sweatshirt Letters Printed Tops
Casual Crewneck Solid Blouses Loose Fitting Soft Pullover' [SEP]
'$11.99 to $14.99' [SEP] 'BO9QGKSXHZ' [SEP] 'WENKOMGl Men's Long
Sleeve Undershirt with Mask Turtleneck Hooded T-Shirt Solid Color
Workout Tops Zipper Side Slit Shirts Slim Fit Sweatshirt
Spring/Summer Tee Shirts(Gray,)' [SEP] '$8.39' [SEP] 'B09Q67H373"'
[SEP] 'JSPOYOU 2022 Newly T-Shirt for Mens Funny 3D Graphics
Pattern Crewneck Short Sleeve Tees Big and Tall Summer Casual Comfy
Top' [SEP] '$1.99 to $8.99' [SEP] 'BO9ND8P2QR' [SEP] 'InterestPrint
Deer and Stars Men's Loungewear Pajama Sets - Long Sleeve Tee and
Jogger Pant' [SEP] '$43.59' [SEP] 'BOOND9DP7J' [SEP] 'InterestPrint
Gold Horse Pattern Men's 2-Piece Sleepwear Set, Long Sleeve Shirt
with Pants Loungewear'...
memory: "No previous steps are directly relevant to the current
— oObservation as this is step 2 and the first step was a search query
— without detailed navigation or selection of products."
reflection: "Reflecting on the last action:\n- The task goal of finding
women's sweaters with specific criteria has not yet been
completed.\n- The last action, a search, was successful in
retrieving a list of potential products.\n- Progress toward the
task goal is being made as we now have results to evaluate.\n- No
issues were encountered, but further filtering or exploration is
needed to find products matching all the criteria."
an: "Plan the next step based on memory and reflection:\n- The plan
is to click on products that seem to match the search criteria to
gather more details.\n- Clicking on 'BO7DKGJR74' (Amazon Brand -
Daily Ritual Women's 100% Cotton Oversized Fit V-Neck Pullover
Sweater) will provide more information to confirm if it matches the
desired color, size, and fit.\n- This step is helpful as it will
help verify product details against the specified criteria.\n- I
expect this action to either confirm a match or eliminate this
product from consideration.”
action: "take soapbottle 2 from cabinet 4"

R

S A A A A M A S A

Figure 20: Error Type: Over Simplification

26

Under review as a conference paper at ICLR 2026

Error Type - Impossible Action

task type alfworld
task description put two soapbar in toilet
critical failure module plan

evidence Task requires ‘two soapbar’, but at step 10 the plan proposes: ‘take soapbottle 2
from cabinet 4 ... " Observation at step 10 lists only ‘cloth 1’ and ‘soapbottle 2’ in
cabinet 4; no soapbar is present.

critical step 10

step trajectory

observation: "You open the cabinet 4. The cabinet 4 is open. In it, you

< see a cloth 1, and a soapbottle 2.

admissible_actions: 'close cabinet 3'\n 'close cabinet 4'\n 'examine

cabinet 3'\n 'examine cabinet 4'\n 'go to cabinet 1'\n 'go to

cabinet 2'\n 'go to countertop 1'\n 'go to garbagecan 1'\n 'go to

handtowelholder 1'\n 'go to sinkbasin 1'\n 'go to sinkbasin 2'\n

'go to toilet 1'\n 'go to toiletpaperhanger 1'\n 'go to towelholder

1'\n 'inventory'\n 'look'\n 'take cloth 1 from cabinet 4'\n 'take

soapbottle 2 from cabinet 4'.

memory: "Looking at the past observations and actions from our
conversation history, a relevant memory for this step is from
Observation 9 and Action 9. At step 9, the action was to 'open
cabinet 4' because it was a potential location for soap bars and
cabinets 1 through 3 had already been checked. This action resulted
in Observation 10, where the cabinet 4 is open and contains a cloth
1 and a soapbottle 2. This is a helpful milestone because it
indicates that cabinet 4 contains items that could be relevant to
the task, but it does not contain soap bars as hoped. Instead, it
contains a soapbottle, which might not be what we're looking for
since the task specifies \"soapbar.\""

flection: "Reflecting on the last action and its outcome, the task
goal of putting two soap bars in the toilet has not been completed.
The last action to 'open cabinet 4' was successful in the sense
that it provided new information about the environment, but it did
not directly contribute to achieving the task goal because it did
not yield any soap bars. Progress toward the task goal is limited
because the primary objective is to find and relocate soap bars,
and so far, none have been found. Constructive feedback for the
next planning step would be to consider locations that might more
likely contain soap bars or to re-evaluate the items found for
potential use or clues."

an: "Planning the next step based on memory and reflection, given
what's been learned, the next action should focus on examining the
contents of cabinet 4 more closely or moving to a new location that
could potentially contain soap bars. Since cabinet 4 is already
open and its contents are known, examining it further might not
yield additional useful information. However, before moving on,
it's essential to consider if the soapbottle 2 could be used or if
there's a way to obtain soap bars from the current location. A
helpful next step would be to take the soapbottle 2 from cabinet 4,
not because it directly achieves the task goal, but because it
might provide a clue or an alternative solution, or simply to
inventory the item for future reference. This action is helpful
because it engages with the environment in a way that could
potentially reveal more information or provide a resource that
could be used creatively to achieve the task goal."

action: "take soapbottle 2 from cabinet 4"

rereid

r

el

e T A A A

Figure 21: Error Type: Impossible Action

27

Under review as a conference paper at ICLR 2026

Error Type - Constraint Ignorance

task type webshop

task description Find me wash cold, machine wash men’s shirts with polyester heathers, heathers
cotton, cotton heather, needle sleeve, classic fit with color: navy, and fit type:
women, and size: small, and price lower than 50.00 dollars

critical failure module plan

evidence Evidence from step 1: *Planning ignores the explicit fit type: women, size: small,
and price lower than 50.00 dollars constraints in its summary of what it needs
to search for, instead stating ’search for men’s shirts that match specific criteria:
fabric types (polyester heathers, heathers cotton, cotton heather), design features
(needle sleeve, classic fit), color (navy), fit type (women), size (small), and a price
below 50 dollars.” ... it lists all user constraints but does not acknowledge potential
incompatibility or how to prioritize or filter for those constraints, especially given
that *fit type: women’ is not standard for men’s shirts.” This shows a lack of atten-
tion to task constraints and possible resource or logical conflicts, fitting constraint

ignorance.’
critical step 1
step trajectory
admissible_actions: 'search[<your query>]',\n'click[search]'

plan: To find the desired product, I need to search for men's shirts
that match specific criteria: fabric types (polyester heathers,
heathers cotton, cotton heather), design features (needle sleeve,
classic fit), color (navy), fit type (women), size (small), and a
price below $50. The current observation allows me to perform a
search query, which is necessary to locate products matching these
specific attributes.

action: search[\"men's shirts polyester heathers heathers cotton cotton
— heather needle sleeve classic fit navy color women's fit small size
— under 50 dollars\"]

Pl

Figure 22: Error Type: Constraint Ignorance

28

Under review as a conference paper at ICLR 2026

Error Type - Inefficient Plan

task type alfworld
task description find two pencils and put them in drawer.
critical failure module plan

evidence At step 4, LLM chose the action ’look’ despite already confirming there was only
one pencil on the desk and knowing that the room contained multiple drawers and
shelves likely to hold another pencil. This resulted in repeated *Nothing happens’
outcomes in subsequent steps.

critical step 4

step trajectory

observation: "You pick up the pencil 2 from the desk 1."

admissible_actions: 'examine desk 1'\n 'examine pencil 2'\n 'go to bed
< 1'\n 'go to drawer 1'\n 'go to drawer 2'\n 'go to drawer 3'\n 'go
< to drawer 4'\n 'go to drawer 5'\n 'go to drawer 6'\n 'go to drawer
< 7'\n 'go to drawer 8'\n 'go to dresser 1'\n 'go to garbagecan 1'\n
< 'go to shelf 1'\n 'go to shelf 2'\n 'go to shelf 3'\n 'go to shelf
< 4'\n 'go to shelf 5'\n 'inventory'\n 'look'\n 'move pencil 2 to

— desk 1'

memory: "Looking at the past observations and actions from our

— conversation history, the most relevant memory for this step is:

— \nAt step 2, the observation was 'You arrive at desk 1. On the desk
— 1, you see a book 2, a cd 2, a creditcard 2, and a pencil 2.' and
— the action was 'take pencil 2 from desk 1'. This memory is helpful
— Dbecause it indicates that there is at least one pencil on the desk,
— and we have already taken it. Now, we need to find another pencil
— and put both pencils in a drawer."

reflection: "Reflecting on the last action and its outcome, we can see
— that the last action 'take pencil 2 from desk 1' was successful,

— and we have picked up the pencil 2 from the desk 1. We have made
— progress toward the task goal, but we still need to find another
— pencil and put both pencils in a drawer. The task is not yet

— complete."

plan: "Planning the next step based on memory and reflection, we should
— examine the desk 1 again to see if there is another pencil. This
— plan is helpful because it allows us to gather more information

— about the objects on the desk and potentially find the second

— pencil. We expect this action to achieve a better understanding of
— the objects on the desk and possibly find the second pencil."
action: "examine desk 1"

Figure 23: Error Type: Inefficient Plan

29

Under review as a conference paper at ICLR 2026

Error Type - Misalignment

task type GAIA
task description
critical failure module action

evidence Evidence: Plan: ’I will modify the approach to directly explore the Tropicos
database or a reliable botanical taxonomy reference to find the Tropicos ID for
the Order Helotiales.” Action: tool: wikipedia knowledge searcher parameters:
”query”: "Helotiales Tropicos ID”

critical step 3

step trajectory

observation: Tool 'google_search' executed.\nResult: [\n {\n

— \"title\": \"Untitled\", \n \"link\":

— \"https://www.tropicos.org/name/Search?name=Helodiaceae\", \n
o \"snippet\": \ll\ll\n }\n]

memory: "In step 1, I attempted to find the Tropicos ID for the Order
Helotiales using a Google search, which resulted in a link that was
not directly relevant.\n- In step 2, I used the Wikipedia knowledge
searcher to find the Tropicos ID for Helotiales, but no results
were found for the query."

Pl

reflection: "The last action did not yield the desired Tropicos ID for

— the Order Helotiales, as no results were found on Wikipedia. This
— indicates that Wikipedia might not have the specific identifier

— information needed, and it confirms the need to access more

— specialized or direct resources for taxonomic data. Although there
— has been no progress in finding the Tropicos ID, identifying the
— limitations of current methods is valuable for refining the search
— approach."

plan: "I will use the Google search tool again, but with a refined

— query to specifically target the Tropicos database or another

— authoritative botanical taxonomy site that might list the Tropicos
— ID for Helotiales. This plan is likely to be effective because it
— focuses on accessing specialized databases where the Tropicos ID is
— more likely to be documented. The goal of this action is to obtain
— the Tropicos ID so that I can proceed with calculating the ISBN-10
— check digit."

action: "tool: google_search\nparameters: {\"query\": \"Helotiales

« Tropicos ID site:tropicos.org\", \"num_results\": 1}"

Figure 24: Error Type: Misalignment

30

Under review as a conference paper at ICLR 2026

Error Type - Format Error

task type alfworld
task description clean some plate and put it in shelf.
critical failure module action

evidence Step 15 has a non-empty plan but the recorded action is empty. Step 16 observation
returns "Nothing happens’. From Step 17 onward, admissible actions at the dining
table never include ’take plate 1 ...’, yet attempts persist.

critical step 15

step trajectory

observations: "On the diningtable 1, you see a apple 1, a bread 1, a

— butterknife 1, a cup 3, a fork 1, a houseplant 1, a knife 1, a

— lettuce 3, a lettuce 2, a peppershaker 2, a plate 2, a plate 1, a
— saltshaker 1, a soapbottle 2, a soapbottle 1, a spoon 2, a spoon 1,
— a winebottle 3, and a winebottle 2."

admissible_actions: "'examine diningtable 1'\n 'examine dishsponge 1'\n
— 'go to cabinet 1'\n 'go to cabinet 10'\n 'go to cabinet 11'\n 'go
< to cabinet 12'\n 'go to cabinet 13'\n 'go to cabinet 2'\n 'go to

— cabinet 3'\n 'go to cabinet 4'\n 'go to cabinet 5'\n 'go to cabinet
< 6'\n 'go to cabinet 7'\n 'go to cabinet 8'\n 'go to cabinet 9'\n

— 'go to coffeemachine 1'\n 'go to countertop 1'\n 'go to countertop
— 2'\n 'go to drawer 1'\n ..."

memory: "Looking at the past observations and actions from our

— conversation history, a relevant memory for this step is from step
< 10, where the observation was \"You open the drawer 1. The drawer 1
— 1s open. In it, you see a dishsponge 1.\" and the action was \"take
— dishsponge 1 from drawer 1\". This memory is helpful because it

— shows that the dishsponge 1, which is likely needed for cleaning,
— has been retrieved and is now in the agent's possession. Another

— relevant memory is from step 14, where the observation was ..."
reflection: "Reflecting on the last action and its outcome, the last

< action was \"examine diningtable 1\" and the outcome was that the
— agent observed the current state of the diningtable 1. The task

— goal is to clean some plate and put it in a shelf, and the last

— action did not directly contribute to completing this goal.

— However, it did provide information about the current state of the
— diningtable 1, which is necessary for planning the next step. The
— agent 1s making progress toward the task goal by gathering

— information, but the actual cleaning and putting away of the plate
— has not started yet. To make progress, the agent should use the

— dishsponge 1 to clean a plate and then put it away in a shelf.",
plan: "Planning the next step based on memory and reflection, the agent
— should use the dishsponge 1 to clean a plate. Since the agent is

— currently at the diningtable 1 and there are plates present, the

— agent should take a plate from the diningtable 1 and clean it using
— the dishsponge 1. After cleaning the plate, the agent can put it

— away 1in a shelf. This plan is helpful because it directly addresses
— the task goal and uses the information gathered from previous

— actions. The expected outcome of this action is that the agent will
— have a clean plate that can be put away in a shelf."

action: "take plate 1 from diningtable 1."

Figure 25: Error Type: Format Error

31

Under review as a conference paper at ICLR 2026

Error Type - Progress Misjudge

task type alfworld
task description put a clean bowl in shelf.
critical failure module reflection

evidence Step 16 reflection: 'This means that the task goal of putting a clean bowl in the
shelf has been completed. The last action was successful, and progress was made
toward the task goal. However, to confirm that the bowl is indeed in the shelf and
the task is fully completed, further verification might be necessary.’

critical step 16

step trajectory

observations: ""You move the bowl 1 to the shelf 1."
admissible_actions: "'examine shelf 1'\n 'go to cabinet 1'\n 'go to
< cabinet 2'\n 'go to cabinet 3'\n 'go to cabinet 4'\n 'go to cabinet

5'\n 'go to cabinet 6'\n 'go to cabinet 7'\n 'go to cabinet 8'\n
'go to cabinet 9'\n 'go to coffeemachine 1'\n 'go to countertop
1'\n 'go to countertop 2'\n 'go to countertop 3'\n 'go to drawer
1'\n 'go to drawer 2'\n 'go to drawer 3'\n 'go to drawer 4'\n 'go
to drawer 5'\n 'go to drawer 6'\n 'go to drawer 7'\n 'go to drawer
8'\n 'go to drawer 9'\n 'go to fridge 1'\n 'go to garbagecan 1'\n
'go to microwave 1'\n 'go to shelf 2'\n 'go to shelf 3'\n 'go to
sinkbasin 1'\n 'go to stoveburner 1'\n 'go to stoveburner 2'\n 'go
to stoveburner 3'\n 'go to stoveburner 4'\n 'go to toaster 1'\n
'inventory'\n 'look'\n 'take bowl 1 from shelf 1'."

R

memory: "Looking at the past observations and actions from our
conversation history, a relevant memory for this step is from Step
13 and Step 14. \nAt Step 13, the observation was: \"You arrive at
countertop 1. On the countertop 1, you see a bowl 1, a butterknife
2, a butterknife 1, a dishsponge 1, a fork 1, and a kettle 1.\"
\nThe action taken was: \"take bowl 1 from countertop 1\". \nThen
at Step 14, the observation was: \"You pick up the bowl 1 from the
countertop 1.\" \nThe action taken was: \"go to shelf 1\". \nThis
memory is helpful because it shows how the bowl was obtained and
moved to the shelf, which is the goal of the task."

A

reflection: "Reflecting on the last action and its outcome, the last
action was to move the bowl 1 to the shelf 1. \nThe outcome was
that the bowl was successfully moved to the shelf. \nThis means
that the task goal of putting a clean bowl in the shelf has been
completed. \nThe last action was successful, and progress was made
toward the task goal. \nHowever, to confirm that the bowl is indeed
in the shelf and the task is fully completed, further verification
might be necessary.",

P!

plan: "Planning the next step based on memory and reflection, given

— what has been learned, the next action should be to verify that the
< bowl is indeed on the shelf. \nThis plan is helpful because it

— ensures that the task goal has been fully achieved and that there
— are no unexpected issues. \nThe expected outcome of this action is
— to confirm the presence of the bowl on the shelf, thereby

— confirming the completion of the task."

action: "examine shelf 1."

Figure 26: Error Type: Progress Misjudge

32

	Introduction
	Where do LLM Agents Fail?
	Agent Failure Analysis
	Agent Error Benchmark

	How to Refine LLM Agents from Failures?
	Key Modules of an LLM Agent
	AgentDebug Framework

	Experiments and Results
	Critical Error Detection
	Downstream Debugging on Single-Agent Benchmarks

	Analysis and Discussion
	Ablation Study
	Error Propagation

	Related Work
	Conclusion
	Appendix
	Limitation
	AgentErrorTaxonomy
	AgentDebug Example
	Failure Analysis Across Representative LLMs Agent Benchmarks
	Prompt
	Error Types Examples

