003 004

010 011

012

013

014

015

016

017

018

019

021

022

024

025 026

COMPARISONS ARE ALL YOU NEED FOR OPTIMIZING SMOOTH FUNCTIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

When optimizing machine learning models, there are various scenarios where gradient computations are challenging or even infeasible. Furthermore, in reinforcement learning (RL), preference-based RL that only compares between options has wide applications, including reinforcement learning with human feedback in large language models. In this paper, we systematically study optimization of a smooth function $f : \mathbb{R}^n \to \mathbb{R}$ only assuming an oracle that compares function values at two points and tells which is larger. When f is convex, we give two algorithms using $\tilde{O}(n/\epsilon)$ and $\tilde{O}(n^2)$ comparison queries to find an ϵ -optimal solution, respectively. When f is nonconvex, our algorithm uses $\tilde{O}(n/\epsilon^2)$ comparison queries to find an ϵ -approximate stationary point. All these results match the best-known zeroth-order algorithms with function evaluation queries in n dependence, thus suggesting that comparisons are all you need for optimizing smooth functions using derivative-free methods. In addition, we also give an algorithm for escaping saddle points and reaching an ϵ -second order stationary point of a nonconvex f, using $\tilde{O}(n^{1.5}/\epsilon^{2.5})$ comparison queries.

1 INTRODUCTION

029 030

028

031 Optimization is pivotal in the realm of machine learning. For instance, advancements in stochas-032 tic gradient descent (SGD) such as ADAM (Kingma & Ba, 2015), Adagrad (Duchi et al., 2011), 033 etc., serve as foundational methods for the training of deep neural networks. However, there exist 034 scenarios where gradient computations are challenging or even infeasible, such as black-box adver-035 sarial attack on neural networks (Papernot et al., 2017; Madry et al., 2018; Chen et al., 2017) and policy search in reinforcement learning (Salimans et al., 2017; Choromanski et al., 2018). Conse-037 quently, zeroth-order optimization methods with function evaluations have gained prominence, with provable guarantee for convex optimization (Duchi et al., 2015; Nesterov & Spokoinv, 2017) and 038 nonconvex optimization (Ghadimi & Lan, 2013; Fang et al., 2018; Jin et al., 2018a; Ji et al., 2019; Zhang et al., 2022; Vlatakis-Gkaragkounis et al., 2019; Balasubramanian & Ghadimi, 2022). 040

⁰⁴¹ Furthermore, optimization for machine learning has been recently soliciting for even less informa-042 tion. For instance, it is known that taking only signs of gradient descents still enjoy good performance (Liu et al., 2019; Li et al., 2023; Bernstein et al., 2018). Moreover, in the breakthrough of 043 large language models (LLMs), reinforcement learning from human feedback (RLHF) played an 044 important rule in training these LLMs, especially GPTs by OpenAI (Ouvang et al., 2022). Com-045 pared to standard RL that applies function evaluation for rewards, RLHF is preference-based RL 046 that only compares between options and tells which is better. There is emerging research interest 047 in preference-based RL, where various works have established provable guarantees for learning a 048 near-optimal policy from preference feedback (Chen et al., 2022; Saha et al., 2023; Novoseller et al., 049 2020; Xu et al., 2020; Zhu et al., 2023; Tang et al., 2023). Furthermore, Wang et al. (2023) proved that for a wide range of preference models, preference-based RL can be solved with small or no 051 extra costs compared to those of standard reward-based RL. 052

In this paper, we systematically study optimization of smooth functions using comparisons. Specifically, for a function $f: \mathbb{R}^n \to \mathbb{R}$, we define the *comparison oracle* of f as $O_f^{\text{Comp}}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$

 $\{-1,1\}$ such that

056 057

058

059 060 061

063

064 065

066

067

068

069

070 071

072

073

074

075 076

077

078

$$O_f^{\text{Comp}}(\mathbf{x}, \mathbf{y}) = \begin{cases} 1 & \text{if } f(\mathbf{x}) \ge f(\mathbf{y}) \\ -1 & \text{if } f(\mathbf{x}) \le f(\mathbf{y}) \end{cases}.$$
 (1)

(When $f(\mathbf{x}) = f(\mathbf{y})$, outputting either 1 or -1 is okay.) We consider an L-smooth function $f : \mathbb{R}^n \to \mathbb{R}$, defined as

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\| \quad \forall \, \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

⁰⁶¹ Furthermore, we say f is ρ -Hessian Lipschitz if

$$\|\nabla^2 f(\mathbf{x}) - \nabla^2 f(\mathbf{y})\| \le \rho \|\mathbf{x} - \mathbf{y}\| \quad \forall \, \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

In terms of the goal of optimization, we define:

- $\mathbf{x} \in \mathbb{R}^n$ is an ϵ -optimal point if $f(\mathbf{x}) \leq f^* + \epsilon$, where $f^* \coloneqq \inf_{\mathbf{x}} f(\mathbf{x})$.
- $\mathbf{x} \in \mathbb{R}^n$ is an ϵ -first-order stationary point (ϵ -FOSP) if $\|\nabla f(\mathbf{x})\| \leq \epsilon$.
- $\mathbf{x} \in \mathbb{R}^n$ is an ϵ -second-order stationary point (ϵ -SOSP) if $\|\nabla f(\mathbf{x})\| \leq \epsilon$ and $\lambda_{\min}(\nabla^2 f(\mathbf{x})) \geq -\sqrt{\rho\epsilon}$

Our main results can be listed as follows:

- For an L-smooth convex f, Theorem 2 finds an ϵ -optimal point in $O(nL/\epsilon \log(nL/\epsilon))$ comparisons.
- For an L-smooth convex f, Theorem 3 finds an ϵ -optimal point in $O(n^2 \log(nL/\epsilon))$ comparisons.
- For an L-smooth f, Theorem 4 finds an ϵ -FOSP using $O(Ln \log n/\epsilon^2)$ comparisons.
- For an *L*-smooth, ρ -Hessian Lipschitz f, Theorem 5 finds an ϵ -SOSP in $\tilde{O}(n^{1.5}/\epsilon^{2.5})$ comparisons.

Intuitively, our results can be described as comparisons are all you need for derivative-free meth-079 ods: For finding an approximate minimum of a convex function, the state-of-the-art zeroth-order methods with full function evaluations have query complexities $O(n/\sqrt{\epsilon})$ (Nesterov & Spokoiny, 081 2017) or $\tilde{O}(n^2)$ (Lee et al., 2018), which are matched in n by our Theorem 2 and Theorem 3 using comparisons, respectively. For finding an approximate stationary point of a nonconvex function, 083 the state-of-the-art zeroth-order result has query complexity $O(n/\epsilon^2)$ (Fang et al., 2018), which is 084 matched by our Theorem 4 up to a logarithmic factor. In other words, in derivative-free scenarios for 085 optimizing smooth functions, function values per se are unimportant but their comparisons, which 086 indicate the direction that the function decreases. 087

Among the literature for derivative-free optimization methods (Larson et al., 2019), direct search 088 methods by Kolda et al. (2003) proceed by comparing function values, including the directional di-089 rect search method (Audet & Dennis Jr. 2006) and the Nelder-Mead method (Nelder & Mead, 1965) 090 as examples. However, the directional direct search method does not have a known rate of conver-091 gence, meanwhile the Nelson-Mead method may fail to converge to a stationary point for smooth 092 functions (Dennis & Torczon, 1991). As far as we know, the most relevant result is by Bergou et al. 093 (2020), which proposed the stochastic three points (STP) method and found an ϵ -optimal point of 094 a convex function and an ϵ -FOSP of a nonconvex function in $\tilde{O}(n/\epsilon)$ and $\tilde{O}(n/\epsilon^2)$ comparisons, respectively. STP also has a version with momentum (Gorbunov et al., 2020). Our Theorem 2 095 and Theorem 4 can be seen as rediscoveries of these results using different methods. In addition, 096 literature on dueling convex optimization also achieves $O(n/\epsilon)$ for finding an ϵ -optimal point of 097 a convex function (Saha et al., 2021; 2022). However, for comparison-based convex optimization 098 with poly(log $1/\epsilon$) dependence, Jamieson et al. (2012) achieved this for strongly convex functions, 099 and the state-of-the-art result for general convex optimization by Karabag et al. (2021) takes $\tilde{O}(n^4)$ 100 comparison queries. Their algorithm applies the ellipsoid method, which has $\tilde{O}(n^2)$ iterations and 101 each iteration takes $\hat{O}(n^2)$ comparisons to construct the ellipsoid. This $\hat{O}(n^4)$ bound is noticeably 102 worse than our Theorem 3 As far as we know, our Theorem 5 is the *first provable guarantee* for 103 finding an ϵ -SOSP of a nonconvex function by comparisons. 104

¹This is a standard definition among nonconvex optimization literature for escaping saddle points and reaching approximate second-order stationary points, see for instance (Nesterov & Polyak, 2006; Curtis et al., 2017; Agarwal et al., 2017; Carmon et al., 2018; Jin et al., 2018b; Allen-Zhu & Li, 2018; Xu et al., 2018; Zhang et al., 2022; Zhang & Gu, 2023).

Techniques. Our first technical contribution is Theorem 1 which for a point x estimates the direction of $\nabla f(\mathbf{x})$ within precision δ . This is achieved by Algorithm 2 named as Comparison-GDE (GDE is the acronym for gradient direction estimation). It is built upon a directional preference subroutine (Algorithm 1), which inputs a unit vector $\mathbf{v} \in \mathbb{R}^n$ and a precision parameter $\Delta > 0$, and outputs whether $\langle \nabla f(\mathbf{x}), \mathbf{v} \rangle \ge -\Delta$ or $\langle \nabla f(\mathbf{x}), \mathbf{v} \rangle \le \Delta$ using the value of the comparison oracle for $O_f^{\text{Comp}}(\mathbf{x} + \frac{2\Delta}{L}\mathbf{v}, \mathbf{x})$. Comparison-GDE then has three phases:

- First, it sets v to be all standard basis directions e_i to determine the signs of all $\nabla_i f(x)$ (up to Δ).
 - It then sets \mathbf{v} as $\frac{1}{\sqrt{2}}(\mathbf{e}_i \mathbf{e}_j)$, which can determine whether $|\nabla_i f(\mathbf{x})|$ or $|\nabla_j f(\mathbf{x})|$ is larger (up to
 - Δ). Start with \mathbf{e}_1 and \mathbf{e}_2 and keep iterating to find the i^* with the largest $\left|\frac{\partial}{\partial i^*} \nabla f(\mathbf{x})\right|$ (up to Δ).
- Finally, for each $i \neq i^*$, It then sets **v** to have form $\frac{1}{\sqrt{1+\alpha_i^2}}(\alpha_i \mathbf{e}_{i^*} \mathbf{e}_i)$ and applies binary search to find the value for α_i such that $\alpha_i |\nabla_{i^*} f(\mathbf{x})|$ equals to $|\nabla_i f(\mathbf{x})|$ up to enough precision.

122 Comparison-GDE outputs $\alpha/\|\alpha\|$ for GDE, where $\alpha = (\alpha_1, \ldots, \alpha_n)^{\top}$. It in total uses 123 $O(n\log(n/\delta))$ comparison queries, with the main cost coming from binary searches in the last 124 step (the first two steps both take $\leq n$ comparisons).

125 We then leverage Comparison-GDE for solving various optimization problems. In convex op-126 timization, we develop two algorithms that find an ϵ -optimal point separately in Section 3.1 and 127 Section 3.2. Our first algorithm is a specialization of the adaptive version of normalized gradient descent (NGD) introduced in Levy (2017), where we replace the normalized gradient query in their 128 algorithm by Comparison-GDE. It is a natural choice to apply gradient estimation to normalized 129 gradient descent, given that the comparison model only allows us to estimate the gradient direction 130 without providing information about its norm. Note that Bergou et al. (2020) also discussed NGD, 131 but their algorithm using NGD still needs the full gradient and cannot be directly implemented by 132 comparisons. Our second algorithm builds upon the framework of cutting plane methods, where we 133 show that the output of Comparison-GDE is a valid separation oracle, as long as it is accurate 134 enough. Moreover, we note that Cai et al. (2022) also studied gradient estimation by comparisons 135 and combined that with inexact NGD, but their complexity $\tilde{O}(d/\epsilon^{1.5})$ is suboptimal compared to 136 ours. 137

In nonconvex optimization, we develop two algorithms that find an ϵ -FOSP and an ϵ -SOSP, respec-138 tively, in Section 4.1 and Section 4.2 Our algorithm for finding an ϵ -FOSP is a specialization of the 139 NGD algorithm, where the normalized gradient is given by Comparison-GDE. Our algorithm for 140 finding an ϵ -SOSP uses a similar approach as corresponding first-order methods by Allen-Zhu & Li 141 (2018); Xu et al. (2018) and proceeds in rounds, where we alternately apply NGD and negative cur-142 vature descent to ensure that the function value will have a large decrease if more than 1/9 of the 143 iterations in this round are not ϵ -SOSP. The normalized gradient descent part is essentially the same 144 as our algorithm for ϵ -FOSP in Section 4.1 The negative curvature descent part with comparison 145 information, however, is much more technically involved. In particular, previous first-order methods Allen-Zhu & Li, 2018; Xu et al., 2018; Zhang & Li, 2021) all contains a subroutine that can find a 146 negative curvature direction near a saddle point x with $\lambda_{\min}(\nabla^2 f(\mathbf{x}) \leq -\sqrt{\rho\epsilon})$. One crucial step 147 in this subroutine is to approximate the Hessian-vector product $\nabla^2 f(\mathbf{x}) \cdot \mathbf{y}$ for some unit vector 148 $\mathbf{y} \in \mathbb{R}^n$ by taking the difference between $\nabla f(\mathbf{x} + r\mathbf{y})$ and $\nabla f(\mathbf{x})$, where r is a very small pa-149 rameter. However, this is infeasible in the comparison model which only allows us to estimate the 150 gradient direction without providing information about its norm. Instead, we find the directions of 151 $\nabla f(\mathbf{x}), \nabla f(\mathbf{x} + r\mathbf{y}), \text{ and } \nabla f(\mathbf{x} - r\mathbf{y}) \text{ by Comparison-GDE, and we determine the direction of}$ 152 $\nabla f(\mathbf{x} + r\mathbf{y}) - f(\mathbf{y})$ using the fact that its intersection with $\nabla f(\mathbf{x})$ and $\nabla f(\mathbf{x} + r\mathbf{y})$ as well as its 153 intersection with $\nabla f(\mathbf{x})$ and $\nabla f(\mathbf{x} - r\mathbf{y})$ give two segments of same length (see Figure 1). 154

155 156

116

117

118

121

Open questions. Our work leaves several natural directions for future investigation:

• Can we give comparison-based optimization algorithms based on accelerated gradient descent (AGD) methods? This is challenging because AGD requires carefully chosen step sizes, but with comparisons we can only learn gradient directions but not the norm of gradients. This is also the main reason why the $1/\epsilon$ dependence in our Theorem 2 and Theorem 5 are worse than Nesterov & Spokoiny (2017) and Zhang & Gu (2023) with evaluations in their respective settings.

Proof. Since *f* is an *L*-smooth differentiable function,

$$|f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle| \le \frac{1}{2}L \|\mathbf{y} - \mathbf{x}\|^2$$

for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Take $\mathbf{y} = \mathbf{x} + \frac{2\Delta}{L} \mathbf{v}$, this gives

$$\left|f(\mathbf{y}) - f(\mathbf{x}) - \frac{2\Delta}{L} \langle \nabla f(\mathbf{x}), \mathbf{v} \rangle \right| \le \frac{1}{2} L \left(\frac{2\Delta}{L}\right)^2 = \frac{2\Delta^2}{L}.$$

Therefore, if $O_f^{\text{Comp}}(\mathbf{y}, \mathbf{x}) = 1$, i.e., $f(\mathbf{y}) \ge f(\mathbf{x})$,

$$\frac{2\Delta}{L} \langle \boldsymbol{\nabla} f(\mathbf{x}), \mathbf{v} \rangle \geq \frac{2\Delta}{L} \langle \boldsymbol{\nabla} f(\mathbf{x}), \mathbf{v} \rangle + f(\mathbf{x}) - f(\mathbf{y}) \geq -\frac{2\Delta^2}{L}$$

and hence $\langle \nabla f(\mathbf{x}), \mathbf{v} \rangle \ge -\Delta$. On the other hand, if $O_f^{\text{Comp}}(\mathbf{y}, \mathbf{x}) = -1$, i.e., $f(\mathbf{y}) \le f(\mathbf{x})$,

$$\frac{2\Delta}{L} \langle \boldsymbol{\nabla} f(\mathbf{x}), \mathbf{v} \rangle \leq f(\mathbf{y}) - f(\mathbf{x}) + \frac{2\Delta^2}{L} \leq \frac{2\Delta^2}{L}$$

and hence $\langle \nabla f(\mathbf{x}), \mathbf{v} \rangle \leq \Delta$.

Now, we prove that we can use O(n) comparison queries to approximate the direction of the gradient at a point, which is one of our main technical contributions.

Theorem 1. For an L-smooth function $f : \mathbb{R}^n \to \mathbb{R}$ and a point $\mathbf{x} \in \mathbb{R}^n$, Algorithm 2 outputs an estimate $\tilde{\mathbf{g}}(\mathbf{x})$ of the direction of $\nabla f(\mathbf{x})$ using $O(n \log(n/\delta))$ queries to the comparison oracle O_f^{Comp} of $f(\text{Eq. } \square)$ that satisfies

$$\left\| \tilde{\mathbf{g}}(\mathbf{x}) - \frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|} \right\| \le \delta$$

if we are given a parameter $\gamma > 0$ such that $\|\nabla f(\mathbf{x})\| \ge \gamma$.

Proof. The correctness of (2) and (3) follows directly from the arguments in Line 2 and Line 3, respectively. For Line 6 since $\alpha_i \leq 1$ for any $i \in [n]$, the binary search can be regarded as having bins with interval lengths $\sqrt{1 + \alpha_i^2} \Delta \leq \sqrt{2} \Delta$, and when the binary search ends Eq. (4) is satisfied. Furthermore, Eq. (4) can be written as

$$\left|\alpha_{i} - \frac{g_{i}}{g_{i^{*}}}\right| \leq \frac{\sqrt{2}\Delta}{g_{i^{*}}} \leq \frac{2\Delta\sqrt{n}}{\gamma}$$

This is because $\|\nabla f(\mathbf{x})\| = \|(g_1, \dots, g_n)^\top\| \ge \gamma$ implies $\max_{i \in [n]} g_i \ge \gamma/\sqrt{n}$, and together with (3) we have $g_{i^*} \ge \gamma/\sqrt{n} - \sqrt{2}\Delta \ge \gamma/\sqrt{2n}$ because $\Delta \le \gamma/4\sqrt{n}$.

We now estimate $\left\|\tilde{\mathbf{g}}(\mathbf{x}) - \frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|}\right\|$. Note $\frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|} = \frac{\nabla f(\mathbf{x})/g_{i^*}}{\|\nabla f(\mathbf{x})/g_{i^*}\|}$ and $\tilde{\mathbf{g}}(\mathbf{x}) = \alpha/\|\alpha\|$. Moreover

$$\left\| \boldsymbol{\alpha} - \frac{\nabla f(\mathbf{x})}{g_{i^*}} \right\| \le \sum_{i=1}^n \left| \alpha_i - \frac{g_i}{g_{i^*}} \right| \le \frac{2\Delta\sqrt{n(n-1)}}{\gamma}.$$

By Lemma 5 for bounding distance between normalized vectors) and the fact that $\|\alpha\| \ge 1$,

$$\left\|\tilde{\mathbf{g}}(\mathbf{x}) - \frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|}\right\| = \left\|\frac{\boldsymbol{\alpha}}{\|\boldsymbol{\alpha}\|} - \frac{\nabla f(\mathbf{x})/g_{i^*}}{\|\nabla f(\mathbf{x})/g_{i^*}\|}\right\| \le \frac{4\Delta n^{3/2}}{\gamma} \le \delta$$

Thus the correctness has been established. For the query complexity, Line 2 takes n queries, Line 3 takes n - 1 queries, and Line 6 throughout the for loop takes $(n - 1)\lceil \log_2(\gamma/\sqrt{2}\Delta) + 1 \rceil = O(n \log(n/\delta))$ queries to the comparison oracle, given that each α_i is within the range of [0, 1]and we approximate it to accuracy $\sqrt{2}\Delta/g_{i^*} \ge \sqrt{2}\Delta/\gamma$. This finishes the proof.

Algorithm 2: Comparison-b	based Gradient Direction Estimation (Compariso	on-GDE $(\mathbf{x}, \delta, \gamma)$)
Input: Comparison oracle (D_f^{Comp} of $f : \mathbb{R}^n \to \mathbb{R}$, precision δ , lower bound	$\gamma \text{ on } \ \boldsymbol{\nabla} f(\mathbf{x}) \ $
		$\int \operatorname{OH} \ \mathbf{v} f(\mathbf{x}) \ $
Set $\Delta \leftarrow \delta \gamma / 4n^{3/2}$. Denote		
	s $(\mathbf{x}, \mathbf{e}_1, \Delta), \dots, (\mathbf{x}, \mathbf{e}_n, \Delta)$ where e_i is the i^{th} st	
	others being 0. This determines whether $g_i \ge -$	$\Delta \text{ or } g_i \leq \Delta \text{ for }$
each $i \in [n]$. WLOG		
	$g_i \ge -\Delta \forall i \in [n]$	(2)
	$g_i \geq -\Delta$, $\forall i \in [n]$	(2)
(otherwise take a minus sig	on for the i^{th} coordinate)	
We next find the approximat	te largest one among g_1, \ldots, g_n . Call Algorithm	1 with input
	determines whether $g_1 \ge g_2 - \sqrt{2}\Delta$ or $g_2 \ge g_1$	
former, call Algorithm 1 w	ith input $(\mathbf{x}, \frac{1}{\sqrt{2}}(\mathbf{e}_1 - \mathbf{e}_3), \Delta)$. If the later, call	Algorithm 1 with
	. Iterate this until e_n , we find the $i^* \in [n]$ such t	
input (ii, $\sqrt{2}$ (\mathbf{c}_2 (\mathbf{c}_3), $\mathbf{\Delta}$)	. Therefore this until \mathcal{O}_n , we find the $v \in [n]$ such t	inut
	$a_{11} \ge \max a_{1} = \sqrt{2}\Lambda$	(3)
	$g_{i^*} \geq \max_{i \in [n]} g_i - \sqrt{2\Delta}$	(3)
for $i = 1$ to $i = n$ (except i	$=i^*)$ do	
Initialize $\alpha_i \leftarrow 1/2$		
Apply binary search to a	α_i in $\lceil \log_2(\gamma/\Delta) + 1 \rceil$ iterations by calling Algorithms \rceil	orithm 1 with input
$(\mathbf{x} - \frac{1}{2}) (\alpha \cdot \mathbf{e} \cdot \mathbf{x} - \mathbf{e} \cdot$), Δ). For the first iteration with $\alpha_i = 1/2$, if α_i	$a_{i*} = a_i \ge -\sqrt{2}\Lambda$
$(\mathbf{x}, \sqrt{1+\alpha_i^2})^{(\alpha_i \mathbf{c}_i^+ \cdots \mathbf{c}_i^+)}$	$(1, 2)$. For the first field of with $\alpha_i = 1/2$, if α_i	g_{i^*} $g_i \leq \sqrt{2\Delta}$
we then take $\alpha_i = 3/4$; if $\alpha_i g_{i^*} - g_i \leq \sqrt{2}\Delta$ we then take $\alpha_i = 1/4$.	Later iterations are
similar. Upon finishing	g the binary search, α_i satisfies	
1 0		
	$g_i - \sqrt{2}\Delta \le lpha_i g_{i^*} \le g_i + \sqrt{2}\Delta$	(4)
return $\tilde{\mathbf{g}}(\mathbf{x}) = \frac{\alpha}{\ \alpha\ }$ where α		
$ \underset{\alpha_{i^*}}{\overset{L}{\text{return}}} \tilde{\mathbf{g}}(\mathbf{x}) = \frac{\alpha}{\ \boldsymbol{\alpha}\ } \text{ where } \alpha $	$g_i - \sqrt{2\Delta} \le \alpha_i g_{i^*} \le g_i + \sqrt{2\Delta}$ $\alpha = (\alpha_1, \dots, \alpha_n)^\top, \alpha_i \ (i \ne i^*)$ is the output of t	
return $\tilde{\mathbf{g}}(\mathbf{x}) = \frac{\boldsymbol{\alpha}}{\ \boldsymbol{\alpha}\ }$ where α $\alpha_{i^*} = 1$		
return $\tilde{\mathbf{g}}(\mathbf{x}) = \frac{\boldsymbol{\alpha}}{\ \boldsymbol{\alpha}\ }$ where α $\alpha_{i^*} = 1$		
$\alpha_{i^*} = 1$	$\alpha = (\alpha_1, \dots, \alpha_n)^\top, \alpha_i \ (i \neq i^*)$ is the output of t	
$\alpha_{i^*} = 1$		
$\alpha_{i^*} = 1$ 3 Convex Optimiz.	$\alpha = (\alpha_1, \dots, \alpha_n)^\top, \alpha_i \ (i \neq i^*)$ is the output of t ATION BY COMPARISONS	he for loop,
$\alpha_{i^*} = 1$ 3 Convex Optimiz.	$\alpha = (\alpha_1, \dots, \alpha_n)^\top, \alpha_i \ (i \neq i^*)$ is the output of t	he for loop,
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study con	$\alpha = (\alpha_1, \dots, \alpha_n)^\top, \alpha_i \ (i \neq i^*)$ is the output of to ATION BY COMPARISONS	he for loop,
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study con Problem 1 (Comparison-base	$\alpha = (\alpha_1, \dots, \alpha_n)^{\top}, \alpha_i \ (i \neq i^*)$ is the output of to ATION BY COMPARISONS evex optimization with function value comparisons sed convex optimization). In the comparison-base	he for loop, ns: sed convex optimizati
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study con Problem 1 (Comparison-base	$\alpha = (\alpha_1, \dots, \alpha_n)^{\top}, \alpha_i \ (i \neq i^*)$ is the output of to ATION BY COMPARISONS evex optimization with function value comparisons sed convex optimization). In the comparison-base	he for loop, ns: sed convex optimization
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study com Problem 1 (Comparison-bass (CCO) problem we are give convex function $f : \mathbb{R}^n \to \mathbb{R}$	$\alpha = (\alpha_1, \dots, \alpha_n)^{\top}, \alpha_i \ (i \neq i^*) is the output of the action $	he for loop, ns: sed convex optimization P[I] for an L-smoon $ \leq R$. The goal is
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study com Problem 1 (Comparison-bass (CCO) problem we are give convex function $f : \mathbb{R}^n \to \mathbb{R}$	$\alpha = (\alpha_1, \dots, \alpha_n)^{\top}, \alpha_i \ (i \neq i^*)$ is the output of to ATION BY COMPARISONS evex optimization with function value comparisons sed convex optimization). In the comparison-base	he for loop, ns: sed convex optimization P[I] for an L-smoon $ \leq R$. The goal is
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study com Problem 1 (Comparison-bass (CCO) problem we are give convex function $f : \mathbb{R}^n \to \mathbb{R}^n$ output a point $\tilde{\mathbf{x}}$ such that $\parallel \hat{\mathbf{z}}$	$\alpha = (\alpha_1, \dots, \alpha_n)^{\top}, \alpha_i \ (i \neq i^*) is the output of the action $	he for loop, ns: sed convex optimization P[n] for an L-smooth $ \leq R$. The goal is potimal point.
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study com Problem 1 (Comparison-base (CCO) problem we are give convex function $f : \mathbb{R}^n \to \mathbb{R}$ output a point $\tilde{\mathbf{x}}$ such that $\ \tilde{\mathbf{x}}\ $ We provide two algorithms the	$\alpha = (\alpha_1, \dots, \alpha_n)^\top, \alpha_i \ (i \neq i^*) \text{ is the output of t}$ ATION BY COMPARISONS evex optimization with function value comparison-base en query access to a comparison oracle O_f^{Com} \mathbb{R} whose minimum is achieved at \mathbf{x}^* with $ \mathbf{x}^* $ $\tilde{\mathbf{x}} \leq R$ and $f(\tilde{\mathbf{x}}) - f(\mathbf{x}^*) \leq \epsilon$, i.e., $\tilde{\mathbf{x}}$ is an ϵ -op hat solve[Problem 1]. In[Section 3.1] we use norm	he for loop, ns: sed convex optimization $P \left[\begin{array}{c} \\ \\ \\ \end{array} \right]$ for an L-smoot $ \leq R$. The goal is point. halized gradient desce
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study com Problem 1 (Comparison-base (<i>CCO</i>) problem we are give convex function $f : \mathbb{R}^n \to \mathbb{R}^n$ output a point $\tilde{\mathbf{x}}$ such that $\ \tilde{\mathbf{z}}\ $ We provide two algorithms the to achieve linear dependence	$\alpha = (\alpha_1, \dots, \alpha_n)^{\top}, \alpha_i \ (i \neq i^*) \text{ is the output of t}$ ATION BY COMPARISONS evex optimization with function value comparison sed convex optimization). In the comparison obscience of the problem of the comparison of the	he for loop, ns: sed convex optimization $P \left[\begin{array}{c} I \\ I \end{array} \right]$ for an L-smoot $ \leq R$. The goal is optimal point. halized gradient descent queries. In Section 3
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study com Problem 1 (Comparison-base (<i>CCO</i>) problem we are give convex function $f : \mathbb{R}^n \to \mathbb{R}^n$ output a point $\tilde{\mathbf{x}}$ such that $\ \tilde{\mathbf{z}}\ $ We provide two algorithms the to achieve linear dependence	$\alpha = (\alpha_1, \dots, \alpha_n)^\top, \alpha_i \ (i \neq i^*) \text{ is the output of t}$ ATION BY COMPARISONS evex optimization with function value comparison-base en query access to a comparison oracle O_f^{Com} \mathbb{R} whose minimum is achieved at \mathbf{x}^* with $ \mathbf{x}^* $ $\tilde{\mathbf{x}} \leq R$ and $f(\tilde{\mathbf{x}}) - f(\mathbf{x}^*) \leq \epsilon$, i.e., $\tilde{\mathbf{x}}$ is an ϵ -op hat solve[Problem 1]. In[Section 3.1] we use norm	he for loop, ns: sed convex optimization $P \left[\begin{array}{c} I \\ I \end{array} \right]$ for an L-smoot $ \leq R$. The goal is optimal point. halized gradient descent queries. In Section 3
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study com Problem 1 (Comparison-base (<i>CCO</i>) problem we are give convex function $f : \mathbb{R}^n \to \mathbb{R}^n$ output a point $\tilde{\mathbf{x}}$ such that $\ \tilde{\mathbf{z}}\ $ We provide two algorithms the to achieve linear dependence	$\alpha = (\alpha_1, \dots, \alpha_n)^{\top}, \alpha_i \ (i \neq i^*) \text{ is the output of t}$ ATION BY COMPARISONS evex optimization with function value comparison sed convex optimization). In the comparison obscience of the problem of the comparison of the	he for loop, ns: sed convex optimization $P \left[\begin{array}{c} I \\ I \end{array} \right]$ for an L-smoot $ \leq R$. The goal is optimal point. halized gradient descent queries. In Section 3
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study com Problem 1 (Comparison-bass (CCO) problem we are give convex function $f : \mathbb{R}^n \to \mathbb{I}$ output a point $\tilde{\mathbf{x}}$ such that $\ \hat{\mathbf{z}}\ $ We provide two algorithms th to achieve linear dependence we use cutting plane method	ATION BY COMPARISONS and $\alpha = (\alpha_1, \dots, \alpha_n)^{\top}, \alpha_i \ (i \neq i^*)$ is the output of the set of the	he for loop, ns: sed convex optimization P [I] for an L-smood $ \leq R$. The goal is optimal point. halized gradient descer queries. In Section 3 nparison queries.
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study com Problem 1 (Comparison-bass (CCO) problem we are give convex function $f : \mathbb{R}^n \to \mathbb{I}$ output a point $\tilde{\mathbf{x}}$ such that $\ \hat{\mathbf{z}}\ $ We provide two algorithms th to achieve linear dependence we use cutting plane method	$\alpha = (\alpha_1, \dots, \alpha_n)^{\top}, \alpha_i \ (i \neq i^*) \text{ is the output of t}$ ATION BY COMPARISONS evex optimization with function value comparison sed convex optimization). In the comparison obscience of the problem of the comparison of the	he for loop, ns: sed convex optimization P [I] for an L-smoon $ \leq R$. The goal is optimal point. halized gradient descent queries. In Section 3 nparison queries.
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study com Problem 1 (Comparison-bass (CCO) problem we are give convex function $f: \mathbb{R}^n \to \mathbb{I}$ output a point $\tilde{\mathbf{x}}$ such that $\ \tilde{\mathbf{z}}$ We provide two algorithms th to achieve linear dependence we use cutting plane method 3.1 COMPARISON-BASED	ATION BY COMPARISONS ATION BY COMPARISONS avex optimization with function value comparison sed convex optimization). In the comparison-base en query access to a comparison oracle O_f^{Com} \mathbb{R} whose minimum is achieved at \mathbf{x}^* with $ \mathbf{x}^* $ $\tilde{\mathbf{x}} \leq R$ and $f(\tilde{\mathbf{x}}) - f(\mathbf{x}^*) \leq \epsilon$, i.e., $\tilde{\mathbf{x}}$ is an ϵ -op hat solve[Problem 1]. In[Section 3.1] we use norm \mathbf{x} in n (up to a log factor) in terms of comparison to achieve $\log(1/\epsilon)$ dependence in terms of com- \mathbf{x} and \mathbf{x} and $$	he for loop, ns: sed convex optimization P[I] for an L-smooth $ \leq R$. The goal is optimal point. halized gradient descent queries. In Section 3 nparison queries. T
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study com Problem 1 (Comparison-bass (CCO) problem we are give convex function $f: \mathbb{R}^n \to \mathbb{I}$ output a point $\tilde{\mathbf{x}}$ such that $\ \hat{\mathbf{z}}\ $ We provide two algorithms th to achieve linear dependence we use cutting plane method 3.1 COMPARISON-BASED In this subsection, we pre	ATION BY COMPARISONS ATION BY COMPARISONS avex optimization with function value comparison sed convex optimization). In the comparison-base en query access to a comparison oracle O_f^{Com} \mathbb{R} whose minimum is achieved at \mathbf{x}^* with $ \mathbf{x}^* $ $\tilde{\mathbf{x}} \leq R$ and $f(\tilde{\mathbf{x}}) - f(\mathbf{x}^*) \leq \epsilon$, i.e., $\tilde{\mathbf{x}}$ is an ϵ -op hat solve[Problem 1]. In[Section 3.1] we use norm \mathbf{x} in $(up \text{ to a log factor})$ in terms of comparison I to achieve $\log(1/\epsilon)$ dependence in terms of cor- \mathbf{x} ADAPTIVE NORMALIZED GRADIENT DESCEN sent our first algorithm for Problem 1]. [Algorithm [main for [Problem 1]]. [Algorithm [main fo	he for loop, ns: sed convex optimization P[I] for an L-smooth $ \leq R$. The goal is point. halized gradient descent queries. In Section 3 nparison queries. T ithm 3] which appli
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ.In this section, we study com Problem 1 (Comparison-base(CCO) problem we are giveconvex function $f: \mathbb{R}^n \to \mathbb{I}$ output a point $\tilde{\mathbf{x}}$ such that $\ \hat{\mathbf{z}}\ $ We provide two algorithms the to achieve linear dependence we use cutting plane method3.1 COMPARISON-BASEDIn this subsection, we pre Comparison-GDE (Algorithms)	ATION BY COMPARISONS ATION BY COMPARISONS avex optimization with function value comparison sed convex optimization). In the comparison-base and query access to a comparison oracle O_f^{Com} \mathbb{R} whose minimum is achieved at \mathbf{x}^* with $ \mathbf{x}^* $ $\tilde{\mathbf{x}} \leq R$ and $f(\tilde{\mathbf{x}}) - f(\mathbf{x}^*) \leq \epsilon$, i.e., $\tilde{\mathbf{x}}$ is an ϵ -op that solve[Problem 1]. In[Section 3.1] we use norm \mathbf{x} in $(up \text{ to a log factor})$ in terms of comparison \mathbf{x} to achieve $\log(1/\epsilon)$ dependence in terms of com- \mathbf{x} and \mathbf{x} with estimated gradient direction at each \mathbf{x} with estimated gradient direction at each	he for loop, ns: sed convex optimization P[I] for an L-smooth $ \leq R$. The goal is optimal point. halized gradient descent queries. In Section 3 nparison queries. T T thm 3 which applit th iteration to the ada
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study com Problem 1 (Comparison-base (CCO) problem we are give convex function $f: \mathbb{R}^n \rightarrow \mathbb{I}$ output a point $\tilde{\mathbf{x}}$ such that $\ \hat{\mathbf{z}}\ $ We provide two algorithms th to achieve linear dependence we use cutting plane method 3.1 COMPARISON-BASED In this subsection, we pre Comparison-GDE (Algor tive normalized gradient des	ATION BY COMPARISONS at $(a \neq i^*)$ is the output of the set $(\alpha_1, \ldots, \alpha_n)^\top$, α_i $(i \neq i^*)$ is the output of the set $(\alpha_1, \ldots, \alpha_n)^\top$, α_i $(i \neq i^*)$ is the output of the set $(\alpha_1, \ldots, \alpha_n)^\top$, α_i $(i \neq i^*)$ is the output of the set optimization with function value comparison set on vex optimization). In the comparison base of the set	he for loop, ns: sed convex optimization P(I) for an L-smooth $ \leq R$. The goal is point. halized gradient descer queries. In Section 3 nparison queries. T T rithm 3, which applition th iteration to the ada (2017).
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study com Problem 1 (Comparison-base (CCO) problem we are give convex function $f: \mathbb{R}^n \rightarrow \mathbb{I}$ output a point $\tilde{\mathbf{x}}$ such that $\ \hat{\mathbf{z}}\ $ We provide two algorithms th to achieve linear dependence we use cutting plane method 3.1 COMPARISON-BASED In this subsection, we pre Comparison-GDE (Algor tive normalized gradient des	ATION BY COMPARISONS ATION BY COMPARISONS avex optimization with function value comparison sed convex optimization). In the comparison-base and query access to a comparison oracle O_f^{Com} \mathbb{R} whose minimum is achieved at \mathbf{x}^* with $ \mathbf{x}^* $ $\tilde{\mathbf{x}} \leq R$ and $f(\tilde{\mathbf{x}}) - f(\mathbf{x}^*) \leq \epsilon$, i.e., $\tilde{\mathbf{x}}$ is an ϵ -op that solve[Problem 1]. In[Section 3.1] we use norm \mathbf{x} in $(up \text{ to a log factor})$ in terms of comparison \mathbf{x} to achieve $\log(1/\epsilon)$ dependence in terms of com- \mathbf{x} and \mathbf{x} with estimated gradient direction at each \mathbf{x} with estimated gradient direction at each	he for loop, ns: sed convex optimization P(I) for an L-smooth $ \leq R$. The goal is point. halized gradient descer queries. In Section 3 nparison queries. T T rithm 3, which applition th iteration to the ada (2017).
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study com Problem 1 (Comparison-base (<i>CCO</i>) problem we are give convex function $f: \mathbb{R}^n \to \mathbb{R}^n$ output a point $\tilde{\mathbf{x}}$ such that si We provide two algorithms the to achieve linear dependence we use cutting plane method 3.1 COMPARISON-BASED In this subsection, we pre Comparison-GDE (Algorithm 3) so	ATION BY COMPARISONS ATION BY COMPARISONS avex optimization with function value comparison sed convex optimization). In the comparison-base of query access to a comparison oracle O_f^{Com} \mathbb{R} whose minimum is achieved at \mathbf{x}^* with $ \mathbf{x}^* $ $\tilde{\mathbf{x}} \leq R$ and $f(\tilde{\mathbf{x}}) - f(\mathbf{x}^*) \leq \epsilon$, i.e., $\tilde{\mathbf{x}}$ is an ϵ -op hat solve[Problem 1] In[Section 3.1] we use norm is in n (up to a log factor) in terms of comparison to achieve $\log(1/\epsilon)$ dependence in terms of com- sent our first algorithm for Problem 1] Algorithm 2] with estimated gradient direction at each cent (AdaNGD), originally introduced by Levy lives[Problem 1] using $O(nLR^2/\epsilon \log(nLR^2/\epsilon))$	he for loop, ns: sed convex optimization P(I) for an L-smoon $ \leq R$. The goal is point. halized gradient descent queries. In Section 3 nparison queries. T ithm 3 which applither the iteration to the ada (2017). a queries.
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ. In this section, we study com Problem 1 (Comparison-base (<i>CCO</i>) problem we are give convex function $f: \mathbb{R}^n \to \mathbb{R}^n$ output a point $\tilde{\mathbf{x}}$ such that si We provide two algorithms the to achieve linear dependence we use cutting plane method 3.1 COMPARISON-BASED In this subsection, we pre Comparison-GDE (Algorithm 3) so	ATION BY COMPARISONS at $(a \neq i^*)$ is the output of the set $(\alpha_1, \ldots, \alpha_n)^\top$, α_i $(i \neq i^*)$ is the output of the set $(\alpha_1, \ldots, \alpha_n)^\top$, α_i $(i \neq i^*)$ is the output of the set $(\alpha_1, \ldots, \alpha_n)^\top$, α_i $(i \neq i^*)$ is the output of the set optimization with function value comparison set on vex optimization). In the comparison base of the set	he for loop, ns: sed convex optimization P(I) for an L-smoon $ \leq R$. The goal is point. halized gradient descent queries. In Section 3 nparison queries. T ithm 3 which applither the iteration to the ada (2017). a queries.
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ.In this section, we study com Problem 1 (Comparison-base(CCO) problem we are giveconvex function $f: \mathbb{R}^n \to \mathbb{I}$ output a point $\tilde{\mathbf{x}}$ such that $\ \hat{\mathbf{z}}\ $ We provide two algorithms the to achieve linear dependence we use cutting plane method3.1 COMPARISON-BASEDIn this subsection, we pre Comparison-GDE (Algoritive normalized gradient des Theorem 2. Algorithm 3 so The following result bounds	ATION BY COMPARISONS ATION BY COMPARISONS avex optimization with function value comparison sed convex optimization). In the comparison-base en query access to a comparison oracle O_f^{Com} \mathbb{R} whose minimum is achieved at \mathbf{x}^* with $ \mathbf{x}^* $ $\tilde{\mathbf{x}} \leq R$ and $f(\tilde{\mathbf{x}}) - f(\mathbf{x}^*) \leq \epsilon$, i.e., $\tilde{\mathbf{x}}$ is an ϵ -op that solve[Problem 1]. In[Section 3.1] we use norm \mathbf{x} in $(\text{up to a log factor})$ in terms of comparison achieve $\log(1/\epsilon)$ dependence in terms of com- \mathbf{x} or \mathbf{x} and \mathbf{x} is a gradient direction at each \mathbf{x} or \mathbf{x} or \mathbf{x} and \mathbf{x} and \mathbf{x} is a definition \mathbf{x} and \mathbf{x} an	he for loop, ns: sed convex optimization P(I) for an L-smooth $ \leq R$. The goal is point. halized gradient descer queries. In Section 3 nparison queries. T ithm 3 which applith th iteration to the ada (2017). <i>queries.</i>
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ.In this section, we study com Problem 1 (Comparison-base(CCO) problem we are giveconvex function $f: \mathbb{R}^n \to \mathbb{I}$ output a point $\tilde{\mathbf{x}}$ such that $\ \mathbf{z} \ $ We provide two algorithms theto achieve linear dependencewe use cutting plane method3.1 COMPARISON-BASEDIn this subsection, we preComparison-GDE (Algoritive normalized gradient desTheorem 2. Algorithm 3 soThe following result boundsLemma 2. In the setting of	ATION BY COMPARISONS ATION BY COMPARISONS avex optimization with function value comparison sed convex optimization). In the comparison-base en query access to a comparison oracle O_f^{Com} \mathbb{R} whose minimum is achieved at \mathbf{x}^* with $ \mathbf{x}^* $ $\tilde{\mathbf{x}} \leq R$ and $f(\tilde{\mathbf{x}}) - f(\mathbf{x}^*) \leq \epsilon$, i.e., $\tilde{\mathbf{x}}$ is an ϵ -op hat solve[Problem 1]. In Section 3.1] we use norm is in n (up to a log factor) in terms of comparison to achieve $\log(1/\epsilon)$ dependence in terms of cor- D ADAPTIVE NORMALIZED GRADIENT DESCEN sent our first algorithm for Problem 1]. Algorithm 2] with estimated gradient direction at each cent (AdaNGD), originally introduced by Levy lives Problem 1] using $O(nLR^2/\epsilon \log(nLR^2/\epsilon))$ the rate at which Algorithm 3] decreases the fun Problem 1 Algorithm 3] satisfies	he for loop, ns: sed convex optimization P(I) for an L-smooth $ \leq R$. The goal is point. halized gradient descent queries. In Section 3 nparison queries. T ithm 3 which applithentiation to the ada (2017). paper of the section 2 particular of the section 3 particular of the section 3 par
$\alpha_{i^*} = 1$ 3 CONVEX OPTIMIZ.In this section, we study com Problem 1 (Comparison-base(CCO) problem we are giveconvex function $f: \mathbb{R}^n \to \mathbb{I}$ output a point $\tilde{\mathbf{x}}$ such that $\ \mathbf{z} \ $ We provide two algorithms theto achieve linear dependencewe use cutting plane method3.1 COMPARISON-BASEDIn this subsection, we preComparison-GDE (Algoritive normalized gradient desTheorem 2. Algorithm 3 soThe following result boundsLemma 2. In the setting of	ATION BY COMPARISONS ATION BY COMPARISONS avex optimization with function value comparison sed convex optimization). In the comparison-base en query access to a comparison oracle O_f^{Com} \mathbb{R} whose minimum is achieved at \mathbf{x}^* with $ \mathbf{x}^* $ $\tilde{\mathbf{x}} \leq R$ and $f(\tilde{\mathbf{x}}) - f(\mathbf{x}^*) \leq \epsilon$, i.e., $\tilde{\mathbf{x}}$ is an ϵ -op that solve[Problem 1]. In[Section 3.1] we use norm \mathbf{x} in $(\text{up to a log factor})$ in terms of comparison achieve $\log(1/\epsilon)$ dependence in terms of com- \mathbf{x} or \mathbf{x} and \mathbf{x} is a gradient direction at each \mathbf{x} or \mathbf{x} or \mathbf{x} and \mathbf{x} and \mathbf{x} is a definition \mathbf{x} and \mathbf{x} an	he for loop, ns: sed convex optimization P(I) for an L-smoon $ \leq R$. The goal is optimal point. halized gradient descent queries. In Section 3 nparison queries. T ithm 3 which applither the iteration to the ada (2017). <i>queries.</i>

Algorithm 3: Comparison-based Approximate Adaptive Normalized Gradient Descent (Comparison-AdaNGD)

 $\begin{array}{c|c}
\hline \mathbf{Input: Function } f: \mathbb{R}^n \to \mathbb{R}, \text{ precision } \epsilon, \text{ radius } R \\
\hline \mathbf{I} \quad T \leftarrow \frac{64LR^2}{\epsilon}, \delta \leftarrow \frac{1}{4R}\sqrt{\frac{\epsilon}{2L}}, \gamma \leftarrow \frac{\epsilon}{2R}, \mathbf{x}_0 \leftarrow \mathbf{0} \\
\hline \mathbf{2} \quad \mathbf{for } t = 0, \dots, T - 1 \ \mathbf{do} \\
\hline \mathbf{3} \quad \begin{vmatrix} \hat{\mathbf{g}}_t \leftarrow \text{Comparison-GDE}(\mathbf{x}_t, \delta, \gamma) \\
\eta_t \leftarrow R\sqrt{2/t} \\
\hline \mathbf{x}_{t+1} = \Pi_{\mathbb{B}_R(\mathbf{0})}(\mathbf{x}_t - \eta_t \hat{\mathbf{g}}_t)
\end{array}$

333 6 $t_{\text{out}} \leftarrow \operatorname{argmin}_{t \in [T]} f(\mathbf{x}_t)$

 $\begin{array}{ccc} 334 & _{7} \\ 335 \end{array} \quad \begin{array}{c} \textbf{return } \mathbf{x}_{t_{\mathrm{out}}} \\ \end{array}$

if at each step we have

$$\left\| \tilde{\mathbf{g}}_t - \frac{\nabla f_t(\mathbf{x}_t)}{\|\nabla f_t(\mathbf{x}_t)\|} \right\| \le \delta \le 1.$$

The proof of Lemma 2 is deferred to Appendix B We now prove Theorem 2 using Lemma 2

Proof of <u>Theorem 2</u> We show that <u>Algorithm 3</u> solves <u>Problem 1</u> by contradiction. Assume that the output of <u>Algorithm 3</u> is not an ϵ -optimal point of f, or equivalently, $f(\mathbf{x}_t) - f^* \ge \epsilon$ for any $t \in [T]$. This leads to

$$\|\nabla f(\mathbf{x}_t)\| \ge \frac{f(\mathbf{x}_t) - f^*}{\|\mathbf{x}_t - \mathbf{x}^*\|} \ge \frac{\epsilon}{2R}, \quad \forall t \in [T]$$

given that f is convex. Hence, Theorem 1 promises that

$$\left\| \hat{\mathbf{g}}_t - \frac{\nabla f(\mathbf{x}_t)}{\|\nabla f(\mathbf{x}_t)\|} \right\| \le \delta \le 1.$$

With these approximate gradient directions, by Lemma 2 we can derive that

$$\min_{t \in [T]} f(\mathbf{x}_t) - f^* \le 2L(2R\sqrt{2T} + 2T\delta R)^2/T^2 \le \epsilon,$$

contradiction. This proves the correctness of Algorithm 3. The query complexity of Algorithm 3 only comes from the gradient direction estimation step in Line 3 which equals

$$T \cdot O(n \log(n/\delta)) = O\left(\frac{nLR^2}{\epsilon} \log\left(\frac{nLR^2}{\epsilon}\right)\right).$$

3.2 COMPARISON-BASED CUTTING PLANE METHOD

In this subsection, we provide a comparison-based cutting plane method that solves Problem 1 We
 begin by introducing the basic notation and concepts of cutting plane methods, which are algorithms
 that solves the feasibility problem defined as follows.

Problem 2 (Feasibility Problem, Jiang et al. (2020); Sidford & Zhang (2023)). We are given query access to a separation oracle for a set $K \subset \mathbb{R}^n$ such that on query $\mathbf{x} \in \mathbb{R}^n$ the oracle outputs a vector \mathbf{c} and either $\mathbf{c} = \mathbf{0}$, in which case $\mathbf{x} \in K$, or $\mathbf{c} \neq \mathbf{0}$, in which case $H := {\mathbf{z} : \mathbf{c}^\top \mathbf{z} \le \mathbf{c}^\top \mathbf{x}} \supset$ *K*. The goal is to query a point $\mathbf{x} \in K$.

Jiang et al. (2020) developed a cutting plane method that solves Problem 2 using $O(n \log(nR/r))$ queries to a separation oracle where R and r are parameters related to the convex set \mathcal{K} .

Lemma 3 (Theorem 1.1, Jiang et al. (2020)). There is a cutting plane method which solves **Problem 2** using at most $C \cdot n \log(nR/r)$ queries for some constant C, given that the set K is contained in the ball of radius R centered at the origin and it contains a ball of radius r. Nemirovski (1994); Lee et al. (2015) showed that, running cutting plane method on a Lipschitz convex function f with the separation oracle being the gradient of f would yield a sequence of points where at least one of them is ϵ -optimal. Furthermore, Sidford & Zhang (2023) showed that even if we cannot access the exact gradient value of f, it suffices to use an approximate gradient estimate with absolute error at most $O(\epsilon/R)$.

In this work, we show that this result can be extended to the case where we have an estimate of the gradient direction instead of the gradient itself. Specifically, we prove the following result.

Theorem 3. There exists an algorithm based on cutting plane method that solves Problem 1 using $O(n^2 \log(nLR^2/\epsilon))$ queries.

Note that Theorem 3 improves the prior state-of-the-art from $\tilde{O}(n^4)$ by Karabag et al. (2021) to $\tilde{O}(n^2)$.

Proof of Theorem 3 The proof follows a similar intuition as the proof of Proposition 1 in Sidford & Zhang (2023). Define $\mathcal{K}_{\epsilon/2}$ to be the set of $\epsilon/2$ -optimal points of f, and \mathcal{K}_{ϵ} to be the set of ϵ -optimal points of f. Given that f is L-smooth, $\mathcal{K}_{\epsilon/2}$ must contain a ball of radius at least $r_{\mathcal{K}} = \sqrt{\epsilon/L}$ since for any \mathbf{x} with $\|\mathbf{x} - \mathbf{x}^*\| \leq r_{\mathcal{K}}$ we have

$$f(\mathbf{x}) - f(\mathbf{x}^*) \le L \|\mathbf{x} - \mathbf{x}^*\|^2 / 2 \le \epsilon / 2$$

We apply the cutting plane method, as described in Lemma 3 to query a point in $\mathcal{K}_{\epsilon/2}$, which is a subset of the ball $\mathbb{B}_{2R}(\mathbf{0})$. To achieve this, at each query x of the cutting plane method, we use Comparison-GDE($\mathbf{x}, \delta, \gamma$), our comparison-based gradient direction estimation algorithm (Algorithm 2), as the separation oracle for the cutting plane method, where we set

$$\delta = \frac{1}{16R} \sqrt{\frac{\epsilon}{L}}, \qquad \gamma = \sqrt{2L\epsilon}$$

We show that any query outside of \mathcal{K}_{ϵ} to Comparison-GDE $(\mathbf{x}, \delta, \gamma)$ will be a valid separation oracle for $\mathcal{K}_{\epsilon/2}$. In particular, if we ever queried Comparison-GDE $(\mathbf{x}, \delta, \gamma)$ at any $\mathbf{x} \in \mathbb{B}_{2R}(\mathbf{0}) \setminus \mathcal{K}_{\epsilon}$ with output being $\hat{\mathbf{g}}$, for any $\mathbf{y} \in \mathcal{K}_{\epsilon/2}$ we have

$$\begin{aligned} \langle \hat{\mathbf{g}}, \mathbf{y} - \mathbf{x} \rangle &\leq \left\langle \frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|}, \mathbf{y} - \mathbf{x} \right\rangle + \left\| \hat{\mathbf{g}} - \frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|} \right\| \cdot \|\mathbf{y} - \mathbf{x}\| \\ &\leq \frac{f(\mathbf{y}) - f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|} + \left\| \hat{\mathbf{g}} - \frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|} \right\| \cdot \|\mathbf{y} - \mathbf{x}\| \leq -\frac{\epsilon}{2} + \frac{\epsilon}{10R} \cdot 4R < 0, \end{aligned}$$

where

$$\|\nabla f(\mathbf{x})\| \ge (f(\mathbf{x}) - f^*) / \|\mathbf{x} - \mathbf{x}^*\| \ge (f(\mathbf{x}) - f^*) / (2R)$$

given that f is convex. Combined with Theorem 1 it guarantees that

$$\left\| \hat{\mathbf{g}} - \frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|} \right\| \le \delta = \frac{1}{16R} \sqrt{\frac{\epsilon}{L}}$$

Hence,

$$\langle \hat{\mathbf{g}}, \mathbf{y} - \mathbf{x} \rangle \leq \frac{f(\mathbf{y}) - f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|} + \left\| \hat{\mathbf{g}} - \frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|} \right\| \cdot \|\mathbf{y} - \mathbf{x}\| \leq -\frac{1}{2}\sqrt{\frac{\epsilon}{2L}} + \frac{1}{16R}\sqrt{\frac{\epsilon}{L}} \cdot 4R < 0,$$

indicating that $\hat{\mathbf{g}}$ is a valid separation oracle for the set $\mathcal{K}_{\epsilon/2}$. Consequently, by Lemma 3 after $Cn \log(nR/r_{\mathcal{K}})$ iterations, at least one of the queries must lie within \mathcal{K}_{ϵ} , and we can choose the query with minimum function value to output, which can be done by making $Cn \log(nR/r_{\mathcal{K}})$ comparisons.

Note that in each iteration $O(n \log(n/\delta))$ queries to O_f^{Comp} (1) are needed. Hence, the overall query complexity equals

$$Cn\log(nR/r_{\mathcal{K}}) \cdot O(n\log(n/\delta)) + Cn\log(nR/r_{\mathcal{K}}) = O\left(n^2\log\left(nLR^2/\epsilon\right)\right).$$

441 442 443

444 445

446

447

448

449 450

451

Algorithm 4: Comparison-based Approximate Normalized Gradient Descent (Comparison-NGD) 434 **Input:** Function $f: \mathbb{R}^n \to \mathbb{R}, \Delta$, precision ϵ 435 1 $T \leftarrow \frac{18L\Delta}{\epsilon^2}, \mathbf{x}_0 \leftarrow \mathbf{0}$ 436 2 for t = 0, ..., T - 1 do 437 $\hat{\mathbf{g}}_t \leftarrow \text{Comparison-GDE}(\mathbf{x}_t, 1/6, \epsilon/12)$ 438 $\mathbf{x}_t = \mathbf{x}_{t-1} - \epsilon \hat{\mathbf{g}}_t / (3L)$ 4 439 5 Uniformly randomly select \mathbf{x}_{out} from $\{\mathbf{x}_0, \ldots, \mathbf{x}_T\}$ 440 $_{6}$ return $\mathbf{x}_{\mathrm{out}}$

NONCONVEX OPTIMIZATION BY COMPARISONS

In this section, we study nonconvex optimization with function value comparisons. We first develop an algorithm that finds an ϵ -FOSP of a smooth nonconvex function in Section 4.1 Then in Section 4.2 we further develop an algorithm that finds an ϵ -SOSP of a nonconvex function that is smooth and Hessian-Lipschitz.

4.1 FIRST-ORDER STATIONARY POINT COMPUTATION BY COMPARISONS

452 In this subsection, we focus on the problem of finding an ϵ -FOSP of a smooth nonconvex function 453 by making function value comparisons. 454

Problem 3 (Comparison-based first-order stationary point computation). In the Comparison-based 455 first-order stationary point computation (Comparison-FOSP) problem we are given query access 456 to a comparison oracle O_f^{Comp} (1) for an L-smooth (possibly) nonconvex function $f: \mathbb{R}^n \to \mathbb{R}$ 457 satisfying $f(\mathbf{0}) - \inf_{\mathbf{x}} f(\mathbf{x}) \leq \Delta$. The goal is to output an ϵ -FOSP of f. 458

459 We develop a comparison-based normalized gradient descent algorithm that solves Problem 3 460

Theorem 4. With success probability at least 2/3, Algorithm 4 solves Problem 3 using 461 $O(L\Delta n \log n/\epsilon^2)$ queries. 462

463 464

465

482

483 484 485

The proof of Theorem 4 is deferred to Appendix C.1

4.2 ESCAPING SADDLE POINTS OF NONCONVEX FUNCTIONS BY COMPARISONS 466

467 In this subsection, we focus on the problem of escaping from saddle points, i.e., finding an ϵ -SOSP of 468 a nonconvex function that is smooth and Hessian-Lipschitz, by making function value comparisons.

469 **Problem 4** (Comparison-based escaping from saddle point). In the Comparison-based escaping 470 from saddle point (Comparison-SOSP) problem we are given query access to a comparison oracle 471 O_f^{Comp} (1) for a (possibly) nonconvex function $f: \mathbb{R}^n \to \mathbb{R}$ satisfying $f(\mathbf{0}) - \inf_{\mathbf{x}} f(\mathbf{x}) \leq \Delta$ that 472 is L-smooth and ρ -Hessian Lipschitz. The goal is to output an ϵ -SOSP of f. 473

474 Our algorithm for Problem 4 given in Algorithm 5 is a combination of comparison-based normalized gradient descent and comparison-based negative curvature descent (Comparison-NCD). Specif-475 ically, Comparison-NCD is built upon our comparison-based negative curvature finding algo-476 rithms, Comparison-NCF1 (Algorithm 8) and Comparison-NCF2 (Algorithm 9) that work 477 when the gradient is small or large respectively, and can decrease the function value efficiently when 478 applied at a point with a large negative curvature. 479

Lemma 4. In the setting of Problem 4 for any z satisfying $\lambda_{\min}(\nabla^2 f(\mathbf{x})) \leq -\sqrt{\rho\epsilon}$, Algorithm 6 480 outputs a point $\mathbf{z}_{out} \in \mathbb{R}^n$ satisfying 481

$$f(\mathbf{z}_{\text{out}}) - f(\mathbf{z}) \le -\frac{1}{48}\sqrt{\frac{\epsilon^3}{
ho}}$$

with success probability at least $1 - \zeta$ using $O\left(\frac{L^2 n^{3/2}}{\zeta \rho \epsilon} \log^2 \frac{nL}{\zeta \sqrt{\rho \epsilon}}\right)$ queries.

Algorithm 5: Comparison-based Perturbed Normalized Gradient Descent (Comparison-PNGD) **Input:** Function $f : \mathbb{R}^n \to \mathbb{R}, \Delta$, precision ϵ $\mathcal{S} \leftarrow 350 \Delta \sqrt{\frac{\rho}{\epsilon^3}}, \delta \leftarrow \frac{1}{6}, \mathbf{x}_{1,0} \leftarrow \mathbf{0}$ $\mathbf{2} \ \mathscr{T} \leftarrow \frac{384L^2\sqrt{n}}{\delta\rho\epsilon}\log\frac{36nL}{\sqrt{\rho\epsilon}}, p \leftarrow \frac{100}{\mathscr{T}}\log\mathcal{S}$ s for s = 1, ..., S dofor $t = 0, ..., \mathscr{T} - 1$ do $\hat{\mathbf{g}}_t \leftarrow \texttt{Comparison-GDE}(\mathbf{x}_{s,t},\delta,\gamma)$ $\mathbf{y}_{s,t} \leftarrow \mathbf{x}_{s,t} - \epsilon \hat{\mathbf{g}}_t / (3L)$ Choose $\mathbf{x}_{s,t+1}$ to be the point between $\{x_{s,t}, \mathbf{y}_{s,t}\}$ with smaller function value $\mathbf{x}_{s,t+1}' \leftarrow \begin{cases} \mathbf{0}, \text{ w.p. } 1-p \\ \texttt{Comparison-NCD}(\mathbf{x}_{s,t+1}, \epsilon, \delta), \text{ w.p. } p \end{cases}$ Choose $\mathbf{x}_{s+1,0}$ among $\{\mathbf{x}_{s,0}, \ldots, \mathbf{x}_{s,\mathcal{T}}, \mathbf{x}'_{s,0}, \ldots, \mathbf{x}'_{s,\mathcal{T}}\}$ with the smallest function value. $\mathbf{x}_{s+1,0}' \leftarrow \begin{cases} \mathbf{0}, \text{ w.p. } 1-p \\ \texttt{Comparison-NCD}(\mathbf{x}_{s+1,0}, \epsilon, \delta), \text{ w.p. } p \end{cases}$ 11 Uniformly randomly select $s_{out} \in \{1, \dots, S\}$ and $t_{out} \in [\mathscr{T}]$ 12 return $\mathbf{x}_{s_{\mathrm{out}},t_{\mathrm{out}}}$ Algorithm 6: Comparison-based Negative Curvature Descent (Comparison-NCD) **Input:** Function $f: \mathbb{R}^n \to \mathbb{R}$, precision ϵ , input point z, error probability δ $\mathbf{v}_1 \leftarrow \text{Comparison-NCF1}(\mathbf{z}, \epsilon, \delta)$ $\mathbf{v}_2 \leftarrow \text{Comparison-NCF2}(\mathbf{z}, \epsilon, \delta)$ $\mathbf{s} \ \mathbf{z}_{1,+} = \mathbf{z} + \frac{1}{2}\sqrt{\frac{\epsilon}{\rho}}\mathbf{v}_1, \mathbf{z}_{1,-} = \mathbf{z} - \frac{1}{2}\sqrt{\frac{\epsilon}{\rho}}\mathbf{v}_1, \mathbf{z}_{2,+} = \mathbf{z} + \frac{1}{2}\sqrt{\frac{\epsilon}{\rho}}\mathbf{v}_2, \mathbf{z}_{2,-} = \mathbf{z} - \frac{1}{2}\sqrt{\frac{\epsilon}{\rho}}\mathbf{v}_2$ $\underline{ return } \mathbf{z}_{\mathrm{out}} \in \{\mathbf{z}_{1,+}, \mathbf{z}_{1,-}, \mathbf{z}_{2,+}, \mathbf{z}_{2,-}\} \text{ with the smallest function value.}$ The proof of Lemma 4 is deferred to Appendix C.3. Next, we present the main result of this subsec-tion, which describes the complexity of solving Problem 4 using Algorithm 5 **Theorem 5.** With success probability at least 2/3, Algorithm 5 solves Problem 4 using an expected $O\left(\frac{\Delta L^2 n^{3/2}}{\rho^{1/2}\epsilon^{5/2}}\log^3\frac{nL}{\sqrt{\rho\epsilon}}\right)$ queries. The proof of Theorem 5 is deferred to Appendix C.4 REFERENCES Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding approximate local minima faster than gradient descent. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1195–1199, 2017. arXiv:1611.01146 Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles. In Advances in Neural Information Processing Systems, pp. 3716–3726, 2018. arXiv:1711.06673 Charles Audet and John E. Dennis Jr. Mesh adaptive direct search algorithms for constrained opti-mization. SIAM Journal on Optimization, 17(1):188-217, 2006. Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational *Mathematics*, pp. 1–42, 2022. arXiv 1809.06474 El Houcine Bergou, Eduard Gorbunov, and Peter Richtárik. Stochastic three points method for unconstrained smooth minimization. SIAM Journal on Optimization, 30(4):2726-2749, 2020. arXiv:1902.03591

540 541 542 543	Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signSGD: Compressed optimisation for non-convex problems. In <i>International Conference on Machine Learning</i> , pp. 560–569. PMLR, 2018. arXiv:1802.04434
544 545 546	HanQin Cai, Daniel McKenzie, Wotao Yin, and Zhenliang Zhang. A one-bit, comparison- based gradient estimator. <i>Applied and Computational Harmonic Analysis</i> , 60:242–266, 2022. arXiv:2010.02479
547 548 549	Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for nonconvex optimization. <i>SIAM Journal on Optimization</i> , 28(2):1751–1772, 2018. arXiv:1611.00756
550 551 552 553 554	Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti- mization based black-box attacks to deep neural networks without training substitute models. In <i>Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security</i> , pp. 15–26, 2017. arXiv:1708.03999
555 556 557 558	Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, and Liwei Wang. Human-in-the- loop: Provably efficient preference-based reinforcement learning with general function approx- imation. In <i>International Conference on Machine Learning</i> , pp. 3773–3793. PMLR, 2022. arXiv:2205.11140
559 560 561 562	Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard Turner, and Adrian Weller. Structured evolution with compact architectures for scalable policy optimization. In <i>International</i> <i>Conference on Machine Learning</i> , pp. 970–978. PMLR, 2018. arXiv 1804.02395
563 564 565	Frank E. Curtis, Daniel P. Robinson, and Mohammadreza Samadi. A trust region algorithm with a worst-case iteration complexity of $\mathcal{O}(\epsilon^{-3/2})$ for nonconvex optimization. <i>Mathematical Programming</i> , 162(1-2):1–32, 2017.
566 567 568	John E. Dennis, Jr and Virginia Torczon. Direct search methods on parallel machines. <i>SIAM Journal on Optimization</i> , 1(4):448–474, 1991.
69 70 71	John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. <i>Journal of Machine Learning Research</i> , 12(7):2121–2159, 2011.
572 573 574	John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for zero-order convex optimization: The power of two function evaluations. <i>IEEE Transactions on Information Theory</i> , 61(5):2788–2806, 2015. arXiv:1312.2139
575 576 577 578	Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: Near-optimal non-convex optimization via stochastic path-integrated differential estimator. <i>Advances in Neural Information Processing Systems</i> , 31, 2018. arXiv[1807.01695]
579 580 581	Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas- tic programming. <i>SIAM Journal on Optimization</i> , 23(4):2341–2368, 2013. arXiv 1309.5549
582 583 584	Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. A survey of quantization methods for efficient neural network inference. In <i>Low-Power Computer Vision</i> , pp. 291–326. Chapman and Hall/CRC, 2022. arXiv[2103.13630]
585 586 587 588	Eduard Gorbunov, Adel Bibi, Ozan Sener, El Houcine Bergou, and Peter Richtarik. A stochastic derivative free optimization method with momentum. In <i>International Conference on Learning Representations</i> , 2020. arXiv[1905.13278]
589 590	Kevin G. Jamieson, Robert Nowak, and Ben Recht. Query complexity of derivative-free optimiza- tion. <i>Advances in Neural Information Processing Systems</i> , 25, 2012. arXiv[1209.2434]
591 592 593	Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. Improved zeroth-order variance reduced algo- rithms and analysis for nonconvex optimization. In <i>International Conference on Machine Learn-</i> <i>ing</i> , pp. 3100–3109. PMLR, 2019. arXiv[1910.12166]

594 595 596 597 598	Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting plane method for convex optimization, convex-concave games, and its applications. In <i>Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing</i> , pp. 944–953, 2020. arXiv:2004.04250
599 600	Chi Jin, Lydia T. Liu, Rong Ge, and Michael I. Jordan. On the local minima of the empirical risk. <i>Advances in Neural Information Processing Systems</i> , 31, 2018a. arXiv 1803.09357
601 602 603 604	Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. Accelerated gradient descent escapes saddle points faster than gradient descent. In <i>Conference on Learning Theory</i> , pp. 1042–1085, 2018b. arXiv:1711.10456
605 606 607 608	Mustafa O. Karabag, Cyrus Neary, and Ufuk Topcu. Smooth convex optimization using sub-zeroth- order oracles. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , 35(5):3815–3822, 2021. arXiv:2103.00667
609 610	Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In <i>International Conference on Learning Representations</i> , 2015. arXiv:1412.6980
611 612 613	Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by direct search: New perspectives on some classical and modern methods. <i>SIAM review</i> , 45(3):385–482, 2003.
614 615 616	Jeffrey Larson, Matt Menickelly, and Stefan M. Wild. Derivative-free optimization methods. <i>Acta Numerica</i> , 28:287–404, 2019. arXiv 904.11585
617 618 619	Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its implications for combinatorial and convex optimization. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 1049–1065. IEEE, 2015. arXiv[1508.04874]
620 621 622 623	Yin Tat Lee, Aaron Sidford, and Santosh S. Vempala. Efficient convex optimization with member- ship oracles. In <i>Proceedings of the 31st Conference on Learning Theory</i> , volume 75 of <i>Proceed-</i> <i>ings of Machine Learning Research</i> , pp. 1292–1294, 2018. arXiv 1706.07357
624 625 626	Kfir Levy. Online to offline conversions, universality and adaptive minibatch sizes. Advances in Neural Information Processing Systems, 30, 2017. arXiv[1705.10499]
627 628	Xiuxian Li, Kuo-Yi Lin, Li Li, Yiguang Hong, and Jie Chen. On faster convergence of scaled sign gradient descent. <i>IEEE Transactions on Industrial Informatics</i> , 2023. arXiv:2109.01806
629 630 631	Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signSGD via zeroth-order oracle. In <i>International Conference on Learning Representations</i> , 2019.
632 633 634 635	Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In <i>International Conference on Learning Representations</i> , 2018. arXiv[1706.06083]
636 637	John A. Nelder and Roger Mead. A simplex method for function minimization. <i>The Computer Journal</i> , 7(4):308–313, 1965.
638 639	Arkadi Nemirovski. Efficient methods in convex programming. Lecture notes, 1994.
640 641 642	Yurii Nesterov and Boris T. Polyak. Cubic regularization of Newton method and its global performance. <i>Mathematical Programming</i> , 108(1):177–205, 2006.
643 644 645	Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. <i>Foundations of Computational Mathematics</i> , 17:527–566, 2017.
645 646 647	Ellen Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, and Joel Burdick. Dueling posterior sampling for preference-based reinforcement learning. In <i>Conference on Uncertainty in Artificial Intelligence</i> , pp. 1029–1038. PMLR, 2020. arXiv 1908.01289

- 648 Long Ouvang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong 649 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-650 low instructions with human feedback. Advances in Neural Information Processing Systems, 35: 651 27730–27744, 2022. arXiv 2203.02155 652
- Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Anan-653 thram Swami. Practical black-box attacks against machine learning. In Proceedings of the 654 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519, 2017. 655 arXiv:1602.02697 656
- 657 Aadirupa Saha, Tomer Koren, and Yishay Mansour. Dueling convex optimization. In International 658 Conference on Machine Learning, pp. 9245–9254. PMLR, 2021. 659
- Aadirupa Saha, Tomer Koren, and Yishay Mansour. Dueling convex optimization with general 660 preferences, 2022. arXiv:2210.02562 661
- 662 Aadirupa Saha, Aldo Pacchiano, and Jonathan Lee. Dueling RL: Reinforcement learning with trajec-663 tory preferences. In International Conference on Artificial Intelligence and Statistics, pp. 6263– 664 6289. PMLR, 2023. arXiv:2111.04850 665
- Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a 666 scalable alternative to reinforcement learning, 2017. arXiv:1703.03864 667
- 668 Aaron Sidford and Chenyi Zhang. Quantum speedups for stochastic optimization. Advances in 669 Neural Information Processing Systems, 37, 2023. arXiv 2308.01582 670
- 671 Zhiwei Tang, Dmitry Rybin, and Tsung-Hui Chang. Zeroth-order optimization meets human feed-672 back: Provable learning via ranking oracles, 2023. arXiv:2303.03751
- Emmanouil-Vasileios Vlatakis-Gkaragkounis, Lampros Flokas, and Georgios Piliouras. Efficiently 674 avoiding saddle points with zero order methods: No gradients required. Advances in Neural 675 Information Processing Systems, 32, 2019. arXiv 1910.13021 676
- 677 Yuanhao Wang, Qinghua Liu, and Chi Jin. Is RLHF more difficult than standard RL? a theoreti-678 cal perspective. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. 679 arXiv:2306.14111
- Yi Xu, Rong Jin, and Tianbao Yang. First-order stochastic algorithms for escaping from saddle 681 points in almost linear time. In Advances in Neural Information Processing Systems, pp. 5530-682 5540, 2018. arXiv:1711.01944 683
- Yichong Xu, Ruosong Wang, Lin Yang, Aarti Singh, and Artur Dubrawski. Preference-based re-685 inforcement learning with finite-time guarantees. Advances in Neural Information Processing 686 Systems, 33:18784–18794, 2020. arXiv 2006.08910
 - Chenyi Zhang and Tongyang Li. Escape saddle points by a simple gradient-descent based algorithm. Advances in Neural Information Processing Systems, 34:8545–8556, 2021. arXiv:2111.14069
- 690 Hualin Zhang and Bin Gu. Faster gradient-free methods for escaping saddle points. In The Eleventh 691 International Conference on Learning Representations, 2023. 692
- Hualin Zhang, Huan Xiong, and Bin Gu. Zeroth-order negative curvature finding: Escaping saddle 693 points without gradients. Advances in Neural Information Processing Systems, 35:38332-38344, 694 2022. arXiv:2210.01496 695
- 696 Banghua Zhu, Jiantao Jiao, and Michael Jordan. Principled reinforcement learning with human 697 feedback from pairwise or k-wise comparisons. In ICLR 2023 Workshop on Mathematical and *Empirical Understanding of Foundation Models*, 2023. arXiv 2301.11270
- 699
- 700

680

684

687

688

689