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ABSTRACT

In the medical image segmentation domain, sparsely-annotated, limited datasets
are common, posing a natural hurdle for Transformer-based segmentation networks.
In this work, we systematically dissect 9 such popular Transformer networks on
two representative organ and pathology segmentation datasets and explore whether
Transformers are still beneficial under these challenging conditions. 1) We demon-
strate that these Transformer-based segmentation networks frequently incorporate
substantial convolutional backbones, which predominantly contribute to their per-
formance, while Transformers themselves play a peripheral role. 2) Extending
beyond accuracy, we analyze error and representational similarity to uncover archi-
tectures with underutilized Transformers, demonstrated by indiscernible change
on both metrics without the Transformer. 3) We quantify the massive dataset size
‘chasm’ between medical and natural images, examine the impact of data reduction
on performance, showing that Transformers bridge the performance gap to CNNs as
the dataset size increases. 4) Additionally, we probe the importance of long-range
interactions, showing that even limited receptive fields offer high performance
in segmenting medical images, questioning the need for long-range interactions
inherent to Transformers. In doing so, we identify significant challenges faced
by major architectures employing Transformers for medical image segmentation,
which may contribute to potential inefficiencies downstream in the domain.

1 INTRODUCTION

In recent years, attention mechanisms have taken center stage across various research domains
(Chang et al. (2023); Ahmed et al. (2023); Aleissaee et al. (2023); Khan et al. (2022); Zhang et al.
(2023). Originally proposed for natural language processing by (Vaswani et al. (2017)), the attention
mechanism has played a pivotal role in advancing these fields. Within the realm of medical image
analysis, semantic segmentation is a critical challenge (see §A) which has also seen a significant influx
of Transformer-based semantic segmentation architectures that heavily rely on attention mechanisms
(Xiao et al. (2023); Shamshad et al. (2023)). These architectures combine elements from Vision or
Swin Transformers (Dosovitskiy et al. (2020); Liu et al. (2021b)) and Convolutional Neural Networks
(ConvNets), occasionally exhibiting similarities to the structure of a UNet (Ronneberger et al. (2015)).
However, there exist two fundamental distinctions between training networks for natural language
(or natural images) and medical images: 1) Medical image segmentation networks typically do not
undergo pretraining on extensive datasets (Radford et al. (2021); Dosovitskiy et al. (2020)). 2) The
target datasets for medical images usually contain significantly fewer samples and sparse annotations
(Litjens et al. (2017)). While the influence of these two massive caveats are implicitly recognized, the
domain of medical image segmentation typically overlooks a pivotal question:

Do the advantages of Transformer-based networks translate to severely limited,
sparsely-annotated medical image segmentation datasets when trained from scratch?

In this work, we dissect nine influential Transformer-based networks employed for medical image
segmentation. Our fundamental objective is to better understand how the inclusion of Transformers
in these models affects their performance. In the process, we uncover a range of potential issues
inherent to these architectures within the medical imaging domain.
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Figure 1: Segmentation performance pre-and-post Identity replacement of a Transformer mod-
ule quantifies their importance. There are 3 points of replacement on Vision or Swin Transformer
blocks: 1) Attention replacement, 2) MLP Replacement, 3) Whole Transformer Replacement.

1. We demonstrate that an influential (and often large) Convolutional (ConvNet) backbone ex-
ists in almost all our Transformer-based medical image segmentation architectures. When we
replace these Transformers (§2), the backbone largely maintains segmentation performance,
indicating a marginal role of the Transformer (§3).

2. We explore the similarity of errors and representations learned by the ConvNet backbone and
find architectures with similar errors as well as representations, regardless of the presence of
Transformers, indicating neglible utilization of the Transformer. In others, we interestingly
observe differences in representation learning but without differences in accuracy (§4).

3. We quantify the domain ‘chasm‘ between medical and natural images, showing that
Transformer-based networks are less efficient at utilizing limited training data common to
medical image datasets – pure ConvNets being demonstrably better at doing so (§5.1,§5.2).

4. While Transformers are recognized for their capacity to capture long-range dependencies,
we offer a counterexample which emphasizes that such dependencies may not be as critical
for medical image segmentation as previously assumed. We demonstrate the diminishing
advantages of employing larger receptive fields for achieving high performance, questioning
the necessity of Transformer-based architecture designs. (§5.3).

In doing so, we are the first publication to put a spotlight on current roadblocks inhibiting Transformer-
based networks from outperforming CNN-based medical image segmentation architectures.

2 EXPERIMENTAL DESIGN

Standard Networks We dissect a number of massively-influential Transformer architectures for
medical image segmentation, regularly used as blueprints for designing newer architectures or state-
of-the-art baselines. In this work, we focus on 9 such networks with 5500+ citations collectively in
the last 3 years (see Table 5): (i) UNETR (Hatamizadeh et al. (2022)) (ii) SwinUNETR (Hatamizadeh
et al. (2021)) (iii) CoTr (Xie et al. (2021)) (iv) TransFuse (Zhang et al. (2021)) (v) nnFormer (Zhou
et al. (2021; 2023)) (vi) SwinUNet (Cao et al. (2022)) (vii) UTNet (Gao et al. (2021)) (viii) TransBTS
(Wang et al. (2021)) (ix) TransUNet (Chen et al. (2021)).

Network Modification Scheme Owing to large variations in hybridized Transformer and CNN
architectures, we seek to investigate which architecture offers the best integration of attention. To this
end, we design network modification experiments to gauge the influence of Transformer components
on overall network performance in established medical image segmentation architectures. We evaluate
replacing the 1) Attention, 2) Transformer block MLP and 3) Whole Transformer. The first two
of these represent substructures of the overall Transformer while the last one removes the entire
Transformer block, as illustrated in Fig. 1. We use Identity blocks as drop-in replacements of the
respective Transformer block, which simply pass the representations to the next block, leaving the
remaining architecture structure untouched. We perform this modification for all Transformer blocks
throughout the entire architecture for all 9 networks.

Training and Datasets We follow the most popular technique of training deep neural networks
for medical image segmentation task – training from scratch on a task-specific dataset. We leverage
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TransBTS TransFuse TransUNet UNETR UTNet CoTR nnFormer SwinUNet SwinUNETR

Input Dims 3D 2D 2D 3D 2D 3D 3D 2D 3D

Used in Encoder
Convolutions + + + - + + Down - -
Attention - SA - SA SA DSA Swin Swin Swin

Used in Decoder
Convolutions + + + + + + Up - +
Attention - - - - SA - Swin Swin -

Used in Bottleneck
Convolutions - - - + + + Up & Down - +
Attention SA - SA - SA - Swin Swin -

Direct Conv −→ Out + + + Highest-res - - - - Highest-res
Blocks Intermingled - - - - + - + - -

Parameters
Total [e+06] 31.6 26.4 105.9 92.8 10.0 41.9 38.1 41.4 62.2
WholeBlock [%] 66.5% 53.8% 80.3% 91.6% 25.6% 22.2% 61.5% 91.2% 7.9%
Attn. [%] 13.3% 17.9% 26.8% 30.5% 19.5% 5.3% 20.4% 30.5% 2.8%
MLP [%] 53.2% 35.8% 53.5% 61.1% 4.3% 16.9% 41.1% 60.7% 5.0%

Convs [% of UNet1] 65% 39% 67% 48% 24% 200% 90% 12% 352%

Table 1: Transformer-based networks often have significant Convolutional backbones. Upon
closer inspection, 8 out of 9 architectures make extensive use of convolutions (24-352% of a UNet1)
– which are fundamental to their segmentation performance (Table 2). [(D)SA: (Deformable) Self-
Attention, Swin: Shifted-Window Attention, Up, Down: Convolutions only used in up or downsam-
pling, Highest-res: Direct non-Transformer input to output path only exists at the highest resolution.]

the established nnUNet framework (Isensee et al. (2021)) for training and evaluation. For each
experiment, we train 3 folds of the same model to account for training noise and provide average
performance on a hold-out testset. Further details are provided in §B. In terms of datasets, we
distinguish between pure organ segmentation and pathology focused segmentation. In this work, we
choose one large dataset of each category, to represent the majority of use-cases represented in the
domain. We chose the AMOS Abdominal Multi-Organ CT (Ji et al. (2022)) and Kidney Tumor
Challenge 2019 (KiTS19) (Heller et al. (2021)) datasets for the purposes of our evaluation. In the
original works of the to-be-dissected architectures, organ segmentation is used more prominently
than pathology segmentation (Fig. 3). However, pathologies are generally heterogeneous structures
and their accurate fully automatic segmentation is considered a more challenging task than organ
segmentation (Ghaffari et al. (2019); Heller et al. (2021); Zhong et al. (2022); Bilic et al. (2023)).

3 CONVNETS IN DISGUISE: THE INFLUENTIAL CONVOLUTIONAL BACKBONE

All Transformer-based semantic segmentation architectures employ attention mechanisms in varying
ways. In Table 1, we provide an overview of the network characteristics of our Transformer-based
architectures, revealing a consistent presence of a ConvNet backbone in nearly all of them. Notably,
our examination shows that among the nine architectures, five incorporate convolutions in the encoder,
while all but one incorporate some form of convolution in the decoder. Regarding the distribution of
learnable parameters, we find that seven of these architectures allocate over 40% of their parameters
within the Transformer blocks. Notably, both SwinUNet and UNETR allocate more than 90% of
their parameters to these blocks. While this may appear to be a substantial portion of the parameters,
it is informative to contextualize the absolute number of trainable parameters that exist outside
the Transformer blocks, primarily within the convolution layers. A meaningful comparison can
be drawn by contrasting this with the total parameter count in a standard 2D UNet and 3D-UNet1.
Remarkably, all our Transformer-based 3D architectures contain at least 48% and at most 352% as
many convolution parameters as a standard 3D-UNet. Similarly, in the case of 2D networks, they
utilize between 12% and 67% of the convolution parameters found in a standard 2D UNet. This fact
becomes particularly noteworthy when considering the individual segmentation performance of this
backbone, independently of the Transformer components.

3.1 CONVNET BACKBONES DRIVE SEGMENTATION PERFORMANCE

Having established the presence of a significant ConvNet backbone in each network in §3, we
measure Transformer effectiveness by omission and ask the following question: How effective is this

1We use standard UNet as proxy for original 2D/3D UNet (Ronneberger et al. (2015); Çiçek et al. (2016))
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n) Model Original Net with Block Replaced
Attention MLP Transformer

SwinUNet2D 78.32±1.37 64.23±0.20 74.53±0.28 17.86±0.13

TransFuse2D 82.51±0.15 83.59±0.10 83.51±0.12 83.38±0.02

TransUNet2D 85.11±0.01 85.07±0.07 85.05±0.13 85.05±0.18

UTNet2D 85.31±0.26 85.68±0.10 85.24±0.06 85.57±0.10

CoTr3D 87.17±0.17 86.83±0.16 85.96±0.20 86.00±0.04

SwinUNETR3D 85.19±0.09 84.99±0.29 84.39±0.41 83.29±0.58

TransBTS3D 85.11±0.40 84.21±0.33 84.64±0.27 83.85±0.05

UNETR3D 78.02±0.39 76.85±0.37 74.65±0.60 70.21±0.20

nnFormer3D 82.87±0.06 83.73±0.03 81.30±0.49 79.02±0.13

nnUNet2D 85.60±0.21

nnUNet3D 87.26±0.14
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n) Model Original Net with Block Replaced
Attention MLP Transformer

SwinUNet2D 73.87±1.06 51.46±0.10 66.96±0.20 31.05±0.18

TransFuse2D 77.47±1.00 79.87±0.11 79.62±0.31 80.00±0.41

TransUNet2D 80.18±0.18 80.51±0.13 80.51±0.29 80.56±0.23

UTNet2D 80.86±0.28 81.34±0.25 80.70±0.39 80.47±0.22

CoTr3D 88.45±0.41 89.36±0.31 88.49±0.91 89.79±0.25

SwinUNETR3D 87.00±0.38 86.88±0.31 86.22±0.41 85.71±0.48

TransBTS3D 86.30±0.53 86.60±0.60 86.30±0.30 86.54±0.74

UNETR3D 84.04±0.69 82.33±0.15 79.22±0.55 79.79±0.71

nnFormer3D 87.86±0.75 87.64±0.57 86.94±0.32 85.61±0.34

nnUNet2D 81.23±0.54

nnUNet3D 89.71±0.25
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Table 2: ConvNet backbones account for the majority of segmentation performance, while
Transformers have a peripheral role. (Left) 8 out of 9 networks show >90% performance similarity
(Psim), while some retain upto 99% on both KiTS19 and AMOS without the entire Transformer.
(Right) We additionally use error similarity (VEO) to categorize the different Transformers (§4.1).

ConvNet backbone without the Transformer for learning useful representations for 3D medical image
segmentation? Through our network modification scheme (Fig. 1), we replace the whole Transformer
blocks (as well as Attention and MLP separately) with an identity mapping, allowing us to measure
the contribution of the remaining blocks. Across our network modification experiments (Table 2),
we report relative performance similarity (Psim) based Dice Similarity Coefficient (DSC)(Zijdenbos
et al. (1994)) with a Transformer present and absent and notice a persistently similar yet significant
observation on the lack of influence of Transformer blocks on segmentation performance, as well as
one interesting counter-example to this observation.

1. ConvNet backbones drive performance: In 8 out of 9 architectures on both datasets,
ConvNet backbones significantly (and sometimes completely) compensate for the absolute
lack of a Transformer component. In fact, for the AMOS dataset, 6 of those do not have
a 2% drop in performance while 4 do not have a 1% reduction. For the more challenging
KiTS19 dataset, 5 out of 8 do not show a 3% drop in segmentation performance. This
highlights the undue influence the hidden ConvNet backbone possesses in standard medical
image segmentation, independent of the presence of a Transformer block. Additionally, this
can be a significant insight for designing derived architectures – if the Transformer model
does not significantly enhance performance, minor tweaks may also not yield substantial
improvements in performance, while preserving the core Transformer-based design.

2. Transformers are not completely incapable of learning: The only network that catas-
trophically degrades without its Transformer (in total or partial removal) is SwinUNet and in
the context of architecture, the reason is obvious – it is solely composed of Transformers and
has no convolutions in the up and downsampling layers (Table 1). Thus, the segmentation
performance of the original SwinUNet, while rather low, is solely due to its Transformer
blocks. This highlights, that Transformers are also capable of learning usable representations
for medical image segmentation without any convolutions.

4 BEYOND PERFORMANCE: DO TRANSFORMERS ALTER MODEL BEHAVIOR?

While performance is generally the core metric of interest during development of a new deep
architecture, it is not the only one. Aside from performance changes, the addition of Transformer
blocks can also lead to altered model behavior. To investigate this, we compare pairs of original and
modified networks, with and without the Transformer block, in terms of: a) Similarity of segmentation
errors between predictions using volumetric error overlap, and b) Similarity of learnt representations.
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4.1 SIMILARITY OF SEGMENTATION ERRORS

Comparing 2 models using DSC with a given input can quantitatively lead to similar values, on
very different predictions, since it disregards the specific positions in the input spaces of 2 models
where prediction errors are made (Reinke et al. (2023)). To measure similarity between the predictive
behavior of networks more closely, we propose the Volumetric Error Overlap (VEO): Let Ŷ1

and Ŷ2 be the map of predictions of two models m1 and m2 for a single sample and groundtruth
(X,Y ) ∈ D ,with D being the dataset. We calculate the binary error masks E1, E2 through:

Ew,h,d(Y , Ŷ ) =

(
1, if Yw,h,d ̸= Ŷw,h,d

0, otherwise.
(1)

We calculate the pairwise DSC between these error maps, as VEO between models

ρ(m1,m2)D =
1

|D|
X

x∈D
2
|E1 ∩E2|
|E1|+ |E2|

, (2)

which is constrained to values between ρ(m1,m2)D ∈ [0, 1], with 0 representing 2 models with
disjoint error maps and 1 when perfectly overlapping. The VEO measure (Table 2) on its own is
difficult to interpret, as it can be confounded by large changes in model performance. Hence, we
present it in conjunction with the model performance subject to whole Transformer block replacement.
We categorize the role of a Transformer in these architectures based jointly on the similarity of
accuracy and errors in 4 categories:

• Underutilized Transformer (VEO > 0.95, Psim > 0.95): TransUNet and TransBTS,
which both have Transformers in the bottleneck of a UNet, show little difference without the
Transformer, indicating an ineffecient architecture design. This is further explored in §5.3.

• Compensable Transformer (0.85 ≤ VEO < 0.95, Psim > 0.95): Architectures such as
CoTr, TransFuse, SwinUNETR and UTNet lose little accuracy without the Transformer
but demonstrate a moderate difference in VEO. This indicates that in the absence of the
Transformer, their ConvNet backbone can learn meaningful representations to compensate.

• Non-compensable Transformer (0.7 < VEO < 0.85, Psim > 0.90): In UNETR, the ViT
encoder representations are forced through the remaining backbone - when the ViT is absent,
identity replacements lead to less powerful features for the remaining backbone. As such
the Transformer helps in learning non-compensable features but at the cost of performance
as a ViT encoder limits feature resolution to the remaining network. nnFormer, on the other
hand, uses an alternating Swin and ConvNet design and significantly alters representation
learning when absent (§4.2), thus leading to differences in errors.

• Critical Transformer (VEO < 0.7, Psim < 0.90): SwinUNet is a pure Transformer design
which collapses without its Swin blocks, a criticality which renders this comparison obsolete.

4.2 REPRESENTATIONAL CHANGE

While VEO allows us to measure how the output changes, it does not allow insights into the
representations of the architecture leading to this output. Hence, we compare the change of internal
representations for all 9 architectures when removing the whole Transformer. We compare the
representations of layers between models using centered kernel alignment (CKA) (Kornblith et al.,
2019). More precisely, we use minibatch CKA from Nguyen et al. (2020) which utilizes the unbiased
HSIC of Song et al. (2012) as in Eqs. (3) and (4).

CKAminibatch(K,L) =
1
k

Pk
i=1HSIC(Ki, Li)q

1
k

Pk
i=1 HSIC(Ki,Ki)

q
1
k

Pk
i=1 HSIC(Li, Li)

(3)

HSIC(K,L) =
1

n(n− 3)

 
tr(K̃L̃) +

1T K̃11T L̃1
(n− 1)(n− 2)

− 2

n− 2
1T K̃L̃1

!
(4)

with Li = XiXT
i and Ki = YiYT

i being composed of the activations of a mini-batch Xi ∈ Rn×px

and Yi ∈ Rn×py . In our experiments, px/y is shaped either spatially with channel, width, height and
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(b) nnFormer
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(g) TransUNet
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(h) SwinUNet

0 4 9 14 19
Depth

0.0

0.2

0.4

0.6

0.8

1.0

C
K

A
 S

im
ila

rit
y

(i) UTNet

Figure 2: Some Transformers affect learned representations little more than an identity mapping,
while others have a stronger impact. We visualize the CKA similarity gap (gray) between baseline
similarity (black) and similarity between original and networks with replacement (blue). Additionally,
we highlight which layers are Transformer blocks (green).

depth dimensions or has a sequence shape of heads, tokens, depth, which is flattened for comparison.
We chose to focus on the diagonal of the CKA matrix, as it allows for clear visualization and
interpretation. Additionally, we measure the similarity along the ‘outer parts’ of the UNet design that
all architectures follow, ignoring all layers that can affect a skip connection, allowing us to represent
these non-sequential models more easily (see Fig. 7). A more detailed explanation of design decisions
and hyperparameters of the experiment is provided in §D.

We use this framework to compare the 3 different folds of the original architectures to each other
to establish a baseline of representational similarity and subsequently measure the representational
similarity between the original architecture and the architecture with whole Transformer blocks
replacement (see Fig. 2). In these visualizations, we examine two specific phenomena:

• Increasing similarity gap during Transformer layers: Architectures that utilize their
Transformer blocks well, change the representations in a non-linear way. When replaced
with an identity map, representations do not change in these layers, so the gap (area marked
in gray in Fig. 2) between the representational similarity should widen from the beginning to
the end of productive Transformer layers. If the change of the similarity gap is approximately
0, it indicates that hardly any representational change occurs during the Transformer blocks.

• Similarity gap at the output of the network (∆): Given that the similarity gap widens
during the Transformer blocks, we would like the remaining ConvNet backbone to not close
the similarity gap. If the similarity gap closes, it indicates that the remaining ConvNet can
learn very similar representations by itself, indicating a compensable Transformer block.

When inspecting the results visualized in Fig. 2, we can classify our architectures into four categories:
A) Constant gap during Transformers: TransBTS and TransUNet both exhibit an approximately
constant similarity gap, indicating that the Transformer blocks are underutilized and do not change
representations. This aligns with the results of §4.1 where we also observed hardly any change in
output behavior or predictive performance. B) Increasing gap during Transfomer but no/small
gap at output: SwinUNETR and UNETR express a strong widening in the similarity gap during
their Transformer blocks, indicating that the blocks alter representations, while TransFuse does
so only slightly, indicating mild changes. C) Increasing and maintained gap: CoTr exhibits a
strong widening of the similarity gap that is maintained till the end, indicating its Transformer
changes representations in a way that convolutions can not compensate for. nnFormer is harder to
interpret due to its alternating block structure, but features an similarity gap at the output, hence
we believe both Transformers alter representations strongly in an incompensable way. D) Did not
qualify: We decided to not classify SwinUNet or UTNet to a prior category, yet show their results for
completeness. SwinUNet loses too much performance when removing the Transformer, complicating
interpretation. UTNet’s similarity gap cannot be determined due to the alternating structure and
probably low Transformer influence.
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5 NATURAL VS. MEDICAL IMAGES: QUANTIFYING THE DOMAIN GAP

Most architectures introduced to the medical imaging domain are inspired by the field of natural
images. While adapting advancements from related fields is reasonable, these methods may not
translate well due to inter-domain differences. Consequently, we try to quantify the domain gap for
two key properties Transformers are known for: A) High data demand and B) Enabling long-range
interactions. The first one being an open secret, with the latter one possibly representing an additional
roadblock for the success of Transformers.

5.1 THE DATA DOMAIN ‘CHASM’
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Figure 3: Medical image segmentation datasets are significantly smaller and sparsely-labeled
compared to their natural image counterparts. Our dataset visualization (Left) illustrates this
chasm by the Average Percentage of Image/Volume Labeled vs. Number of Samples of datasets from
both domains. Radii visualizes pixel/voxels over the whole dataset. However, the original evaluation
of our 9 Transformer-based models (Right) shows repeated usage of these same small datasets.

Transformer architectures are difficult to train from scratch on small scale datasets, regardless of the
domain (Liu et al., 2021a). Therefore pre-training on large datasets is preferred for large Transformer
networks even in the natural image domain (Dosovitskiy et al., 2020). The datasets commonly used
for this are ImageNet1k with 1.3M images (Russakovsky et al., 2015), ImageNet21k with 14M
images (Sun et al., 2017) or even larger proprietary datasets like JFT-300M with 303M images. The
realm of medical image segmentation stands in stark contrast to this. Due to the lack of prominent,
monolithic architectures and huge datasets that work well for the heterogeneous downstream tasks,
almost all models are trained from scratch. The datasets are commonly of small scale, featuring only
10s or 100s of samples (Litjens et al. (2017), Li et al. (2021)). Complicating it further, the samples
tend to be sparsely annotated, containing only annotations for a few classes of interest – while natural
imaging segmentation datasets tend to be largely fully-labeled.

More recently the TotalSegmentator dataset (Wasserthal et al., 2022) and multi-dataset training
(Ulrich et al., 2023) have taken a step in the right direction, tackling the data-sparsity that plagues
the medical image domain. We demonstrate this severe chasm between datasets of the medical
and natural image segmentation domain in Fig. 3 (Left) by contrasting them by their number of
samples and their average fraction of annotated foreground in each sample. The low dataset size and
annotation-sparsity pose substantial difficulties when training architectures in the medical domain.
While some Transformer backbones of TransFuse, SwinUNet and TransUNet are pre-trained on
ImageNet, the majority of performant architectures – UNETR, CoTr, SwinUNETR, nnFormer, UTNet
and TransBTS – train from scratch, with some being trained on BTCV, a dataset comprised of 30
samples. This highlights that data size restrictions native to the medical image segmentation domain
are a roadblock to outperforming CNNs with Transformer-based architectures.

5.2 PURE CONVNETS ARE MORE ‘DATA-EFFICIENT’

Given the large benefits of large scale pre-training of Transformers in the natural imaging domain and
the limited nature of medical data, we aim to analyze the influence of data scarcity on Transformer-
based networks. We do this by artificially shrinking the size of the training dataset for both organ
(AMOS) and pathology (KiTS19) segmentation tasks and measuring segmentation performance of
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Figure 4: In a low data regime, 3D CNNs are seen to be better, but with growing data this
gap closes showing promise for even larger datasets. Measuring the DSC of all networks over a
large range of training dataset sizes demonstrates that Transformers (particularly 3D) narrow their
performance gap to the 3D CNN baseline. For the 2D transformer architectures, performance remains
lower than 3D, and they do not improve upon their 2D CNN counterpart in higher data regimes.

our architectures. We train all models with samples ranging from 1%-100% of the total number of
training data and evaluate on a held-out test set. (More details in §B.2).

In Fig. 4, we observe the general but expected trend that all architectures improve in segmentation
performance with increased training data. However, plotting the difference between the UNet baseline
(nnUNet) and the Transformers highlights a performance gap. For all five 3D architectures, a wide
performance gap is seen in the 5-25 samples region, with Transformer-based architectures adapting
poorly to reducing the training set size. This gap indeed reduces when the training set size gradually
increases to 100%. This is less pronounced in 2D networks with 3 out of 4 architectures showing this
phenomenon on AMOS but not on KiTS19.

The performance dynamics highlight an important fact which, although implicitly understood, is
often ignored in the medical domain - Transformers require significantly more data than convolutions.
Therefore, hybrid architectures are likely to be worse than pure ConvNets in low data settings. In
light of this, researchers should take dataset size into consideration when choosing architectures –
with ConvNets being preferable in low-data scenarios and Transformers for higher data regimes.

In the context of natural images, the relevance of such small datasets as in Fig. 4 maybe slightly
unrealistic. But as shown in §5.1 - for medical datasets, it can be the norm. The Synapse Organ
Segmentation dataset (BTCV) (Landman et al. (2015)), overwhelmingly used in 5 out of 9 archi-
tectures under evaluation in this work (Fig. 3) contains 30 training samples (and even less after a
training-validation split). An example of ‘large’ sample size for medical images, the ACDC (Auto-
mated Cardiac Diagnosis Challenge) dataset (Bernard et al., 2018) which was also used originally to
evaluate a number of networks in this work, contains 100 training samples. This contextualizes the
relevance of our conclusions regarding the effectiveness of standard Transformer-Nets in the face of
reduced (or rather, ‘expected’) training set sizes in medical image segmentation.

5.3 THE NEED FOR LONG-RANGE INTERACTIONS

Aside from needing a lot of data, Transformers are known to enable long-range interactions. Given
this strength, we explore the importance of this attribute in dense 3D medical segmentation. We probe
this by slowly reducing the receptive field, for a convolutional medical segmentation network by
cutting away downsampled stages of a U-Net. For this we use a 3D nnU-Net on AMOS, as highlighted
in Table 3. We observe that in the medical domain, the task is still close to its best performance
with a constrained receptive field of [32, 68, 68], and loses 10 DSC points when having a receptive
field of [14, 32, 32] voxels, which is as large as CIFAR10/100. This result is especially informative
given that all 9 Transformer-based architectures emphasize their proficiency in modeling long-range
dependencies. While Transformers-in-bottleneck architectures like TransUNet and TransBTS might
particularly struggle, we note that all 9 networks are possibly susceptible to diminishing benefits of
capturing long-range interactions in medical image segmentation datasets.
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Stage 0
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Stage 2
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Stage 3

16CHx8x12x12
Stage 4

32CHx4x6x6
Stage 5

1,2,2

2,2,2

2,2,2

2,2,2

2,2,2

3x3x3 conv - IN - ReLU
(stride n,n,n; default=1,1,1)n,n,n

Input

1x1x1 conv - softmax Skip connectionTransposed Convolution

CHx112x128x160
Stage 0

Feature map size
Stage level

nnU-Net Stages

nnU-Net 3D Input patch: [64, 192, 192]

Stages Init. CH Max. Receptive Field DSC [%]

6 40 [64, 192, 192] 88.94
5 44 [62, 140, 140] 88.74
4 46 [32, 68, 68] 87.13
3 48 [14, 32, 32] 78.62
2 62 [5, 14, 14] 50.15

Table 3: Semantic segmentation can be learned well, despite a constrained receptive field. We
reduce the receptive field of a medical image segmentation architecture, to probe the importance of
long-range interactions. Even with a limited receptive field spanning [32, 68, 68] voxels the medical
segmentation network task can be learned, indicating low relevance of long-range interactions.

While this experiment yields an intriguing finding, it is essential to acknowledge its inherent limita-
tions. We have focused exclusively on a single dataset and a single UNet architecture. Consequently,
our conclusions are specific to the task of organ segmentation within the AMOS dataset, suggesting
that, on average, long-range interactions may not be essential for the organs in this particular dataset.
Furthermore, it is important to note that in this experiment we reduce the receptive field through the
removal of stages, which also leads to a decrease in the overall depth of our architecture. Conse-
quently, the reported values can be interpreted as a lower bound for relevance rather than an explicit
measure of it, due the confounder of depth. Despite this, we believe that it is interesting to highlight
owing to the emphasis often placed on learning long-range dependencies in medical image datasets.

6 DISCUSSION, LIMITATIONS AND CONCLUSION

In this study, we conducted an extensive analysis of existing Transformer architectures in the
context of 3D medical image segmentation. Our objective was to identify the most promising
Transformer mechanisms for this task. We observed a common trend across most architectures,
where a substantial ConvNet backbone was often present and performed competitively even without
any Transformer blocks. Further investigation revealed that certain architectures, such as nnFormer
and CoTr, incorporated Transformers to learn distinct representations but did not yield significant
performance improvements over their fully convolutional counterparts. Moreover, our exploration
into the domain gap highlighted that several factors may contribute to this phenomenon. Firstly, the
stark contrast in dataset sizes between medical and natural image segmentation datasets, coupled
with the challenge of training from scratch, could partially explain the limited performance gains
from Transformers. Secondly, it is possible that long-range information integration, a strength of
Transformers, may have limited relevance in the medical domain.

We strongly advocate for addressing these limitations through two potential avenues. One is the
expansion of dataset sizes, either by amalgamating existing datasets (Ulrich et al., 2023) or by
employing semi-automatic labeling techniques (Wasserthal et al., 2022). The other avenue is the
development of effective self-supervised pre-training schemes (Tang et al., 2022), which we believe
could be a pivotal step in unlocking the full potential of Transformer architectures for medical
image segmentation. It is worth noting that training Transformers is known to be sensitive to
hyperparameters, more so than CNNs. While additional optimization of the Transformer networks
could potentially yield marginal improvements in absolute performance, we believe that this limitation
does not significantly impact the core findings and takeaways of our study.

In conclusion, this study provides a comprehensive overview of the current state of Transformer
architectures in the relatively specialized domain of medical image segmentation. Through our work,
we aim to shed light on the existing roadblocks and offer actionable pathways for the development of
improved algorithms. We hope this work paves the way towards Transformer architectures that not
only compete with but also surpass the current gold standard represented by CNNs in the realm of
3D medical image segmentation.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Sabeen Ahmed, Ian E Nielsen, Aakash Tripathi, Shamoon Siddiqui, Ravi P Ramachandran, and
Ghulam Rasool. Transformers in time-series analysis: A tutorial. Circuits, Systems, and Signal
Processing, pp. 1–34, 2023.

Abdulaziz Amer Aleissaee, Amandeep Kumar, Rao Muhammad Anwer, Salman Khan, Hisham
Cholakkal, Gui-Song Xia, and Fahad Shahbaz Khan. Transformers in remote sensing: A survey.
Remote Sensing, 15(7):1860, 2023.

Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky, Xin Yang, Pheng-Ann Heng,
Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester, et al. Deep learning
techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem
solved? IEEE transactions on medical imaging, 37(11):2514–2525, 2018.

Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis,
Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, et al. The liver
tumor segmentation benchmark (lits). Medical Image Analysis, 84:102680, 2023.

Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, and Manning Wang.
Swin-unet: Unet-like pure transformer for medical image segmentation. In European conference
on computer vision, pp. 205–218. Springer, 2022.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. arXiv
preprint arXiv:2307.03109, 2023.

Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L.
Yuille, and Yuyin Zhou. TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation. feb 2021. URL http://arxiv.org/abs/2102.04306.

Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger. 3d u-net:
learning dense volumetric segmentation from sparse annotation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece,
October 17-21, 2016, Proceedings, Part II 19, pp. 424–432. Springer, 2016.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. oct 2020. doi: 10.48550/arxiv.2010.11929. URL https://arxiv.org/abs/2010.
11929v2.

Yunhe Gao, Mu Zhou, and Dimitris N Metaxas. Utnet: a hybrid transformer architecture for
medical image segmentation. In Medical Image Computing and Computer Assisted Intervention–
MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021,
Proceedings, Part III 24, pp. 61–71. Springer, 2021.

Mina Ghaffari, Arcot Sowmya, and Ruth Oliver. Automated brain tumor segmentation using
multimodal brain scans: a survey based on models submitted to the brats 2012–2018 challenges.
IEEE reviews in biomedical engineering, 13:156–168, 2019.

Ali Hatamizadeh, Vishwesh Nath, Yucheng Tang, Dong Yang, Holger R Roth, and Daguang Xu.
Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. In
International MICCAI Brainlesion Workshop, pp. 272–284. Springer, 2021.

Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett Landman,
Holger R Roth, and Daguang Xu. Unetr: Transformers for 3d medical image segmentation. In
Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp. 574–584,
2022.

Nicholas Heller, Fabian Isensee, Klaus H Maier-Hein, Xiaoshuai Hou, Chunmei Xie, Fengyi Li,
Yang Nan, Guangrui Mu, Zhiyong Lin, Miofei Han, et al. The state of the art in kidney and kidney
tumor segmentation in contrast-enhanced ct imaging: Results of the kits19 challenge. Medical
image analysis, 67:101821, 2021.

10



Under review as a conference paper at ICLR 2024

Fabian Isensee, Paul F. Jaeger, Simon A.A. Kohl, Jens Petersen, and Klaus H. Maier-Hein. nnU-
Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature
Methods, 18(2):203–211, feb 2021. ISSN 15487105. doi: 10.1038/s41592-020-01008-z. URL
https://doi.org/10.1038/s41592-020-01008-z.

Yuanfeng Ji, Haotian Bai, Chongjian Ge, Jie Yang, Ye Zhu, Ruimao Zhang, Zhen Li, Lingyan
Zhanng, Wanling Ma, Xiang Wan, et al. Amos: A large-scale abdominal multi-organ benchmark
for versatile medical image segmentation. Advances in Neural Information Processing Systems,
35:36722–36732, 2022.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. Transformers in vision: A survey. ACM computing surveys (CSUR), 54(10s):1–41,
2022.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In 36th International Conference on Machine Learning, ICML
2019, volume 2019-June, pp. 6156–6175, 2019. ISBN 9781510886988. URL https://arxiv.
org/abs/1905.00414.

Bennett Landman, Zhoubing Xu, J Igelsias, Martin Styner, T Langerak, and Arno Klein. Miccai multi-
atlas labeling beyond the cranial vault–workshop and challenge. In Proc. MICCAI Multi-Atlas
Labeling Beyond Cranial Vault—Workshop Challenge, volume 5, pp. 12, 2015.

Johann Li, Guangming Zhu, Cong Hua, Mingtao Feng, Ping Li, Xiaoyuan Lu, Juan Song, Peiyi Shen,
Xu Xu, Lin Mei, et al. A systematic collection of medical image datasets for deep learning. arXiv
preprint arXiv:2106.12864, 2021.

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco
Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I Sánchez.
A survey on deep learning in medical image analysis. Medical image analysis, 42:60–88, 2017.

Yahui Liu, Enver Sangineto, Wei Bi, Nicu Sebe, Bruno Lepri, and Marco Nadai. Efficient training of
visual transformers with small datasets. Advances in Neural Information Processing Systems, 34:
23818–23830, 2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do Wide and Deep Networks Learn the Same
Things? Uncovering How Neural Network Representations Vary with Width and Depth. oct 2020.
URL http://arxiv.org/abs/2010.15327.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Annika Reinke, Minu D Tizabi, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-
Nötzel, A Emre Kavur, Tim Rädsch, Carole H Sudre, Laura Acion, Michela Antonelli, et al.
Understanding metric-related pitfalls in image analysis validation. ArXiv, 2023.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pp. 234–241. Springer, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

11



Under review as a conference paper at ICLR 2024

Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,
Fahad Shahbaz Khan, and Huazhu Fu. Transformers in medical imaging: A survey. Medical Image
Analysis, pp. 102802, 2023.

Le Song, Alex Smola, Arthur Gretton, Justin Bedo, and Karsten Borgwardt. Feature selection via
dependence maximization. Journal of Machine Learning Research, 13:1393–1434, 2012. ISSN
15324435.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 843–852, 2017. doi: 10.1109/ICCV.2017.97.

Yucheng Tang, Dong Yang, Wenqi Li, Holger R Roth, Bennett Landman, Daguang Xu, Vishwesh
Nath, and Ali Hatamizadeh. Self-supervised pre-training of swin transformers for 3d medical
image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 20730–20740, 2022.

Constantin Ulrich, Fabian Isensee, Tassilo Wald, Maximilian Zenk, Michael Baumgartner, and
Klaus H Maier-Hein. Multitalent: A multi-dataset approach to medical image segmentation. arXiv
preprint arXiv:2303.14444, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. IEEE Industry Applications Maga-
zine, 8(1):8–15, jun 2017. URL https://ieeexplore.ieee.org/document/974352/
http://arxiv.org/abs/1706.03762.

Wenxuan Wang, Chen Chen, Meng Ding, Hong Yu, Sen Zha, and Jiangyun Li. Transbts: Multimodal
brain tumor segmentation using transformer. In Medical Image Computing and Computer Assisted
Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–
October 1, 2021, Proceedings, Part I 24, pp. 109–119. Springer, 2021.

Jakob Wasserthal, M. Meyer, Hanns-Christian Breit, Joshy Cyriac, Shan Yang, and Martin Segeroth.
Totalsegmentator: robust segmentation of 104 anatomical structures in ct images. ArXiv,
abs/2208.05868, 2022.

Hanguang Xiao, Li Li, Qiyuan Liu, Xiuhong Zhu, and Qihang Zhang. Transformers in medical image
segmentation: A review. Biomedical Signal Processing and Control, 84:104791, 2023.

Yutong Xie, Jianpeng Zhang, Chunhua Shen, and Yong Xia. Cotr: Efficiently bridging cnn and
transformer for 3d medical image segmentation. In Medical Image Computing and Computer As-
sisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September
27–October 1, 2021, Proceedings, Part III 24, pp. 171–180. Springer, 2021.

Shuang Zhang, Rui Fan, Yuti Liu, Shuang Chen, Qiao Liu, and Wanwen Zeng. Applications of
transformer-based language models in bioinformatics: a survey. Bioinformatics Advances, 3(1):
vbad001, 2023.

Yundong Zhang, Huiye Liu, and Qiang Hu. Transfuse: Fusing transformers and cnns for medical
image segmentation. In Medical Image Computing and Computer Assisted Intervention–MICCAI
2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Pro-
ceedings, Part I 24, pp. 14–24. Springer, 2021.

Shaonan Zhong, Junyang Mo, and Zhantao Liu. Autopet challenge 2022: Automatic segmentation of
whole-body tumor lesion based on deep learning and fdg pet/ct. arXiv preprint arXiv:2209.01212,
2022.

Hong-Yu Zhou, Jiansen Guo, Yinghao Zhang, Lequan Yu, Liansheng Wang, and Yizhou Yu. nnformer:
Interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201, 2021.

Hong-Yu Zhou, Jiansen Guo, Yinghao Zhang, Xiaoguang Han, Lequan Yu, Liansheng Wang, and
Yizhou Yu. nnformer: Volumetric medical image segmentation via a 3d transformer. IEEE
Transactions on Image Processing, 2023.

Alex P Zijdenbos, Benoit M Dawant, Richard A Margolin, and Andrew C Palmer. Morphometric
analysis of white matter lesions in mr images: method and validation. IEEE transactions on
medical imaging, 13(4):716–724, 1994.

12


