
SAIL: Faster-than-Demonstration Execution of
Imitation Learning Policies

Nadun Ranawaka Arachchige1∗, Zhenyang Chen1∗, Wonsuhk Jung1, Woo Chul Shin1, Rohan Bansal1,
Yu Hang He1, Yingyan Celine Lin1, Benjamin Joffe1,2, Shreyas Kousik1†, Danfei Xu1†

Abstract—Offline Imitation Learning (IL) methods such as
Behavior Cloning are effective at acquiring complex robotic
manipulation skills. However, existing IL-trained policies are
confined to executing the task at the same speed as shown in
demonstration data. This limits the task throughput of a robotic
system, a critical requirement for applications such as industrial
automation. In this paper, we introduce and formalize the
novel problem of enabling faster-than-demonstration execution of
visuomotor policies and identify fundamental challenges in robot
dynamics and state-action distribution shifts. We instantiate the
key insights as SAIL (Speed Adaptation for Imitation Learning),
a full-stack system integrating four tightly-connected compo-
nents: (1) a consistency-preserving action inference algorithm
for smooth motion at high speed, (2) high-fidelity tracking of
controller-invariant motion targets, (3) adaptive speed modula-
tion that dynamically adjusts execution speed based on motion
complexity, and (4) action scheduling to handle real-world system
latencies. Experiments on 12 tasks across simulation and two
real, distinct robot platforms show that SAIL achieves up to a
4× speedup over demonstration speed in simulation and up to
3.2× speedup in the real world. Additional detail is available at
https://sail-robot.github.io.

I. INTRODUCTION

Speed is essential for the real-world application of robot
learning. High-speed industrial robots automation of produc-
tion lines has been the driving force of the modern industrial
revolution. Towards enabling such automation benefits out-
side of production settings, recent offline imitation learning
methods [7, 35] have been tremendously successful on tasks
that traditional systems cannot solve, such as manipulating de-
formable objects or performing non-prehensile manipulation.
The key to these methods is to learn from high-quality human
task demonstrations. However, humans tend to demonstrate
slowly for complicated manipulation tasks. While recent works
[8, 32, 35] have made collecting high-quality data easier, slow
demonstrations are still inevitable due to user inexperience or
natural limitations in human sensorimotor capabilities. Thus,
this paper seeks to answer the question: How can we speed
up the execution of learned visuomotor policies beyond the
original demonstration speed?

The central challenge to speeding up is that changing
the execution speed of a policy alters the robot’s dynamic
response to the predicted actions. In particular, executing
the same action at different speeds can result in varying
degrees of tracking error and dynamic effects depending on

∗ Equal contribution, † equal advising
1Georgia Institute of Technology
2Georgia Tech Research Institute

wall-clock time

Faster-than-demo
Policy Execution

Fig. 1: The goal of our system, Speed-Adaptive Imitation
Learning (SAIL), is to speed up the execution of a learned vi-
suomotor policy such that the robot can complete manipulation
tasks faster than shown in the original training demonstrations
while maintaining task success.

the underlying controller implementation. This in turn shifts
the observation distribution, which further causes the policy to
deviate from its prior distribution. For these reasons, the few
existing methods that attempt to speed up imitation learning
require the human operator to demonstrate multiple speeds
[27, 25] and rely on subsequent self-supervised online learning
with task-specific reward design [26], enabling a 1.1–1.3×
increase in execution speed, at the expense of considerable
loss in success rate. Speeding up is also limited by inference
speed, sensor delays, and control bandwidth [27], making
it a full-stack challenge. As a result, most prior studies on
offline imitation learning inherently assume that the underlying
robotic system have identical behaviors during data collection
time and policy rollout, including the execution speed.

Our key insight is that faster-than-demonstration execution
has two fundamentally coupled requirements: (1) high-fidelity
action tracking under varying time parametrization and (2)
temporally-consistent policy predictions to prevent trajectory
discontinuities. High-fidelity tracking enables the robot to
faithfully execute predicted motion at higher speeds by mini-
mizing tracking error and compensating for dynamic effects.
However, high-gain control also amplifies any inconsistencies
in the predicted actions across consecutive prediction steps
in receding horizon control. These inconsistencies arise from
the distributional shift in robot behavior at higher speeds,
creating a vicious cycle: shifted dynamics lead to out-of-
distribution observations, causing incorrect and inconsistent

https://sail-robot.github.io


predictions that result in discontinuous reference trajectories
and jerky robot motion, which in turn create even more
distributional shift. Such prediction inconsistencies exist even
when executing at demonstration speeds [17], but they typi-
cally go unnoticed in prior work where low-gain controllers
inadvertently smooth out these inconsistencies at the cost of
precise tracking. We empirically validate this phenomena in a
controlled experiment (Sec. VII-G2).

SAIL addresses this coupling challenge through two core
components:
• High-fidelity action tracking. We employ a high-fidelity

tracking controller that minimizes tracking error even
at increased speeds. A key insight is that rather than
trying to follow commanded poses from demonstrations,
which can lead to unstable behavior when sped up, we
train our policy to predict the actual poses that the robot
achieved during demonstrations. Combined with high-
gain feedback and feedforward velocity terms, this allows
the robot to accurately track trajectories at faster-than-
demonstration execution speeds.

• Consistency-preserving trajectory generation. We employ
Classifier-Free Guidance (CFG) [12] with Diffusion Pol-
icy [7] to ensure temporal coherence during receding
horizon execution by conditioning each new trajectory
prediction on previously executed actions. When tracking
error remains low, this approach maintains consistency
between consecutive policy outputs, preventing discon-
tinuities that could cause jerky motion at high speeds.
When significant tracking errors occur, the system auto-
matically reverts to unconditioned predictions to maintain
responsiveness to real-time feedback.

We further complement this core approach with two prac-
tical components that are essential for real-world deployment
of high-speed visuomotor policy.
• Adaptive speed modulation. This component automati-

cally adjusts execution speed based on the complexity
of the current motion. It slows down during fine-grained
manipulation phases where physical limitations necessi-
tate precise control, such as insertion or grasping tasks,
while maintaining high speeds during coarse movements.

• Action scheduling. To maintain real-time performance
at high speeds, this component handles various system
latencies by carefully scheduling each event in the control
loop such as network inference and sending commands
to the robot controller. It ensures proper synchronization
between observations and actions, preventing potential
out-of-distribution policy input from misaligned signals.

This full-stack approach allows SAIL to maintain high
task success rates while achieving significantly faster-than-
demonstration execution speeds across a variety of manipula-
tion tasks. We empirically validate our key technical insights
through controlled experiments in simulation, where we sys-
tematically evaluate the impact of controller gains, prediction
consistency, and speed modulation on task performance. We
demonstrate that SAIL achieves up to a 4× speedup over

demonstration speed while maintaining high task success rates.
We further validate SAIL on physical robot systems, where
it achieves up to a 3.2× speedup across challenging tasks
including cup stacking, oven baking, contact-rich wiping, and
cloth folding.

II. PRELIMINARIES, CHALLENGES, AND PROBLEM
STATEMENT

In this section, we first outline our policy and controller
hierarchy and describe the context and form of the imitation
learning policy used in this work. Then, we explain the unique
challenges that result from attempting to accelerate policy
execution and state the core research problem of this work.

A. Policy and Controller Hierarchy

We consider a robot control system that consists of two
levels: (1) a high-level neural network policy π(x,o) that
generates an action command a given the current robot state x
and sensory observation o, and (2) a low-level robot controller
K that translates the action to robot joint torque. For instance,
given an end effector-space controller, we assume a learned
policy model that can generate a predicted action trajectory
at = [xd

t ,x
d
t+1, · · · ,xd

t+H−1], where H is the prediction horizon,
and each xd

i includes a desired SE(3) end effector pose and the
corresponding gripper open/close command at timestep i. The
controller then tracks this trajectory by calculating the low-
level joint torque command ut given each desired end effector
pose and the current state xt as

ut =K(xd
t ,xt ,δ

*), (1)

where δ * is the time interval between discrete configurations
in the reference trajectory xd.

The robot controller K typically runs at a much higher rate
than both policy model inference and the time interval of the
policy’s output actions. For example, a typical torque-based
controller may run at 500 Hz, while policy inference runs
at 10 Hz and outputs predicted configurations xd

t with time
interval δ * = 0.05 s (i.e., 20 Hz). This meaning that each
predicted configuration xd

t is tracked for 25 controller steps
before the controller moves on to the next step. The policy
is usually executed in a receding-horizon manner, where each
reference trajectory is executed for He < H steps before a
new reference trajectories is generated by the policy. So, in
the example above, 2 policy configurations would be tracked
before rerunning inference is complete.

B. Offline Imitation Learning Context and Challenges

We consider the setting of offline imitation learning where
we aim to learn the policy π from a dataset of n demonstrations
D= (ot ,xt ,xd

t )
n
t=1 collected through teleoperation, where each

datapoint consists of the sensory observation ot , robot state
xt , and controller-specified desired configuration xd

t sampled at
fixed time interval δ *. For example, xd can be the task-space
target pose set by a teleoperation device. An action supervision
at is constructed by extracting length-H desired configurations
[xd

t ,x
d
t+1, · · · ,xd

t+H−1] from the demonstration sequence.



Consistency-preserving 
Action Prediction via CFG

Adaptive Speed 
Modulation

𝛿! 𝛿" …

𝛿! 𝛿"…
Action Scheduling

Obs. Sync

High Gain 
with Vel FF

𝑥
�̇�

(a) Policy Level (b) Controller Level

Fig. 2: SAIL System Overview. Our framework operates at two levels: (a) Policy Level: Starting with synchronized observations
(Obs. sync) from robot state and camera inputs, the system generates (1) temporally-consistent action predictions through
action-conditioned CFG and (2) time-varying action interval δt . (b) Controller Level: The predicted actions are scheduled
for execution while accounting for sensing-inference delays, with outdated actions being discarded. The scheduled actions
are executed using a high-gain controller with velocity feedforward (Vel FF) terms to track trajectory at the specified time
parametrization.

A key challenge in offline imitation learning is distribution
shift caused by compound error [24]; when the policy makes
errors in action prediction during execution, it encounters
states that differ from those in the training data, which in turn
causes higher prediction errors. This challenge is particularly
acute when we attempt faster-than-demonstration execution
(δ < δ *), as both the dynamics of the system and the dis-
tribution of tracking errors change in ways not captured in the
training data.

C. Policy Model

As a representative high-performance behavior cloning
method, we consider Diffusion Policy (DP) [7] as our main
policy model. DP can generate multi-step trajectories through
an iterative denoising process. Given the current observation
and state (ot ,xt), the policy generates the desired trajectory
a by progressively denoising from random noise through N
steps:

an = an+1− γµθ (ot ,xt ,an+1,n)+N(0,σ2
n I) (2)

where µθ is a learned denoising model and σn controls the
noise schedule.

This architecture both offers advantages and introduces
challenges. The key advantage is that the underlying diffu-
sion model can generate action sequences rather than single-
step actions, also known as action chunking [7, 35]. This
makes it possible to execute a policy where it takes longer
time to infer an action than to execute one. This property
is especially important when speeding up policy execution,
as the network inference speed loop is inherently limited.
However, the probabilistic nature of the model makes it prone
to predicting inconsistent trajectories across two consecutive
observations [17], causing jerky robot motion under high
speed. Moreover, the multi-step denoising process introduces
additional latency that must be carefully managed when ex-
ecuting motions faster than demonstrations. These challenges
motivate our core components, most notably action inpainting

for consistent prediction (subsection III-B) and compensation
for system latency and inference delays to ensure real-time
operation (subsection III-D)

D. Adaptive-Speed Policy Execution Challenges

We identify two key challenges for adaptive-speed policy
execution. First, increasing the speed of policy execution
means that the controller K must be capable of tracking
trajectories at higher speed than in demonstration. As noted
earlier, for learned policies, it is common to assume each
action is executed with a fixed time interval δ *, and thus a
fixed number of control steps for the controller K to attempt
to reach each desired configuration. This time interval is
usually determined by the training data and is the same for
recording during data collection and for the execution of pre-
dicted trajectories during deployment. Therefore, changing this
time interval during deployment requires the robot’s tracking
controller to be capable of reaching some poses more quickly.
Second, not all parts of tasks are suitable for acceleration
(e.g., manipulation steps such as alignment before grasping
require precise motion and fine-grained adjustment), so the
robot must be able to adaptively modulate its speed based on
task progress. In subsection III-C, we develop a method to
enable the policy model to adjust the timing of the predicted
action trajectory based on the complexity of the predicted
motion.

E. Problem Statement

To summarize, we seek to solve the following. Given a
policy trained with action data logged at a constant time
interval δ * (e.g., 0.1s for a 10 Hz recording frequency), our
goal is to execute the policy with a different time parametriza-
tion δt = ctδ

*, where ct ∈ (0,1] is the speedup factor that
determines execution acceleration at time t. We seek to be
able to vary ct while ensuring that task success does not
decrease with respect to the baseline policy (i.e., ct = 1). Note
that this speedup factor notation directly reflects the practical
implementation of speeding up imitation learning, because,



Demonstration
Data

𝑡

𝑡

𝑡

pose

pose

pose

pose

pose

reached poses 𝑥
commanded poses 𝑥!

1× Speedup (𝑐 = 1)

2× Speedup (𝑐 = 0.5)
predicted action (𝑥!) 
robot state 

predicted action (𝑥)
robot state 

1× Speedup (𝑐 = 1)

2× Speedup (𝑐 = 0.5)

Existing Methods Our Method

𝑡

𝑡

Fig. 3: Commanded vs Reached Pose. (Left) During teleoper-
ated data collection, the operator commands the robot to reach
pose xd. The robot controller (often low-gain to minimize
unintended motion) incurs tracking error and reaches poses
x. (Middle) Most existing methods train policies to predict
xd, assuming similar controller errors during rollout. However,
speeding up policy execution changes the error profile, causing
state distribution shift. (Right) To mitigate the error shift at
higher execution speed, we propose to train policy model to
predict the reached poses x in demonstration and track the
predicted actions with a high-fidelity controller.

in practice, we directly change the time parameterization, as
opposed to the robot speed.

III. SPEED-ADAPTIVE IMITATION LEARNING (SAIL)

The goal of our speed-adaptive policy execution is for a
low-level robot controller to generate high-speed motion to
track a reference trajectory produced by the learned policy
while minimizing the induced compound shift in observa-
tion and action distributions. To address these problems, we
propose several key design choices for SAIL: a high-fidelity
tracking controller, an approach to ensure consistency between
receding-horizon policy predictions, adaptive speed detection,
and a strategy for handling system latency. We illustrate the
system in Figure 2.

A. High-fidelity Tracking Control

One key challenge of executing policy faster with a new
time parametrization δt < δ * is the change in controller
behavior, which we find can lead to different tracking error
profiles unseen from the training dataset. This error shift leads
to distribution shift and compounding error in policy rollout.
This section aims to mitigate this controller error shift.

Existing Methods: Assume Fixed Controller Behavior.
During teleoperated data collection, the operator commands
the robot to reach pose xd, while the robot controller incurs
tracking error and reaches poses x. This error e = xd− x is
usually nonnegligible, as it is common to use low-gain com-
pliant controller to minimize noisy actions from unintended
operator motion. Typically, policy models are trained to predict
the commanded poses xd

t . In this case, the same controller
K and time parametrization δ * are used to generate torque
commands ut =K(xd

t ,xt ,δ
*) during both demo collection and

policy rollout. In other words, the controller behaviors and

tracking errors are assumed to be consistent between training
and execution.

Challenge: Controller Behavior Shift at Higher Speed.
However, if we use the same controller K for speeding
up execution (δ instead of δ *), we would have different
controller behavior ût = K(xd

t ,xt ,δ ). Such behavior changes
during execution lead to a new error profile ê.

High-fidelity Tracking of Reached Configurations. De-
signing a controller to match e in the demonstration under
higher execution speed is challenging. Instead, we tackle
this problem by recognizing that the training data includes
the reached configuration x of the robot given every action.
Therefore, by tracking x instead of xd, we bypass the problem
of matching controller behavior and error e. We illustrate
this difference in Figure 3. This strategy requires high-fidelity
tracking to ensure the robot can actually reach x. We propose
to use a high-gain controller plus a feedforward velocity term
to track x as closely as the robot physically allows. We include
more details of controller design in Appendix Sec. VII-K.

B. Ensuring Consistency Between Policy Predictions

The next key challenge we seek to address is divergence
during receding horizon execution, as shown in Figure 4.
We found empirically that, when running receding-horizon
inference, our policy would occasionally predict sudden large
changes in the reference trajectory. These divergence events
are sometimes task-relevant (i.e., tracking a diverging trajec-
tory will lead to task success), and other times erroneous
due to noisy or out-of-distribution observations. We use two
key strategies to handle this challenge. First, to improve
consistency between predictions, we use Classifier-Free Guid-
ance (CFG) [12] via conditioning on previously-generated
trajectories. Second, we correlate task-relevant divergence with
the robot’s tracking error to establish a cutoff that lets us
autonomously decide whether or not to trust a new prediction.
That is, whether to avoid or exploit divergence.

We assume that we have actions a0:H generated by Diffusion
Policy [7]. From this sequence, we execute the first He

actions, i.e., a0:He . Then we execute next Hf actions, i.e.,
aHe:He+Hf , while generating the next actions â0:H to execute.

𝒕𝟎

𝒕𝟐

𝒕𝟐

𝒕𝟏

𝒕𝟏

Fig. 4: Divergence during receding horizon execution. We
found that the diffusion policy would occasionally produce
diverging or inconsistent predictions between receding-horizon
planning iterations. For example, the blue and green trajec-
tories are two consecutive trajectories that diverge in path.
With sensing and inference delay, this divergence causes jerky
movement (yellow line) with receding horizon control.



After generation, we start to execute âHf:Hf+He and repeat this
process.

Classifier-Free Guidance (CFG) for Action Consistency.
Our objective is to ensure that the initial part of the second
predicted sequences â0:Hf remains consistent with the actions
actually executed from the previous prediction, aHe:He+Hf .
Mathematically, we aim to sample from the conditional prob-
ability distribution: p(a0:H |o0,a0:Hf). To train the model, we
restructure the data as follows. Given a datum (ot ,at:t+H) from
the dataset D, we denote the full action sequence af = at:t+H
and the predicted actions for conditioning as ac = at:t+Hf .
Following the standard CFG algorithm, we train both a con-
ditional score function εθ (af,ac) and an unconditional score
function εθ (af,φ), where φ represents null actions.

For inference at runtime, given a current observation ot and
action conditioning ac = aHe:He+Hf (which is taken from the
policy prediction from the previous receding horizon iteration),
we perform the diffusion process using a score function
obtained as

εθ (af,ac) = εθ (af,ac)+w(εθ (af,ac)− εθ (af,φ)), (3)

where w is the CFG guidance weight. For our case, w
becomes a parameter that balances the fidelity between current
observation and consistency to previous actions. For further
details, we refer the reader to [12].

Tracking Error Cutoff for Exploiting Divergence.
Through empirical study (see the experiments Sec. IV and in
Appendix subsection VII-I), we observed that CFG performs
well when the action conditioning aligns with the uncondi-
tional action distribution (i.e., the output of the policy with
no action conditioning). However, when speed increases, the
action conditioning often falls outside the unconditional action
distribution, leading to performance degradation. We identified
tracking error as a key factor influencing this issue. To decide
when to exploit divergence, we then evaluate whether a
distance metric between the current and desired states exceeds
a predefined threshold. If the error exceeds a threshold ρ ,
we apply CFG guidance; otherwise, we do not. Despite its
simplicity, we found in practice that this strategy is effective.

C. Adaptive Speed Modulation

In the context of robotic manipulation tasks, not all actions
can be executed at the same high speed without compromising
task success. We call these critical actions, which require
precise, often nonlinear movements and interactions, such
as grasping a delicate object or maneuvering into a tight
space. Critical actions typically require a slower execution
speed to maintain accuracy and reliability, as we show in
subsection IV-B. To address this, we design an adaptive
speed modulation so that the robot can increase the speed up
factor c (slow down) to perform critical actions during task
execution. Specifically, we aim to identify critical actions in
demonstrations, train the policy to predict both the actions and
their critical action labels, and dynamically the speed up factor
c accordingly during execution.

Fig. 5: Policy rollout with adaptive speed modulation .
Waypoints (red) are generated by [29] given the trajectory
as input along with an error threshold. Areas of complex
motion (blue), are marked by performing a spatial clustering
of the extracted waypoints. Any waypoint outside the cluster
threshold we label as noise. Frame numbers are labeled every
10 steps in green – one can observe that the clustering has been
performed properly by the increased concentration of frame
numbers in clustered areas (the end effector spends more time
in these regions).

We propose two techniques to identify critical actions from
the demonstration data: measuring motion complexity and
using gripper open/close actions (see Appendix subsection
VII-F. Each technique returns a binary critical action flag
kt ∈ {0,1} (kt = 1 means that at is critical), which we use
to set the speedup factor ct . Given the binary critical action
flag kt , we set the speedup factor as:

ct = kt · cslow +(1− kt) · cfast. (4)

where cslow ∈ (0,1] is a slower speedup factor used for critical
actions and cfast ∈ (0,1] is used otherwise. Note that cslow >
cfast since the reciprocal of the speedup factor determines
the speedup. We set cslow and cfast to empirically-validated
presets for each task. Also note that we lower-bound ct next
in subsection III-D. A policy rollout using this technique of
adaptive speed modulation is shown in Figure 5.

D. Continuous Control Loop with System Latency

In real-world robotic systems, different sensors and actu-
ators are driven by separate micro-controllers, with different
communication protocols and sampling rates. Echoing findings
in prior work [8], we observe that the latencies caused by
such heterogeneity can lead to out-of-distribution inputs to the
policy and time-misaligned action commands to the controller.
Moreover, even with an ideal system, the maximum achievable
speedup is constrained by fixed delays such as data transmis-
sion and neural network inference time. We need to derive
various hyperparameters, including policy prediction horizon



and minimum speedup factor c, based on such constraints
to ensure that the control loop can run continuously in real
time. In the following paragraphs, we will discuss three system
design decisions that address these challenges.

Observation Synchronization. To address the sensing la-
tencies from various sensors, we quantify the latency of the
system components and create global timestamps for the
camera observations and robot states. Specifically, observation
timestamps are aligned to the timestamps of camera that
with the highest latency, and proprioceptive observations are
calculated from linear interpolation of robot states at those
timestamps. During data collection, the recorded action is
synchronized with the nearest camera observation timestamp.

Action Scheduling. There is an irreducible delay δ delay

between the moment that new data is requested from the
sensors to and the corresponding action is generated ta. To
accommodate this delay, SAIL’s control loop initiates the
sensing and inference at to while continuing to execute the
remaining actions from the prediction until a new action
is generated at ta. The action trajectory is then scheduled
according to the set action interval δt (time-varying if using
adaptive speed modulation) starting at to. The system then
discards outdated actions with timestamp older than ta and
proceeds to execute the rest of the actions. This process is
illustrated in Figure 6.

Lower-Bounding the Speedup Factor. The sensing and
inference delay δ delay limits the maximum speedup (i.e., the
minimum ct ) that can be supported by the system. Therefore,
we seek to configure the system such that the control loop
prevents action exhaustion, i.e., running out of actions to be
executed before the next action inference is finished. The lower
bound δ lb is expressed as:

δ
lb >

δ delay

Hp−Hc . (5)

which in turn determines the speedup factor ct ∈
(
δ lb/δ *, 1

]
.

𝜹𝒂

𝑯𝜹𝒂

Robot Control Time (wall clock)

𝑻𝒑

𝜹𝒂∗

𝜹𝒂

𝒕𝒊

𝜹𝒂
𝒕𝒔𝒑𝒂𝒏

𝒕

𝒕𝒔𝒑𝒂𝒏
𝒕𝟏

𝒕𝟐

Prediction at 

Prediction at 

No Action

Actions Executed by Robot

Inference

Inference

𝒕𝒊

𝜹𝒂

No Action

(1/28) DX: Made a few changes

𝒕𝒐𝒃𝒔 𝒕𝒂𝒄𝒕

𝑯𝜹𝒂𝒕𝒐𝒃𝒔 𝒕𝒂𝒄𝒕

𝑯𝒄𝒐𝒏𝒅𝜹𝒂𝜹𝒅𝒆𝒍𝒂𝒚

Robot Control Time (wall clock)

(2/1 5AM) SK: fixed notation

<latexit sha1_base64="5CO9+aOHYIdBI+61i9lbqb+R5Gg=">AAACm3icbVHbahRBEO0db3G8JfoowuAi+CDLjEj0MZAXkRBicDeBnSXU1NQmbfpGd09kaQZ/wVf9M//Gns0Q3V0LGg7nnLp1VUZw5/P89yC5dfvO3Xtb99MHDx89frK983TidGORxqiFtqcVOBJc0dhzL+jUWAJZCTqpLvc7/eSKrONaffELQzMJ54rPOYKP1KSsSXg42x7mo3wZ2SYoejBkfRyd7Qy+l7XGRpLyKMC5aZEbPwtgPUdBbVo2jgzgJZzTNEIFktwsLMdts1eRqbO5tvEpny3ZfzMCSOcWsopOCf7CrWsd+T9t2vj5h1ngyjSeFF43mjci8zrrds9qbgm9WEQAaHmcNcMLsIA+/tBKl6qSK0sEBIUk2jRNS2P1Fa8JtZSg6lAet6HsZqmqcNy2m/rhX/2w0xV9u9EEGAFIvQNBhIN1S6O4d57MTRUZiraNJyvWD7QJJm9Hxe5o9/O74d6b/nhb7Dl7yV6zgr1ne+wjO2Jjhuwr+8F+sl/Ji2Q/+ZQcXFuTQZ/zjK1EMv4DaAzScA==</latexit>

ω
<latexit sha1_base64="fCDQ4m73MG7gAMYWgFuBifplFdk=">AAACmHicbVFbaxNBFJ6st7pe2uqbviwGwQcJuyKtjwEfVJBSo2kL2VjOzJ6kQ+fGzGwlDIu/wNf2t/lvnE2XahIPDHx833duc6gR3Pk8/91Lbt2+c/fe1v30wcNHj7d3dp8cOV1bhmOmhbYnFBwKrnDsuRd4YiyCpAKP6fn7Vj++QOu4Vt/8wuBUwlzxGWfgI/XVf9enO/18kC8j2wRFB/qki8PT3d7PstKslqg8E+DcpMiNnwawnjOBTVrWDg2wc5jjJEIFEt00LGdtspeRqbKZtvEpny3ZfzMCSOcWkkanBH/m1rWW/J82qf3s3TRwZWqPil03mtUi8zprF88qbpF5sYgAmOVx1oydgQXm4/esdKFUriwRGCiGoknTtDRWX/AKmZYSVBXKURPKdhZKw6hpNvWDv/pBqyv8caMJMAIYdg4GInxet9SKe+fR3FSRoWiaeLJi/UCb4OjNoNgb7H152x++7o63RZ6TF+QVKcg+GZKP5JCMCSNz8otckqvkWTJMPiSfrq1Jr8t5SlYiGf0Bb0zRLQ==</latexit>

to
<latexit sha1_base64="9Y4YPTmwtDabR03Af4b6lCmV66Q=">AAACrHicbVFNa9tAEF0r/UjVL6ehp15ETaGHYqRQ0hwDvfRQQhriJGCpZrQaJUv2Q+yOkppF5Lf02v6i/JtKjkhruwMLb997szM7k1dSOIrj20Gw8eDho8ebT8Knz56/eDncenXiTG05TriRxp7l4FAKjRMSJPGssggql3iaX37u9NMrtE4YfUzzCjMF51qUggO11Gz4Oi1QEnz3KeEP8u0F5k0zG47icbyIaB0kPRixPg5nW4ObtDC8VqiJS3BumsQVZR4sCS6xCdPaYQX8Es5x2kINCl3mF/030buWKaLS2PZoihbsvxkelHNzlbdOBXThVrWO/J82rancy7zQVU2o+V2hspYRmagbRlQIi5zkvAXArWh7jfgFWODUjmypSp6rpU94DpqjbMIwTCtrrkSB3CgFuvDpUePTrpc890dNs64f/NUPOl3j9b0moZLAsXdwkP7rqqXWghxhdf+K8sliZcnqgtbByc442R3vfvs42v/QL2+TvWFv2XuWsE9sn31hh2zCOPPsJ/vFfgfj4DiYBtmdNRj0OdtsKYLyD7yB2bU=</latexit>

ωdelay
<latexit sha1_base64="j0g8htaf7WikwYL0OBMLAzwYYFo=">AAACmHicbVFbaxNBFJ6st7pe2uqbviwGwQcJuyKtjwEfVJBSo2kL2VjOzJ6kQ+fGzGwlDIu/wNf2t/lvnE2XahIPDHx833duc6gR3Pk8/91Lbt2+c/fe1v30wcNHj7d3dp8cOV1bhmOmhbYnFBwKrnDsuRd4YiyCpAKP6fn7Vj++QOu4Vt/8wuBUwlzxGWfgI/XVf4fTnX4+yJeRbYKiA33SxeHpbu9nWWlWS1SeCXBuUuTGTwNYz5nAJi1rhwbYOcxxEqECiW4alrM22cvIVNlM2/iUz5bsvxkBpHMLSaNTgj9z61pL/k+b1H72bhq4MrVHxa4bzWqReZ21i2cVt8i8WEQAzPI4a8bOwALz8XtWulAqV5YIDBRD0aRpWhqrL3iFTEsJqgrlqAllOwulYdQ0m/rBX/2g1RX+uNEEGAEMOwcDET6vW2rFvfNobqrIUDRNPFmxfqBNcPRmUOwN9r687Q9fd8fbIs/JC/KKFGSfDMlHckjGhJE5+UUuyVXyLBkmH5JP19ak1+U8JSuRjP4AUJDRHw==</latexit>

ta
<latexit sha1_base64="Y0p3p0vo93X4U7ELUw7khLp/o6A=">AAACqXicbVHbbtNAEN2YWzG3tDzyYhEhIYEiu0KFx0q89AFVbUXaiDhE4/GkXXV3bXnHpdFqxZ/wCr/E32CnViEJI610dM6Zy85kpZKW4/h3L7hz9979B1sPw0ePnzx91t/eObVFXSGNsFBFNc7AkpKGRixZ0bisCHSm6Cy7/NjqZ1dUWVmYz7woaarh3Mi5ROCGmvV3Dr66lOmaHXqf5qQYZv1BPIyXEW2CpAMD0cXRbLv3Pc0LrDUZRgXWTpK45KmDiiUq8mFaWyoBL+GcJg00oMlO3XJ4H71qmDyaF1XzDEdL9t8MB9rahc4apwa+sOtaS/5Pm9Q8/zB10pQ1k8GbRvNaRVxE7SaiXFaErBYNAKxkM2uEF1ABcrOvlS5Zplc+4RAMkvJhGKZlVVzJnLDQGkzu0hPv0naWLHMn3m/qh3/1w1Y39O1WU1AqQOocCMp9WrfURrJlKm+raJd435wsWT/QJjjdHSZ7w73jd4P9t93xtsQL8VK8Fol4L/bFgTgSI4HiWvwQP8Wv4E1wHIyDLzfWoNflPBcrEeAfJePYMw==</latexit>

Hcω
<latexit sha1_base64="uMgof45iSgPzUq4dVkLiUDr0KCc=">AAACqXicbVFdaxNBFJ2sX3X9SuujL4tBEJSwW6T6WPClD1LaYtpgNoa7szft0JnZYeZubRgG/4mv+pf8N+6mSzWJFwYO55z7MfcWRgpHafq7F925e+/+g62H8aPHT54+62/vnLqqthxHvJKVHRfgUAqNIxIkcWwsgioknhWXH1v97AqtE5X+TAuDUwXnWswFB2qoWX/n4KvPCa/JmxDyEiXBrD9Ih+kykk2QdWDAujiabfe+52XFa4WauATnJllqaOrBkuASQ5zXDg3wSzjHSQM1KHRTvxw+JK8apkzmlW2epmTJ/pvhQTm3UEXjVEAXbl1ryf9pk5rmH6ZeaFMTan7TaF7LhKqk3URSCouc5KIBwK1oZk34BVjg1OxrpUtRqJVPeA6aowxxHOfGVleiRF4pBbr0+UnweTtLUfiTEDb1w7/6Yatr/HarSTASOHYODtJ/WrfUWpAjNLdVlM9CaE6WrR9oE5zuDrO94d7xu8H+2+54W+wFe8les4y9Z/vsgB2xEePsmv1gP9mv6E10HI2jLzfWqNflPGcrEfE/QtXYQA==</latexit>

Hpω

<latexit sha1_base64="uMgof45iSgPzUq4dVkLiUDr0KCc=">AAACqXicbVFdaxNBFJ2sX3X9SuujL4tBEJSwW6T6WPClD1LaYtpgNoa7szft0JnZYeZubRgG/4mv+pf8N+6mSzWJFwYO55z7MfcWRgpHafq7F925e+/+g62H8aPHT54+62/vnLqqthxHvJKVHRfgUAqNIxIkcWwsgioknhWXH1v97AqtE5X+TAuDUwXnWswFB2qoWX/n4KvPCa/JmxDyEiXBrD9Ih+kykk2QdWDAujiabfe+52XFa4WauATnJllqaOrBkuASQ5zXDg3wSzjHSQM1KHRTvxw+JK8apkzmlW2epmTJ/pvhQTm3UEXjVEAXbl1ryf9pk5rmH6ZeaFMTan7TaF7LhKqk3URSCouc5KIBwK1oZk34BVjg1OxrpUtRqJVPeA6aowxxHOfGVleiRF4pBbr0+UnweTtLUfiTEDb1w7/6Yatr/HarSTASOHYODtJ/WrfUWpAjNLdVlM9CaE6WrR9oE5zuDrO94d7xu8H+2+54W+wFe8les4y9Z/vsgB2xEePsmv1gP9mv6E10HI2jLzfWqNflPGcrEfE/QtXYQA==</latexit>

Hpω
<latexit sha1_base64="fCDQ4m73MG7gAMYWgFuBifplFdk=">AAACmHicbVFbaxNBFJ6st7pe2uqbviwGwQcJuyKtjwEfVJBSo2kL2VjOzJ6kQ+fGzGwlDIu/wNf2t/lvnE2XahIPDHx833duc6gR3Pk8/91Lbt2+c/fe1v30wcNHj7d3dp8cOV1bhmOmhbYnFBwKrnDsuRd4YiyCpAKP6fn7Vj++QOu4Vt/8wuBUwlzxGWfgI/XVf9enO/18kC8j2wRFB/qki8PT3d7PstKslqg8E+DcpMiNnwawnjOBTVrWDg2wc5jjJEIFEt00LGdtspeRqbKZtvEpny3ZfzMCSOcWkkanBH/m1rWW/J82qf3s3TRwZWqPil03mtUi8zprF88qbpF5sYgAmOVx1oydgQXm4/esdKFUriwRGCiGoknTtDRWX/AKmZYSVBXKURPKdhZKw6hpNvWDv/pBqyv8caMJMAIYdg4GInxet9SKe+fR3FSRoWiaeLJi/UCb4OjNoNgb7H152x++7o63RZ6TF+QVKcg+GZKP5JCMCSNz8otckqvkWTJMPiSfrq1Jr8t5SlYiGf0Bb0zRLQ==</latexit>

to
<latexit sha1_base64="j0g8htaf7WikwYL0OBMLAzwYYFo=">AAACmHicbVFbaxNBFJ6st7pe2uqbviwGwQcJuyKtjwEfVJBSo2kL2VjOzJ6kQ+fGzGwlDIu/wNf2t/lvnE2XahIPDHx833duc6gR3Pk8/91Lbt2+c/fe1v30wcNHj7d3dp8cOV1bhmOmhbYnFBwKrnDsuRd4YiyCpAKP6fn7Vj++QOu4Vt/8wuBUwlzxGWfgI/XVf4fTnX4+yJeRbYKiA33SxeHpbu9nWWlWS1SeCXBuUuTGTwNYz5nAJi1rhwbYOcxxEqECiW4alrM22cvIVNlM2/iUz5bsvxkBpHMLSaNTgj9z61pL/k+b1H72bhq4MrVHxa4bzWqReZ21i2cVt8i8WEQAzPI4a8bOwALz8XtWulAqV5YIDBRD0aRpWhqrL3iFTEsJqgrlqAllOwulYdQ0m/rBX/2g1RX+uNEEGAEMOwcDET6vW2rFvfNobqrIUDRNPFmxfqBNcPRmUOwN9r687Q9fd8fbIs/JC/KKFGSfDMlHckjGhJE5+UUuyVXyLBkmH5JP19ak1+U8JSuRjP4AUJDRHw==</latexit>

ta

Fig. 6: Handling Latencies in Control Loop. We illustrate
the control loop timeline of SAIL and how it handles sys-
tem latency. The green timeline (top) shows the first action
sequence generated at to. The sequence spans Hδ with the
last Hc steps for conditioning the next prediction. The blue
timeline (middle) shows the next action prediction starts while
the system continues to execute the first prediction. The bottom
timeline shows actual robot execution timeline. The system
smoothly transitions from the first sequence (green) to the next
(blue) while maintaining a continuous control loop.

Detailed derivation can be found in Appendix VII-E.

IV. EVALUATIONS

In our experiments, we aim to validate our key insights by
testing each design choice. Then, we demonstrate the capabil-
ity of the system to enable faster-than-demonstration-execution
while maintaining task success rate relative to baselines. Our
validation experiments seek to test the following hypotheses:

• H1: Combining a high gain controller with predicting
reached poses increases task success rate during high-
speed execution.

• H2: Using a high gain controller requires smooth refer-
ence trajectories for a high success rate.

• H3: Consistent-preserving action prediction generates
temporally-consistent actions that further improves policy
performances at high speed.

• H4: Adaptive speed modulation improves policy success
rate a high execution speed.

• H5: Our system enables faster-than-demo execution while
keeping a high success rate across simulation and real
robot systems.

This section is organized as follows. First, we explain
our simulation experiment setup. Then, we test H4-H5 and
demonstrate the main experiment results in subsection IV-B.
We leave the testing of H1–H3, which are the hypotheses for
different components of SAIL, to the Appendix VII-G.

A. Experiment Setup (Sim)

Tasks. We evaluate on the following tasks from the
RoboMimic [19] benchmark and MimicGen [20]: Lift, Can,
Square, Stack, and Mug Cleanup.

Receding Horizon Formulation. We perform all experi-
ments except those involving demo replay (H1) in a receding
horizon manner. Note that, during inference, the robot con-
tinues executing actions from the previous policy output until
inference is complete, thereby simulating the inference delay.

Metrics. We consider two suites of evaluation metrics to
quantify the contributions of different components in SAIL.
The first suite focuses on task performance and efficiency,
which includes task success rate (SR), throughput-with-regret
(TPR), average time for successful rollouts (ATR), speedup-
over-demo (SOD). The second suite illustrates the character-
istics of the trajectory, which contains consistency (CON),
spectral arc length[13] (SPARC), log dimensionless jerk[13]
(LDLJ), and weighted Euclidean distance[17] (WED). More
details on the metrics are presented in Appendix Sec. VII-B.

B. Testing H4 and H5: SAIL Achieves High Task Throughput

Since few imitation learning methods directly address exe-
cution speedup, we design several baselines for comparison,
including AWE [29] which achieves speedup as a side effect
of its waypoint-based approach. Our baselines are:

• DP [7]: Executes actions at the original demonstration
speed, serving as our primary baseline.



Lift Can

Fig. 7: Speedup Factor vs. TPR on Can and Lift Tasks. We
show that as the speedup factor increases, SAIL’s throughput-
with-regret increases more than the AWE and DP baselines. In
other words, SAIL is able to accumulate more task successes
more quickly while limiting task failures.

• DP-Fast: Executes Diffusion Policy actions at an ac-
celerated fixed frequency using a low-gain controller,
representing the naive approach to speedup.

• Aggregated Actions: Operates in delta Cartesian Space
by aggregating consecutive actions in similar directions
(detailed in Appendix Sec. VII-J).

• AWE [29]: Uses automatically extracted waypoints to
generate absolute action labels.

• SAIL(-C): Ablation of our method without consistency-
preserving trajectory generation.

• SAIL(-AS): Ablation of our method without adaptive
speed modulation.

SAIL achieves much higher throughput than baselines.
As seen in Table I, SAIL can achieve up to 3× throughput of
baselines such as DP [7] for the Can and Stack tasks, without
sacrificing success rate. We attribute this to the combination
of components including the high-gain controller, tracking
reached poses, and adaptive speed modulation. Moreover, we
conducted a thorough study of how the throughput (TPR)
changes as we vary ct in Figure 7. We observe that SAIL
is able to smoothly improve the TPR as ct increases, with up
to ct = 0.1 (10× speed) showing is robustness at least in an
ideal simulated environment.

Adaptive speed modulation (slow down) is necessary
for success in high-precision tasks. As seen in the results
for Square, our ablation baseline (SAIL-AS) without the
adaptive speed modulation achieves a reduced success rate
when compared to SAIL (0.86 vs. 0.64).

Action Conditioning improves Success Rate. For many
of our tasks, when our CFG-based action conditioning was
enabled, it resulted in a higher success rate and throughput,
indicating that action conditioning can help the model generate
more consistent actions and achieve better performance.

V. REAL-WORLD EVALUATION

We verified our method on two different robot systems
- Franka and UR5, across seven challenging tasks. Despite
the difference in the underlying control system, we demon-
strated that our recipes are general for achieving faster-than-
demonstration execution on real robots.

TABLE I: Results of evaluation in Sim

DP [7] DP-F AWE [29] Agg. Act. BID[17]-Fast SAIL

Lift

SR ↑ 1.00 0.95 1.00 0.91 0.86 1.00
TPR ↑ 0.46 1.02 0.44 0.52 0.91 1.68
ATR ↓ 2.23 1.52 2.35 1.78 0.97 0.61
SOD ↑ 1.08 1.59 1.02 1.37 2.50 3.98

Can

SR ↑ 0.97 0.87 0.96 0.82 0.79 0.92
TPR ↑ 0.18 0.37 0.17 0.16 0.34 0.51
ATR ↓ 5.52 2.34 5.80 4.77 2.39 1.81
SOD ↑ 1.05 2.48 1.00 1.22 2.34 3.20

Square

SR ↑ 0.83 0.55 0.83 0.29 0.49 0.86
TPR ↑ 0.10 0.15 0.10 0.03 0.12 0.13
ATR ↓ 7.56 3.42 8.13 4.81 3.45 6.41
SOD ↑ 0.99 2.20 0.93 1.57 2.18 1.18

Stack

SR ↑ 1.00 0.98 0.98 0.82 0.99 0.98
TPR ↑ 0.19 0.44 0.11 0.17 0.47 0.66
ATR ↓ 5.50 2.37 9.01 6.18 2.61 1.56
SOD ↑ 0.98 2.28 0.60 0.87 2.07 3.47

Mug

SR ↑ 0.68 0.56 0.75 0.59 0.62 0.72
TPR ↑ 0.03 0.05 0.02 0.03 0.06 0.08
ATR ↓ 17.44 9.67 28.79 15.86 8.71 8.09
SOD ↑ 0.97 1.74 0.59 1.06 1.94 2.09

TABLE II: Real-World evaluation of SAIL.

SR TPR ATR SOD

Stacking Cups
DP-Fast 0.10 -2.28 14.00 1.85
SAIL 0.40 -0.12 14.71 1.76

Wiping Board
DP-Fast 0.90 3.48 14.54 2.34
SAIL 0.70 3.18 10.44 3.26

Baking
DP-Fast 0.90 3.06 16.15 2.26
SAIL 1.00 4.20 14.39 2.54

Folding Cloth
DP-Fast 0.10 -2.28 14.60 2.08
SAIL 0.30 -0.78 13.68 2.22

Plate Fruits
DP-Fast 0.60 2.22 13.74 1.66
SAIL 0.80 5.46 8.53 2.67

Pack Chicken
DP-Fast 0.40 0.51 17.33 1.25
SAIL 0.90 5.22 9.40 2.30

Bimanual Serve
DP-Fast 0.40 1.00 12.01 1.43
SAIL 0.70 5.40 7.19 2.39

A. Experiment Setup

Tasks. Our real-world experiment setup is shown in Fig-
ure 8. We choose 7 challenging tasks to demonstrate the
effectiveness of our method. Task descriptions are provided
in Appendix VII-D3.

Metrics. Similar to simulation experiments in subsubsec-
tion VII-G2, we evaluate our method on the real robot in
terms of task success rate, average time over successful roll-
outs, speedup over demos, and throughput-with-regret, under
different speedup conditions. TPR for the real evaluation is
per-minute. Each method is evaluated for 10 rollouts per task.

Baselines. We compare SAIL with naive speedup of vanilla
diffusion policy [7] termed DP-Fast. New observations are
retrieved at the end of the sequence execution and used to
perform the next inference step. When speeding up the robot,
we change the command sending rate by adjusting the time
interval δ as noted in section II.

B. Results and Discussion

Across differences in control systems, robot dynamics, and
tasks, SAIL generally improves task throughput. As shown
in Table II, throughput-with-regret (TPR) and SOD both



Plate Fruits

1

2

Pack Chicken

1

2

Bimanual Serve

1
2

3

Wiping BoardStacking Cups BakingFolding Cloth
1
2

2

1
1 2

3

Fig. 8: Evaluation Task Suite Used in Real World.

Fig. 9: Commonly-seen failure modes from real-world
evaluation. Speeding up policy execution poses challenges
unseen in normal speed execution, which include imprecise
grasping (grasping two cups in 1, missing eraser in 4), low-
fidelity tracking (colliding with other cups in 2 and 3, missing
collar in 5, missing handle in 6). SAIL effectively lowers the
frequency of failure under speeding-up execution, leading to a
higher success rate and throughput compared to the baseline.

improved on 6/7 challenging tasks, demonstrating SAIL’s
consistent speed advantage over the baseline sped-up diffusion
policy. Qualitatively (Figure 9), SAIL overcomes common
DP failure modes during high-speed execution. DP often
pauses due to action depletion when inference lags; SAIL
maintains constant motion via smooth action scheduling. High
speeds exacerbate imprecise grasping for DP, whereas SAIL’s
adaptive speed modulation slows critical phases, enhancing
success rates in mid-to-high precision tasks such as plating
fruits, packing chicken, and cup stacking. Low-fidelity mo-
tion tracking frequently causes DP failures, particularly for
actions requiring precise localization like cloth folding and
baking; SAIL substantially reduces tracking errors compared
to the original teleoperation controller (Kteleop), thus im-

proving performance in precision-critical stages. Furthermore,
DP’s inconsistent action predictions result in jerky motions,
posing considerable challenges at increased speeds. This is
particularly evident in the bimanual serving task, where SAIL
achieves smoother trajectories, yielding 5.4× higher through-
put and approximately 1.8× greater success rates. Finally,
we note that SAIL performs slightly worse than DP in the
wiping task. We hypothesize that this is due to the high-gain
tracking controller unable to adjusting to the new robot-object
dynamics (sustained contact during wiping) at a higher speed.

VI. CONCLUSION

In this work, we addressed the critical challenge of en-
abling faster-than-demonstration execution for imitation learn-
ing policies. Our study reveals that achieving high-speed pol-
icy execution requires overcoming coupled challenges of track-
ing errors, distributional shifts, inconsistent motion prediction,
and system latencies. The proposed framework, SAIL (Speed-
Aaptive Imitation Learning), integrates high-gain feedforward
control, consistent action prediction, and careful system design
to ensure both precise tracking and consistent reference motion
generation at high speeds. We complement this with adaptive
speed modulation and action scheduling to handle real-world
constraints. Our experiments demonstrate that SAIL achieves
up to a 3.2× speedup across challenging manipulation tasks in
real world and 4× speedup in simulation. We hope these in-
sights into high-speed imitation learning provide a foundation
for future research and real-world deployment.

ACKNOWLEDGMENTS

The research presented in this paper was supported in
part by the Agricultural Technology Research Program of the
Georgia Tech Research Institute.

REFERENCES

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learn-
ing via inverse reinforcement learning. In Proceedings

https://ai.stanford.edu/~ang/papers/icml04-apprentice.pdf
https://ai.stanford.edu/~ang/papers/icml04-apprentice.pdf


of the twenty-first international conference on Machine
learning, page 1, 2004.

[2] Brenna D Argall, Sonia Chernova, Manuela Veloso,
and Brett Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57
(5):469–483, 2009.

[3] S. Balasubramanian, A. Melendez-Calderon, and E. Bur-
det. A robust and sensitive metric for quantifying
movement smoothness. IEEE Transactions on Biomedi-
cal Engineering, 59(8):2126–2136, 2012. doi: 10.1109/
TBME.2011.2179545.

[4] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and
Scott Niekum. Extrapolating beyond suboptimal demon-
strations via inverse reinforcement learning from obser-
vations. In International conference on machine learning,
pages 783–792. PMLR, 2019.

[5] Daniel S Brown, Wonjoon Goo, and Scott Niekum.
Better-than-demonstrator imitation learning via
automatically-ranked demonstrations. In Conference on
robot learning, pages 330–359. PMLR, 2020.

[6] Xuxin Cheng, Jialong Li, Shiqi Yang, Ge Yang, and
Xiaolong Wang. Open-television: Teleoperation with
immersive active visual feedback. arXiv preprint
arXiv:2407.01512, 2024.

[7] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Dif-
fusion Policy: Visuomotor Policy Learning via Action
Diffusion. In Proceedings of Robotics: Science and
Systems (RSS), 2023.

[8] Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau,
Benjamin Burchfiel, Siyuan Feng, Russ Tedrake, and
Shuran Song. Universal Manipulation Interface: In-The-
Wild Robot Teaching Without In-The-Wild Robots. In
Proceedings of Robotics: Science and Systems (RSS),
2024.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xi-
aowei Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. KDD’96,
page 226–231. AAAI Press, 1996.

[10] Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mo-
bile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. arXiv preprint
arXiv:2401.02117, 2024.

[11] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch,
Bernhard Schölkopf, and Alexander Smola. A kernel
two-sample test. The Journal of Machine Learning
Research, 13(1):723–773, 2012.

[12] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022.

[13] Balasubramanian, Sivakumar and Melendez-Calderon,
Alejandro and Roby-Brami, Agnes and Burdet, Etienne.
On the analysis of movement smoothness. Journal of
NeuroEngineering and Rehabilitation, 12(1):112, 2015.
doi: 10.1186/s12984-015-0090-9. URL https://doi.org/
10.1186/s12984-015-0090-9.

[14] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan,

and Chrisina Jayne. Imitation learning: A survey of
learning methods. ACM Computing Surveys (CSUR), 50
(2):1–35, 2017.

[15] Aadhithya Iyer, Zhuoran Peng, Yinlong Dai, Irmak
Guzey, Siddhant Haldar, Soumith Chintala, and Lerrel
Pinto. Open teach: A versatile teleoperation system for
robotic manipulation. arXiv preprint arXiv:2403.07870,
2024.

[16] Michael Janner, Qiyang Li, and Sergey Levine. Offline
reinforcement learning as one big sequence modeling
problem. Advances in neural information processing
systems, 34:1273–1286, 2021.

[17] Yuejiang Liu, Jubayer Ibn Hamid, Annie Xie, Yoonho
Lee, Maximilian Du, and Chelsea Finn. Bidirectional
Decoding: Improving Action Chunking via Closed-Loop
Resampling. arXiv preprint arXiv:2408.17355, 2024.

[18] Don O Loftsgaarden and Charles P Quesenberry. A
nonparametric estimate of a multivariate density function.
The Annals of Mathematical Statistics, 36(3):1049–1051,
1965.

[19] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush
Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n.
What Matters in Learning from Offline Human Demon-
strations for Robot Manipulation. In 5th Annual Confer-
ence on Robot Learning, 2021.

[20] Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Ireti-
ayo Akinola, Yashraj Narang, Linxi Fan, Yuke Zhu, and
Dieter Fox. MimicGen: A Data Generation System for
Scalable Robot Learning using Human Demonstrations.
In 7th Annual Conference on Robot Learning, 2023.

[21] Andrew Y Ng, Stuart Russell, et al. Algorithms for
inverse reinforcement learning. In Icml, volume 1,
page 2, 2000.

[22] Dean A Pomerleau. Alvinn: An autonomous land vehicle
in a neural network. Advances in neural information
processing systems, 1, 1988.

[23] Harish Ravichandar, Athanasios S Polydoros, Sonia
Chernova, and Aude Billard. Recent advances in robot
learning from demonstration. Annual review of control,
robotics, and autonomous systems, 3(1):297–330, 2020.

[24] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the
fourteenth international conference on artificial intelli-
gence and statistics, pages 627–635. JMLR Workshop
and Conference Proceedings, 2011.

[25] Yuki Saigusa, Ayumu Sasagawa, Sho Sakaino, and Toshi-
aki Tsuji. Imitation learning for variable speed motion
generation over multiple actions. In IECON 2021–47th
Annual Conference of the IEEE Industrial Electronics
Society, pages 1–6. IEEE, 2021.

[26] Yuki Saigusa, Sho Sakaino, and Toshiaki Tsuji. Imitation
learning for nonprehensile manipulation through self-
supervised learning considering motion speed. IEEE
Access, 10:68291–68306, 2022.

https://www.sciencedirect.com/science/article/abs/pii/S0921889008001772
https://www.sciencedirect.com/science/article/abs/pii/S0921889008001772
https://ieeexplore.ieee.org/document/6104119
https://ieeexplore.ieee.org/document/6104119
https://proceedings.mlr.press/v97/brown19a.html
https://proceedings.mlr.press/v97/brown19a.html
https://proceedings.mlr.press/v97/brown19a.html
https://arxiv.org/abs/1907.03976
https://arxiv.org/abs/1907.03976
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/2303.04137
https://roboticsconference.org/2024/program/papers/45/
https://roboticsconference.org/2024/program/papers/45/
https://dl.acm.org/doi/10.5555/3001460.3001507
https://dl.acm.org/doi/10.5555/3001460.3001507
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-015-0090-9
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-015-0090-9
https://doi.org/10.1186/s12984-015-0090-9
https://doi.org/10.1186/s12984-015-0090-9
https://dl.acm.org/doi/10.1145/3054912
https://dl.acm.org/doi/10.1145/3054912
https://arxiv.org/abs/2408.17355
https://arxiv.org/abs/2408.17355
https://arxiv.org/abs/2408.17355
https://arxiv.org/abs/2108.03298
https://arxiv.org/abs/2108.03298
https://arxiv.org/abs/2310.17596
https://arxiv.org/abs/2310.17596
https://ai.stanford.edu/~ang/papers/icml00-irl.pdf
https://ai.stanford.edu/~ang/papers/icml00-irl.pdf
https://proceedings.neurips.cc/paper/1988/hash/812b4ba287f5ee0bc9d43bbf5bbe87fb-Abstract.html
https://proceedings.neurips.cc/paper/1988/hash/812b4ba287f5ee0bc9d43bbf5bbe87fb-Abstract.html
https://www.annualreviews.org/content/journals/10.1146/annurev-control-100819-063206
https://www.annualreviews.org/content/journals/10.1146/annurev-control-100819-063206
https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.mlr.press/v15/ross11a.html
https://ieeexplore.ieee.org/document/9589303
https://ieeexplore.ieee.org/document/9589303
https://ieeexplore.ieee.org/document/9804696
https://ieeexplore.ieee.org/document/9804696
https://ieeexplore.ieee.org/document/9804696


[27] Sho Sakaino, Kazuki Fujimoto, Yuki Saigusa, and Toshi-
aki Tsuji. Imitation learning for variable speed contact
motion for operation up to control bandwidth. IEEE
Open Journal of the Industrial Electronics Society, 3:
116–127, 2022.

[28] David W Scott. Multivariate density estimation: theory,
practice, and visualization. John Wiley & Sons, 2015.

[29] Lucy Xiaoyang Shi, Archit Sharma, Tony Z Zhao, and
Chelsea Finn. Waypoint-Based Imitation Learning for
Robotic Manipulation. In Conference on Robot Learning,
pages 2195–2209. PMLR, 2023.

[30] Priya Sundaresan, Hengyuan Hu, Quan Vuong, Jeannette
Bohg, and Dorsa Sadigh. What’s the Move? Hybrid
Imitation Learning via Salient Points. arXiv preprint
arXiv:2412.05426, 2024.

[31] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo:
A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5026–5033. IEEE, 2012.

[32] Philipp Wu, Yide Shentu, Zhongke Yi, Xingyu Lin, and
Pieter Abbeel. GELLO: A General, Low-Cost, and Intu-
itive Teleoperation Framework for Robot Manipulators,
2023.

[33] Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao,
Voot Tangkaratt, and Masashi Sugiyama. Imitation
learning from imperfect demonstration. In International
Conference on Machine Learning, pages 6818–6827.
PMLR, 2019.

[34] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee,
Xi Chen, Ken Goldberg, and Pieter Abbeel. Deep
imitation learning for complex manipulation tasks from
virtual reality teleoperation. In 2018 IEEE international
conference on robotics and automation (ICRA), pages
5628–5635. IEEE, 2018.

[35] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea
Finn. Learning fine-grained bimanual manipulation with
low-cost hardware. arXiv preprint arXiv:2304.13705,
2023.

[36] Yifeng Zhu, Abhishek Joshi, Peter Stone, and Yuke
Zhu. VIOLA: Imitation Learning for Vision-Based Ma-
nipulation with Object Proposal Priors. arXiv preprint
arXiv:2210.11339, 2022. doi: 10.48550/arXiv.2210.
11339.

[37] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto
Martı́n-Martı́n, Abhishek Joshi, Soroush Nasiriany, and
Yifeng Zhu. robosuite: A Modular Simulation Frame-
work and Benchmark for Robot Learning. In arXiv
preprint arXiv:2009.12293, 2020.

[38] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell,
Anind K Dey, et al. Maximum entropy inverse rein-
forcement learning. In Aaai, volume 8, pages 1433–1438.
Chicago, IL, USA, 2008.

https://ieeexplore.ieee.org/document/9707856
https://ieeexplore.ieee.org/document/9707856
https://proceedings.mlr.press/v229/shi23b.html
https://proceedings.mlr.press/v229/shi23b.html
https://arxiv.org/abs/2412.05426
https://arxiv.org/abs/2412.05426
https://ieeexplore.ieee.org/document/6386109
https://ieeexplore.ieee.org/document/6386109
https://arxiv.org/abs/2309.13037
https://arxiv.org/abs/2309.13037
https://proceedings.mlr.press/v97/wu19a.html
https://proceedings.mlr.press/v97/wu19a.html
https://ieeexplore.ieee.org/document/8461249
https://ieeexplore.ieee.org/document/8461249
https://ieeexplore.ieee.org/document/8461249
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2210.11339
https://arxiv.org/abs/2210.11339
https://arxiv.org/abs/2009.12293
https://arxiv.org/abs/2009.12293
https://cdn.aaai.org/AAAI/2008/AAAI08-227.pdf
https://cdn.aaai.org/AAAI/2008/AAAI08-227.pdf


VII. APPENDIX

A. Related Work

In this section, we first briefly summarize offline imitation
learning. We then discuss the state of the art and challenges in
improving imitation learning beyond demonstrations in terms
of both task performance and robot speed. Finally, we note
challenges in system integration for imitation learning.

1) Offline Imitation Learning: Imitation learning, or learn-
ing from demonstration (LfD), is a common way of program-
ming robots using only demonstrations of the desired robot
behavior [22, 2, 14, 23]. One specific paradigm of imitation
learning is behavior cloning (BC) [23], where a function
approximator, typically a deep neural network, is trained on
demonstrations to map observations to actions [34]. Recent
works have adopted deep generative models, particularly Dif-
fusion Models, to better capture the rich behavior distributions
present in real-world demonstration data. However, as noted by
prior works [35, 17], sampling from these learned trajectory
distributions can break temporal dependencies between con-
secutive prediction steps. This challenge is further exacerbated
in our setting, where higher execution speeds create additional
distributional shifts. To address this, we develop a consistency-
preserving trajectory generation component that explicitly
maintains temporal coherence during high-speed execution.

Furthermore, an implicit assumption made by most offline
imitation learning methods, regardless of the architecture de-
sign, is that the overall robot system behaves identically during
both data collection and policy execution. However, as we
demonstrate empirically, this assumption breaks down when
increasing execution speed due to changed dynamic responses
and controller behaviors. Our method addresses this limitation
by training policies to predict the actual end-effector poses
achieved by the robot during demonstrations, rather than the
commanded poses sent to the controller. This approach, com-
bined with high-fidelity tracking control, enables the policy to
better account for the robot’s dynamic response and maintain
consistent behavior across different execution speeds.

2) Better-than-Demonstration Imitation Learning: Sev-
eral imitation learning approaches aim to perform tasks better
than the expert demonstrations [4, 5, 33]. For instance, T-
REX [4] learns better-than-demonstration policies by using
a ranking-based reward function to evaluate unseen policy
behaviors. However, these methods typically operate in an
Inverse Reinforcement Learning [21, 1, 38] setting, requiring
interactive learning in the environment.

In contrast, our focus is on the purely offline setting, where
we execute an offline-learned policy faster during runtime.
While prior works generally emphasize improving task success
rates, we aim to maximize task throughput, defined as the
number of successful executions per unit of time and perform
tasks faster than the teacher did during demonstrations.

Recent works, such as SPHINX [30], have shown modest
improvements in execution time and speedup. However, these
gains are typically byproducts of their methods, whereas we
explicitly target faster execution as a primary objective.

3) System Integration for Imitation Learning: Recent
works have expanded beyond pure algorithmic innovations to
develop full-stack systems for imitation learning [35, 10, 6, 15,
8]. Most existing research focuses on two directions of innova-
tion: building new teleoperation devices for more effective data
collection, and designing new learning algorithms to better
leverage such data. Systems such as Mobile-ALOHA [10],
Universal Manipulation Interface (UMI) [8], and OpenTelevi-
sion [6] have shown the tremendous value in full-stack design
of imitation learning system that integrates low-level robot
controllers with learning algorithms. Most relevant to us is
UMI [8], which explicitly tackles the challenges of system
latencies, originating from various sources such as sensing
and inference delays, in order to minimize out-of-distribution
input to the policy. However, none of these works consider the
problem of deliberately varying the execution speed between
demonstration and policy execution. The core contribution of
our work lies in identifying key challenges arising from this
new problem setting and a system that enables faster-than-
demonstration policy execution.

B. Evaluation Metrics

In this section, we describe the metrics that we used for
evaluation in detail.

1) SR (higher is better): The success rate is the number of
successfully-completed tasks divided by the total number
of trials.

2) TPR (higher is better): We propose throughput-with-
regret to reward faster successes while penalizing all
failures equally:

TPR =
1
N

N

∑
i=1

((
1
ti
·Si

)
−
(

1
tmax · (1−Si)

)
,

)
(6)

where ti is the duration (i.e., total simulated clock time)
of rollout i, tmax is the maximum amount of time allowed
per trial, and Si is the success of rollout i. That is, Si = 1
if trial i was successful and 0 otherwise. We halt all trials
if they have not succeeded before tmax, and declare such
trials as failures.

3) ATR (lower is better): We record the average time for
successful rollouts, where we compute the average time
in seconds only for the successful rollouts out of all trials.

4) SOD (higher is better): We report the speedup-over-demo,
which is the average length of a demo divided by ATR.
SOD indicates how much one speeds up the execution
of the imitation learning policy compared to the training
demonstration.

5) CON (lower is better): To evaluate our CFG and action
conditioning approach, we quantify the consistency be-
tween overlapping parts of consecutive action sequences,
we measure the change in actions at the transition point,
specifically, CON = âHf−aHe+Hf , following the notation
of Section III-B.

6) SPARC (higher is better): SPARC (linear and angular
spectral arc length) is a smoothness metric that evaluates
the arc length of the Fourier magnitude spectrum of a



trajectory’s speed profile [13]. It is an extended version
of Spectral Arc Length (SAL) [3].
In SAL, the magnitude spectrum V (ω) of the Fourier
transform of a speed profile vt is normalized by its DC
value V (0):

V̂ (ω) =
V (ω)

V (0)
(7)

SAL integrates the arc length of V̂ (ω) over frequencies
from 0 up to a cutoff frequency ωc:

SAL ≜−
∫

ωc

0

[(
1

ωc

)2

+

(
dV̂ (ω)

dω

)2
] 1

2

dω (8)

where the first term in the square root is used for
frequency normalization, normalizing the arc length with
respect to ωc. SPARC refines SAL by adaptively selecting
ωc based on a chosen amplitude threshold V and an upper
limit ωmax

c as follows:

ωc ≜ min
{

ω
max
c ,min

{
ω,V̂ (r)<V ∀r > ω

}}
. (9)

We compute SPARC for a given speed trajectory in the
following manner. First, we pad the trajectory with zeros
(K = 4) to increase the frequency resolution to accurately
estimate the length of the arc. Next, we normalize the
magnitude spectrum and apply an upper limit ωmax

c = 20
and an amplitude threshold V = 0.05. We then compute
the arc length of the normalized spectrum by summing the
Euclidean distance between successive frequency-domain
points. Finally, we multiply this sum by −1 to obtain
larger values for smoother trajectories.

7) LDLJ (lower is better): Log Dimensionless Jerk (LDLJ)
is a smoothness metric that evaluates how quickly and
drastically the motion accelerates or decelerates based on
the third derivative of position, jerk.
LDLJ can be written as [13]:

LDLJ ≜− ln

∣∣∣∣∣−
(
t2− t1

)5

(vpeak)2

∫ t2

t1

∣∣∣∣d2vt

dt2

∣∣∣∣2 dt

∣∣∣∣∣ (10)

where t1 and t2 are the start and end times of the move-
ment, vt is the speed at time t, and vpeak ≜ maxt∈[t1,t2] vt .
In our work, we calculate LDLJ by setting vpeak as
the peak speed within the trajectory. The speed v(t)
is computed as the difference between the positions of
successive points. After estimating the speed, we apply
finite differences to approximate its second derivative
with respect to time. The squared second derivative is
then integrated over the movement duration, scaled by
(t2−t1)5

v2
peak

, and the negative natural logarithm is applied to

obtain the final LDLJ value.
8) WED (lower is better): We calculate the Weighted Eu-

clidean Distance, a metric that is used in [17] to quantify
the consistency between overlapping action segments.

C. Simulation Experiment Detail

In this section, we detail the controller setup and data
collection pipeline in for simulation experiment.

1) Robot Control and Dynamics Considerations: We con-
trol robots in simulation using an OSC controller that takes
absolute pose commands, except for some of our baselines,
which use delta pose commands. Additionally, to ensure that
robot torque limits are not a bottleneck to speed up, we
removed the joint torque limits of the Franka Emika Panda
robot in Robosuite. For some of our baselines, removing
torque limits resulted in worse performance. In these cases,
we report their performance with torque limits. In Table VI,
we list the optimal controller and the upper bound of c in
adaptive speed modulation that SAIL uses in the simulated
tasks.

2) Simulator and Data: We use Robosuite [37] to simulate
robots and their environments. Robosuite is built on Mujoco
[31] and by default simulates two milliseconds (0.002 s) of
real-world time every time the simulator is stepped forward.
In our problem setting, we consider the action interval δ as
the number of simulation steps allowed for a robot controller
to execute a given action. Speeding up policy execution is thus
to reduce the total number of simulation step taken to finish
a task. The teleoperation data is collected at δ = 0.05 s (20
Hz).

For our simulation benchmark, we use three tasks from the
Robomimic [19] suite of tasks and two tasks from MimicGen
[20]. For the Robomimic tasks, we train a separate policy for
each task on 200 human demonstrations. For MimicGen tasks,
we use 500 machine-generated demonstrations for each task.

The diffusion policy is trained with prediction horizon
H = 32. In a receding-horizon manner, we execute 8 of the
predicted actions before the next inference, and 4 more actions
while inference is running to simulate sensing-inference delay.

3) Compute: We run all sim experiments on a compute
cluster. Each experiment uses a single A40 GPU, 8 CPU cores
and 64GB of RAM.

D. Real-World Evaluation Setup

In this section, we explain the real robot setup and data
collection pipeline used in the paper.

1) Franka Robot: We have a four-level control hierarchy
for the Franka robot. In the first level, action chunks from
policy inference are retrieved in a variable frequency and
velocity approximation is performed, as introduced in III-D.
Second, actions in each chunk are interpolated and scheduled
by a computer (Intel NUC) controlling the robot at 100Hz.
Third, we use our OSC controller for the Franka, which is
based on the Deoxys controller introduced in [36]. Fourth and
finally, we leverage the torque control API from libfranka and
calculate torque commands, which are sent to the on-board
Franka controller at 500Hz.

2) Data Collection: Our teleoperation system uses a Meta
Quest VR headset to control the commanded pose of the robot
end effector. To record an initial pose during the demonstration
collection, users press the VR controller grip button. While



the button is held, the change in the VR controller pose
relative to the initial pose is transformed into the robot
coordinate frame and used to adjust the commanded pose.
Releasing the grip button pauses the teleoperation, allowing
users to reposition their hand comfortably before resuming
the task. We collect the robot’s reached poses and commanded
poses at 100Hz. Images are attained from the Kinect camera
which is collected at 30Hz, while Zed camera is collected at
60Hz. Demonstrations are recorded at 20Hz. During each data
acquisition, we use the latest timestamp for the third-person
view camera as the observation timestamp. We then retrieve
the latest wrist camera observation and interpolate propriocep-
tive observation according to the observation timestamp. We
collect 50 demonstrations for each task.

3) Task Descriptions:
• Stacking Cups. This task mimics speed stacking,

wherein humans attempt to stack cups in predetermined
sequences as quickly as possible. We collect human tele-
operation demos to stack 3 cups into a pyramid shape for
this task. The repetitive grasping, placing, and movement
pose challenges in balancing speeding up policy and
manipulation accuracy.

• Baking. The baking task represents use cases in a com-
mercial kitchen where efficiency are important. The goal
for this task is to pick up a bowl from a table and place it
precisely on an oven rack. Then the robot must close the
oven door, which requires precise contact-rich motion to
accomplish.

• Folding Cloth. This task requires the robot to fold a t-
shirt. The robot must pick the collar and fold the whole
shirt in half, then pick the right sleeve to do another fold.
Success requires finishing both folds.

• Wiping Board. To showcase SAIL’s robustness we in-
clude a contact-rich manipulation scenario: the wiping-
board task. The robot must pick up an eraser and wipe
a line on a whiteboard, all while maintaining forceful
contact. Since the demonstration data does not include
any force and contact information, accelerating execution
of such a task with imitation learning is challenging.

• Plate Fruits. This task consists of picking two fruits
from a random position on a tray and placing them on
a plate with a specific pattern. This task is challenging
because the picking order is fixed, but the positions can
be swapped.

• Pack Chicken. This real world packing task is chal-
lenging because of the variability in the shape of the
deformable (rubber) chicken breasts and the limited size
of the container requiring precise placements. The robot
is required to rotate the second chicken breast to fill
the space in the container. This complex motion makes
speeding up challenging.

• Bimanual Serve. This task involves two robots operating
together. While the first is picking a peach, the second is
picking a bowl. Then, they converge to a common point
where the first robot places the peach in the bowl. Then
the bowl with the peach inside is served. This task is very

difficult to accelerate because it requires alignment and
synchronization between the two arms.

E. Deviation of Lower Bound δ lb for Action Interval

We seek to derive a lower bound for the action interval δ

(i.e., highest speed up) that still allows a continuous control
loop. Recall that Hp is the prediction horizon of the pol-
icy, and let δ lb be the (constant) lower bound on δt that
we aim to find. To find it, we consider the three critical
parameters: (a) Sensing-inference delay δ delay = ta − to, (b)
the shortest-possible action execution time Hp · δ lb, and (c)
the shortest-possible length of the action chunk used for
consistency-preserving conditioning Hc (subsection III-B). To
ensure continuous execution, we require the available action
sequence to be longer than the sensing-inference delay plus
the conditioning horizon, which gives the lower bound δ lb as

Hp ·δ lb > δ
delay +Hc

δ
lb

=⇒ δ
lb >

δ delay

Hp−Hc .
(11)

We illustrate this relationship in Figure 6. Note that we
can reduce δ lb (i.e., allow higher speedup) by extending
the prediction horizon Hp, but this would require accurate
action prediction over a longer horizon, which is inherently
challenging [16]. Hence, in practice, the prediction horizon
Hp and the sensing-inference delay δ delay jointly determines
the minimum bound on δt and in turn the speedup factor ct :

ct ∈
(

δ
lb/δ

*, 1
]
. (12)

Moreover, note that ct from subsection II-D does not affect
this computation, since the lower bound provides a worst-
case guarantee—even though ct may increase to slow down
execution in certain phases, we cannot rely on this a priori
when computing δ lb for continuous execution.

F. Adpative Speed Modulation

Identifying Critical Actions via Motion Complexity.
Inspired by Automatic Waypoint Extraction (AWE) [29], we
approximate the commanded robot end effector poses in a
demonstration with a set of waypoints connected by linear
segments. With a set error budget, this algorithm produces
more waypoints for more complex motion. We then identify
fast and slow regions by clustering the waypoints in 3-D
space using DBSCAN [9], which is well-known to identify
arbitrarily-sized clusters better than spherical or centroid-based
clustering methods like k-means; it also implicitly filters out
noisy data points that may not represent significant motion
changes. To correlate each time step t with a waypoint, we
linearly interpolate between the waypoints in time. Finally,
given a minimum cluster size, we label each time-interpolated
waypoint with kt = 1 if the waypoint at time t is in a cluster
and kt = 0 otherwise.

Identifying Critical Actions via Gripper Events. We
observe that motions involving critical actions often occur
during interactions with objects and the environment, which
are correlated with gripper state changes. Thus, we use these



gripper events to identify the critical actions. That is, we set
kt = 1 if the gripper is changing (opening or closing) at t and
kt = 0 otherwise.

G. Experiments for Testing Hypothesis 1-3

1) Testing H1: Speeding Up Policy Execution Requires a
High-Gain Controller: To illustrate how controller tracking
performance affects task execution during runtime, we replay
the demonstrations of the Can task at different speeds and
record the success rate for a given controller gain (Kp). We
compare replaying the commanded poses (xd) and reached
poses (x) in demonstrations. As shown in Figure 10, High-
gain control combined with reached pose tracking enables
consistent behavior across execution speeds.. Commanded
poses lead to overshooting and task failures when attempting
faster execution with higher gains. In contrast, using reached
poses as reference trajectories enables consistently high suc-
cess rates at increased speeds, provided the controller gain is
sufficiently high to ensure accurate tracking.

Fig. 10: Demo replay at different speeds and controller
gains. We examine the effects of increasing controller gains
and speed for replaying demos in simulation. Left: using com-
manded poses performs better when replaying at the original
speed (c = 1) but using reached poses matches performance
when using high gains. Right: A high-gain controller using
reached poses performs better than one using commanded
poses at a higher execution speed.

2) Testing H2: A High-Gain Controller Requires a Smooth
Reference Trajectory: In this experiment, we assess task
success rate versus increasing noise scale. This is important
because faster execution can result in out-of-distribution ob-
servations that cause a policy to produce noisier reference
trajectories. High-gain controllers are more sensitive to
noisy reference trajectories. As seen in Figure 11, as the
noise scale increases, the high-gain controller’s performance
deteriorates more rapidly than the low-gain controller. This
reveals an important coupling in our system: while high-gain
control is necessary for accurate tracking at increased speeds,
it also amplifies any inconsistencies in the predicted reference
trajectories. This explains the need for trajectory smoothing in
our proposed method.

3) Testing H3: Action Conditioning Improves the Temporal
Consistency of Across Predictions: Since inconsistent action

0.0 0.11 0.21 0.32 0.42 0.53 0.63 0.74 0.84 0.95
Noise Scale

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

High Gain Controller
Low Gain Controller

Fig. 11: Noise vs high-gain and low-gain controller. We
study the effects of increasingly noisy actions with a high-
gain and low-gain controller. Success Rate is averaged over
100 rollouts per noise scale. At higher noise levels, the success
rate when using a high-gain controller drops more significantly
than with a low-gain controller.

TABLE III: Evaluation of smoothness of actions. We com-
pare the smoothness of the generated actions using our method
(c=0.2)

SR ↑ SPARC ↑ CON ↓ WED ↓

Lift
SAIL 0.97 -2.80 0.091 0.348
BID[17] 0.53 -2.85 0.116 0.395
Baseline 0.92 -2.83 0.094 0.376

Can
SAIL 0.76 -2.80 0.232 0.885
BID[17] 0.62 -2.93 0.325 0.525
Baseline 0.73 -2.83 0.230 0.930

Square
SAIL 0.87 -2.74 0.107 0.916
BID[17] 0.12 -3.06 0.217 0.327
Baseline 0.81 -2.80 0.121 0.957

Stack
SAIL 0.90 -2.50 0.168 0.634
BID[17] 0.92 -2.56 0.641 0.794
Baseline 0.89 -2.56 0.156 0.739

Mug
SAIL 0.63 -2.80 0.228 1.192
BID[17] 0.40 -2.62 0.831 0.679
Baseline 0.59 -2.88 0.276 1.210

predictions are the main reason for unsmooth reference tra-
jectories and failure in faster execution, we need to test
whether action conditioning can improve temporal consis-
tency and smoothness of generated actions. To quantify this
improvement, we conduct rollouts with and without action
conditioning and evaluate smoothness and consistency using
the SPARC, CON, and BID metrics (see Appendix VII-B for
details). We assess these metrics across five tasks at a speed-
up factor of 0.2. As delineated in Table III, we found that
the action conditioning results in smoother actions, supported
by the higher SPARC metric and lower CON, BID metric
compared to baseline DP.

H. CFG Experiments

In additional experiments, we validate the key insights that
motivated the design of consistency-preserving action predic-
tion generation. Specifically, we test the following hypotheses:

• H-CFG1: Consistency-guiding is beneficial when action
condition is aligned with observation

• H-CFG2: Policy speed-up results in more misalignment
between observation and action condition



• H-CFG3: Tracking error is highly correlated to
observation-action misalignment

I. Testing H-CFG1: Consistency-guiding is beneficial when
action condition is aligned with observation

We provide an additional study on the key factors in-
fluencing our Classifier-Free Guidance (CFG) approach for
preserving action consistency. Namely, we test the hypothesis
H-CFG: consistency guiding is effective when conditioned on
future action condition in unconditional action distribution.

In this experiment, we investigate when consistency guid-
ance is beneficial, specifically when the future action condition
belongs to the unconditional action distribution. We evaluate
how well the generated actions conform to the future action
condition under different perturbations.

Our key argument is that consistency guidance is most
effective when the future action condition exists within the un-
conditional action distribution. To validate this, we conduct the
following experiment. Given a fixed observation, we sample
64 action sequences from the unconditional action distribution
by setting the future action condition to a null token. Next, we
select one of these samples as the future action condition and
generate 64 action sequences using Classifier-Free Guidance
(CFG) with a weight of 1. The resulting conditional action
distribution is shown in the left column of Figure 12.

To analyze the effects of perturbations, we apply two
modifications. First, we introduce a temporal shift by delaying
the actions, as shown in the center column. Second, we
introduce spatial perturbations by adding uniformly sampled
noise (range: 0.02) to the selected actions, as shown in the
right column.

Our results indicate that CFG performs best when the future
action condition is within the unconditional action distribution.
This suggests that such conditions are likely present in the
training dataset, meaning the model has encountered similar
action-observation pairs during training. Consequently, the
model learns to correctly condition on these actions. However,
when the future action condition deviates from the uncon-
ditional distribution—potentially due to tracking errors—the
model may struggle to compute an appropriate conditional
score.

J. Aggregating actions

We describe the algorithm for aggregating actions, which is
one of our baselines, in Algorithm 1.

K. Controller Design

We use Operation Space Controller for both simulation and
physical hardware. Given the desired 6D pose, and velocity, we
calculate the pose error ep and velocity error ev. The computed
torque τ sent to robot joints is

τ = J⊤M(Kpep +Kvev), (13)

where J is the Jacobian of the robot, M is the mass matrix
represented in end-effector space. The velocity target is com-
puted by fitting and differentiated a spline over the predicted

Algorithm 1: Aggregate Actions
Input: Sequence of Delta Cartesian actions A
Output: Sequence of Aggregated Actions AggActions
AggActions← []
CurrAction← A[0]
for each element a in A[1 :] do

if magnitude(CurrAction) > 0.05cm then
Append CurrAction to AggActions
CurrAction← a

else if DotProduct(a, CurrAction) < 0.25 then
Append CurrAction to AggActions
CurrAction← a

else
CurrAction←CurrAction+a

end if
end for
Append CurrAction to AggActions
Return AggActions

action trajectory. We use the velocity FF term only in the
real world, as position-only tracking is sufficient for simulated
environment.

L. Testing H-CFG2: Policy speed-up results in more misalign-
ment between observation and action condition

We now examine how policy speed-up influences action
conditioning. Specifically, we hypothesize that increasing pol-
icy speed-up results in the action condition deviating further
from the unconditional action distribution, potentially degrad-
ing the performance of CFG.

To validate this, we conduct the following experiment. We
construct a batch of scenarios consisting of the simulation’s
internal state and corresponding observations from expert
demonstrations. For each scenario, we reset the simulation
to the recorded internal state and use the diffusion policy
to generate actions a0:H . Following the notation in Section
III-B, we execute a0:He using different policy speed-up factors,
and obtain the resulting observation oHe+1. Notably, the pair
(oHe+1,ac = aHe:He+Hf) represents the input to SAIL for CFG-
based action generation. Instead of performing generation,
we assess how well the action condition aligns with the
observation.

To quantify this alignment, we follow the methodology
described in Subsection VII-I, where we sample N = 64
action sequences from the unconditional action distribution.
We then compute in-distribution scores using standard out-of-
distribution (OOD) techniques:

1) Kernel Density Estimation (KDE) [28]: We estimate
the likelihood of the action condition under the empirical
distribution using a Gaussian kernel, with the bandwidth
adaptively selected via Scott’s rule. Higher values suggest
better in-distribution.

2) k-Nearest Neighbors (kNN) Distance [18]: We quantify
how close the action condition is to its nearest neighbors



Fig. 12: Impact of Action Conditioning on Consistency Guidance. We evaluate how our algorithm adheres to conditioning
on predicted actions. The action conditioning is shown in yellow; samples from the unconditional action distribution are
shown in grey; and the conditional action distribution is shown in blue. The left panel shows future action conditions sampled
from the unconditional distribution. The center panel shows temporally shifted future action conditions, while the right panel
shows spatially perturbed future action conditions. When the action conditioning (yellow) lies within the unconditional action
distribution (grey) in both space and time, the conditional action distribution (blue) is consistent with the action conditioning.
However, when the action conditioning falls outside the unconditional action distribution, the model struggles to align the
generated actions with the given condition. The middle subplot shows time-shifted action conditioning and the right subplot
shows space-shifted action conditioning.

in the dataset. Specifically, it is computed as the average
Euclidean distance to the k = 8 nearest samples. Lower
values suggest better in-distribution.

3) Maximum Mean Discrepancy (MMD) [11]: We com-
pute the discrepancy between the unconditional action
distribution and the action-condition (modeled as a Dirac
delta) using a Gaussian kernel with a bandwidth of 0.5.
Lower values suggest better in-distribution.

A key aspect of this experiment is that we reset the
simulation before each rollout and evaluate only a single
receding horizon step. This design isolates the direct effect of
policy speed-up on action conditioning, avoiding confounding
influences such as accumulated errors from prior rollouts. If
the analysis were performed over an entire task execution, it
would be difficult to disentangle whether action condition mis-
matches stem from speed-up itself or from historical execution
deviations.

We compute these metrics across 200 scenarios and visual-
ize the density estimates in Figure 13. Our results confirm that
as the policy speed-up factor increases, action conditions are
more likely to fall outside the unconditional action distribution.
This trend suggests that at higher speeds, previously executed
actions become less representative of the policy’s expected
next steps, leading to inconsistencies in action conditioning,
and possible degradation of CFG performance. Hence, we

would require the need for adaptive mechanisms to mitigate
conditioning mismatches in high-speed policy execution.

M. Testing H-CFG3: Tracking error is highly correlated to
observation-action misalignment

Previous results indicate that action conditioning is most
effective when the action condition is well-aligned with the
current observation. However, as policy speed-up increases,
this alignment deteriorates, reducing the benefits of condi-
tioning. To effectively determine when action conditioning is
beneficial, we need a reliable and efficient proxy for measuring
misalignment.

A natural approach is to use the out-of-distribution (OOD)
metrics introduced in VII-L. However, these methods are com-
putationally expensive and impractical for real-time deploy-
ment. Instead, we propose tracking error as a computationally
efficient alternative.

Defining Tracking Error. Given the current robot state x
and the desired state indicated by the action a, we define
the position tracking error and orientation tracking error as
follows:

epos =
∥∥apos− xpos

∥∥
eori = cos−1(

tr(R△)−1
2

), R△ = R(aori)
⊤R(xori)



0 5
KDE Density 1e 9

0.00

0.25

0.50

0.75

1.00

1.25
De

ns
ity

1e9

0 1 2
KNN Distance

0

1

2

3

4

0 1 2
MMD

0.0

0.5

1.0

1.5

2.0

2.5

Speedup factor
c=1.00
c=0.50
c=0.33
c=0.25

Fig. 13: Effect of Policy Speed-up on Out-of-Distribution Action Conditions. This figure evaluates how increasing the
policy speed-up factor leads to mismatches between the action condition and the unconditional action distribution. We assess
this by computing how well action conditions derived from previously executed actions align with the unconditional action
distribution given the current observation. We use three independent OOD detection metrics: Kernel Density Estimation (Left),
k-Nearest Neighbor Distance (Middle), and Maximum Mean Discrepancy (Right). Across different metrics, we observe that
as the policy speed-up factor increases, the action condition increasingly falls into the OOD region, exhibiting a long-tail
distribution in high-OOD regions. Comparing normal-speed policies (blue) and highly accelerated policies (red) reveals that
slower policies maintain better alignment between action conditions and current observations.

where xpos and apos denote the real and desired end-effector
positions, xori and aori represents the real and desired end-
effector orientations. R(·) maps any oreintation representation
to an SO(3) rotation matrix, and tr(·) denotes the trace of a
matrix.

Analyzing Correlation with OOD Scores. To assess
whether tracking error serves as a reliable indicator of action
condition misalignment, we compare tracking error values
against the action condition’s in-distribution scores computed
using the metrics defined in Section VII-L. Specifically, we
analyze the correlation separately for position and orientation
tracking errors.

Figure 14 visualize these relationships. The results indicate
a clear trend: as tracking error increases, the action condition is
more likely to fall outside the unconditional action distribution.
This suggests that tracking error is a useful proxy for detecting
when action conditioning might degrade CFG performance.

Impact of Adaptive CFG on Policy Performance. We
evaluate whether adaptively applying CFG based on tracking
error improves policy performance, particularly success rate
and trajectory smoothness. To study the effect of different
tracking error thresholds, we vary the position tracking error
threshold across 0.01, 0.02, and 0.04 and evaluate the Square
task with a policy speed-up factor of c = 0.33. Each policy is
tested over 50 scenarios, with three evaluations per scenario.

CFG is applied only when the tracking error is below the
specified threshold, and we compare this approach to a base-
line without guidance. Performance is measured by success
rate and smoothness using the SPARC metric. The proportion
of inference steps where CFG was applied—referred to as the

guided inference ratio—was 0.27, 0.47, and 0.78 for the three
thresholds, respectively.

The results show that indiscriminate application of CFG
(high guidance ratio) reduces success rate, likely due to
misalignment between observation and action condition. Con-
versely, selectively applying CFG when the tracking error is
low improves both success rate and smoothness. Figure 15
illustrates that a moderate tracking error threshold leads to
better overall performance, while higher thresholds degrade
success rates.

One limitation is that the optimal tracking error threshold
varies by task, as tasks with more complex reference tra-
jectories naturally exhibit higher tracking errors. The values
reported here were determined through hyperparameter tuning
for the Square task. Nonetheless, these findings confirm that
tracking error provides a useful heuristic for determining when
to apply CFG, leading to more reliable policy execution.

N. Hyperparameters

The hyperparameters for our Policy backbone are listed in
Table IV. The parameters for the consistency guiding is listed
in Table V and the controller parameters in simulation are
listed in Table VI. The controller parameters for the real robot
are listed in Table VII.

O. Detailed Ablation:

A more detailed ablation of our method is provided in
Table VIII.



O
rie

nt
at

io
n 

Er
ro

r
Po

si
tio

n 
Er

ro
r

KDE Density KNN Distance MMD

Fig. 14: Correlation between Tracking Error and Out-of-Distribution Action Condition. This figure illustrates the
relationship between the tracking error and out-of-distribution (OOD) scores of action-conditions, computed using KDE Density
(left), KNN distance (center), and MMD (right). The top row shows the correlation between the position tracking error and
OOD scores in the position dimension. The bottom row shows the correlation between orientation tracking error and OOD
scores in the orientation dimension. The result indicates that large tracking error corresponds to higher OOD scores, suggesting
that tracking error can serve as a proxy for detecting misaligned action conditions.

Su
cc

es
s 

Ra
te

Baseline CFG
(e!"# = 0.01)

CFG
(e!"# = 0.02)

CFG
(e!"# = 0.04)

SP
AR

C

Baseline CFG
(e!"# = 0.01)

CFG
(e!"# = 0.02)

CFG
(e!"# = 0.04)

Fig. 15: Effect of Tracking Error Threshold on Policy Performance. This figure shows how different tracking error thresholds
influence policy performance, measured by success rate (right) and trajectory smoothness (left). Each method is evaluated over
50 scenarios, repeated across three trials. The box plots display the maximum, mean, and minimum values per evaluation. The
highest tracking error threshold (0.04) leads to a decline in success rate, while a more conservative threshold improves overall
performance.



𝑥

𝑦

𝑧
Start

Selected Action

Unconditional Action Distribution
Action Condition

(a) Successful rollout trajectory with action-conditioning.

𝑥

𝑦

𝑧

End

Selected Action

Unconditional Action Distribution
Action Condition

(b) Successful rollout trajectory without action-conditioning.

Fig. 16: Effect of Action-Conditioning on Smoothness of End-Effector Trajectories. This figure illustrates end-effector
trajectories, of a policy rollout on the square task, comparing scenarios with action-conditioning (Figure 16a, blue trajectory)
and without action-conditioning (Figure 16b, red trajectory). Snapshots depicting the initial and final states of the square task
are provided for each scenario. The guiding action (green line) and sampled unconditional actions (grey lines) are depicted,
alongside the selected final action (solid colored lines). With action-conditioning, the chosen action closely aligns with the
guided prediction (green), leading to smoother, goal-directed trajectories. Without action-conditioning, the final actions deviate
significantly from the guide, resulting in less consistent trajectories. We further provide the snapshots of the initial state and
the final state of the square task.



TABLE IV: Key Parameters of Policy Architecture

Parameter Value
General Settings
Algorithm diffusion policy
Sequence Length 32
Frame Stack 4
Batch Size 128
Num. Epochs 2000
Horizon Settings
Observation Horizon 4
Action Horizon 32
Prediction Horizon 32
UNet & Diffusion Settings
UNet Enabled True
Diffusion Step Embed Dim 256
UNet Down-dimensions 256, 512, 1024
Kernel Size 5
EMA & DDIM
EMA Enabled True (power: 0.75)
DDIM Enabled True
Train Timesteps 100
Inference Timesteps 10
Beta Schedule squaredcos cap v2
Future Action Conditioning
Enabled True
Horizon 4
pcond 0.3
Weight 1.0
Null Token zero
RGB Encoder Settings
Vision Encoder ResNet18
Pooling kp = 32, temp = 1.0
Randomizer CropRandomizer (116×116, 1 crop)

TABLE V: Optimal Hyperparameter for Consistency Guiding

Task CFG weight TEB (Ori.) TEB (Pos.)
Can 0 0.05 0.02
Lift 1 0.05 0.02

Square 1 0.05 0.02
Mug Cleanup 1 0.05 0.02

Stack 0 0.03 0.01

TABLE VI: Controller and SAIL parameters for each simu-
lated task

lift can square stack mug cleanup
Kp 3000 3000 1000 3000 2000
damping 0.5 0.5 1 .75 .75
slowdown c 0.2 0.5 1.0 0.2 0.5

TABLE VII: Controller Gains for Demo Collection and SAIL
Execution on Real Robot

Demo Collection SAIL Execution
K pos

p 150 300
K pos

v 24.5 34.6
Krot

p 250 400
Krot

v 31.6 40.0

TABLE VIII: Results of Ablation in Sim

DP [7] SAIL -HG -AS -C Commanded Poses

Lift

SR ↑ 1.00 1.00 0.67 0.97 0.98 0.89

TPR↑ 0.46 1.68 0.25 1.57 1.58 1.8

ATR↓ 2.23 0.61 3.39 0.63 0.63 0.52

SOD↑ 1.08 3.98 0.71 3.85 3.84 4.63

Can

SR↑ 0.97 0.92 0.83 0.95 0.89 0.63

TPR↑ 0.18 0.51 0.18 0.60 0.50 0.37

ATR↓ 5.52 1.81 4.36 1.61 1.79 1.65

SOD↑ 1.05 3.20 1.33 3.60 3.23 3.52

Square

SR↑ 0.83 0.86 0.59 0.64 0.79 0.31

TPR↑ 0.10 0.13 0.06 0.25 0.13 0.04

ATR↓ 7.56 6.41 8.8 2.50 5.78 4.25

SOD↑ 0.99 1.18 0.86 3.01 1.31 1.77

Stack

SR↑ 1.00 0.98 0.9 0.94 0.95 0.82

TPR↑ 0.19 0.66 0.15 0.61 0.62 0.43

ATR↓ 5.50 1.56 6.6 1.71 1.56 2.81

SOD↑ 0.98 3.47 0.86 3.15 3.46 1.92

Mug

SR↑ 0.68 0.72 0.53 0.44 0.68 0.54

TPR↑ 0.03 0.08 0.01 0.07 0.08 0.03

ATR↓ 17.44 8.09 18.24 5.37 8.15 17.38

SOD↑ 0.97 2.09 0.92 3.14 2.07 0.92


	Introduction
	Preliminaries, Challenges, and Problem Statement
	Policy and Controller Hierarchy
	Offline Imitation Learning Context and Challenges
	Policy Model
	Adaptive-Speed Policy Execution Challenges
	Problem Statement

	Speed-Adaptive Imitation Learning (SAIL)
	High-fidelity Tracking Control
	Ensuring Consistency Between Policy Predictions
	Adaptive Speed Modulation
	Continuous Control Loop with System Latency

	Evaluations
	Experiment Setup (Sim)
	Testing H4 and H5: SAIL Achieves High Task Throughput

	Real-World Evaluation
	Experiment Setup
	Results and Discussion

	Conclusion
	Appendix
	Related Work
	Offline Imitation Learning
	Better-than-Demonstration Imitation Learning
	System Integration for Imitation Learning

	Evaluation Metrics
	Simulation Experiment Detail
	Robot Control and Dynamics Considerations
	Simulator and Data
	Compute

	Real-World Evaluation Setup
	Franka Robot
	Data Collection
	Task Descriptions

	Deviation of Lower Bound lb for Action Interval
	Adpative Speed Modulation
	Experiments for Testing Hypothesis 1-3
	Testing H1: Speeding Up Policy Execution Requires a High-Gain Controller
	Testing H2: A High-Gain Controller Requires a Smooth Reference Trajectory
	Testing H3: Action Conditioning Improves the Temporal Consistency of Across Predictions

	CFG Experiments
	Testing H-CFG1: Consistency-guiding is beneficial when action condition is aligned with observation
	Aggregating actions
	Controller Design
	Testing H-CFG2: Policy speed-up results in more misalignment between observation and action condition
	Testing H-CFG3: Tracking error is highly correlated to observation-action misalignment
	Hyperparameters
	Detailed Ablation:


