
1

Implicit Reasoning in Deep Time Series Forecasting

Willa Potosnak1, Cristian Challu1, 2, Mononito Goswami1, Michał Wiliński1,
Nina Żukowska1, Artur Dubrawski1

1Auton Lab, School of Computer Science, Carnegie Mellon University
2Nixtla

Abstract

Recently, time series foundation models have shown promising zero-shot fore-
casting performance on time series from a wide range of domains. However, it
remains unclear whether their success stems from a true understanding of temporal
dynamics or simply from memorizing the training data. While implicit reasoning
in language models has been studied, similar evaluations for time series models
have been largely unexplored. This work takes an initial step toward assessing the
reasoning abilities of deep time series forecasting models. We find that certain
linear, MLP-based, and patch-based Transformer models generalize effectively in
systematically orchestrated out-of-distribution scenarios, suggesting underexplored
reasoning capabilities beyond simple pattern memorization.

1 Introduction

Foundation models have demonstrated an exceptional ability to generalize to previously unseen data
in zero-shot prediction tasks. Inspired by the success of such models in Natural Language Processing,
recent work has adapted Transformers to build time series foundation models (TSFM). Zero-shot
inference is particularly important for time series models, which must handle complex patterns,
seasonal variations, and emerging trends where little to no reference data may be available.

Foundation models are trained on large, diverse datasets, raising a critical question for time series
forecasting: do these models generalize well because they learn underlying concepts of temporal
dynamics, or do they simply memorize specific patterns seen during training? If models
rely on memorization, particularly in the form of time series pattern matching, it could lead to
redundant knowledge storage, parameter inefficiency, and limit their ability to generalize well to
out-of-distribution (OOD) data. Ideally, a TSFM should be capable of implicit reasoning, allowing it
not to depend solely on memorization but to infer latent temporal dynamics. Such models would be
able to generalize from fewer data points, offering enhanced parameter efficiency and robustness.

While extensive research has been conducted to evaluate memorization and implicit reasoning in
language models, similar evaluations for time series models have been largely unexplored. In this
work, we take an initial step toward evaluating the implicit reasoning capabilities of time series models
in forecasting tasks. Our findings highlight the potential of linear, MLP-based, and patch-based
Transformer models to perform well in carefully orchestrated OOD scenarios, suggesting that these
models may have untapped capabilities in reasoning beyond mere memorization.

∗Correspondence to: Willa Potosnak <wpotosna@andrew.cmu.edu>

NeurIPS 2024 Workshop on Time Series in the Age of Large Models.

2 Related work

Implicit Reasoning in LLMs. Prior research has explored implicit reasoning in language models
[1, 2, 25, 30, 32]. Implicit reasoning is often assessed through tasks that require models to apply
knowledge learned during training to new test instances. One common form is composition, where
models must chain multiple facts to answer a question [25, 30, 32]. Other forms of implicit reasoning
explored include comparison and inverse search [1, 25]. Comparison involves models evaluating two
or more entities to make judgments, such as determining whether the attribute value of one entity is
greater or smaller than that of another. Inverse search tests a model’s ability to generate predictions in
the reverse order of the training task. For example, this could involve applying the model to identify
an entity based on its attributes when it was originally trained to predict the attributes of entities.
More information on related work is provided in Appendix A.1. No prior research has conducted
controlled experiments in time series forecasting to evaluate implicit reasoning on OOD data. Our
study addresses this gap by introducing a novel framework that aligns LLM research with time series
models, offering insights into optimal architectures for future TSFM development.

Time Series Foundation Models. Several foundation models, including Chronos [3],
LagLlama [20], Moirai [27], MOMENT [11], TimesFM [7], TimeGPT [10], Timer [16], and Tiny
Time Mixers [8], have been developed for time series forecasting. Some studies have also examined
the impact of learning with synthetic data [3, 7]. MOMENT analyzed embeddings from synthetic sinu-
soids to isolate components like trends, while Chronos showed strong performance in forecasting
composite series but struggled with exponential trends. These works demonstrate that TSFMs can
learn distinct time series functions, though it remains unclear if their success is due to large-scale
training or inherent reasoning abilities.

3 Methods

3.1 Implicit Reasoning Tasks

We assess the implicit reasoning capabilities of models, or their ability to apply and manipulate
internalized patterns in novel situations, through experiments inspired by language model research
[1, 2, 25, 30, 32]. We carefully design experiments to test 3 forms of implicit reasoning: composition,
comparison, and inverse search. We follow the notation from [25, 32], where ‘facts’ are formatted as
(subject, relation, object). For continuous data, we adapt this to (input, function, output), with f(x) =
y defining the relationship between the function f , input x, and output y. We consider two sets of basis
functions: Fc = {f : f(x) = mx | m ∈ R} and Fs = {f : f(x) = a sin(b2πx) + c | a, b, c ∈ R}
where Fc is the set of all constant signals with linear trends m and Fs is the set of all sinusoidal signals
with amplitude a, frequency b, and baseline shift c. We also define a set of functions consisting of
compositions of basis functions: Fsc = {f : f(x) = a sin(b2πx) + c {±,×}mx | a, b, c,m ∈ R}.
For a set of data-generating functions and their parameters included in the training set and referred
to as in-distribution (ID) or Ptrain, we assess a model’s ability to generalize to other disjoint sets of
data-generating functions observed only at inference, denoted as Ptest, which are considered OOD.

Composition. For models trained on signals generated from basis functions considered ID, we
assess whether they can accurately forecast signal compositions that are considered OOD. Specifically,
we define the datasets as follows: Ptrain = Fs∪Fc and Ptest = Fsc, where Ptrain∩Ptest = ∅. Consider
a specific example:

fs ∈ Fs, fc ∈ Fc, fsc ∈ Fsc,∀x ∈ R, (x, fs, y), (x, fc, y) ∈ Ptrain and (x, fsc, y) ∈ Ptest (1)
Models are trained exclusively on the individual component series, and the compositions of series are
withheld for final evaluations as illustrated in Fig. 1a. We train models on 30 trend and seasonality
series (n = 60) and evaluate them on all compositions of these series (n = 900).

Comparison. Comparison refers to a model’s ability to make comparative judgments about the
attributes or parameter values of facts [25]. For models trained on data generated from functions
considered ID, we evaluate whether these models can generalize to the same data-generating function
with larger or smaller parameter values that are considered OOD. Specifically, we define the datasets
as follows: Ptrain,Ptest ⊂ Fsc, where Ptrain ∩ Ptest = ∅. Consider a specific example:

f1 ∈ Ptrain, f2 ∈ Ptest,∀x ∈ R, (x, f1, y) ∈ Ptrain and (x, f2, y) ∈ Ptest. (2)

2

10
0

10

Addition

10
0

10

Subtraction

10

0

10

Multiplication

0 2 4 6 8 10
X

0
10 Function

Y

(a) Composition

0

10

Baseline

20

0
Amplitude

10
0

10

Trend

0 2 4 6 8 10
X

1
0
1

Frequency

Y

(b) Comparison

10
0

10

Addition

10
0

10
Subtraction

10
0

10

Multiplication

0 2 4 6 8 10
X

0
10

Function

Y

(c) Inverse Search

Figure 1: Implicit reasoning tasks for time series include composition (a), comparison (b), and
inverse search (c). In composition, models predict new composite series seen only at inference. In
comparison, they forecast series from unseen function values. In inverse search, models predict
decomposed component series. The black dashed line in the figure indicates in-distribution time
series observed during training (left) and out-of-distribution data observed during inference (right).

Table 1: Synthetic dataset functions and parameters for implicit reasoning tasks.
Task Dataset Function Parameters
Composition Ptrain fs ∈ Fs, fc ∈ Fc

a=0 ∧ b∈ [bl, bu] ∧ c=0 ∧m∈ [ml,mu]
Addition Ptest fs+fc ∈ Fsc

Subtraction Ptest fs−fc ∈ Fsc

Multiplication Ptest fs×fc ∈ Fsc

Composition Ptrain fs+fc ∈ Fsc a∈ [al, au] ∨ b∈ [bl, bu] ∨ c∈ [cl, cu] ∨m∈ [ml,mu]
Function Ptest fs+fc ∈ Fsc a∈ [al, au] ∧ b∈ [bl, bu] ∧ c∈ [cl, cu] ∧m∈ [ml,mu]

Comparison Ptrain fs+fc ∈ Fsc a∈ [al, au] ∨ b∈ [bl, bu] ∨ c∈ [cl, cu] ∨m∈ [ml,mu]
Ptest fs+fc ∈ Fsc i<il ∨ i> iu for i=a ∨ i=b ∨ i=c ∨ i=m

Inverse Ptrain fs+fc ∈ Fsc a=0 ∧ b∈ [bl, bu] ∧ c=0 ∧m∈ [ml,mu]Search Ptest fs ∈ Fs, fc ∈ Fc

We train models on signals with one varying parameter: a, b, c, or m (n = 1200) and evaluate them
on signals with smaller or larger parameter values not seen during training (n = 120).

Inverse search. We evaluate whether models can decompose functions through the inverse search
task. For models trained on signal compositions, we assess their ability to accurately forecast
individual basis functions comprising the signal, which are considered OOD. We define the datasets
as follows: Ptrain = Fsc and Ptest = Fs ∪ Fc, where Ptrain ∩ Ptest = ∅. Consider a specific example:

fs ∈ Fs, fc ∈ Fc, fsc ∈ Fsc,∀x ∈ R, (x, fsc, y) ∈ Ptrain and (x, fs, y), (x, fc, y) ∈ Ptest (3)

We train models on composite addition of trend and seasonality series (n = 900). We then evaluate
the models on all decomposed trend and seasonality components series (n = 60).

3.2 Data

We use the functions in Table 1, with parameter values detailed in Appendix A.3 to generate synthetic
data. Both ID and OOD data use x ∈ [0, 1] with 1200 samples. Models are trained on the first 1000
ID samples and evaluated on the last 200 OOD samples, testing their implicit reasoning capabilities.

3.3 Models

We trained models using 13 algorithm implementations obtained from the Neuralforecast [19]
library. Trained models include: Multi-Layer Perceptron (MLP) [21], DLinear [31], NHITS [5],
TSMixer [6], Long-Short Term Memory (LSTM) [22], Temporal Convolution Network (TCN) [4,
23], TimesNet [29], VanillaTransformer [24, 33], Temporal Fusion Transformer (TFT) [14],
Autoformer [28], Informer [33], inverted Transformer (iTransformer) [15], and patch time series

3

Table 2: Mean Absolute Error (MAE) computed across all forecast points within the specified time
horizon and averaged across series for each task. Best results are in bold, second-best in blue.

Model Composition Comparison Inverse SearchAdd. Sub. Mult. Func.
DLinear 0.689 0.935 10.522 21.155 1.072 0.539

NHITS 1.427 2.36 2.065 3.868 2.218 0.214
VanillaTransformer 2.432 2.993 8.249 11.291 2.120 0.551

TFT 1.024 3.243 13.395 10.159 2.045 0.574
Autoformer 1.708 3.999 12.845 13.383 3.966 1.180

Informer 2.045 3.025 9.246 12.268 2.131 0.877
iTransformer 1.358 2.994 15.197 31.632 2.885 1.164

PatchTST 1.717 2.168 3.497 6.209 1.740 0.394

900 1000 1100 1200
X

0

2

Addition

900 1000 1100 1200
X

2

0 Subtraction PatchTST
TFT
VanillaTransformer
Informer
Autoformer
iTransformer

Y

Figure 2: PatchTST shows capability in generating forecasts that accurately capture the composition
of trend and seasonality series compared to other Transformer models.

Transformer (PatchTST) [18]. This controlled setup is crucial for directly comparing architectures
under identical conditions. By evaluating Transformer models with key components like attention and
time-series patching, aligned to various TSFMs, our work delivers valuable insights into how TSFMs
may leverage implicit reasoning in OOD generalization. We also generate zero-shot forecasting results
for pretrained Chronos, LagLlama, TimesFM, and MOMENT. More information on these models, as
well as model training and hyperparameters, is provided in Appendix A.2 and A.4, respectively.

4 Results

PatchTST outperformed all other evaluated Transformer models on the composition task, particularly
for addition and subtraction tasks as shown in Fig 2. However, the model’s performance on these
tasks is sensitive to patch length, as shown in Fig. 3a in Appendix B, indicating the critical role of
patch length in the model’s knowledge manipulation capabilities. Table 2 includes Mean Absolute
Error (MAE) computed across all points within the forecast horizon and averaged across series for
each task for DLinear, NHITS, and Transformer models. As shown in Table 2, DLinear had the
smallest forecasting error for addition and subtraction composition tasks as well as comparison tasks,
while NHITS had the smallest error for multiplication composition, function composition, and inverse
search tasks. Results for each task, including standard deviations, for all 15 models are shown in
Tables 4, 5a, and 5b in Appendix B. These tables also include baseline results for models trained on
the first 1000 samples of OOD data. Example forecasts for composition and inverse search tasks are
shown in Figs. 3 and 4 in Appendix B. MAE formulation is provided in A.5.

5 Discussion

Our findings suggest that linear, MLP-based, and patch-based Transformer models, like PatchTST,
offer implicit reasoning capabilities beyond memorization. PatchTST demonstrates strong OOD
forecasting performance, supporting the use of patching input time series in TSFMs like MOMENT,
Moirai, and TimesFM. Moreover, NHITS’s robust performance across tasks highlights the value
of signal decomposition and hierarchical architectures, which if incorporated in future TSFMs
could potentially enhance their forecasting capabilities. Our evaluation also shows the need for
metrics beyond traditional loss measures. For example, despite TFT’s second-best MAE in addition
composition, it forecasts a straight line as shown in Fig. 2, demonstrating the limitations of loss
functions in capturing forecast pattern quality in complex tasks.

4

Acknowledgment

This work was partially supported by the NSF (awards 2406231 and 2427948), NIH (awards
R01NS124642 and R01DK131586), DARPA (HR00112420329), and the US Army (W911NF-
20-D0002). We would also like to thank Kin Gutierrez Olivares for his feedback on our manuscript.

References
[1] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipula-

tion. 2023.

[2] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage
and extraction. In Proceedings of the 41st International Conference on Machine Learning, page
235, 2024.

[3] Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin
Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham
Kapoor, Jasper Zschiegner, Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari
Torkkola, Andrew Gordon Wilson, Michael Bohlke-Schneider, and Yuyang Wang. Chronos:
Learning the language of time series. 2024.

[4] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolu-
tional and recurrent networks for sequence modeling, 2018.

[5] Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, Federico Garza, Max Mergenthaler-
Canseco, and Artur Dubrawski. N-HiTS: Neural hierarchical interpolation for time series
forecasting. In AAAI-23, 2022.

[6] Si-An Chen, Chun-Liang Li, Nathanael C. Yoder, Sercan Ö. Arık, and Tomas Pfister. TSMixer:
An all-MLP architecture for time series forecasting. In Published in Transactions on Machine
Learning Research, 2023.

[7] Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model
for time-series forecasting. 2024.

[8] Vijay Ekambaram, Arindam Jati, Nam H Nguyen, Pankaj Dayama, Chandra Reddy, Wesley M
Gifford, and Jayant Kalagnanam. TTMs: Fast Multi-level Tiny Time Mixers for Improved Zero-
shot and Few-shot Forecasting of Multivariate Time Series. arXiv preprint arXiv:2401.03955,
2024.

[9] Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network. Biol. Cyber-
netics, 20:121––136, 1975.

[10] Azul Garza and Max Mergenthaler-Canseco. TimeGPT-1, 2023.

[11] Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
MOMENT: A family of open time-series foundation models. In 41st International Conference
on Machine Learning, 2024.

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference for Learning Representations, 2017.

[13] Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the com-
positional skills of sequence-to-sequence recurrent networks. In Proceedings of the 35th
International Conference on Machine Learning, 2018.

[14] Bryan Lim, Sercan Ö. Arık, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for
interpretable multi-horizon time series forecasting. International Journal of Forecasting, 37(4):
1748–1764, 2021.

[15] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng
Long. iTransformer: Inverted transformers are effective for time series forecasting, 2024.

5

[16] Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.
Timer: Generative Pre-trained Transformers Are Large Time Series Models. In Forty-first
International Conference on Machine Learning, 2024.

[17] Vinod Nair and Jeoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In ICML-23, 2010.

[18] Yuqi Nie, Nam H. Nguyen, and Phanwadee Sinthong an Jayant Kalagnanam2. A time series
is worth 64 words: Long-term forecasting with transformers. In Proceedings of the 11th
International Conference on Learning Representations, 2023.

[19] Kin G. Olivares, Cristian Challú, Federico Garza, Max Mergenthaler Canseco, and Artur
Dubrawski. NeuralForecast: User friendly state-of-the-art neural forecasting models. PyCon Salt
Lake City, Utah, US 2022, 2022. URL https://github.com/Nixtla/neuralforecast.

[20] Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhagwatkar, Arian
Khorasani, Mohammad Javad Darvishi Bayazi, George Adamopoulos, Roland Riachi, Nadhir
Hassen, Marin Biloš, Sahil Garg, Anderson Schneider, Nicolas Chapados, Alexandre Drouin,
Valentina Zantedeschi, Yuriy Nevmyvaka, and Irina Rish. Lag-Llama: Towards foundation
models for probabilistic time series forecasting, 2024.

[21] Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organiza-
tion in the brain. Psychological Review, 65(6):386—-408, 1958.

[22] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory based recurrent
neural network architectures for large vocabulary speech recognition, 2014.

[23] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A generative
model for raw audio, 2016.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, and Aidan N.
Gomez. Attention is all you need, 2017.

[25] Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokked transformers are implicit reasoners: A
mechanistic journey to the edge of generalization. 2024.

[26] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-
art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020.
Association for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

[27] Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. In Proceedings of the 41st
International Conference on Machine Learning, 2024.

[28] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting, 2021.

[29] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. TimesNet:
Temporal 2d-variation modeling for general time series analysis. In Proceedings of the 34th
International Conference on Learning Representations, 2023.

[30] Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large
language models latently perform multi-hop reasoning? arXiv preprint arXiv:2402.16837,
2024.

[31] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

6

https://github.com/Nixtla/neuralforecast
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

[32] Zexuan Zhong, Zhengxuan Wu, Christopher D Manning, Christopher Potts, and Danqi Chen.
MQuAKE: Assessing knowledge editing in language models via multi-hop questions. arXiv
preprint arXiv:2305.14795, 2023.

[33] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting, 2021.

7

A Supplemental Information

A.1 Extended Related Work

Implicit Reasoning in LLMs. Prior research has explored implicit reasoning in language models
[1, 2, 25, 30, 32]. Implicit reasoning is often assessed through tasks that require models to apply
knowledge learned during training to new test instances. One common form is composition, where
models must chain multiple facts to answer a question [25, 30, 32]. Other forms of implicit reasoning
explored include comparison and inverse search [1, 25]. Comparison involves models evaluating two
or more entities to make judgments, such as determining whether the attribute value of one entity is
greater or smaller than that of another. Inverse search tests a model’s ability to generate predictions in
the reverse order of the training task. For example, this could involve applying the model to identify
an entity based on its attributes when it was originally trained to predict the attributes of entities.
Allen-Zhu et al. found that generative models struggle with inverse search unless pretrained for it
specifically [1].

While models can recall individual facts well, they struggle with multi-hop reasoning that requires
‘chain-of-thought’ logic. Yang et al. [30] found evidence of latent multi-hop reasoning for specific
fact compositions, but noted it is highly contextual. Wang et al. demonstrated that Transformers
can learn implicit reasoning, but only after extended training beyond typical overfitting thresholds
[25]. Composition tasks have also been studied in machine translation, testing whether models can
generalize learned command components to new conjunctions, such as repeating actions [13].

A.2 Models

Multi Layer Perceptrons (MLP) - A neural network architecture composed of stacked Fully Con-
nected Neural Networks trained with backpropagation [17, 9, 21].

Neural Hierarchical Interpolation for Time Series (NHITS) - A deep learning model that applies
multi-rate input pooling, hierarchical interpolation, and backcast residual connections together to
generate additive predictions with different signal bands [5].

Long Short-Term Memory Recurrent Neural Network (LSTM) - A recurrent neural network (RNN)
architecture that transforms hidden states from a multi-layer LSTM encoder into contexts which are
used to generate forecasts using MLPs [22].

Temporal Convolution Network (TCN) - A 1D causal-convolutional network architecture that
transforms hidden states into contexts which are used as inputs to MLP decoders to generate forecasts.
Causal convolutions are used to generate contexts by convolving the prediction at time t only with
elements from time t and earlier [4, 23].

TimesNet (TimesNet) - A deep learning architecture that transforms the original 1D time series into
a set of 2D tensors based on multiple periods to capture intra- and inter-period variations modeled by
2D kernels [29].

VanillaTransformer (VanillaTransformer) - An encoder-decoder architecture with a multi-head
attention mechanism that uses autoregressive features from a convolution network, window-relative
positional embeddings from harmonic functions, and absolute positional embeddings from calendar
data. An MLP decoder outputs time series predictions in a single pass [24, 33].

Temporal Fusion Transformer (TFT) - An attention-based deep learning architecture that learns
temporal relationships at different scales using LSTMs for local processing and self-attention layers to
model long-term dependencies. It also leverages variable selection networks and a series of gating
layers to suppress unnecessary processing in the architecture [14].

Autoformer (Autoformer) - An encoder-decoder architecture with a multi-head attention mechanism
that uses autoregressive features from a convolution network and absolute positional embeddings
from calendar data. Decomposed trend and seasonal components are obtained using a moving average
filter and an Auto-Correlation mechanism is used to identify periodic dependencies and aggregate
similar sub-series [28, 24].

Informer (Informer) - An encoder-decoder architecture with a multi-head attention mechanism that
has three key features: a ProbSparse self-attention mechanism with O(L logL) complexity, a self-
attention distilling process, and an MLP decoder that outputs time-series predictions in a single pass.

8

It uses autoregressive features from a convolution network, window-relative positional embeddings
from harmonic functions, and absolute positional embeddings from calendar data [33, 24].

iTransformer (iTransformer) - An attention-based deep learning architecture that applies attention
and feed-forward networks to inverted dimensions by embedding time points into variate tokens.
The attention mechanism capture multivariate correlations while the feed-forward network learns
nonlinear representations for each token [15].

Patch Time Series Transformer (PatchTST) - An encoder-only, multi-head attention-based archi-
tecture that separates input time series into sub-series level patches as input tokens. Each channel is
dedicated to a single univariate time series, and all channels use the same embedding and Transformer
weights. [18]

LagLlama (LagLlama) [20] - A foundation model for univariate probabilistic time series forecasting
based on a decoder-only Transformer architecture that uses lags as covariates [20]. We use pretrained
model weights from the HuggingFace library [26]. We use a context length of 32, as this is the
parameter value on which the model was trained. Although the model can handle other context
lengths, which may improve forecasting performance.

Chronos (Chronos) - A family of pretrained time series forecasting models that creates token
sequences through scaling and quantization for input to a language model. Probabilistic forecasts
are generated by sampling future trajectories from historical data [3]. We use the ‘t5-efficient-small’
pretrained model weights from the HuggingFace library [26].

MOMENT (MOMENT) - MOMENTis a family of foundation models for time series that uses an attention-
based architecture and processes input time series into fixed-length patches with each mapped to a
D-dimensional embedding. During pretraining, patches are masked to minimize reconstruction error,
and a separate linear projection is trained to adapt embeddings for long-horizon forecasting and other
tasks [11]. We use the ‘MOMENT-1-large’ pretrained model weights from the HuggingFace library
[26].

TimesFM (TimesFM) - An attention-based decoder-only Transformer architecture that leverages
input time series patching, masked causal attention, and sequential patch output predictions, with
flexible output patch size [7]. We use the ‘timesfm-1.0-200m’ pretrained model weights from the
HuggingFace library [26].

A.3 Synthetic Data Parameters

We leverage open-source code from MOMENT [11] to generate synthetic sinusoidal time series with
varying trend, frequency, baseline, and amplitude. We use the following parameter values for all
implicit reasoning tasks: a ∈ [1, 32], b ∈ [3, 32], c ∈ [−32, 32]. m ∈ [1, 32] was used for addition,
subtraction, and multiplication composition tasks, as well as for inverse search tasks. m ∈ [−32, 32]
was used for function composition and comparison tasks. For composition tasks, we generate n = 30
in-distribution (ID) series with evenly spaced parameter values. For comparison tasks, we generate
n = 300 ID series with evenly spaced parameter values. For the inverse search task, we generate
n = 900 ID addition composition aggregates using n = 30 trend and seasonality series, each with
evenly spaced parameter values.

A.4 Model Training and Parameters

Models were trained using Adam optimizer [12]. We train models with the following parameters
outlined in Table 3 to ensure consistent evaluation across architectures. The training loss function
used was Mean Squared Error (MSE), where H refers to the forecast horizon, t refers to the time
point at which forecasts are generated, y refers to the target signal values, and ŷ refers to the model’s
predicted values:

MSE(yt+1,t+H , ŷt+1,t+H) =
1

H

t+H∑
i=t+1

(yi − ŷi)
2.

The deep learning models were trained using an NVIDIA A100 Tensor Core GPU.

9

Table 3: Common hyperparameter search space
Hyperparameter Considered Values
Input size 200
Learning rate 1e-3
Batch size 4
Windows batch size 256
Dropout 0.0
Training steps 2000
Validation check steps 50
Early stop patience steps 5
Random seed 0
Patch Length DiscreteRange(1, 50, 100, 150, 200)
Hidden size 128
Model layers 3

A.5 Evaluation Metrics

We use Mean Absolute Error (MAE) to evaluate model performance. Here, H refers to the forecast
horizon, t refers to the time point at which forecasts are generated, y refers to the target signal values,
and ŷ refers to the model’s predicted values:

MAE(yt+1,t+H , ŷt+1,t+H) =
1

H

t+H∑
i=t+1

|yi − ŷi|.

A.6 Broader Impacts

This work aims to enhance our understanding of whether time series models generalize well by
learning the underlying concepts of temporal dynamics or merely memorizing specific patterns seen
during training. We find that certain models generalize effectively in systematically orchestrated
out-of-distribution scenarios, suggesting underexplored reasoning capabilities beyond simple pattern
memorization. Since this research is foundational and does not involve direct applications, we do
not anticipate any negative societal impacts. Instead, our findings may provide valuable insights for
developing more data- and computationally efficient deep learning architectures. Additionally, our
results may help define the limitations of time series models, ensuring they are not applied in contexts
where poor generalization performance is anticipated.

A.7 Limitations

This study has several limitations that should be acknowledged. First, our analysis relies on synthetic
data, which may not fully capture the complexities and nuances present in real-world datasets. While
synthetic data allows for controlled experimentation, it may limit the generalizability of our findings to
broader applications. Second, we employed consistent hyperparameters across models to ensure a fair
evaluation of performance; however, different combinations of hyperparameters may yield improved
results. Future work will explore the impact of hyperparameter variations on model performance.

A.8 Reproducibility Statement

All models are open-source. Models trained on synthetic data can be found in the Neuralforecast
library [19]. Pretrained foundation models including, LagLlama [20], Chronos [3], TimesFM [7],
and MOMENT [11], are open-source, with model weights available in the Hugging Face library [26].
All models were trained and evaluated on a computing cluster consisting of 128 AMD EPYC 7502
CPUs, 503 GB of RAM, and 8 NVIDIA RTX A6000 GPUs each with 49 GiB RAM. The synthetic
datasets used in our study will be released publicly with the full paper.

10

B Supplemental Results

Table 4: Mean Absolute Error (MAE) averaged across series (standard deviation) for the composition
implicit reasoning tasks: addition (add.), subtraction (sub.), multiplication (mult.), and sinusoidal
function (function). MAE results for models trained on in-distribution (ID) time series and evaluated
on out-of-distribution (OOD) series are presented in the ‘Task’ column. We also include baseline
(base.) MAE results for models that are both trained and evaluated on OOD data. The best results are
highlighted in bold, and the second best results are highlighted in blue.

Model
MAE

Add. Sub. Mult. Function
Task Base. Task Base. Task Base. Task Base.

MLP 1.604 0.386 2.637 0.350 2.097 1.507 10.099 2.730
(1.173) (0.284) (1.648) (0.197) (1.559) (1.127) (6.372) (2.3)

DLinear 0.689 0.743 0.935 0.715 10.522 8.792 21.155 10.653
(0.349) (0.333) (0.452) (0.333) (7.945) (5.284) (23.965) (6.783)

NHITS 1.427 0.216 2.36 0.184 2.065 1.194 3.868 1.736
(1.089) (0.132) (1.489) (0.215) (1.687) (0.813) (2.207) (1.547)

TSMixer 1.398 1.185 4.862 1.348 16.609 11.427 20.943 13.008
(0.766) (0.511) (2.167) (0.651) (9.531) (7.569) (16.653) (7.985)

LSTM 7.546 2.973 8.992 5.216 9.831 5.641 11.353 5.095
(4.288) (1.793) (4.954) (2.904) (5.529) (3.714) (5.12) (2.928)

TCN 5.716 2.538 5.063 3.057 8.359 2.606 11.413 4.123
(3.228) (1.432) (2.597) (1.667) (4.816) (1.995) (4.781) (2.391)

TimesNet 1.630 0.555 2.937 0.512 10.635 2.082 11.643 3.744
(0.627) (0.238) (1.519) (0.239) (7.88) (1.692) (8.352) (3.076)

VanillaTransformer 2.432 0.721 2.993 0.658 8.249 5.032 11.291 7.341
(1.468) (0.228) (1.69) (0.152) (4.939) (3.492) (7.334) (4.552)

TFT 1.024 0.709 3.243 1.057 13.395 5.121 10.159 6.548
(0.408) (0.295) (1.507) (0.504) (9.688) (3.834) (5.228) (4.455)

Autoformer 1.708 0.914 3.999 1.188 12.845 9.69 13.383 11.344
(0.952) (0.315) (1.886) (0.52) (7.764) (5.716) (8.018) (6.846)

Informer 2.045 0.741 3.025 0.78 9.246 5.423 12.268 10.335
(1.273) (0.235) (1.702) (0.28) (5.303) (3.4) (8.89) (5.724)

iTransformer 1.358 0.933 2.994 0.947 15.197 14.618 31.632 11.773
(0.886) (0.384) (1.403) (0.447) (10.35) (8.732) (16.823) (6.882)

PatchTST 1.717 0.435 2.168 0.584 3.497 1.600 6.209 7.231
(1.113) (0.285) (1.185) (0.404) (2.442) (1.108) (4.009) (6.031)

TSFMs Zero-shot Forecasting

LagLlama 5.181 4.263 9.904 17.684
(2.720) (2.475) (5.795) (7.206)

Chronos 1.064 1.124 1.922 2.332
(1.133) (1.228) (2.499) (2.596)

TimesFM 0.475 0.467 0.355 0.672
(0.375) (0.457) (0.336) (0.655)

MOMENT 2.428 3.140 9.960 10.877
(1.392) (1.564) (6.022) (6.347)

11

Table 5: Model forecast Mean Absolute Error (MAE) averaged across series (standard deviation).
MAE results for models trained on in-distribution (ID) time series and evaluated on out-of-distribution
(OOD) series are presented in the ‘Task’ column. We also include baseline (base.) MAE results for
models that are both trained and evaluated on OOD data. The best results are highlighted in bold, and
the second best results are highlighted in blue.

(a) Comparison Task

Model
MAE

Comparison
Task Base.

MLP 2.492 1.945
(4.831) (4.138)

DLinear 1.072 1.342
(1.173) (1.848)

NHITS 2.218 1.750
(4.113) (3.749)

TSMixer 2.488 2.391
(3.371) (3.570)

LSTM 3.174 4.663
(3.767) (5.571)

TCN 2.467 2.913
(3.002) (3.591)

TimesNet 3.570 1.972
(6.309) (4.001)

VanillaTransformer 2.120 2.040
(4.071) (4.066)

TFT 2.045 1.986
(3.802) (3.864)

Autoformer 3.966 3.785
(5.097) (5.145)

Informer 2.131 1.999
(3.805) (3.674)

iTransformer 2.885 3.106
(4.052) (4.429)

PatchTST 1.740 1.204
(3.084) (2.678)

TSFMs Zero-Shot

LagLlama 5.307
(7.512)

Chronos 0.704
(1.362)

TimesFM 0.413
(0.775)

MOMENT 3.381
(4.557)

(b) Inverse Search Task

Model
MAE

Inverse Search
Task Base.

MLP 0.632 0.076
(0.523) (0.040)

DLinear 0.539 0.444
(0.433) (0.389)

NHITS 0.214 0.035
(0.231) (0.055)

TSMixer 1.622 1.431
(0.697) (0.647)

LSTM 1.784 4.161
(1.617) (4.665)

TCN 1.666 3.113
(1.444) (3.504)

TimesNet 0.646 0.438
(0.384) (0.385)

VanillaTransformer 0.551 0.279
(0.531) (0.248)

TFT 0.574 0.961
(0.464) (0.504)

Autoformer 1.180 0.804
(0.527) (0.335)

Informer 0.877 0.436
(0.425) (0.210)

iTransformer 1.164 1.143
(0.507) (0.560)

PatchTST 0.394 0.293
(0.545) (0.195)

TSFMs Zero-Shot

LagLlama 2.656
(2.724)

Chronos 0.096
(0.088)

TimesFM 0.070
(0.075)

MOMENT 1.502
(1.225)

12

0

1

2

3 PatchTST-1
PatchTST-50
PatchTST-100
PatchTST-150
PatchTST-200

0

1

2

3 MLP
DLinear
NHITS
TSMixer
LSTM
TCN
TimesNet

800 900 1000 1100 1200
X

0

1

2

3 TFT
VanillaTransformer
Informer
Autoformer
iTransformer

Y

(a) Addition

2

0
PatchTST-1
PatchTST-50
PatchTST-100
PatchTST-150
PatchTST-200

2

0
MLP
DLinear
NHITS
TSMixer
LSTM
TCN
TimesNet

800 900 1000 1100 1200
X

2

0
TFT
VanillaTransformer
Informer
Autoformer
iTransformer

Y

(b) Subtraction

Figure 3: Model time series forecasts for addition (a) and subtraction (b) composition tasks.

20

25

30
PatchTST-1
PatchTST-50
PatchTST-100
PatchTST-150
PatchTST-200 0

2

20

25

30
MLP
DLinear
NHITS
TSMixer
LSTM
TCN
TimesNet

0

2

800 900 1000 1100 1200
X

20

25

30
TFT
VanillaTransformer
Informer
Autoformer
iTransformer

800 900 1000 1100 1200
X

0

2

Y

Figure 4: Model time series forecasts for the inverse search task.

13

	Introduction
	Related work
	Methods
	Implicit Reasoning Tasks
	Data
	Models

	Results
	Discussion
	Supplemental Information
	Extended Related Work
	Models
	Synthetic Data Parameters
	Model Training and Parameters
	Evaluation Metrics
	Broader Impacts
	Limitations
	Reproducibility Statement

	Supplemental Results

