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ABSTRACT

Spiking Neural Networks (SNNs) have attracted great attention due to their dis-
tinctive characteristics of low power consumption and temporal information pro-
cessing. ANN-SNN conversion, as the most commonly used training method for
applying SNNs, can ensure that converted SNNs achieve comparable performance
to ANNs on large-scale datasets. However, the performance degrades severely
under low quantities of time-steps, which hampers the practical applications of
SNNs to neuromorphic chips. In this paper, instead of evaluating different conver-
sion errors and then eliminating these errors, we define an offset spike to measure
the degree of deviation between actual and desired SNN firing rates. We perform
a detailed analysis of offset spike and note that the firing of one additional (or
one less) spike is the main cause of conversion errors. Based on this, we pro-
pose an optimization strategy based on shifting the initial membrane potential and
we theoretically prove the corresponding optimal shifting distance for calibrating
the spike. In addition, we also note that our method has a unique iterative prop-
erty that enables further reduction of conversion errors. The experimental results
show that our proposed method achieves state-of-the-art performance on CIFAR-
10, CIFAR-100, and ImageNet datasets. For example, we reach a top-1 accuracy
of 67.12% on ImageNet when using 6 time-steps. To the best of our knowledge,
this is the first time an ANN-SNN conversion has been shown to simultaneously
achieve high accuracy and ultralow latency on complex datasets. Code is available
at https://github.com/hzc1208/ANN2SNN_COS.

1 INTRODUCTION

Acclaimed as the third generation of Artificial Neural Networks (Maass, 1997), Spiking Neural
Networks (SNNs) have brought brand-new inspiration to computational neuroscience. As the corre-
sponding neuron fires spikes only when the current membrane potential exceeds the firing threshold,
SNNs have the distinctive characteristics of binary output, high sparsity, and biological plausibil-
ity. Therefore, compared with traditional ANN models, SNNs can further improve computational
efficiency and reduce power consumption, which facilitates their remarkable superiority in the ap-
plication of neuromorphic chips (Merolla et al., 2014; Davies et al., 2018; DeBole et al., 2019).
Considering that an effective learning algorithm has not yet been found for SNNs, ANN-SNN con-
version and backpropagation through time (BPTT) are still the two most commonly applied training
methods. Compared with BPTT, ANN-SNN conversion provides a way around the nondifferentiable
problem in the direct training procedure for SNNs and thus reduces the overall training complexity.

The aim in ANN-SNN conversion is to establish the mapping relationship between the activation
output and the average firing rate. Traditional conversion methods exploit larger time-steps to over-
come conversion errors and thus achieve high performance (Diehl et al., 2015). Many of the follow-
ing works have attempted to optimize the performance from multiple perspectives, including using
the soft-reset mechanism (Han et al., 2020), proposing more adaptive activation functions (Ho &
Chang, 2021; Bu et al., 2022b), adopting a trainable threshold (Sengupta et al., 2019; Ding et al.,
2021; Bu et al., 2022a), etc. However, these strategies cannot effectively eliminate the errors caused
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by the deviation between the actual and desired firing rates, especially when the number of time-
steps is small. Some recent works explore compensating for the errors by introducing burst spikes
(Li & Zeng, 2022) and signed spiking neurons (Li et al., 2022). Unlike these works, our paper
attempts to eliminate the errors with vanilla spiking neurons and answer the question of how to
improve the performance of a converted SNN and possibly approach the upper bound performance.

In this paper, we observe and identify the source of conversion errors and propose an iterative opti-
mization method based on shifting the initial membrane potential, which can fulfil accurate mapping
between ANNs and SNNs under ideal situations. Our main contributions are summarized as follows:

1 We introduce the concept of offset spike to infer the deviation between the actual SNN
firing rate and the desired SNN firing rate. We note that cases of firing one additional (or
one less) spike are the main reason cause of conversion errors.

2 We propose a method to judge offset spike based on the residual membrane potential and
an optimization method to eliminate conversion errors by shifting the initial membrane
potential up or down. We derive the optimal shifting distance and prove that one spike can
be increased or decreased under this condition.

3 We evaluate our methods on CIFAR-10/100 and ImageNet datasets. The proposed method
outperforms the existing state-of-the-art ANN-SNN conversion methods using fewer time-
steps. For example, we achieve 67.12% top-1 accuracy on ImageNet with only 6 time-
steps (4 time-steps for calibration and 2 time-steps for inference). Moreover, it is worth
noting that we have reached the same level of performance as BPTT under the condition of
significantly reduced memory and computing resources requirements.

4 We discover that our proposed method has an iterative property. Under ideal circumstances,
the deviation within the range of k spikes will be eliminated entirely after adopting our
approach k times. After 4 iterations, the mean-square error between the actual and desired
firing rates of the output layer can reach 0.001 for the VGG-16 model on CIFAR-100.

2 RELATED WORKS

The principle of ANN-SNN conversion is to map the parameters from pretrained ANN models to
SNNs, which avoids training SNNs directly and reduces energy consumption significantly. The pri-
mary goal is to match the ANN activation value and the average SNN firing rate. Cao et al. (2015)
were the research pioneers in this field, and they replaced ReLU activation layers in ANNs with
spiking neurons to fulfil the conversion procedure. Ho & Chang (2021); Bu et al. (2022b) pro-
posed new activation functions, which better fit the finiteness and discreteness of the spike firing
rate. Rueckauer et al. (2017); Han et al. (2020) adopted “reset-by-subtraction” mechanism, which
alleviated the problem of information loss and effectively improved the precision of the conversion
process. For the setting of firing threshold, various strategies have been proposed, including Ro-
bustNorm (Rueckauer et al., 2017), SpikeNorm (Sengupta et al., 2019), and adjustable threshold
(Han et al., 2020; Ding et al., 2021; Ho & Chang, 2021; Bu et al., 2022a;b), etc. Recently, spiking
neural networks with high accuracy and low latency have become the focus and target of academic
research. To reduce the time latency of the network, one must carefully address the exact spiking
time of neurons. Deng & Gu (2021); Li et al. (2021) fine-tuned the bias in each layer under the
uniform current assumption. Nevertheless, the actual current would never be distributed uniformly.
In terms of expectation, Bu et al. (2022b) proved that one-half of the threshold is the optimal value
for the initial membrane potential, and that charging at this value can prompt neurons to spike more
uniformly. However, as the authors pointed out: there is still a mismatch between ANN and SNN
due to the so called “unevenness error”. In addition, other methods like burst spikes (Li & Zeng,
2022) and signed spiking neurons (Wang et al., 2022a; Li et al., 2022), have also been introduced to
further improve performance. These efforts have aimed to alleviate the conversion loss. However,
they undermined the biological plausibility and binary property of spiking neurons.

In addition to ANN-SNN conversion, backpropagation with exact spike time is another common
way to train SNNs. The surrogate gradient (O’Connor et al., 2018; Zenke & Ganguli, 2018; Bellec
et al., 2018; Wu et al., 2018; 2019; Kim & Panda, 2020; Zenke & Vogels, 2021) has been widely
used to tackle the nondifferentiable problem in the training process, which substitutes the Heavi-
side function with a derivable function. With the help of the surrogate gradient, backpropagation
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through time enables the network to adjust weights by focusing every exact time-step. On this basis,
Rathi & Roy (2021); Guo et al. (2022) further attempted the optimization of hyper-parameters and
gradients. Bohte et al. (2002); Kheradpisheh & Masquelier (2020); Zhang & Li (2020) proposed a
timing-based learning method, which viewed the specific spike firing time as significant temporal
information to transmit between layers. Nevertheless, this type of method only applies to shallow
networks at present. In addition, hybrid training methods have recently attracted extensive attention.
Wang et al. (2022b); Rathi & Roy (2021) combined ANN-SNN conversion with BPTT to obtain
higher performance under low latency. Kim et al. (2020) adopted rate-coding and time-coding si-
multaneously to train SNNs with fewer spikes. Mostafa (2017); Zhou et al. (2021); Zhang & Li
(2020) established a linear transformation about the spike firing time from adjacent layers, which
enabled the use of SNNs under the training mode of ANNs. In addition, BPTT can enable calibra-
tion of the spike time in the training phase (Rathi et al., 2020). These works alter weights when
training and stress the importance of spike timing, which is usually ignored in conversion methods.
Inspired by these approaches, we incorporate the concept of calibration spike timing by manipulat-
ing membrane potentials into the conversion pipeline to bridge the gap between ANNs and SNNs.

3 PRELIMINARIES

3.1 NEURON MODELS

For ANNs, the input al−1 to layer l is mapped to the output al by a linear transformation matrix
W l and a nonlinear activation function f(·), that is (l = 1, 2, 3, · · · , L):

al = f(W lal−1). (1)
where f(·) is often set as the ReLU activation function.

For SNNs, we adopt Integrate-and-Fire (IF) Neuron model (Gerstner & Kistler, 2002), which is sim-
ilar to the approach reported in previous works (Cao et al., 2015; Diehl et al., 2015). To minimize in-
formation loss during inference, our neurons perform “reset-by-subtraction” mechanism (Han et al.,
2020), which means that the firing threshold θl is subtracted from the membrane potential after
firing. The overall kinetic equations of IF Neuron can be expressed as follows:

vl(t) = vl(t− 1) + I l(t)− sl(t)θl, (2)

I l(t) =W lsl−1(t)θl−1. (3)

Here vl(t) and I l(t) denote the membrane potential and input current of layer l at the t-th time-step,
respectively. W l is the synaptic weight between layer l − 1 and layer l, and θl is the spike firing
threshold in the l-th layer. sl(t) represents whether the spike fires at time-step t. For the i-th neuron,
if the current potential exceeds the firing threshold θl, the neuron will emit a spike. This firing rule
can be described by the equation below.

sli(t) =

{
1, vli(t− 1) + I li(t) ⩾ θl

0, vli(t− 1) + I li(t) < θl
. (4)

If not otherwise specified, the subscript xi denotes the i-th element of x.

3.2 ANN-SNN CONVERSION

The main principle of ANN-SNN conversion is to map the firing rates (or postsynaptic potential)
of spiking neurons to the ReLU activation output of artificial neurons. Specifically, by summing
equation 2 from t = 1 to t = T , and then substituting variable I l(t) with W lsl−1(t)θl−1 using
equation 3, and finally dividing T on both sides, we obtain the following equation:∑T

t=1 s
l(t)θl

T
=W l

∑T
t=1 s

l−1(t)θl−1

T
+

(
−v

l(T )− vl(0)
T

)
. (5)

where T denotes the total simulation cycle. For simplicity, we use the average postsynaptic potential
ϕl(T ) as a substitute for the term

∑T
t=1 s

l(t)θl/T in equation 5, then we obtain

ϕl(T ) =W lϕl−1(T ) +

(
−v

l(T )− vl(0)
T

)
. (6)
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Figure 1: The distribution of offset spike in each layer. (a) and (c): VGG-16 on CIFAR-10, (b)
and (d): VGG-16 on CIFAR-100. w/ constraint denotes the constraint of ψl−1 = 0 through the
rectification of the spikes.

Equation 6 can be approximated by a linear transformation between ϕl(T ) and ϕl−1(T ) as T tends
to infinity, which is exactly the same as the forward propagation (equation 1) in ANNs due to
ϕl(T ) ⩾ 0. This result implies that we can achieve lossless ANN-SNN conversion when T tends
to infinity. However, the performance of converted SNNs degrades seriously under the condition of
short time-steps T (Rueckauer et al., 2017; Han et al., 2020). To achieve high-performance SNNs
under low latency, Bu et al. (2022b) proposed replacing the commonly used ReLU activation func-
tion of source ANNs with the quantization clip-floor-shift (QCFS) function:

al = f(al−1) =
λl

L
clip

(⌊
W lal−1L

λl
+

1

2

⌋
, 0, L

)
. (7)

where L denotes the ANN quantization step and λl is the trainable threshold of the outputs in ANN
layer l, which is mapped to the threshold θl in SNN layer l. This paper follows the conversion
framework of Bu et al. (2022b) with QCFS function.

4 METHODS

In this section, we first compare the outputs of ANNs and converted SNNs in each layer. We intro-
duce offset spike to measure the degree of deviation between the actual firing rate and the desired
firing rate in SNNs. Then, we demonstrate that the offset spike of being one accounts for the main
part in each layer and is the main reason of conversion error. Based on this, we propose suffi-
cient conditions to determine if offset spike exists and what the sign of offset spike value is, and
we present a spike calibration strategy to eliminate conversion errors through shifting the initial
membrane potential.

4.1 OFFSET SPIKE AND ITS DISTRIBUTION

ANN-SNN conversion errors can be divided into clipping error, quantization error (flooring error),
and unevenness error (deviation error) (Bu et al., 2022b). In previous works (Han et al., 2020; Li
et al., 2021; Meng et al., 2022b), those errors are eliminated (or reduced) separately, and thus far
no method to eliminate the unevenness error (deviation error) has been identified. Since we find
that the essential cause of most conversion errors comes from the remaining term −vl(T )−vl(0)

T in
equation 5, we consider reducing conversion errors directly based on the prior knowledge of the
remaining term. To measure the degree of deviation between the actual firing rate and the desired
firing rate, we first introduce the definition of offset spike.

Definition 1. We define OFFSET SPIKE ψl of layer l as the difference between the desired total
spike count Cl

designed and the actual spike count Cl
actual during the interval [0, T ], that is

ψl = Cl
designed − Cl

actual =
alT

θl
−

T∑
t=1

sl(t). (8)

where we set the maximum value λl of output al in ANNs equal to the threshold θl in SNNs, that
is, λl = θl. Thus, al

θl denotes the normalized output in ANNs, which is mapped to the firing rates of

4



Published as a conference paper at ICLR 2023

𝑣𝑙
𝜃𝑙

0

Before shifting

After shifting

shift distance = 𝜃𝑙

0 1 2 3 4 5 6
Time-step

(a)

shift distance = min 𝑣𝑙 𝑡 |𝑠𝑙 𝑡 = 1 + 𝜖

0 1 2 3 4 5 6
Time-step

𝑣𝑙
𝜃𝑙

0

(b)

shift distance = 𝜃𝑙

0 1 2 3 4 5 6
Time-step

𝑣𝑙
𝜃𝑙

0

(c)

shift distance = 𝜃𝑙 + 𝜖 − max 𝑣𝑙 𝑡 |𝑠𝑙 𝑡 = 0

0 1 2 3 4 5 6
Time-step

𝑣𝑙
𝜃𝑙

0

(d)

Figure 2: Shifting up (down) the initial membrane potential can increase (decrease) one output spike.

SNNs, and Cl
designed = alT

θl denotes the desired total spike count. Note that ψl
i = ±k indicates that

the gap between the actual and desired firing rate of the i-th neuron in layer l of the SNN is k spikes.
We further investigate the detailed ANN and SNN outputs in each layer. We train the source ANN
with the QCFS activation function (equation 7) and then convert it to an SNN (more details are in
the Appendix). Fig. 1(a)-1(b) illustrates the distribution of offset spike for the converted SNNs with
VGG-16 structure on CIFAR-10 and CIFAR-100, respectively. We have the following observation.

Observation 1. ψl = ±1 accounts for the main part in each layer and ψl = ±3 rarely occurs.

Considering the cumulative effect of conversion errors in the deep layer, the offset spike ψl in layer
l can be considered as the joint effects of the offset spike ψl−1 in layer l − 1 and conversion errors
in layer l, and tends to increase with the increase in the number of layers.

For a deeper analysis of the offset spike in each layer, we rectify ANN output in layer l− 1 to make
al−1 = ϕl−1(T ) and ψl−1 = 0 (Sec. A.1 for more details of the constraint), and then compute the
offset spike ψl in layer l. After the rectification for each layer, the distribution of offset spike for the
converted SNNs with VGG-16 structure on CIFAR-10 and CIFAR-100 are shown in Fig. 1(c)-1(d),
respectively. We have the following observation.

Observation 2. With constraint, ψl = ±1 accounts for the main part in each layer and |ψl| > 1
rarely occurs.

Observations 1-2 show that the firing of one additional (or one less) spike is the main cause of
conversion errors, which implies that we can eliminate errors after adjusting

∑T
t=1 s

l(t) with ±1.

4.2 JUDGE CONVERSION ERRORS THROUGH RESIDUAL MEMBRANE POTENTIAL

Before we propose the optimal strategy for adjusting the output spikes to eliminate the offset spike
ψl, we need to determine if the offset spike exists and what the sign of the offset spike value is. If
the sign of the offset spike is positive, which corresponds to the situation in which the ANN output
is larger than the SNN output, the spiking neurons should fire more spikes to eliminate the offset
spike, otherwise, they should fire fewer spikes.

In the practical application of SNNs, we cannot directly obtain the specific value of the offset spike
ψl. Fortunately, we find that we can determine the sign of ψl according to the value of the residual
membrane potential vl(T ). We have the following theorem:

Theorem 1. Suppose that an ANN with QCFS activation function (equation 7) is converted to an
SNN with L = T, λl = θl,vl(0) = θl/2, and the inputs to the l-th layer of the ANN and the SNN
are the same, that is, al−1 = ϕl−1(T ). Then for any i-th element of the l-th layer, we can draw the
following conclusions:
(i) If ϕli(T ) > 0 and vli(T ) < 0, we will have ϕli(T ) > ali and ψl

i < 0.
(ii) If ϕli(T ) < θl and vli(T ) ⩾ θl, we will have ϕli(T ) < ali and ψl

i > 0.

The proof is provided in Appendix. (i) implies that if the postsynaptic potential is larger than 0 and
the residual membrane potential is smaller than 0, we can conclude that the neuron fires more spikes
than expected and the sign of the offset spike value is negative. (ii) implies that if the postsynaptic
potential is smaller than 0 and the residual potential is larger than θ, we can conclude that the spiking
neuron fires fewer spikes than expected and the sign of the offset spike value is positive.
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4.3 ELIMINATE CONVERSION ERROR THROUGH SHIFTING INITIAL MEMBRANE POTENTIAL

Since the firing of one additional (or one less) spike (ψl = ±1) is the main cause of conversion
errors, we propose an optimization strategy to rectify the output spike

∑T
t=1 s

l(t) by adding or
subtracting one spike, thereby eliminating errors. Specifically, we consider adjusting the value of∑T

t=1 s
l(t) by shifting the corresponding initial membrane potential vl(0) up or down. One intuitive

explanation is that a higher initial membrane potential will make the spiking neurons fire earlier and
will increase the firing rates during the period [0, T ], while a lower initial membrane potential will
make the spiking neurons fire later and will decrease the firing rates. The following theorem gives
the optimal shifting distance when we attempt to move

∑T
t=1 s

l(t) (and ψl) by a distance of ±1.

Theorem 2. If we use sli(t) and s̃li(t) to denote the binary spike of the i-th neuron in layer l at time-
step t before and after optimization, vli(0) and ṽli(0) to represent the initial membrane potential
before and after optimization, then ∀ϵ ∈ (0, θl), we will have the following conclusions:

(i) If we set ṽli(0) = vli(0)−max(θl,min{vli(t)|sli(t) = 1}+ ϵ), then
T∑

t=1
s̃li(t) =

T∑
t=1

sli(t)− 1.

(ii) If we set ṽli(0) = vli(0)+max(θl, θl+ϵ−max{vli(t)|sli(t) = 0}), then
T∑

t=1
s̃li(t) =

T∑
t=1

sli(t)+1.

The proof is provided in Appendix. Note that the variable ϵ illustrates that as long as the initial
membrane potential is within a certain range, the number of output spikes can be guaranteed to
increase or decrease by 1.

Example 1. Fig. 2 shows four different scenarios before and after shifting vl(0) that verify the ef-
fectiveness of our theorem. Specifically, Fig. 2(a)-2(b)/Fig. 2(c)-2(d) indicates two cases of shifting
down/up, which correspondes to (i)/(ii) in Theorem 2.

By combining Theorems 1 and 2, we propose the complete spike calibration algorithm. Our method
can be divided into two stages. First, for l-th layer, we spend ρ time-steps to determine the specific
spike firing situation. According to Theorem 1, if vli(ρ) < 0 (or vli(ρ) ⩾ θl), by combining ϕli(ρ), we
can infer that ϕli(ρ) is actually larger (or smaller) than the expected average postsynaptic potential ali,
and ψl

i < 0 (or ψl
i > 0). In addition, we will preserve the membrane potential after each time-step,

which will be used to calculate the subsequent optimal shifting distance.

In the second stage, based on Theorem 2, we will calculate the optimal shifting distance of the initial
membrane potential for specific neurons with conversion errors. Generally speaking, if ψl

i < 0, we
will shift its initial membrane potential down by calculating (i) from Theorem 2, if ψl

i > 0, we will
shift its initial membrane potential up by adopting (ii) from Theorem 2. After optimizing the initial
membrane potential, we will spend T time-steps implementing the test on corresponding datasets
and deliver the output to the l + 1-th layer.

4.4 ITERATIVE PROPERTY OF OUR OPTIMIZATION METHOD

In the previous section, we show that shifting the initial membrane potential up (or down) can
change a case of ψl = ±1 to ψl = 0. In fact, our method also converts the case of ψl = ±k to
ψl = ±(k − 1). As long as the offset spike ψl is not zero, the performance of converted SNNs will
degrade. One important problem to address is whether we can further eliminate the offset spike in
situations where ψl ⩾ 2.

Fortunately, we find that our optimization method has an iterative property. One can reuse Theorem
2 to increase (or decrease) one output spike each time. Of course, it comes at a significant compu-
tational cost. In the Experiments Section, we will show that the performance of the converted SNN
increases with the iteration. Typically, we can achieve high-performance and low-latency SNNs
with only one iteration.

5 EXPERIMENTS

In this section, we choose image classification datasets to validate the effectiveness and performance
of our proposed methods, including CIFAR-10 (LeCun et al., 1998), CIFAR-100 (Krizhevsky et al.,
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Figure 3: The distribution of offset spike before and after optimization

Table 1: Comparison with existing state-of-the-art ANN-SNN conversion methods

Method ANN Architecture T=1 T=2 T=4 T=8 T=16 T=32

CIFAR-100 Dataset

SNM 74.13%

VGG-16

- - - - - 71.80%
SNNC-AP 77.89% - - - - - 73.55%

OPI 76.31% - - - 60.49% 70.72% 74.82%
QCFS 76.28% - 63.79% 69.62% 73.96% 76.24% 77.01%
Ours 76.28% 74.24% 76.03% 76.26% 76.52% 76.77% 76.96%
RMP 68.72%

ResNet-20

- - - - - 27.64%
OPI 70.43% - - - 23.09% 52.34% 67.18%

QCFS 69.94% - 19.96% 34.14% 55.37% 67.33% 69.82%
Ours 69.97% 59.22% 64.21% 65.18% 67.17% 69.44% 70.29%

ImageNet Dataset

SNNC-AP 75.36%

VGG-16

- - - - - 63.64%
SNM 73.18% - - - - - 64.78%
OPI 74.85% - - - 6.25% 36.02% 64.70%

QCFS 74.29% - - - 19.12% 50.97% 68.47%
Ours 74.19% 63.84% 70.59% 72.94% 73.82% 74.09% 74.33%

SNNC-AP 75.66%
ResNet-34

- - - - - 64.54%
QCFS 74.32% - - - 35.06% 59.35% 69.37%
Ours 74.22% 69.11% 72.66% 73.81% 74.17% 74.14% 73.93%

2009) and ImageNet (Deng et al., 2009) datasets. The network architectures selected for evaluation
include VGG-16 (Simonyan & Zisserman, 2014), ResNet-18, ResNet-20 and ResNet-34 (He et al.,
2016). For the setting of the hyperparameter ρ, we set ρ = 4 for CIFAR-10/100 and ρ = 8 for
ImageNet if there are no special instructions. More details of the experimental settings are provided
in the Appendix.

5.1 EFFECTIVENESS OF THE PROPOSED METHOD

To illustrate the effectiveness of our proposed initial membrane potential shifting operations, we
compare bar charts of offset spike ψl in each layer of SNNs before and after the shift. Fig. 3
illustrated the results of VGG-16 networks on the CIFAR-10 and CIFAR-100 datasets. It can be
observed that the shifting operations significantly reduce offset spike, that is, the deviation between
ϕl(T ) and al, for each layer. For vanilla settings without the shift operation (denoted as “w/o
shift” in Fig. 3), one can discover a magnification effect of spike count error from the 1st to the
11th layer. In contrast, the apparent magnification is alleviated with the proposed methods. From
Fig. 3(b), we notice that the ±2 and ±3 offset spike in the VGG-16 model for CIFAR-100 have
increased compared to those for CIFAR-10 (Fig. 3(a)). Using our method can clearly decrease these
deviations and achieve a comparable error-free conversion.

5.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our methods with previous state-of-the-art ANN-SNN conversion works, including
RMP (Han et al., 2020), SNM (Wang et al., 2022a), SNNC-AP (Li et al., 2021), OPI (Bu et al.,
2022a), QCFS (Bu et al., 2022b), on CIFAR-10, CIFAR-100 and ImageNet datasets. Since we spend
ρ time-steps in the first stage to acquire relevant temporal information about membrane potential, we
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Table 2: Comparison with other types of SNN training methods

Dataset Method Type Architecture Accuracy Time-step

CIFAR-100

Dual-Phase Hybrid Training VGG-16 70.08% 4
Diet-SNN Hybrid Training VGG-16 69.67% 5

RecDis-SNN BPTT VGG-16 69.88% 5
Ours(ρ = 4) ANN-SNN conversion VGG-16 74.24% 1

ImageNet

HC-STDB Hybrid Training ResNet-34 61.48% 250
DSR Supervised learning PreAct-ResNet-18 67.74% 50

STBP-tdBN BPTT ResNet-34 63.72% 6
PLIF BPTT ResNet-34 67.04% 7
TET BPTT ResNet-34 64.79% 6

Ours(ρ = 4) ANN-SNN conversion ResNet-34 67.12% 2

Table 3: The ratio and MSE after multiple iterations

Dataset Architecture Baseline Ours Ours ×2 Ours ×4
Ratio MSE Ratio MSE Ratio MSE Ratio MSE

CIFAR-10 VGG-16 88.33% 0.120 97.65% 0.024 99.83% 0.002 99.84% 0.002
ResNet-20 62.38% 0.512 82.56% 0.179 99.73% 0.003 99.76% 0.002

CIFAR-100 VGG-16 82.90% 0.192 98.42% 0.016 99.86% 0.001 99.87% 0.001
ResNet-20 41.59% 1.641 67.08% 0.453 86.03% 0.165 91.29% 0.101

will compare the performance of other works at time-step T + ρ with our performance at time-step
T to ensure the fairness of comparison.

Tab. 1 reports the results on the CIFAR-100 dataset. For VGG-16, our method at time-step 1 (ρ = 4)
outperforms SNM and SNNC-AP at time-step 32. Moreover, we achieve 76.26% top-1 accuracy
with 4 time-steps (ρ = 4), which is 2.30% higher than QCFS (73.96%, T=8) and 15.77% higher
than OPI (60.49%, T=8). For ResNet-20, the performance of our method at time-step 1 (ρ = 4)
surpasses the performance of RMP at time-step 32 (59.22% vs. 27.64%). The accuracy of our
method is 65.18% at time-step 4 (ρ = 4), whereas accuracies of QCFS and OPI are 55.37% and
23.09% at time-step 8, respectively. More results on CIFAR-10 are listed in the Appendix.

We further test the generalization of our method on the ImageNet (Tab. 1). For VGG-16, we achieve
73.82% top-1 accuracy at time-step 8 (ρ = 8), which outperforms QCFS (50.97%, T=16) by 22.85%
and OPI (36.02%, T=16) by 37.80%. For ResNet-34, our method at time-step 1 (ρ = 8) outperforms
SNM and SNNC-AP at time-step 32. Moreover, we achieve 74.17% with 8 time-steps (ρ = 8),
which is 14.82% higher than QCFS (59.35%, T=16). These results show that our method can achieve
better classification accuracy with fewer time-steps.
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Figure 4: Influence of different ρ. (a) VGG-16 on CIFAR-100, (b) ResNet-20 on CIFAR-100, (c)
VGG-16 on ImageNet, (d) ResNet-34 on ImageNet.

In addition, we compare our method with other types of SNN training methods (Hybrid Training &
BPTT), including Dual-Phase (Wang et al., 2022b), Diet-SNN (Rathi & Roy, 2021), RecDis-SNN
(Guo et al., 2022), HC-STDB (Rathi et al., 2020), STBP-tdBN (Zheng et al., 2021), PLIF (Fang
et al., 2021), TET (Deng et al., 2022) and DSR (Meng et al., 2022a). Here we set ρ = 4 for the
CIFAR-100 and ImageNet datasets. As reported in Tab. 2, our method achieves better accuracy on
the CIFAR-100 dataset and comparable accuracy on the ImageNet dataset with the same quantity
of time-steps. Note that compared to ANN-SNN conversion, the back-propagation approaches need
to propagate the gradient through both spatial and temporal domains during the training process,
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Figure 5: The MSE of conversion error after using iterative optimization. (a): VGG-16 on CIFAR-
10, (b): ResNet-20 on CIFAR-10, (c): VGG-16 on CIFAR-100, (d): ResNet-20 on CIFAR-100.
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Figure 6: The distribution of offset spike after using iterative optimization

which consumes large amounts of memory and computing resources. All these results demonstrate
the superiority of our method.

5.3 EFFECT OF THE INFERENCE TIME-STEP ρ

We further explore the influence of the hyperparameter ρ in the first stage of our method. Fig. 4
shows the accuracy of the network with different values of ρ. For Fig.4(a)-4(d), the value of quan-
tization level L in QCFS function is set to 4, 8, 16 and 8. We find that the SNN accuracy tends to
converge as ρ gradually approaches L. This phenomenon can be understood as follows. We use
the QCFS activation function in the source ANN and we have al ∈ {kθl/L|k = 0, 1, ..., L} and
ϕl(T ) ∈ {kθl/ρ|k = 0, 1, ..., ρ}. Thus, the mapping relationship between al and ϕl(T ) will be-
come more accurate when ρ approaches L, which makes the temporal information obtained from
the first stage more precise to improve the performance of the network.

5.4 EFFECT OF THE ITERATIVE OPTIMIZATION

In section 4.4, we explain that our method has an iterative property that can reduce the offset spike
through multiple iterations. To demonstrate this, we define the ratio as the percentage of ali = ϕli(T )
in the output layer. Despite this, we also consider the indicators of mean-square error (MSE), which
is defined as ||ψl||22. Tab. 3 reports the ratio and MSE of the output layer, in which the baseline
denotes the performance without using our methods and ×2 represents two iterations. Besides, we
set ρ = L = T . From top to bottom in Tab. 3, the values of L are set to 4, 4, 4 and 8. From Tab. 3
and Fig. 5, we can conclude that, generally, the ratio and MSE in each layer continue to decrease as
the number of iterations increases, which is consistent with the results shown in Fig. 6.

6 CONCLUSIONS

In this paper, we first define offset spike to measure the degree of deviation between the actual and
desired SNN firing rates. Then we analyse the distribution of offset spike and demonstrate that
we can infer the specific value of the deviation according to the corresponding residual membrane
potential. Furthermore, we propose an optimization method to eliminate offset spike by shifting the
initial membrane potential up and down. Finally, we demonstrate the superiority of our method on
CIFAR-10/100 and ImageNet datasets. Our results will further facilitate the relevant research and
application of SNNs to neuromorphic chips.
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Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pp. 421–
436. Springer, 2012.

Tong Bu, Jianhao Ding, Zhaofei Yu, and Tiejun Huang. Optimized potential initialization for low-
latency spiking neural networks. In AAAI Conference on Artificial Intelligence, 2022a.

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ANN-SNN
conversion for high-accuracy and ultra-low-latency spiking neural networks. In International
Conference on Learning Representations, 2022b.

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
energy-efficient object recognition. International Journal of Computer Vision, 113(1):54–66,
2015.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 113–123, 2019.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

Michael V DeBole, Brian Taba, Arnon Amir, Filipp Akopyan, Alexander Andreopoulos, William P
Risk, Jeff Kusnitz, Carlos Ortega Otero, Tapan K Nayak, Rathinakumar Appuswamy, et al.
TrueNorth: Accelerating from zero to 64 million neurons in 10 years. Computer, 52(5):20–29,
2019.

Jia Deng, Richard Socher, Lijia Li, Kai Li, and Feifei Li. Imagenet: A large-scale hierarchical image
database. In IEEE Conference on Computer Vision and Pattern Recognition, 2009.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. In International Conference on Learning Representations, 2021.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing.
In International Joint Conference on Neural Networks, pp. 1–8. IEEE, 2015.

Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. Optimal ANN-SNN conversion for
fast and accurate inference in deep spiking neural networks. In International Joint Conference on
Artificial Intelligence, pp. 2328–2336, 2021.

10



Published as a conference paper at ICLR 2023

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothee Masquelier, Tiejun Huang, and Yonghong Tian. In-
corporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2661–2671,
2021.

Wulfram Gerstner and Werner M Kistler. Spiking Neuron Models: Single Neurons, Populations,
Plasticity. Cambridge university press, 2002.

Yufei Guo, Xinyi Tong, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Zhe Ma, and Xuhui Huang.
RecDis-SNN: Rectifying membrane potential distribution for directly training spiking neural net-
works. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 326–335, 2022.

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. RMP-SNN: Residual membrane poten-
tial neuron for enabling deeper high-accuracy and low-latency spiking neural network. In IEEE
Conference on Computer Vision and Pattern Recognition, pp. 13558–13567, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Nguyen-Dong Ho and Ik-Joon Chang. TCL: an ANN-to-SNN conversion with trainable clipping
layers. In ACM/IEEE Design Automation Conference (DAC), pp. 793–798. IEEE, 2021.

Saeed Reza Kheradpisheh and Timothée Masquelier. Temporal backpropagation for spiking neural
networks with one spike per neuron. International Journal of Neural Systems, 30(06):2050027,
2020.

Jinseok Kim, Kyungsu Kim, and Jae-Joon Kim. Unifying activation- and timing-based learning rules
for spiking neural networks. In Advances in Neural Information Processing Systems (NeurIPS),
pp. 19534–19544, 2020.

Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization for training low-latency
deep spiking neural networks from scratch. Frontiers in neuroscience, pp. 1638, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, 1998.

Chen Li, Lei Ma, and Steve Furber. Quantization framework for fast spiking neural networks.
Frontiers in Neuroscience, 16, 2022.

Yang Li and Yi Zeng. Efficient and accurate conversion of spiking neural network with burst spikes.
In International Joint Conference on Artificial Intelligence, 2022.

Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ANN: Towards
efficient, accurate spiking neural networks calibration. In International Conference on Machine
Learning, pp. 6316–6325, 2021.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In Inter-
national Conference on Learning Representations. OpenReview.net, 2017.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural Networks, 10(9):1659–1671, 1997.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
high-performance low-latency spiking neural networks by differentiation on spike representation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12444–12453, 2022a.

Qingyan Meng, Shen Yan, Mingqing Xiao, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
much deeper spiking neural networks with a small number of time-steps. Neural Networks, 153:
254–268, 2022b.

11



Published as a conference paper at ICLR 2023

Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-
neuron integrated circuit with a scalable communication network and interface. Science, 345
(6197):668–673, 2014.

Hesham Mostafa. Supervised learning based on temporal coding in spiking neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 29(7):3227–3235, 2017.

Peter O’Connor, Efstratios Gavves, Matthias Reisser, and Max Welling. Temporally efficient deep
learning with spikes. In International Conference on Learning Representations, 2018.

Nitin Rathi and Kaushik Roy. DIET-SNN: A low-latency spiking neural network with direct input
encoding and leakage and threshold optimization. IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–9, 2021. doi: 10.1109/TNNLS.2021.3111897.

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation. In
International Conference on Learning Representations, 2020.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
version of continuous-valued deep networks to efficient event-driven networks for image classifi-
cation. Frontiers in Neuroscience, 11:682, 2017.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: VGG and residual architectures. Frontiers in Neuroscience, 13:95, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yuchen Wang, Malu Zhang, Yi Chen, and Hong Qu. Signed neuron with memory: Towards simple,
accurate and high-efficient ANN-SNN conversion. In International Joint Conference on Artificial
Intelligence, 2022a.

Ziming Wang, Shuang Lian, Zhang Yuhao, et al. Towards lossless ANN-SNN conversion under
ultra-low latency with dual-phase optimization. arXiv preprint arXiv:2205.07473, 2022b.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in Neuroscience, 12:331, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking
neural networks: Faster, larger, better. In AAAI Conference on Artificial Intelligence, pp. 1311–
1318, 2019.

Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking neural
networks. Neural computation, 30(6):1514–1541, 2018.

Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning
for instilling complex function in spiking neural networks. Neural Computation, 33(4):899–925,
2021.

Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep spiking
neural networks. In Advances in Neural Information Processing Systems, pp. 12022–12033, 2020.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In AAAI Conference on Artificial Intelligence, pp. 11062–11070,
2021.

Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T Chandrasekaran, and Arindam Sanyal. Temporal-
coded deep spiking neural network with easy training and robust performance. In AAAI Confer-
ence on Artificial Intelligence, pp. 11143–11151, 2021.

12



Published as a conference paper at ICLR 2023

A APPENDIX

A.1 THE NETWORK CONFIGURATION IN THE TRAINING PROCEDURE

We choose Stochastic Gradient Descent optimizer (Bottou, 2012) and Cosine Annealing scheduler
(Loshchilov & Hutter, 2017) to train ANN models for 300 epochs. For CIFAR-10/100, the value
of weight decay is set to 5 × 10−4, and the initial learning rates are 0.1 and 0.02, respectively. For
ImageNet, we set the initial learning rate as 0.1 and weight decay as 1 × 10−4. In addition, we
adopt data-augmentation techniques (DeVries & Taylor, 2017; Cubuk et al., 2019; Li et al., 2021) to
further improve the performance of the models.

In Fig. 1, we train the source ANN with the QCFS activation function (equation 7) and then convert
it to an SNN. We set T = L = 4. For Figure 1(c)-1(d), we add the constraint that the output al−1

in layer l − 1 of ANNs is the same as the output ϕl−1(T ) of SNNs, that is, al−1 = ϕl−1(T ), and
compute the offset spike with equation 8 and al = f(W lϕl−1(T )).

A.2 PROOF OF THEOREM

Theorem 1. Supposing that an ANN with QCFS activation function (equation 7) is converted to
an SNN with L = T, λl = θl,vl(0) = θl/2, and the inputs to the l-th layer of ANN and SNN are
the same, that is, al−1 = ϕl−1(T ). Then for any i-th element of the l-th layer, we will have the
following conclusions:
(i) If ϕli(T ) > 0 and vli(T ) < 0, we will have ϕli(T ) > ali and ψl

i < 0.
(ii) If ϕli(T ) < θl and vli(T ) ⩾ θl, we will have ϕli(T ) < ali and ψl

i > 0.

Proof. According to the preconditions and equation 5, we have:

ϕli(T ) =

T∑
t=1

I li(t)

T
− vli(T )− θl/2

T
. (S1)

If
T∑

t=1
I li(t) ∈ [−θl/2, θlT + θl/2), based on the preconditions and equation 7, we get:

ali =
θl

T


T∑

t=1
I li(t)

θl
+

1

2

 . (S2)

When
T∑

t=1
I li(t) ∈ [kθl − θl/2, kθl + θl/2), k = 0, 1, ..., T , from equation S2 we will have ali =

kθl/T . For (i), by combining vli(T ) < 0 and equation S1 we will have:

ϕli(T ) =

T∑
t=1

I li(t)

T
− vli(T )− θl/2

T

>

T∑
t=1

I li(t)/T + θl/2T

⩾ kθl/T = ali. (S3)

When
T∑

t=1
I li(t) < −θl/2, ali = 0, according to the precondition ϕli(T ) > 0, we have ϕli(T ) > ali.

In addition, if
T∑

t=1
I li(t) ⩾ θlT + θl/2, according to vli(T ) < 0 and equation S1, ϕli(T ) > θl, which

is impossible. Therefore, we can derive that ϕli(T ) > ali, ψ
l
i = (ali − ϕli(T ))T/θl < 0 and we have

already proved (i).
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For (ii), we also first consider
T∑

t=1
I li(t) ∈ [−θl/2, θlT + θl/2). When

T∑
t=1

I li(t) ∈ [kθl− θl/2, kθl+

θl/2), k = 0, 1, ..., T , from equation S2 we will have ali = kθl/T , by combining vli(T ) ⩾ θl and
equation S1, we will have:

ϕli(T ) =

T∑
t=1

I li(t)

T
− vli(T )− θl/2

T

⩽
T∑

t=1

I li(t)/T − θl/2T.

< kθl/T = ali (S4)

When
T∑

t=1
I li(t) ⩾ θlT + θl/2, ali = θl, according to the precondition ϕli(T ) < θl, we have ϕli(T ) <

ali. In addition, if
T∑

t=1
I li(t) < −θl/2, according to vli(T ) ⩾ θl and equation S1, ϕli(T ) < 0, which

is impossible. Therefore, we can derive that ϕli(T ) < ali, ψ
l
i = (ali − ϕli(T ))T/θl > 0 and we have

proved (ii).

Theorem 2. If we use sli(t) and s̃li(t) to denote the i-th element in the binary output of the l-th
layer at time-step t before and after optimization, vli(0) and ṽli(0) to represent the initial membrane
potential before and after optimization, then ∀ϵ ∈ (0, θl), we will have the following conclusions:

(i) If we set ṽli(0) = vli(0)−max
(
θl,min {vli(t)|sli(t) = 1}+ ϵ

)
, then

T∑
t=1

s̃li(t) =
T∑

t=1
sli(t)− 1.

(ii) If we set ṽli(0) = vli(0)+max
(
θl, θl + ϵ−max {vli(t)|sli(t) = 0}

)
, then

T∑
t=1

s̃li(t) =
T∑

t=1
sli(t)+

1.

We use ml
i(t), m̃

l
i(t) to represent the accumulative potential at time-step t before and after using

optimization. Before the proof of theorem, we firstly introduce Lemma 1.

Lemma 1. For situation (i) in Theorem 2, ∃t ∈ [1, T ],
t∑

k=1

sli(k) =
t∑

k=1

s̃li(k) + 1. For situation (ii)

in Theorem 2, ∃t ∈ [1, T ],
t∑

k=1

sli(k) =
t∑

k=1

s̃li(k)− 1.

Proof. For situation (i) in Theorem 2, we use to to denote the specific time when vli(to) =
min {vli(t)|sli(t) = 1} ∧ sli(to) = 1. ∀t, as we optimize SNNs layer by layer, we have the fol-
lowing equation:

ml
i(t) = vli(0) +

t∑
k=1

I li(k)−
t−1∑
k=1

sli(k)θ
l, (S5)

m̃l
i(t) = ṽli(0) +

t∑
k=1

I li(k)−
t−1∑
k=1

s̃li(k)θ
l. (S6)

As vli(0) > ṽli(0) and we use the same input
t∑

k=1

I li(k) before and after optimization, when

t−1∑
k=1

sli(k)θ
l =

t−1∑
k=1

s̃li(k)θ
l, we will have ml

i(t) > m̃l
i(t) and further derive sli(t) ⩾ s̃li(t), which

means that ∀t,
t∑

k=1

sli(k)θ
l ⩾

t∑
k=1

s̃li(k)θ
l.
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If ∃t′ ∈ [1, to),
t′∑

k=1

sli(k) =
t′∑

k=1

s̃li(k) + 1, then we have already found a qualified time t′. If

to−1∑
k=1

sli(k) =
to−1∑
k=1

s̃li(k), we will have:

ml
i(to)− m̃l

i(to) = vli(0)− ṽli(0)
= max

(
θl,min {vli(t)|sli(t) = 1}+ ϵ

)
= max

(
θl, vli(to) + ϵ

)
. (S7)

As ml
i(to) = vli(to) + θl, we will further have:

m̃l
i(to) = ml

i(to)−max
(
θl, vli(to) + ϵ

)
⩽ ml

i(to)− vli(to)− ϵ
< θl. (S8)

From the above equation, we can derive m̃l
i(to) < θl and sli(to) = 1, s̃li(to) = 0, then we will have

to∑
k=1

sli(k) =
to∑

k=1

s̃li(k) + 1, which means that to is a qualified time.

For situation (ii) in Theorem 2, we use to to denote the specific time when vli(to) =

max {vli(t)|sli(t) = 0} ∧ sli(to) = 0. Similarly, we will derive ∀t,
t∑

k=1

sli(k)θ
l ⩽

t∑
k=1

s̃li(k)θ
l

according to equation S5-equation S6.

If ∃t′ ∈ [1, to),
t′∑

k=1

sli(k) =
t′∑

k=1

s̃li(k) − 1, then we have already found a qualified time t′. If

to−1∑
k=1

sli(k) =
to−1∑
k=1

s̃li(k), we will have:

m̃l
i(to)−ml

i(to) = ṽli(0)− vli(0)
= max

(
θl, θl + ϵ−max {vli(t)|sli(t) = 0}

)
= max

(
θl, θl + ϵ− vli(to)

)
. (S9)

As ml
i(to) = vli(to), we will further have:

m̃l
i(to) = ml

i(to) + max
(
θl, θl + ϵ− vli(to)

)
⩾ ml

i(to) + θl + ϵ− vli(to)
> θl. (S10)

From the above equation, we can derive m̃l
i(to) > θl and sli(to) = 0, s̃li(to) = 1, then we will have

to∑
k=1

sli(k) =
to∑

k=1

s̃li(k)− 1, which means that to is a qualified time.

Now we will further prove Theorem 2.

Proof. Proof of (i). If θl > min {vli(t)|sli(t) = 1}+ ϵ, ṽli(0) = vli(0)− θl. According to Lemma 1,

∃ts,
ts∑

k=1

sli(k) =
ts∑

k=1

s̃li(k)+1, then we will haveml
i(ts+1) = m̃l

i(ts+1) by combining equation S5

and equation S6, which means that
T∑

k=ts+1

sli(k) =
T∑

k=ts+1

s̃li(k) in the remaining time cycle. As a

result, we can have
T∑

k=1

sli(k) =
T∑

k=1

s̃li(k) + 1.
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If θl < min {vli(t)|sli(t) = 1}+ϵ, ṽli(0) = vli(0)−min {vli(t)|sli(t) = 1}−ϵ. According to Lemma

1, ∃ts,
ts∑

k=1

sli(k) =
ts∑

k=1

s̃li(k)+1, then we will have ml
i(ts+1) = m̃l

i(ts+1)+min {vli(t)|sli(t) =

1}+ ϵ− θl, which means that ml
i(ts + 1) > m̃l

i(ts + 1).

For ml
i, if we set t′ as the first spike firing time after ts, which means that ml

i(t
′) = vli(t

′) + θl

and
t′−1∑
k=1

sli(k) =
t′−1∑
k=1

s̃li(k) + 1, then we will have m̃l
i(t

′) = ml
i(t

′) − min {vli(t)|sli(t) = 1} −

ϵ + θl = vli(t
′) − min {vli(t)|sli(t) = 1} − ϵ + 2θl > θl. which means that sli(t

′) = s̃li(t
′) =

1,
t′∑

k=1

sli(k) =
t′∑

k=1

s̃li(k)+1. If we continue to use the above derivation process, we can finally have

T∑
k=1

sli(k) =
T∑

k=1

s̃li(k) + 1.

Proof of (ii). If θl > θl + ϵ−max {vli(t)|sli(t) = 0}, ṽli(0) = vli(0) + θl. According to Lemma 1,

∃ts,
ts∑

k=1

sli(k) =
ts∑

k=1

s̃li(k)−1, then we will haveml
i(ts+1) = m̃l

i(ts+1) by combining equation S5

and equation S6, which means that
T∑

k=ts+1

sli(k) =
T∑

k=ts+1

s̃li(k) in the remaining time cycle. As a

result, we can have
T∑

k=1

sli(k) =
T∑

k=1

s̃li(k)− 1.

If θl < θl+ ϵ−max {vli(t)|sli(t) = 0}, ṽli(0) = vli(0)+θ
l+ ϵ−max {vli(t)|sli(t) = 0}. According

to Lemma 1, ∃ts,
ts∑

k=1

sli(k) =
ts∑

k=1

s̃li(k) − 1, then we will have ml
i(ts + 1) = m̃l

i(ts + 1) − ϵ +

max {vli(t)|sli(t) = 0}, which means that ml
i(ts + 1) < m̃l

i(ts + 1).

For m̃l
i, if we set t′ as the first spike firing time after ts, which means that m̃l

i(t
′) = ṽli(t

′) + θl

and
t′−1∑
k=1

sli(k) =
t′−1∑
k=1

s̃li(k) − 1. Similar to situation (i), we need to prove that sli(t
′) = s̃li(t

′) = 1.

However, it is not easy to make a direct proof. Therefore, we attempt to prove its inverse and negative

thesis : when t′ > ts ∧
t′−1∑
k=1

sli(k) =
t′−1∑
k=1

s̃li(k)− 1, if sli(t
′) = 0, then we can have s̃li(t

′) = 0.

Under this condition, we can deriveml
i(t

′) = vli(t
′)∧ml

i(t
′) = m̃l

i(t
′)−ϵ+max {vli(t)|sli(t) = 0},

then we will have m̃l
i(t

′) = vli(t
′)+ϵ−max {vli(t)|sli(t) = 0}. As max {vli(t)|sli(t) = 0} ⩾ vli(t

′),
m̃l

i(t
′) ⩽ ϵ < θl, which means that s̃li(t

′) = 0.

Therefore, if we set t′ as the first spike firing time for m̃l
i after ts, we can prove that sli(t

′) = s̃li(t
′) =

1, which means that
t′∑

k=1

sli(k) =
t′∑

k=1

s̃li(k)− 1. If we continue to use the above derivation process,

we can finally have
T∑

k=1

sli(k) =
T∑

k=1

s̃li(k)− 1.

A.3 EXPERIMENTAL RESULTS ON CIFAR-10 DATASET

Tab. S1 reports the results on CIFAR-10 dataset. For VGG-16, the accuracy of our proposed method
is 95.46% with 4 time-step (ρ = 4), whereas the accuracies of OPI and QCFS are 90.96% and
94.95% with 8 time-step, respectively. For ResNet-18, we achieve 95.46% with 4 time-steps (ρ = 4),
whereas the corresponding performance of OPI and QCFS are 75.44% and 95.04%. For ResNet-20,
our method reaches 91.68% with 4 time-steps (ρ = 4), which is 2.13% higher than QCFS (89.55%,
T=8) and 25.44% higher than OPI (66.24%, T=8).
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Table S1: Comparison with other ANN-SNN conversion methods on CIFAR-10 dataset

Method ANN Architecture T=1 T=2 T=4 T=8 T=16 T=32
SNM 94.09%

VGG-16

- - - - - 93.43%
SNNC-AP 95.72% - - - - - 93.71%

OPI 94.57% - - - 90.96% 93.38% 94.20%
QCFS 95.52% - 91.18% 93.96% 94.95% 95.40% 95.54%
Ours 95.51% 94.90% 95.36% 95.46% 95.51% 95.57% 95.61%
SNM 95.39%

ResNet-18

- - - - - 94.03%
SNNC-AP 95.46% - - - - - 94.78%

OPI 96.04% - - - 75.44% 90.43% 94.82%
QCFS 95.64% - 91.75% 93.83% 95.04% 95.56% 95.67%
Ours 95.64% 95.25% 95.45% 95.46% 95.66% 95.68% 95.68%
OPI 92.74%

ResNet-20
- - - 66.24% 87.22% 91.88%

QCFS 91.77% - 73.20% 83.75% 89.55% 91.62% 92.24%
Ours 91.77% 89.88% 91.26% 91.68% 91.86% 92.20% 92.16%

A.4 ELIMINATING OFFSET SPIKE THROUGH ITERATIVE OPTIMIZATION

In Sections 4.4 and 5.4, we have pointed out the iterative property of our proposed method. Here we
will make a discussion in detail. Firstly, we can infer the specific value of ψl based on the residual
membrane potential when the corresponding input current belongs to a specific interval, which is
illustrated in the following theorem.

Theorem 3. Supposing that an ANN with QCFS activation function (equation 7) is converted to
an SNN with L = T, λl = θl,vl(0) = θl/2, and the inputs to the l-th layer of ANN and SNN are
the same, that is, al−1 = ϕl−1(T ). Then for any i-th element of the l-th layer, we will have the
following conclusions:

If
T∑

t=1
I li(t) ∈ [−θl/2, θlT + θl/2), when vli(T )/θ

l ∈ [k, k + 1), we will have ψl
i = aliT/θ

l −
T∑

t=1
sli(t) = k, where k ∈ Z.

Proof. As the preconditions of Theorem 3 are same as the preconditions of equation S1 and equa-
tion S2, by combining equation S1 and equation S2, we will have:

aliT/θ
l −

T∑
t=1

sli(t) =


T∑

t=1
I li(t)

θl
+

1

2

− T

θl
(

T∑
t=1

I li(t)

T
− vli(T )− θl/2

T
)

= vli(T )/θ
l +

⌊
T∑

t=1

I li(t)/θ
l + 1/2

⌋
−

(
T∑

t=1

I li(t)/θ
l + 1/2

)
. (S11)

As−1 <
⌊

T∑
t=1

I li(t)/θ
l + 1/2

⌋
−
(

T∑
t=1

I li(t)/θ
l + 1/2

)
⩽ 0, when vli(T )/θ

l ∈ [k, k + 1), k−1 <

aliT/θ
l −

T∑
t=1

sli(t) < k + 1. Considering that aliT/θ
l −

T∑
t=1

sli(t) ∈ Z, we have ψl
i = aliT/θ

l −
T∑

t=1
sli(t) = k.

In fact, even if the input current does not belong to the specific interval, from equation 7, we can

derive that when
T∑

t=1
I l(t) < −θl/2,al = 0 and when

T∑
t=1
I l(t) ⩾ θlT + θl/2,al = θl, then we

17



Published as a conference paper at ICLR 2023

Table S2: Input/Output Ratio for each layer of an SNN with VGG-16 on CIFAR-10 dataset

Condition L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15

Input Ratio 100% 99.99% 99.97% 99.90% 99.63% 99.24% 98.77% 97.84% 97.43% 97.28% 97.31% 97.52% 97.11% 97.88% 97.80%

Output Ratio 100% 99.99% 99.99% 99.99% 99.99% 99.99% 99.98% 99.95% 99.94% 99.90% 99.68% 99.68% 99.74% 99.85% 99.87%
Output Ratio when

Input is accurate 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table S3: Comparison with different initialization strategies

Method Dataset Method T=1 T=2 T=4 T=8 T=16
CIFAR-100 VGG-16 Random Intialization - - - 68.03% 74.74%
CIFAR-100 VGG-16 vl(0)← θl/2 - 63.79% 69.62% 73.96% 76.24%
CIFAR-100 VGG-16 vl(0)← vl(ρ), ρ = 4 73.38% 74.53% 75.09% 76.27% 76.62%
CIFAR-100 VGG-16 Ours(ρ = 4) 74.24% 76.03% 76.26% 76.52% 76.77%

can also directly determine the ψl according to the value of ϕl(T ). After we have already acquired
the value of ψl, we will adopt our optimization method for |ψl

i| times to eliminate the offset spike
on i-th element neuron of the l-th layer.

In Tab. 3, the Ratio after multiple iterations does not achieve 100%. We find that the non-zero
MSE and Ratio in Tab. 3 are caused by the rounding of the floating-point numbers. Specifically,
we carefully checked the Ratio, defined as the percentage of SNN input (output) equals ANN input
(output) in each layer, to prove this, and we list the results in Tab. S2.

We find that the Ratio of the output in layer 1 is 100%, but the Ratio of the input in layer 2 is close to
100%. Thus, the error must be caused by the floating point number precision problem in multiplica-
tion and division operations involved in the forward propagation between layer 1 and layer 2. Con-

sidering that SNNs will calculate
T∑

t=1
W lsl−1(t)/T but ANNs will calculateW l(

T∑
t=1
sl−1(t)/T ) as

the average input current for the l-th layer, these two corresponding inputs are not necessarily equal
due to the rounding of the floating point number.

We then conduct another experiment to prove that conversion errors can be reduced to zero if the
rounding of the floating point number is eliminated. We force the input of spiking neurons to be the
same as QCFS neurons in each layer and calculate the Ratio of the output. As shown in Tab. S2 (line
4), we find that the Ratio of the output in each SNN layer is 100%, which indicates that iterating the
proposed method can finally reduce conversion error to zero.

A.5 COMPARISON WITH DIFFERENT INITIALIZATION STRATEGIES

We make a comparison among different initialization strategies on CIFAR-100 with VGG-16 struc-
ture, including random initialization, setting vl(0) = θl/2 (Bu et al., 2022b), using the residual
membrane potential vl(ρ) of the first stage as the initial membrane potential and our proposed
method. As shown in Table S3, our proposed method outperforms other initialization strategies
under low time-steps, which proves the superiority of our method.

From Tab. S3 (line 4), we notice that using the residual membrane potential vl(ρ) as the initial mem-
brane potential also achieves considerable performance. Therefore, besides our proposed method,
we can also provide a lightweight optimization scheme: for each layer, we can consider directly
selecting the residual membrane potential vl(ρ) after ρ steps as the initial membrane potential for
our second stage. The idea is to make vl(T ) − vl(0) in equation 5 approach 0 to eliminate con-
version errors (offset spike). Tab. S4 reports further results on the ImageNet dataset. Although the
performance of our lightweight optimization scheme is weaker than our best solution, it is still much
better than the current SOTA methods. Under the condition of using the lightweight scheme, we can
avoid the extra calculation of the optimal shifting distance. We compare the running time among
QCFS, our lightweight scheme, and our shifting method on CIFAR-100 with VGG-16 structure and
16 time-steps. The corresponding running time is 101s, 101s, and 134s, respectively.
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Table S4: Comparison with the state-of-the-art ANN-SNN conversion methods

Dataset Architecture Method T=1 T=2 T=4 T=8 T=16

ImageNet

VGG-16

OPI - - - 6.25% 36.02%
QCFS - - - 19.12% 50.97%

lightweight(ours) 62.27% 69.69% 72.50% 73.39% 74.04%
shifting(ours) 63.84% 70.59% 72.94% 73.82% 74.09%

ResNet-34
QCFS - - - 35.06% 59.35%

lightweight(ours) 69.04% 69.63% 69.80% 69.77% 70.97%
shifting(ours) 69.11% 72.66% 73.81% 74.17% 74.14%

A.6 PSEUDO-CODE FOR OVERALL ALGORITHM FLOW

Algorithm 1 Algorithm for ANN-SNN conversion.

Require: The quantity of time-steps to calculate residual membrane potential ρ; The quantity of
time-steps to test dataset T ; The iteration number of the optimization strategy ItNum; The
corresponding input for SNN layer l datal; The shifting variable mentioned in Theorem 2 ϵ;
Pretrained QCFS ANN model fANN(W , λ); Dataset D.

Ensure: SNN model fSNN(W , θ,v, s).
1: # Convert ANN to SNN
2: for l = 1 to fANN.layers do
3: fSNN.θ

l = fANN.λ
l

4: fSNN.v
l(0) = 1

2fSNN.θ
l

5: fSNN.W
l = fANN.W

l

6: end for
7: # Eliminate offset spike
8: for (Image, label) in D do
9: for t = 1 to T do

10: data1(t) = Image
11: end for
12: for l = 1 to fSNN.layers do
13: for epoch = 1 to ItNum do
14: # Acquire the residual membrane potential
15: for t = 1 to ρ do
16: fSNN.s

l((epoch− 1)× ρ+ t) = f lSNN(datal(t))
17: end for
18: # Optimize the initial membrane potential with the optimal shifting distance
19: if Need to shift the initial membrane potential up according to Theorem 3 then
20: fSNN.v

l(epoch × ρ) = fSNN.v
l((epoch− 1) × ρ) + max(θl, θl + ϵ −

max{fSNN.v
l(t)|fSNN.s

l(t) = 0, t ∈ [(epoch− 1)× ρ+ 1, epoch× ρ]})
21: end if
22: if Need to shift the initial membrane potential down according to Theorem 3 then
23: fSNN.v

l(epoch × ρ) = fSNN.v
l((epoch− 1) × ρ) − max(θl, ϵ +

min{fSNN.v
l(t)|fSNN.s

l(t) = 1, t ∈ [(epoch− 1)× ρ+ 1, epoch× ρ]})
24: end if
25: end for
26: for t = 1 to T do
27: fSNN.s

l(ItNum× ρ+ t) = f lSNN(datal(t))

28: datal+1(t) = fSNN.W
l(fSNN.s

l(ItNum× ρ+ t)fSNN.θ
l)

29: end for
30: end for
31: end for
32: return fSNN(W , θ,v, s)
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