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Abstract

We introduce a novel pooling technique which borrows from classical results
in graph theory that is non-parametric and generalizes well to graphs of differ-
ent nature and connectivity pattern. Our pooling method, named KPLEXPOOL,
builds on the concepts of graph covers and k-plexes, i.e. pseudo-cliques where
each node can miss up to k links. The experimental evaluation on molecular and
social graph classification shows that KPLEXPOOL achieves state-of-the-art perfor-
mances, supporting the intuition that well-founded graph-theoretic approaches can
be effectively integrated in learning models for graphs.

1 Introduction and Related Works

Graph neural networks allow for the adaptive processing of topology-varying structures representing
complex data which comprises atomic information entities (the nodes) and their relationships (the
edges). The neural processing of graphs typically leverages message passing between neighboring
nodes [2] to collect and exchange information on the context of nodes. Such process is made effective
and efficient, also on cyclic structures, by feedforward neural layers with node-level weight-sharing,
an approach popularized under the term graph convolutions [14], but previously known as contextual
structure processing [18, 1]. Graph pooling methods provide mechanisms for structure reduction
that are intended to ease the diffusion of such a context between nodes farther in the graph. These
methods realize structure reduction layers that are interleaved between graph convolutions to provide
a multi-resolution view of the input graph. This is intended to extract coarser and more abstract
representations of the graph as we go deeper in the network. The definition of a robust, general, and
efficient graph pooling mechanism is made difficult by the irregular nature of the data and by the lack
of a reference ordering of nodes between samples. Approaches in literature are addressing the problem
from a (more or less explicit) community discovery perspective by considering node connectivity
patterns (topological approaches) [22, 17] or by aggregating the nodes based on their similarity in the
neural embedding space (adaptive approaches) [28, 15, 3]. Our work proposes a novel link between
pooling operators and two consolidated concepts in graph theory and combinatorial algorithms,
namely, k-plexes and graph covers. The former provides a flexible formalization for a community of
nodes as a densely interconnected and cohesive subgraph, which relaxes the definition of a clique
by allowing nodes to miss up to k links each. The latter relates to a soft-partition of nodes whose
union covers all nodes on the original graph. We argue that both concepts are necessary to realize an
effective and general graph pooling mechanism as they permit to summarize the overall community
structure by taking a small but meaningful set of highly connected components, represented by the
k-plexes. We introduce KPLEXPOOL, a novel pooling method using only topological graph features,
which is not parameterized nor its outcomes depend on the specific predictive task. We show how
KPLEXPOOL can be effectively integrated into deep graph networks, with excellent performances
that generalize well to structures of different nature and topology. Our contribution is not just a
straightforward application of k-plexes to deep learning for graphs. Rather, KPLEXPOOL is the result
of the careful design and integration of different graph enumeration and simplification mechanisms
specifically crafted to obtain a hierarchical structure coarsening algorithm well suited to promote
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effective context diffusion in neural message passing. This goal is quite challenging as, for instance,
a previous attempt by [16] clearly shows that the straightforward application of clique discovery
does not yield an effective graph pooling method. We hope that our work can further stimulate the
community interests at the cross-roads between graph algorithmics and machine learning, as for the
Weisfeiler-Lehman graph kernel case [21]. Overall, our contribution is novel in: i) the use of k-plex
communities to define pooling mechanisms in neural processing systems; ii) the definition of the
notion of k-plex cover; iii) the definition of an efficient algorithm to implement the concepts above.

2 K-Plex Cover Graph Pooling

Preliminaries Given an undirected graph G, let V = V (G) be its node set and E = E(G) be its
edge set, where v(G) = |V | = n and e(G) = |E| = m are, respectively, the number of nodes and
edges in G. Given an edge e = {u, v}, nodes u and v are said to be adjacent or neighboring each
other. The neighborhood N(v) of v is the set of nodes adjacent to it, and the degree d(v) of v is
defined as the number of its neighbors, i.e. |N(v)|. An attributed graph is a tuple (G,φ, ψ) where
φ : V → RhV and ψ : V × V → RhE are functions that assign a vector of features to each node and
to each edge, respectively of size hV and hE . If e /∈ E, then ψ(e) = 0.

A k-plex is a subset of nodes S ⊆ V such that each node in S has at least |S| − k adjacent nodes in
S: for all v ∈ S, we have |N(v) ∩ S| ≥ |S| − k. This definition is quite flexible as for k = 1 we get
the classical clique and for larger values of k we obtain a relaxed and broader family of (possibly
larger) subgraphs of G. A k-plex cover of G is a family of subsets S of V such that each set S ∈ S is
a k-plex and their union is ∪S∈SS = V .

Graph pooling with k-plexes KPLEXPOOL computes a k-plex cover S =
{
S1, . . . , Sc

}
of the

input graph (G,φ, ψ), for a given k, and returns a coarsened graph (G′, φ′, ψ′), such that

V ′ = V (G′) =
{
v′1, . . . , v

′
c

}
, and E′ = E(G′) =

{{
v′i, v

′
j

} ∣∣ E(G[Si, Sj ]
)
6= ∅
}
,

where E
(
G[Si, Sj ]

)
= E(G)∩ (Si×Sj). Node v′i represents the coarsened version of Si, and edge

{v′i, v′j
}

exists iff there is at least one edge in G linking a node of Si with a node of Sj . The feature
functions φ′ : V ′ → RhV and ψ′ : V ′ × V ′ → RhE aggregate, respectively, features belonging to
the same k-plex Si and features of edges linking two different Si and Sj . In other words, they are
defined in such a way to provide a suitable relabeling for nodes and edges in the coarsened graph:

φ′(v′i) = β
({
φ(v)

∣∣ v ∈ Si

})
, and ψ′

({
v′i, v

′
j

})
= γ

({
ψ(e)

∣∣ e ∈ E(G[Si, Sj ]
)})

,

where β and γ are arbitrary aggregation functions defined over multisets of feature vectors [26].
Differently from other partitioning-based graph coarsening methods [7, 19, 17, 24], in our approach a
node may belong to multiple k-plexes. This is also a key difference between CLIQUEPOOL [16] and
KPLEXPOOL with k = 1 (i.e., performing a clique cover), where the former model forces a partition
between nodes potentially destroying structural relationships in the communities.

k-Plex cover algorithm We propose an algorithm, whose pseudocode is shown in Algorithms 1
and 2, that finds a cover containing large k-plexes that have small intersection. The rationale for this
choice is driven by the sought-after effect on graph pooling mechanisms in graph neural networks.
On one hand, we seek to condense into a single community-node those neighboring nodes which are
likely to share the same context and, hence, very similar embeddings. On the other hand, we would
like the pooled graph to preserve diversity for nodes belonging to different communities, i.e. avoiding
trivial aggregations which would induce heavy connectivity between the communities. Our algorithm
is inspired to the clique covering framework in [5, 6], and leverages on heuristics that specifies the
order on which nodes are considered for k-plex inclusion. Algorithm 1 receives in input this order
by means of two priority functions f, g on V that are defined to provide large k-plexes with small
pair-wise intersections. In practice, we fixed f, g to prioritise nodes with lower degree (for f ) and
more neighbors in the k-plex (for g).

Algorithm 1 begins by iterating over the available nodes in the candidate set U , which is initialized
with the whole set of nodes of the input graph. At each iteration, it selects the next candidate v
by extracting the node in U with higher priority f(v). The node v will be then used as a starting
node for retrieving the next k-plex S ⊆ V by Algorithm 2 (S will eventually include v). The
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Algorithm 1 KPLEXCOVER

input A graph G, an integer k ≥ 1, and two
priority functions f and g.

output A k-plex cover S of G.
1: S ← ∅
2: U ← V (G)
3: while U 6= ∅ do
4: v ← argmaxu∈U f(u)
5: S ← FINDKPLEX(G, k, g, v)
6: S ← S ∪

{
S
}
; U ← U \ S

7: Suitably update priority f .

Algorithm 2 FINDKPLEX

input A graph G, an integer k ≥ 1, a priority function g, and
a pivot node v.

output A k-plex S, s.t. v ∈ S.
1: S ← {v}; C ← N(v)
2: while C 6= ∅ do
3: u← argmaxw∈C g(w)
4: S ← S ∪ {u}; C ← C \ {u}
5: for w ∈ S do
6: if |S \N(w)| = k then C ← C ∩N(w)
7: for w ∈ C do
8: if |S \N(w)| = k then C ← C \ {w}
9: for w ∈ N(u) do

10: if |S \N(w)| < k then C ← C ∪ {w}
11: Suitably update priority g.

elements of S will then be removed from the set U of candidates, and S will be included in the output
cover S. Note that the nodes in the k-plexes are removed from U but not from the graph, hence a
successive execution of Algorithm 2 may contain previously removed nodes. The algorithm stops
when eventually all the nodes are removed from U , and then returns cover S.

Algorithm 2, instead, constructs a k-plex S starting from a given node v, which is the only element
available at startup. It initializes a candidate set C of nodes that could be part of the k-plex, this time
relying on N(v). Again, Algorithm 2 iterates over the nodes in C following the ordering defined by
the priority g, and adds them to S. The main loop has the following invariants

∀u ∈ S : |S \N(u)| ≤ k , (1)
∀u ∈ S : |S \N(u)| = k =⇒ C \N(u) = ∅ (2)

where Equation (1) states that every node u in S needs to have at least |S| − k adjacent nodes in S
and Equation (2) states that, when u has exactly |S| − k adjacent nodes in S, we cannot have nodes
in C that are not adjacent to u (as it would break Equation (1) if selected). As a result, any node
from C can be added to S. Both invariants are satisfied at the first iteration as all the candidates in
C = N(v) are adjacent to v, which is the only element in S. At each iteration, Algorithm 2 preserves
Equation (1) by selecting a node u from C according to priority g. It needs to preserve Equation (2)
as S changes because of the addition of u. The first two for loops remove the nodes from C that no
longer can be added to S. The third loop adds to C the nodes adjacent to u which can be added to S.
After that, g is updated.

Computational cost It can be easily shown that Algorithm 2 takes O(m) time, since we can
efficiently store and update g with standard data structures. Indeed, as each node v is added to
S or C and removed from C at most once, and each update costs O(d(v)), the amortized cost is
O(
∑

v d(v)) = O(m) time. The time cost of Algorithm 1 is bounded by O(mn), as it performs
O(n) updates of S, U , and f , and O(n) calls to Algorithm 2, which requires O(m) time.

3 Experiments and Discussion

Experimental setting We tested KPLEXPOOL against related methods from literature on four
molecular graph datasets, namely DD [8], NCI-1 [23], ENZYMES [20], and PROTEINS [4], and
five social network datasets, COLLAB, IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, and
REDDIT-MULTI-5K [27]. All datasets have been retrieved from the TU-Dortmund collection [13].

For fairness, each pooling method has been tested by plugging it into the same standardized archi-
tecture (BASELINE), comprising ` ∈ {2, 3} convolutional blocks, followed by two dense layers, the
latter interleaved by dropout with probability 0.3. Every convolutional block is formed by two GNN
layers (GCN [14] or GRAPHSAGE [12]) with Jumping Knowledge [25, CONCAT variant] followed by
a dense layer. After every convolutional block we have a global sum-pooling, and the concatenation
of their resulting vector is batch-normalized and fed to the final dense block. Every layer, GNN or
dense, has h ∈ {64, 128} units and a ReLU activation function [11]. For every other model, a pooling
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Table 1: Test classification accuracy on chemical benchmarks (mean± std) and their average ranks.
Bold highlights the best performing model. OOR stands for out of resources (results in italic are
reported from [9] in similar but not fully equivalent conditions).

DD ENZYMES NCI-1 PROTEINS Avg. Rank

BASELINE 74.79± 3.08 43.00± 10.82 78.08± 2.38 71.61± 5.35 3.50

GRACLUS 77.42± 3.45 42.67± 7.82 78.06± 2.39 74.12± 3.36 2.75
TOPKPOOL 73.35± 4.29 39.17± 9.79 74.09± 7.29 74.12± 4.05 5.00
SAGPOOL 74.75± 3.10 37.67± 10.23 78.01± 1.68 73.31± 4.54 5.00
DIFFPOOL OOR (74 .96 ± 3 .5 ) 46.00± 9.17 76.76± 2.37 75.02± 4.14 2.75

KPLEXPOOL 77.76± 2.92 39.67± 7.52 79.17± 1.73 75.11± 2.80 1.75

Table 2: Test classification accuracy on social network benchmarks (mean± std) and their average
ranks. Bold highlights the best performing model. OOR stands for out of resources (results in italic
are reported from [9] in similar but not fully equivalent conditions).

COLLAB IMDB-B IMDB-M REDDIT-B REDDIT-5K Avg. Rank

BASELINE 74.44± 2.55 69.20± 6.92 47.20± 4.27 84.85± 6.70 51.71± 3.12 2.40

GRACLUS 72.80± 1.10 68.70± 4.45 47.20± 2.93 86.85± 2.84 53.77± 1.29 2.80
TOPKPOOL 73.30± 2.96 68.20± 7.81 46.93± 3.03 78.60± 4.30 50.33± 2.84 4.80
SAGPOOL 73.40± 2.47 65.40± 6.28 46.33± 3.68 80.15± 7.49 49.79± 2.63 5.20
DIFFPOOL 70.92± 2.95 68.80± 8.04 47.07± 1.73 OOR (89 .08 ± 1 .6 ) OOR (53 .78 ± 1 .4 ) 2.80

KPLEXPOOL 76.20± 2.08 72.00± 4.78 46.60± 4.08 86.45± 3.50 50.65± 3.41 2.80

layer is placed after the first ` − 1 convolutional blocks and its output feed to the next block. For
KPLEXPOOL we set k ∈ {1, 2, 4, 8}, while we used r ∈ {1/4, 1/2, 3/4} as node-reduction factor
for TOPK-, SAG-, and DIFFPOOL. For KPLEXPOOL and GRACLUS we used both sum and max
(concatenated) as node aggregation (β) and sum for edge aggregation (γ). All models have been
implemented using PyG [10]. Our experimental approach followed the standardized reproducible
setting in [9] (stratified 10-fold with an inner grid-search on a 10% validation split per fold).

Discussion Tables 1 and 2 show the mean accuracy and standard deviation on test data (outer
fold). On chemical datasets, KPLEXPOOL yields competitive results on all datasets, with higher
performances than other related methods on all benchmarks but ENZYMES. On social benchmarks,
KPLEXPOOL performs better than parametric pooling models on all datasets, when considering the
same experimental conditions. DIFFPOOL is out-of-resources on REDDIT data, but KPLEXPOOL
is still competitive also with respect to DIFFPOOL results from [9]. On REDDIT-5K, only the
topological pooling of GRACLUS yields to higher accuracy. Its community-seeking bias seems
certainly very adequate for the processing of social graphs, where adaptive pooling methods do not
seem capable of leveraging their parameters to produce more informative graph reductions. Perhaps
surprisingly, KPLEXPOOL achieves excellent performances also on molecular data, where we would
have expected adaptive models to have an edge, confirming our initial intuition about the flexibility
and generality of k-plex cover communities. These results can be well appreciated in the last column
of Tables 1 and 2, where we report the average rank of each model separately on chemical and social
datasets. We also report that KPLEXPOOL has the best overall average rank at 2.33, followed by
GRACLUS on par with DIFFPOOL at 2.78.

KPLEXPOOL has state-of-the-art performances in 5 out of 9 graph classification benchmarks. KPLEX-
POOL is shown to be the best performing method, on average, when confronted with related pooling
mechanisms from literature. It does so through a fully topological approach that does not leverage task
information for community building. None of the related models, including the adaptive ones, seem
to have the same ability to cope effectively with structures of radically different nature (molecules and
social networks). Apart from predictive performance, KPLEXPOOL has a very practical advantage in
terms of computational cost, when compared to adaptive models such as DIFFPOOL. For instance, its
graph reduction can be pre-computed once for the whole dataset and re-used throughout the whole
model selection and validation phase, as it does not depend on adaptive node embedding. This aspect
is clear from the empirical results, in which DIFFPOOL is shown to fail to complete training within
the 2 weeks limit (or to exceed the available GPU memory) on datasets comprising larger graphs.
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