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Abstract
Catastrophic forgetting is a critical chanllenge for
incremental object detection (IOD). Most existing
methods treat the detector monolithically, rely-
ing on instance replay or knowledge distillation
without analyzing component-specific forgetting.
Through dissection of Faster R-CNN, we reveal
a key insight: Catastrophic forgetting is predomi-
nantly localized to the RoI Head classifier, while
regressors retain robustness across incremental
stages. This finding challenges conventional as-
sumptions, motivating us to develop a framework
termed NSGP-RePRE. Regional Prototype Re-
play (RePRE) mitigates classifier forgetting via
replay of two types of prototypes: coarse pro-
totypes represent class-wise semantic centers of
RoI features, while fine-grained prototypes model
intra-class variations. Null Space Gradient Pro-
jection (NSGP) is further introduced to eliminate
prototype-feature misalignment by updating the
feature extractor in directions orthogonal to sub-
space of old inputs via gradient projection, align-
ing RePRE with incremental learning dynamics.
Our simple yet effective design allows NSGP-
RePRE to achieve state-of-the-art performance on
the Pascal VOC and MS COCO datasets under
various settings. Our work not only advances IOD
methodology but also provide pivotal insights for
catastrophic forgetting mitigation in IOD. Code
is available at https://github.com/fanrena/NSGP-
RePRE .

1. Introduction
As one of the most fundamental tasks in computer vision,
significant progress has been made in the field of object
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detection (Ren et al., 2016; Khanam & Hussain, 2024; Li
et al., 2023). Traditional methods mostly solve the object
detection task under a static closed-world setting, where
all to-be-detected object classes and annotations are fully
available before training. Nevertheless, real-world applica-
tions frequently encompass dynamic environments where
new object categories appear progressively over time. De-
tectors should possess the capability to adjust to novel tasks
through sequential learning, while simultaneously preserv-
ing the knowledge gained from detecting previous classes.

Conventional object detectors (Ren et al., 2016; Carion et al.,
2020; Li et al., 2020) often suffer from catastrophic forget-
ting during incremental learning, which significantly ham-
pers their performance in previously learned classes when
new tasks are introduced. Unlike incremental learning in
classification tasks, incremental object detection (IOD) is
more challenging than classification as it requires the si-
multaneous classification and location of a set of objects in
the image. To obtain an incremental object detector with
excellent performance, many research efforts have been de-
voted by introducing knowledge distillation or data replay
techniques (Cermelli et al., 2022; Yuyang et al., 2023; Mo
et al., 2024) into popular detection frameworks.

Current research in the IOD field usually treats the detector
as a whole, and few works pay attention to whether catas-
trophic forgetting mainly comes from a certain component
or whether all modules contribute roughly the same. Demys-
tifying catastrophic forgetting in a sophisticated detector is
necessary and helpful not only to establish a bridge between
incremental learning in classification and object detection,
but also to provide principled guidance for designing sim-
pler and more effective IOD methods. In this study, we
chose the widely adopted two-stage Faster R-CNN (Ren
et al., 2016) detector as a pioneering research object.

Faster R-CNN is composed of a backbone, neck, region pro-
posal network (RPN) and region of interest head (RoI Head),
each of which is crucial to the detector’s performance. Our
primary focus is on the RPN and RoI Head, known for their
key roles in object detection. Through a systematic analy-
sis of its core components, we uncover several important
insights. 1) RPN’s recall ability remains consistent when
transitioning to new tasks. 2) RPN’s forgetting has an in-
significant impact on overall performance. 3) Forgetting
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mainly occurs in the RoI Head’s classifier, while the re-
gressor component efficiently retains its knowledge. These
findings challenge conventional assumptions and inspire us
to propose a novel simple yet effective IOD framework.

In this paper, we propose NSGP-RePRE, which is composed
of two components: Regional Prototype REplay (RePRE)
and Null Space Gradient Projection (NSGP). To address
catastrophic forgetting in the RoI Head classifier, RePRE
alleviates forgetting by replaying stored regional prototypes,
including coarse regional prototypes and fine-grained re-
gional prototypes of each class. Coarse prototypes act as
stable semantic centers, representing the core structure of
the RoI feature space. Fine-grained prototypes complement
these as a semantic augmentation by capturing intra-class di-
versity, ensuring a more holistic modeling of the feature dis-
tribution. By jointly leveraging these components, RePRE
strengthens the capacity of the RoI Head classifier to retain
learned knowledge across tasks while accommodating new
knowledge, significantly improving incremental learning
performance. To prevent toxic replay with misaligned pro-
totypes due to the drift of RoI features caused by updates to
the feature extractor, we introduce NSGP to manipulate the
gradient in the feature extractor. By projecting gradients into
the null space of previous examples, RoI feature distortion
is greatly minimized, ensuring prototype and RoI feature
alignment. Our approach achieves state-of-the-art results on
the PASCAL VOC and COCO datasets under various single
and multi-step settings.

Our main contributions are three-fold:

• We comprehensively studied the key components of
Faster R-CNN and identified RoI Head classifier as
the primary cause of catastrophic forgetting, providing
principled guidance for IOD method design.

• Based on our finding, we propose NSGP-RePRE to
alleviate forgetting of RoI Head classifier by Regional
Prototype Replay complemented with Null Space Gra-
dient Projection for RoI feature anti-drifting.

• Our method not only achieves state-of-the-art perfor-
mance across multiple datasets under various single
and multi-step settings, but also provides pivotal in-
sights for mitigating forgetting in IOD.

2. Related Work
Incremental learning, or continual learning, progressively
learn new knowledge while retaining previous information.
It is categorized into task-incremental, class-incremental,
and domain-incremental challenges. The most challenging
class-incremental learning is the primary focus of this paper.

2.1. Incremental Learning for Classification

Most influential incremental learning studies have focused
on classification tasks. Some regularization-based methods
enforce the stability of logits (Li & Hoiem, 2017; Zhang
et al., 2023; Yan et al., 2025) or intermediate features (Simon
et al., 2021) to preserve the learned knowledge, while others
apply restrictions on the weight of the model (Kirkpatrick
et al., 2017) or on gradients during optimization (Lopez-Paz
& Ranzato, 2017; Wang et al., 2021). Structure-based meth-
ods are dedicated to learning specific parameters for differ-
ent tasks, with a dynamically expanding architecture (Rusu
et al., 2016) or grouped parameters in a static model (Fer-
nando et al., 2017). For replay-based methods, they can be
divided into experience replay (Buzzega et al., 2020; Zhu
et al., 2021; Kong et al., 2023) and generative replay meth-
ods (Zhai et al., 2020; Kemker & Kanan, 2017), depending
on the examples stored in a buffer or generated with a model.
Recently, incremental learning based on foundation mod-
els such as CLIP (Radford et al., 2021) has also attracted
attention. Research works such as L2P (Wang et al., 2022),
O-LoRA (Wang et al., 2023a), and VPT-NSP2 (Lu et al.) at-
tempt to learn continuously based on the parameter-efficient
transfer learning technique (Zhou et al., 2022; Jia et al.,
2022; Xing et al., 2023; Zhang et al., 2025) have achieved
superior performance.

2.2. Incremental Learning for Object Detection

Incremental object detection presents unique challenges
compared with the classification task. IOD are required to
locate and classify the visual objects in images. It also faces
a distinctive missing annotation problem where potential
instances not belonging to the classes of the current learning
stage are labeled as background. Most existing IOD works
can be summarized into two categories. One is knowledge
distillation based methods (Mo et al., 2024; Cermelli et al.,
2022). BPF (Mo et al., 2024) bridges past and future with
pseudo-labeling and potential object estimation to align
models across stages, ensuring a consistent optimization
direction. MMA (Cermelli et al., 2022) consolidates the
background and all old classes into one entity to minimize
the conflict between optimization objects between previ-
ous and current tasks. The other is to preserve knowledge
through a replay of previous data stored in images (Liu et al.,
2023), instances (Yuyang et al., 2023), or features (Acharya
et al., 2020). ABR (Yuyang et al., 2023) replayed fore-
ground objects from previous tasks stored in a buffer to
reinforce the learned knowledge. RODEO (Acharya et al.,
2020) stored compressed representations in a fixed-capacity
memory buffer to incrementally perform object detection in
a streaming fashion. Unlike existing methods, we delve into
analyzing where the forgetting originated for the two-stage
incremental object detector. Then we tailor a method specif-
ically designed to combat the crux forgetting module, i.e.
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Figure 1: Recall-Objectness curve of RPN’s prediction. IoU threshold is set to 0.5. Blue: Mj has been trained with training
images of Di in earlier stages. Green: Mj is just fine-tuned on Di. Red: Mj has not seen the training set of Di before.
Gray: Mjoint is trained jointly on all training images of D.

RoI Head classifier, by replaying RoI features from previ-
ously seen tasks to preserve the classification performance.

3. Anatomy of Faster R-CNN
3.1. Preliminary

Problem Formulation of Incremental Object Detection.
In Incremental Object Detection, training is structured
across n sequential learning stages, with each stage in-
corporating a new set of classes to be detected. Let
C = {C1, C2, . . . , Ct, . . . , Cn} represent the entire class set
that the detector M incrementally acquires, with Ci∩Cj = ∅
for all i ̸= j. The dataset Dt = {Xt,Yt} comprises images
and annotations for the t-th learning stage. Each image in
Xt could feature multiple objects of various classes from C,
though only those in Ct are annotated. The main challenge
in IOD is to update the detector from Mt−1 to Mt using Dt

solely, without access to earlier datasets {D1, . . . ,Dt−1},
while preserving or enhancing the detector’s performance
on previously learned classes {C1, . . . , Ct−1}.

Faster R-CNN Architecture. Our study utilizes the two-
stage object detector Faster R-CNN, which involves four
primary components: a backbone network fb, a neck fn,
a Region Proposal Network (RPN) fRPN, and a Region of
Interest (RoI) Head fRoI. The backbone and neck modules
are responsible for feature extraction, and their combination
is represented as fnb = fn ◦ fb. The RPN generates object
proposal boxes accompanied by objectness scores, which
express the likelihood of each box containing a target object.
Following this, proposals with higher objectness scores P
are chosen for RoI feature extraction using RoI Align. The
RoI Head is divided into two branches: the classification
branch fcls and the regression branch fbbox. The obtained
RoI features P are fed into these branches to classify and
adjust the positions of the bounding boxes.

3.2. Rationale for Anatomy

When adapting Faster R-CNN to sequential learning tasks,
catastrophic forgetting is the primary limitation. The central

question driving this work is: Which component predomi-
nantly leads to catastrophic forgetting, or do all components
have a contributing role? To systematically address this, we
decompose the ultimate question into three interconnected
sub-questions: 1. Can RPN retain its recall ability in incre-
mental learning? RPN functions as an initial object localizer
and its recall rate plays a critical role in the overall perfor-
mance of the detector. 2. How much does RPN’s forgetting
affect the final performance of the detector? RPN doesn’t
produce final predictions on classification nor localization,
it is crucial to investigate the actual impact caused by its
degradation. 3. Which branch of the RoI Head predomi-
nantly accounts for forgetting? The RoI Head is responsible
for the ultimate prediction of the detector, its dual role in
classification and modifying the bounding box potentially
makes it sensitive to task-specific changes. To answer these
questions, we conduct a series of analytical experiments in
the following section from a statistical perspective, as the
detector learns sequentially.

Our analytical experiments are conducted on the PASCAL
VOC dataset, starting with five classes and incrementally
adding five classes across three additional stages. We em-
ploy pseudo-labeling as a basic strategy to mitigate the
missing annotation issue and top 1,000 proposals are se-
lected to provide a sufficient number for our investigation.
In the following sections, we evaluate the RPN and RoI
Head within the detectors learned on all stages and a jointly
trained detector, i.e. M1 to M4 and Mjoint, on the test set
of each learning stage, i.e. Dtest

1 to Dtest
4 .

To clarify, we use various colors to depict the performance
of Model Mt on test set of Dtest

i across different training
stages. Green indicates Mt when it is just fine-tuned in
its corresponding stage with the training set of Di (t = i),
displaying peak performance on test set of Dtest

i . Blue
represents Mt that has encountered training set of Di in
earlier stages (t > i), demonstrating the phenomenon of
forgetting after multiple training stages. Red illustrates Mt

that has not been fed with training images of Di before
(t < i), highlighting the model’s generalization capability.
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Figure 2: Results of Mi on Di with different proposals. Pj

are produced by corresponding Mj .
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Figure 3: Results of Mi on various Di by using a fixed
set of proposals. “- -” indicates the classification results of
each proposal is designated by Model freshly trained on the
corresponding D. “—” indicates the predicted classification
results for the corresponding model in the x-axis.

3.3. Anatomy of Faster R-CNN

RPN’s recall ability remains consistent across sequen-
tial tasks. RPN allows the detector to generate possible
RoIs and deterioration in proposal quality will hamper the
detector’s final performance. It is essential to examine the
RPN’s recall rate from a statistical view, as it can reflect the
knowledge-preserving ability of RPN. We perform experi-
ments on the RPNs within the detectors learned on all the
four stages and the jointly learned detector, i.e. M1 to M4

and Mjoint, by using Recall-Objectness curves on all the
four test sets of each training stage Dtest

1 to Dtest
4 . Note that

the threshold of IoU between the proposals and GTs is set
to 0.5. As shown in Figure 1 (a), the blue curves represent
the recall ability of RPNs within M2 to M4 which have
been previously tuned on training set of D1. The green
curve shows the recall of M1, which has just been fine-
tuned on D1. It can be clearly seen that the blue curves
show a slight reduction compared to the green curve. As
the objectness score approaches 0, the recall rates of various
models improve to similar outcomes close to 100%. (Note
that only top 1,000 proposals are selected in our experi-
ments.) The slight reduction between the blue and green
curves highlights that the RPN experiences little forgetting
after multiple sequential learning stages. This trend is also
observed in Figure 1 (b) and (c).

RPN’s minimal forgetting negligibly affects overall per-
formance. To assess the actual impact of RPN’s forgetting
on the detector’s final performance, we adopt proposals gen-
erated from models of subsequent training stages (Mi+1

to Mn) to the current model on the current stage Mi, to
test the final performance of Mi. Pi denotes the propos-

als generated by Mi. As depicted in Figure 2 (a), M1 is
evaluated on test set of Dtest

1 with varying sets of propos-
als. P1 demonstrates the optimal performance of M1 since
P1 is generated with the RPN of M1, i.e. zero forgetting.
Although P2 to P4 exhibit some forgetting compared to
P1, the performance deterioration of M1 with P2 to P4 is
minimal, with only a 1.3% reduction in mAP observed on
D1, from P1 (77.4%) to P4 (76.1%). This minor decrease
suggests that RPN’s forgetting has minor impact on the de-
tector’s final performance. Consistent conclusion can be
obtained from Figure 2 (b) and (c).

The RoI Head classifier exhibits severe catastrophic for-
getting. As discussed previously, RPN contributes mini-
mally to the detector’s forgetting. To investigate the crux
of forgetting, we fixed the proposals Pi generated with Mi

and fed them into RoI Heads of detectors in subsequent
stages Mi+1 to Mn. By designating the classification re-
sults of each proposal with Mi’s results, we can isolate the
forgetting caused by the regression branch and the classi-
fication branch. As shown in Figure 3 (a), the dashed line
represents the mAP of models designated with the M1’s
classification results, while the solid line represents the clas-
sification results produced by the corresponding models
on the x-axis. In Figure 3 (a), the dashed line remains al-
most unchanged, suggesting the forgetting caused by the
regressor is minor. The solid line deteriorates rapidly as
more stages have been trained on the detector, indicating
that the classification head primarily causes the forgetting.
The same trend in Figure 3 (b) and (c) further confirms the
conclusion.

Interestingly, our findings also reveal that RPN effectively
generalizes to previously unseen classes as can be seen
from the red curves shown in Figure 2 and Figure 3. More
detailed analysis are presented in the appendix. We note that
the reason for minimal forgetting in regression and large
forgetting in classifier is unclear. We infer that it may be due
to the absence of task conflicts in the detector regression
branches, while it is severe in the classification task (Wang
et al., 2023b; Huang et al., 2024) for incremental learning.

3.4. Key Findings

Through statistical evaluation and systematic analysis, we
demonstrate three key findings:

• RPN Recall Stability: In sequential tasks, the stability
of the RPN recall ability is largely maintained.

• RPN’s Impact on Performance: RPN’s minimal forget-
ting has a negligible impact on overall performance.

• RoI Head Classifier Vulnerability: The RoI Head classi-
fier suffers severely from catastrophic forgetting, while
the regressor can efficiently retain its knowledge.
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Figure 4: The overall architecture of our NSGP-RePRE framework. This framework incorporates RePRE to mitigate
forgetting within the RoI Head’s classifier. NSGP is introduced to counteract the shifts induced by the evolving feature
extractor.

Our analysis reveals that Catastrophic forgetting in Faster
R-CNN stems predominantly from the instability of the RoI
Head’s classifier, rather than degradation in RPN’s recall
capability or the regression branch of RoI Head. Our analy-
ses demonstrate minimal forgetting in regression, building
a bridge between classical incremental classification and
two-stage incremental object detector. This offers funda-
mental insights for developing simpler and more efficient
IOD methods. Consequently, we present a straightforward
and effective approach to address forgetting in the RoI Head
classifier, thereby reducing forgetting in the detector.

4. Method
Overview of Framework. Earlier discussions have pin-
pointed that the crux of catastrophic forgetting in Faster
R-CNN mainly stems from the classification branch of the
RoI Head, establishing a bridge between incremental clas-
sification and incremental object detection. Based on our
previous analytical results, we propose a simple yet effec-
tive Regional Prototype Replay (RePRE) incorporated with
Null Space Gradient Projection (NSGP) framework termed
NSGP-RePRE specifically targeting the forgetting in RoI
Head classifier.

As depicted in Figure 4, NSGP-RePRE employs NSGP for
regulating the backbone and neck, while RePRE manages
the RoI Head. RePRE creates coarse regional prototypes
from RoI features of each class, along with fine-grained re-
gional prototypes to enhance semantic diversity. These pro-
totypes are replayed via the RoI Head’s classification branch.
Unlike previous works (Yuyang et al., 2023; Mo et al., 2024),
RePRE provides consistent guidance with minimal proto-
type storage per class to prevent forgetting specifically on
RoI Head classifier. Addressing the issue of prototype-
feature misalignment identified in prior research (Yu et al.,
2020; Gomez-Villa et al., 2025), NSGP is introduced to
restrict changes in RoI features, ensuring prototype’s align-
ment with the evolving RoI feature distributions.

4.1. RePRE

RePRE retains the previously learned classification knowl-
edge by replaying regional prototypes from the past. Specif-
ically, to obtain coarse regional prototypes for the RePRE
in the next training stage t + 1, we extract RoI features
Ot = {oc

i | i ∈ N, c ∈ N, 1 ≤ i ≤ nc, N̄t−1 ≤ c ≤ N̄t}
from the feature maps as

oc
i = RoIAlign(Pc

i , fnb(x
c
i )), (1)

where Pc
i are the proposals covering class c, xc

i is the image
containing objects of c and nc is the number of proposals
that cover object from class c, N̄t represents the total class
number of Cold = {C1, · · · , Ct}. The generation of Pc

i can
be expressed as

Pc
i = frpn(fnb(x

c
i )). (2)

Next, we compute and store a single prototype for each class
given by

µc =
1

nc

nc∑
i=1

oc
i . (3)

The resulting µc will be appended to Rt−1 = {µk | k ∈
N, 1 ≤ k ≤ N̄t−1} to form Rt, which stores prototypes
from past stages.

To capture the entire spectrum of useful information on the
distribution of RoI features. We introduce complementary
fine-grained regional prototypes chosen through a density-
aware prototype selection strategy. Specifically, we first cal-
culate the cosine similarity between RoI features extracted
via RoI Align:

sci,j =
oc
io

c
j

||oc
i ||||oc

j ||
, 1 ≤ i, j ≤ nc (4)

For each RoI feature , we define a hypersphere with ra-
dius r, centered at oc

j , that contains neighboring features
Sc
j = {oc

i | sci,j > r, 1 ≤ i ≤ nc}. The importance
of a hypersphere is quantified by its cardinality (i.e. the
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number of RoI features it contains). To ensure diversity
and avoid redundancy, we greedily select the top-K hy-
perspheres {Sc

j | 1 ≤ j ≤ K} in descending order of
importance. During selection, any candidate hypersphere
whose center lies within the radius r of a previously selected
(more important) hypersphere is excluded. The fine-grained
regional prototypes are computed by averaging all features
in their corresponding hypersphere:

µ′
c,j =

1

|Sc
j |

∑
o∈Sc

j

o, (5)

and these prototypes are added to the fine-grained prototype
buffer R′

t−1 = {µ′
k,j | k, j ∈ N, 1 ≤ k ≤ N̄t−1, 1 ≤ j ≤

K}.

To replay these prototypes, at stage t+ 1, a regional proto-
type µk is fed into the classification branch of the RoI Head
to predict the class probabilities as

ŷk = Softmax(fcls(µk)). (6)

The replay loss Lre is computed as

Lre = −
∑

yk∈Cold

yk log ŷk −
∑

yk∈Cold

K∑
i=1

yk log ŷ
′
k,i, (7)

where yk represents the ground-truth label associated with
the coarse prototype µk and fine-grained prototype µ′

k,i.
The overall loss function for the detector is then formulated
as:

L = Lcls + Lbbox + Lre, (8)

where Lcls and Lbbox correspond to the classification and
bounding box regression losses for the current stage t.

4.2. NSGP for RoI Features Anti-drifting

When using regional prototype replays that stabilize the RoI
Head, the continuously updating feature extractor may cause
the features of previous classes to drift. The drift results in
a misalignment between the stored prototypes and the RoI
features in the current training stage, which will hamper the
model to retain its knowledge. To reduce distortions in the
RoI feature space during learning new tasks, we introduce a
Null-Space Gradient Projection (NSGP) strategy to prevent
updating of the backbone and neck from interfering with the
features of previously seen tasks. RePRE and NSGP work
together to form an exquisite incremental object detector,
with RePRE managing the RoI Head and NSGP governing
the backbone and neck.

Denote the parameters of the Convolution/FC layer in the
backbone and neck as W, and the gradient G is calculated
by the backward pass. To ensure that updating based on
G will not change previous tasks, NSGP projects G into

the null space of the previous samples (Wang et al., 2021),
to obtain ∆W. This projection ensures that ∆W remains
orthogonal to the inputs of the old tasks X . Consequently,
the update can be formulated as

Wt+1 = Wt − α∆Wt, (9)

in the time step t, where α is learning rate. The orthogonality
condition between X and ∆Wt ensures

X (Wt − α∆Wt) = XWt (10)

is satisfied, effectively preventing drifts in the feature extrac-
tor’s updates. We adjusted the projection matrix in NSGP
to enhance its compatibility with Faster R-CNN. Additional
details can be found in the Appendix.

In general, the NSGP will control the G of the backbone
and neck, ensuring that they are projected into the null
space corresponding to input from previous examples. This
approach stabilizes the RoI features, thus improving not only
the classification accuracy but also the minimal forgetting
in regression.

5. Experiments
5.1. Experimental Settings

Datasets and Evaluation Metrics. Following the same
protocols as in previous works (Yuyang et al., 2023; Mo
et al., 2024), we evaluate our method on the PASCAL VOC
2007 (Everingham et al., 2010) and MS COCO 2017 (Lin
et al., 2014) datasets. PASCAL VOC 2007 contains 20
different classes, including 9,963 annotated images. MS
COCO 2017 dataset comprises 80 classes, with around 118k
images for training and 5,000 images for validation. The
mean average precision at the 0.5 IoU threshold (mAP@0.5)
is used as the primary evaluation metric for VOC dataset,
and the mean average precision ranging from 0.5 to 0.95 is
the main evaluation metric for the COCO dataset. For each
incremental setting (A-B), the first number A denotes the
number of classes in the first task, while the second number
B represents the number of classes in the subsequent tasks.

Implementation Details. Similar to previous
works (Yuyang et al., 2023; Mo et al., 2024), we
build our incremental Faster R-CNN (Ren et al., 2016) with
R50 (He et al., 2016). In our method, we incorporate a
pseudo-labeling strategy to solve the missing annotation
problem as in BPF (Mo et al., 2024). More implementation
details can be found in the appendix.

5.2. Quantitative Evaluation

Following previous works (Yuyang et al., 2023; Mo et al.,
2024), our method is evaluated on various settings includ-
ing single-step and multi-step increments. We compare
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Table 1: mAP@0.5 results on single incremental step on PASCAL VOC 2007. The best performance in each is presented
with bold, and the second best is presented with underline.

19-1 15-5 10-10 5-15
Method 1-19 20 1-20 Avg 1-15 16-20 1-20 Avg 1-10 11-20 1-20 Avg 1-5 5-15 1-20 Avg

Joint 76.4 76.4 76.4 76.4 78.3 70.7 76.4 74.5 76.9 76.0 76.4 76.4 73.6 77.4 76.4 75.5
Fine-tuning 12.0 62.8 14.5 37.4 14.2 59.2 25.4 36.7 9.5 62.5 36.0 36.0 6.9 63.1 49.1 35.0

ORE (Joseph et al., 2021a) 69.4 60.1 68.9 64.7 71.8 58.7 68.5 65.2 60.4 68.8 64.6 64.6 - - - -
OW-DETR (Gupta et al., 2022) 70.2 62.0 69.8 66.1 72.2 59.8 69.1 66.0 63.5 67.9 65.7 65.7 - - - -
ILOD-Meta (Joseph et al., 2021b) 70.9 57.6 70.2 64.2 71.7 55.9 67.8 63.8 68.4 64.3 66.3 66.3 - - - -
ABR (Yuyang et al., 2023) 71.0 69.7 70.9 70.4 73.0 65.1 71.0 69.1 71.2 72.8 72.0 72.0 64.7 71.0 69.4 67.9

FasterILOD (Ren et al., 2016) 68.9 61.1 68.5 65.0 71.6 56.9 67.9 64.3 69.8 54.5 62.1 62.1 62.0 37.1 43.3 49.6
PPAS (Zhou et al., 2020) 70.5 53.0 69.2 61.8 - - - - 63.5 60.0 61.8 61.8 - - - -
MVC (Yang et al., 2022) 70.2 60.6 69.7 65.4 69.4 57.9 66.5 63.7 66.2 66.0 66.1 66.1 - - - -
PROB (Zohar et al., 2023) 73.9 48.5 72.6 61.5 73.5 60.8 70.1 67.0 66.0 67.2 66.5 66.5 - - - -
PseudoRM (Yang et al., 2023) 72.9 67.3 72.6 70.1 73.4 60.9 70.3 66.9 69.1 68.6 68.9 68.9 - - - -
MMA (Cermelli et al., 2022) 71.1 63.4 70.7 67.2 73.0 60.5 69.9 66.7 69.3 63.9 66.6 66.6 66.8 57.2 59.6 62.0
BPF (Mo et al., 2024) 74.5 65.3 74.1 69.9 75.9 63.0 72.7 69.5 71.7 74.0 72.9 72.9 66.4 75.3 73.0 70.9

NSGP-RePRE 76.3 69.0 76.0 72.7 77.5 61.8 73.6 69.7 75.3 72.7 74.0 74.0 68.5 74.5 73.0 71.5

Table 2: mAP@0.5 results on multiple incremental steps on PASCAL VOC 2007. The best performance in each is presented
with bold, and the second best is presented with underline.

10-5(3tasks) 5-5(4tasks) 10-2(6tasks) 15-1(6tasks) 10-1(11tasks)
Method 1-10 11-20 1-20 1-5 6-20 1-20 1-10 11-20 1-20 1-15 16-20 1-20 1-10 11-20 1-20

Joint 76.9 76.0 76.4 73.6 77.4 76.4 76.9 76.0 76.4 78.3 70.7 76.4 76.9 76.0 76.4
Fine-tuning 5.3 30.6 18.0 0.5 18.3 13.8 3.8 13.6 8.7 0.0 10.5 5.3 0.0 5.1 2.6

ABR (Yuyang et al., 2023) 68.7 67.1 67.9 64.7 56.4 58.4 67.0 58.1 62.6 68.7 56.7 65.7 62.0 55.7 58.9

FasterILOD (Ren et al., 2016) 68.3 57.9 63.1 55.7 16.0 25.9 64.2 48.6 56.4 66.9 44.5 61.3 52.9 41.5 47.2
MMA (Cermelli et al., 2022) 66.7 61.8 64.2 62.3 31.2 38.9 65.0 53.1 59.1 68.3 54.3 64.1 59.2 48.3 53.8
BPF (Mo et al., 2024) 69.1 68.2 68.7 60.6 63.1 62.5 68.7 56.3 62.5 71.5 53.1 66.9 62.2 48.3 55.2

NSGP-RePRE 72.4 67.6 70.0 64.6 66.1 65.7 70.1 58.8 64.4 77.7 55.0 72.0 69.9 55.1 62.5

Table 3: mAP results on MS COCO 2017 at different IoU.
The best performance in each is presented with bold, and
the second best is presented with underline.

Method 40-40 70-10
AP AP50 AP75 AP AP50 AP75

Joint 36.7 57.8 39.8 36.7 57.8 39.8
Fine-tuning 19.0 31.2 20.4 5.6 8.6 6.2

ILOD-Meta (Joseph et al., 2021b) 23.8 40.5 24.4 - - -
ABR (Yuyang et al., 2023) 34.5 57.8 35.2 31.1 52.9 32.7

FasterILOD (Ren et al., 2016) 20.6 40.1 - 21.3 39.9 -
PseudoRM (Yang et al., 2023) 25.3 44.4 - - - -
MMA (Cermelli et al., 2022) 33.0 56.6 34.6 30.2 52.1 31.5
BPF (Mo et al., 2024) 34.4 54.3 37.3 36.2 56.8 38.9

NSGP-RePRE 35.4 55.3 38.6 36.5 56.0 39.8

our method against two baselines: Joint Training, which
involves training the model on the complete dataset using
all annotations, and Fine-Tunning, where the model is in-
crementally trained on new data without any regularization
strategy or data replay.

5.2.1. PASCAL VOC 2007

On the PASCAL VOC 2007 dataset, we assess our ap-
proaches using a single-step incremental task setting, which
includes 19-1, 15-5, 10-10, and 5-15 tasks. We also examine

a multi-step incremental task setting, covering settings such
as 10-5, 5-5, 10-2, 15-1, and 10-1.

Single-step Increments. In Table 1, we make a comparison
between our proposed method and existing approaches. Our
method frequently surpasses others in a range of settings,
particularly in the base classes in the initial learning stage,
demonstrating its superior ability to mitigate catastrophic
forgetting. Specifically, NSGP-RePRE exceeds the previous
leading replay-based approach ABR, by an average of 4.4%
in the initial class set. It also exceeds the previous SOTA
method BPF by 2.3% in the initial class set, bolstering our
assertion regarding the superior anti-forgetting capability of
our approach. NSGP-RePRE exceeds ABR by 3.3% and
BPF by 1% in all 20 classes, underscoring the effectiveness
of our method. The Avg metric equally average base and
new classes mAP, showing stability and plasticity balance
without the influence of the number of classes. In Avg, our
method surpasses ABR and BPF by 2.1% and 1.2%, respec-
tively, demonstrating that our method prevails in balance
between stability and plasticity in all methods.

Multi-step Increments. The issue of catastrophic forgetting
becomes more challenging in longer incremental settings.
As demonstrated in Table 2, fine-tuning nearly completely

7



Demystifying Catastrophic Forgetting in Two-Stage Incremental Object Detector

Table 4: Ablation study on each component. Where “Coarse”
indicates coarse prototypes replay only, “Fine” indicates
fine-grained regional prototypes are also incorporated.

NSGP Coarse Fine VOC(5-5)
Model 1-5 6-10 11-15 16-20 1-20

(a) 46.6 56.5 71.1 59.6 58.4
(b) ✓ 62.3 60.4 73.1 57.4 63.3
(c) ✓ 49.8 61.0 73.5 60.5 61.2
(d) ✓ ✓ 65.9 61.6 73.8 56.0 64.3
(e) ✓ ✓ ✓ 64.6 66.2 73.1 59.0 65.7

forgets the initial classes. NSGP-RePRE shows a 4.7%
improvement over ABR in initial classes across all 5 set-
tings, and a 4.2% improvement in all 1-20 classes. Our
method exceeds the performance of BPF by 4.5% in the
base classes and 2.3% in the 1-20 classes. In the particularly
demanding 10-1 settings, our method is 3.6% better than
ABR, highlighting the efficacy of our proposed approaches.
The improvements observed in more complex multi-step
increment settings further validate the effectiveness of our
proposed methods.

5.2.2. MS COCO 2017

On MS COCO 2017 dataset, we performed experiments on
40-40 and 70-10 settings using the same protocol in com-
parison methods. As shown in Table 3, fine-tuning suffers
from catastrophic forgetting in both settings. While previous
approaches have been enhanced with fine-tuning, NSGP-
RePRE increased the average AP by 1.0% over the previous
state-of-the-art in the 40-40 configuration. In the 70-10
scenario, the performance is close to that of joint training,
with our method yielding 0.3% improvements over the pre-
vious SOTA BPF. These experimental results demonstrate
the efficacy of our approach.

5.3. Further Analysis

Effectiveness of Each Component. In Table 4, we analyze
the effectiveness of NSGP, Coarse, and Fine under the VOC
5-5 setting, where “Coarse” indicates that only coarse pro-
totypes are adopted during replay while “Fine” shows the
results incorporated with fine-grained regional prototypes.
Variant a denotes our baseline model using pseudo-labeling.
Variant b denotes that NSGP is employed to solve the feature
drift based upon a, which significantly reduces the catas-
trophic forgetting of old classes, thus markedly improving
old class detection over a. Variant c incorporates RePRE
with coarse prototypes only to mitigate catastrophic forget-
ting. However, performance remains suboptimal due to the
feature shift from the updating of the feature extractor. The
variant d denotes our NSGP-RePRE with coarse prototypes
only, which substantially reduces catastrophic forgetting
and demonstrates the efficacy of the method. NSGP-RePRE
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NSGP-RePRE+fixed cls
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Figure 5: mAP of different model on Dtest
1 in VOC(5-5)

settings. To better demonstrate the impact of our method on
the classifier, P1 is fixed to all models. Fixed cls indicates
the models classification results is designated by M1.

achieves the highest performance among all models, ex-
ceeding d by 1.4% in the 1-20 division, underscoring the
effectiveness of our method. As shown in Table 4, each
adopted component independently reduces forgetting and
reaches peak performance when used together.

Anti-forgetting in RoI Head’s classifier. As we intend to
minimize the classification error caused by the forgetting in
RoI Head’s classifier, we demonstrate that our method can
effectively solve the problem. As shown in Figure 5, we
fixed a set of proposals predicted by the M1 as the proposals
for all M. Fixed cls indicates that the model classification
results are designated by M1. The baseline is the detector
only applied with a pseudo-labeling strategy. M1 is the
ideal upper bound in Dtest

1 as it is freshly trained on D1.
From Figure 5, we can draw some conclusions: 1. By com-
paring the red curves, we can see that our method has a better
classification performance, suggesting the effectiveness of
our proposed method. 2. Suggested by the light blue area,
NSGD can further reduce the already minimal forgetting
in regression. 3. Though the classifier specifically focuses
on reducing classification error, the extra components intro-
duced by the method will not disrupt the observation that
the regressor exhibits minimal forgetting.

6. Conclusion
This study investigates Faster R-CNN as the representa-
tive two-stage incremental object detector and demonstrates
that catastrophic forgetting primarily originates from the
RoI Head’s classifier while regressor exhibits minimal for-
getting. The finding can provide principled guidelines for
designing simple yet effective IOD method. Consequently,
we introduce the NSGP-RePRE framework to mitigate for-
getting in the RoI Head classifier complemented with NSGP
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on the feature extractor. Our extensive experimental results
demonstrate the efficacy of the proposed methods. We hope
that our research will offer significant insights into IOD,
facilitating progress in this area.
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A. Implementation Details.
Similar to previous works, we use the Faster R-CNN architecture with a Resnet-50 (He et al., 2016) backbone pre-trained in
ImageNet (Russakovsky et al., 2015). On PASCAL VOC dataset, we train the network with SGD optimizer, momentum
of 0.9 and weight decay of 10e-4. We use a learning rate of 0.02 for all tasks. For MS COCO, we adopt AdamW as the
optimizer, weight deacy of 0.01 and learning rate of 5e-5. Batch size is set to 16 for both datasets. In NSGP, we follow the
adaptive selecting stategy proposed in (Lu et al.) to keep the singular vaules. We sample 9 extra fine-grained prototypes to
complement the coarse prototype, 10 prototypes are used in total. The radius r is set to 0.6. In our method, we incorporate
a pseudo-labeling strategy to solve the foreground shift problem as implemented in BPF (Mo et al., 2024). All of our
experiments were conducted on 2 RTX 3090 GPU.

B. Generalization on unseen classes of RPN.
Interestingly, our findings reveal that RPN effectively generalizes to previously unseen classes. As depicted in Figure 1, the
red lines represent the RPN’s recall for objects belonging to unseen classes. Figure 1 (d) illustrates how RPNs of M1 to
M3 successfully recall certain objects belonging to classes in the 4-th stage. It can be clearly seen that the recall ability of
M1 to M3 on test set of Dtest

4 can be consistently improved after sequential learning. A similar trend is seen in Figure 1 (b)
and (c), suggesting RPN’s potential to enhance zero-shot detection with sufficient training data. In Figure 2 (d), the red
dots represent the outcomes of testing M4 on the test set of Dtest

4 employing proposals P1 to P3, which were generated by
models that have not encountered the classes within C4. Despite this, M4 is still able to identify unseen objects with high
mAP, showcasing the impressive zero-shot ability of the RPN.

C. Is the RoI Head robust to low-quality proposals?
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Figure 6: Plot: Results of Mjoint after removing high-quality proposals with varying IoU threshold. Bar: The distribution
of the proposals generated with Mjoint over IoU. The number on the bar indicates the count of proposals.

A robust RoI head is capable of effectively offsetting RPN’s forgetting. To evaluate the robustness of the RoI Head, we
manually removed high-quality proposals during inference, i.e. high IoU with GTs, to assess the mAP result of the detector.
As shown in Figure 6, when removing the proposals with IoU above 0.7, comparable final results can still be obtained
(74.5% to 76.4%). In particular, the detector still manages to detect some instances and achieves noticeable results when
removing proposals with IoU above 0.5, showing the strong robustness of the RoI Head. The robustness of the RoI Head can
be attributed to the training process, where the RoI Head is trained to refine coarse proposals which have a very broad IoU
range from a given value, 0.7 for example, to 1. The training with coarse proposals enables the RoI Head to refine rather
low-quality proposals, leading to a robust performance of the RoI Head.
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D. Null Space Gradient Projection Details.
We introduced NSGP to alleviate the RoI feature shift caused by the evolution of the feature extractor. It is crucial for the
NSGP to obtain a projection matrix that can project the gradient G into the null space of the old example Xt = {xt,i | i ∈
N, 1 ≤ i ≤ Mt}, where Mt is the total number of inputs in the t-th training stages. An overview of NSGP are provided in
Figure 7.
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Figure 7: An overview of NSGP.

To obtain the projection matrix of an FC layer or a convolution layer with parameters W , we first compute the uncentered
covariance of Xt. Specifically, we can accumulate uncentered covariance matrix in t-th stage Tt as:

Tt =
1

Nt − 1

Nt∑
i=1

x⊤
t,ixt,i. (11)

After obtaining the uncentered covariance in t. The uncentered covariance of all previous training stages can be updated as

T̄t =
M̄t−1

M̄t
T̄t−1 +

Mt

M̄t
Tt. (12)

Here, M̄t = M̄t−1 +Mt. Then SVD is performed to obtain Ut,Λt, (Ut)
⊤ as

Ut,Λt, (Ut)
⊤ = SV D(T̄t−1) (13)

Following (Lu et al.), we adaptively determine the nullity R and retain U ′
t correspond to R smallest diagonal singular vaules

λ in Λt. Finally, the projection matrix for (t+ 1)-th training stage is obtained by

B = U ′
t(U

′
t)

⊤, (14)

and the gradient G is projected to the null space of Xt as

∆W = GB. (15)

It is a common practice in previous works (Wang et al., 2021; Lu et al.) to normalize the B as

B′ =
B

||B||F
. (16)

Unlike previous works, we adopt B as normalized B′ will decrease the update stride of the model, leading to a slow and
difficult optimization. The slow learner is beneficial to the classification task, as shown in SLCA (Zhang et al., 2023), but it
is not applicable to components in Faster R-CNN except backbone. Thus we only apply B′ to the backbone, adopting B to
the rest of the components in the detector. EWC (Kirkpatrick et al., 2017) is adopted to regulate the update of parameterized
normalization layers.

To justify our choice of only applying NSGP to the backbone and neck, we conduct experiments on all components of the
detector, as show in Table 5. B or B′ indicates that the gradient of component, except the backbone, is projected by B or
B′. Our experiments suggest that adopting NSGP in different components leads to results without significant fluctuations,
suggesting the detector is not sensitive to the NSGP. Comparing B and B′ suggests that lower scale for the update stride in
neck, RPN and RoI Head leads to a significant decrease in performance. These results justify our choice of B instead of B′.
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Table 5: The experimental results of NSGP in different components with projection matrix B or B′. The dataset we adopted
is VOC (5-5).

Backbone +Neck +RPN +RoI Head

B′ 62.6 60.3 59.0 41.9
B 62.6 63.3 63.0 63.2

E. Different strategy generating fine-grained prototypes.
To evaluate the effectiveness of the proposed fine-grained prototype generation process, we compared our method with
clustering algorithms: K-Means and DBSCAN. To justify our choice of prototype instead of instances, we selected the center
of the hypersphere instead of the averaging of the RoI features included in the hypersphere and named this method Instance.
As shown in Table 6, our results outperform K-Means and DBSCAN by 0.7% on average, suggesting the effectiveness of
the proposed method. Our prototypes surpass Instance by 1.4%, justifying the choice of the prototype instead of instances.

Table 6: Different strategy generating complementary prototypes of our method.

VOC(5-5)
Method 1-5 6-20 1-20

K-Means 62.7 65.6 64.9
DBSCAN 63.6 65.5 65.1
Instance 63.2 64.6 64.3

Ours 64.6 66.1 65.7

F. RePRE Performance with Coarse Regional Prototype Only.
Our RePRE can surpass previous works even with only coarse prototype being replayed. We name NSGP-RePRE
incorporated with coarse prototype only as the NSGP-RePRE-Coarse.

PASCAL VOC Single-step Increments. In Table 7, we make a comparison between our proposed method and existing
approaches. NSGP-RePRE-Coarse surpasses previous state-of-the-art BPF by 1.7% in base classes and by 0.7% in all 20
classes, underscoring the effectiveness of our approach.

PASCAL VOC Multi-step Increments. The increases in initial classes indicate reduced forgetting with only coarse
prototypes, while the improvements in 1-20 and the average reflect that our method achieves the optimal balance between
stability and plasticity compared with previous methods. In Table 8, NSGP-RePRE-Coarse shows a 4.7% improvement
over ABR in the initial classes in all 5 settings and a 2. 8% improvement in the 1-20 classes. Our method exceeds the
performance of BPF by 4.5% in the base classes and 2.3% in the 1-20 classes.

MS COCO Single Increments. In Table 9, NSGP-RePRE-Coarse increased the average AP by 0.8% over the previous
state-of-the-art in the 40-40 configuration. In the 70-10 scenario, the performance is close to that of joint training, with
our method yielding results comparable to the previous SOTA BPF. These experimental results demonstrate the efficacy of
NSGP-RePRE-Coarse.

14



Demystifying Catastrophic Forgetting in Two-Stage Incremental Object Detector

Table 7: mAP@0.5 results on single incremental step on PASCAL VOC 2007. The best performance in each is presented
with bold, and the second best is presented with underline.

19-1 15-5 10-10 5-15
Method 1-19 20 1-20 Avg 1-15 16-20 1-20 Avg 1-10 11-20 1-20 Avg 1-5 5-15 1-20 Avg

Joint 76.4 76.4 76.4 76.4 78.3 70.7 76.4 74.5 76.9 76.0 76.4 76.4 73.6 77.4 76.4 75.5
Fine-tuning 12.0 62.8 14.5 37.4 14.2 59.2 25.4 36.7 9.5 62.5 36.0 36.0 6.9 63.1 49.1 35.0

ORE (Joseph et al., 2021a) 69.4 60.1 68.9 64.7 71.8 58.7 68.5 65.2 60.4 68.8 64.6 64.6 - - - -
OW-DETR (Gupta et al., 2022) 70.2 62.0 69.8 66.1 72.2 59.8 69.1 66.0 63.5 67.9 65.7 65.7 - - - -
ILOD-Meta (Joseph et al., 2021b) 70.9 57.6 70.2 64.2 71.7 55.9 67.8 63.8 68.4 64.3 66.3 66.3 - - - -
ABR (Yuyang et al., 2023) 71.0 69.7 70.9 70.4 73.0 65.1 71.0 69.1 71.2 72.8 72.0 72.0 64.7 71.0 69.4 67.9

FasterILOD (Ren et al., 2016) 68.9 61.1 68.5 65.0 71.6 56.9 67.9 64.3 69.8 54.5 62.1 62.1 62.0 37.1 43.3 49.6
PPAS (Zhou et al., 2020) 70.5 53.0 69.2 61.8 - - - - 63.5 60.0 61.8 61.8 - - - -
MVC (Yang et al., 2022) 70.2 60.6 69.7 65.4 69.4 57.9 66.5 63.7 66.2 66.0 66.1 66.1 - - - -
PROB (Zohar et al., 2023) 73.9 48.5 72.6 61.5 73.5 60.8 70.1 67.0 66.0 67.2 66.5 66.5 - - - -
PseudoRM (Yang et al., 2023) 72.9 67.3 72.6 70.1 73.4 60.9 70.3 66.9 69.1 68.6 68.9 68.9 - - - -
MMA (Cermelli et al., 2022) 71.1 63.4 70.7 67.2 73.0 60.5 69.9 66.7 69.3 63.9 66.6 66.6 66.8 57.2 59.6 62.0
BPF (Mo et al., 2024) 74.5 65.3 74.1 69.9 75.9 63.0 72.7 69.5 71.7 74.0 72.9 72.9 66.4 75.3 73.0 70.9

NSGP-RePRE-Coarse 76.2 66.5 75.8 71.4 77.1 62.0 73.4 69.6 73.7 73.2 73.4 73.5 68.4 74.5 73.0 71.5
NSGP-RePRE 76.3 69.0 76.0 72.7 77.5 61.8 73.6 69.7 75.3 72.7 74.0 74.0 68.5 74.5 73.0 71.5

Table 8: mAP@0.5 results on multiple incremental steps on PASCAL VOC 2007. The best performance in each is presented
with bold, and the second best is presented with underline.

10-5(3tasks) 5-5(4tasks) 10-2(6tasks) 15-1(6tasks) 10-1(11tasks)
Method 1-10 11-20 1-20 1-5 6-20 1-20 1-10 11-20 1-20 1-15 16-20 1-20 1-10 11-20 1-20

Joint 76.9 76.0 76.4 73.6 77.4 76.4 76.9 76.0 76.4 78.3 70.7 76.4 76.9 76.0 76.4
Fine-tuning 5.3 30.6 18.0 0.5 18.3 13.8 3.8 13.6 8.7 0.0 10.5 5.3 0.0 5.1 2.6

ABR (Yuyang et al., 2023) 68.7 67.1 67.9 64.7 56.4 58.4 67.0 58.1 62.6 68.7 56.7 65.7 62.0 55.7 58.9

FasterILOD (Ren et al., 2016) 68.3 57.9 63.1 55.7 16.0 25.9 64.2 48.6 56.4 66.9 44.5 61.3 52.9 41.5 47.2
MMA (Cermelli et al., 2022) 66.7 61.8 64.2 62.3 31.2 38.9 65.0 53.1 59.1 68.3 54.3 64.1 59.2 48.3 53.8
BPF (Mo et al., 2024) 69.1 68.2 68.7 60.6 63.1 62.5 68.7 56.3 62.5 71.5 53.1 66.9 62.2 48.3 55.2

NSGP-RePRE-Coarse 71.9 66.2 69.1 65.9 63.8 64.3 68.7 54.8 61.8 77.0 53.9 71.2 71.2 50.6 60.9
NSGP-RePRE 72.4 67.6 70.0 64.6 66.1 65.7 70.1 58.8 64.4 77.7 55.0 72.0 69.9 55.1 62.5

Table 9: mAP results on MS COCO 2017 at different IoU. The best performance in each is presented with bold, and the
second best is presented with underline.

Method 40-40 70-10
AP AP50 AP75 AP AP50 AP75

Joint 36.7 57.8 39.8 36.7 57.8 39.8
Fine-tuning 19.0 31.2 20.4 5.6 8.6 6.2

ILOD-Meta (Joseph et al., 2021b) 23.8 40.5 24.4 - - -
ABR (Yuyang et al., 2023) 34.5 57.8 35.2 31.1 52.9 32.7

FasterILOD (Ren et al., 2016) 20.6 40.1 - 21.3 39.9
PseudoRM (Yang et al., 2023) 25.3 44.4 - - - -
MMA (Cermelli et al., 2022) 33.0 56.6 34.6 30.2 52.1 31.5
BPF (Mo et al., 2024) 34.4 54.3 37.3 36.2 56.8 38.9

NSGP-RePRE-Coarse 35.2 55.3 38.1 36.3 55.8 39.6
NSGP-RePRE 35.4 55.3 38.6 36.5 56.0 39.8
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