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ABSTRACT

Recent development of large language models (LLMs) for code like CodeX and
CodeT5+ demonstrates tremendous promise in achieving code intelligence. Their
ability of synthesizing code that completes a program for performing a pre-defined
task has been intensively tested and verified on benchmark datasets including Hu-
manEval and MBPP. Yet, evaluation of these LLMs from more perspectives (than
just program synthesis) is also anticipated, considering their broad scope of appli-
cations in software engineering. In this paper, we explore the ability of LLMs for
testing programs/code. By performing thorough analyses of recent LLMs for code
in program testing, we show a series of intriguing properties of these models and
demonstrate how program testing ability of LLMs can be improved. Following
recent work which utilizes generated test cases to enhance program synthesis, we
further leverage our findings in improving the quality of the synthesized programs
and show +11.77% and +4.22% higher code pass rates on HumanEval+ compar-
ing with the GPT-3.5-turbo baseline and the recent state-of-the-art, respectively.

1 INTRODUCTION

The community has witnessed a surge in the development of large language models (LLMs), which
have achieved incredible ability in understanding and generating not only texts but also code. LLMs
for code (CodeX (Chen et al.,[2021), StarCoder (Li et al., | 2023b)), CodeT5+ (Wang et al.| 2023b), etc)
have been widely adopted to a variety of applications to achieve code intelligence. However, current
evaluation of these LLMs mostly focuses on program completion/synthesis, despite the models can
also be utilized in other applications. As the field continues to advance, evaluation of these models
from more perspectives is anticipated, which could facilitate deeper understanding of the LLMs.

The ability of automatically generating proper test suites is of great desire to software engineering,
yet challenging. Being learning-based or not, current test generation efforts (e.g., fuzzing) primarily
focus on creating diverse test inputs to identify faults in the code as much as possible via maximizing
their coverage, e.g., line coverage and branch coverage (Fioraldi et al., 2020; |Tufano et al., 2022;
Dinella et al.,|2022; |Lemieux et al.,[2023; [Xia et al.,[2023). Although such test inputs try to verify the
(non-)existence of crashes and hangs of the tested code, they lack the ability of determining whether
the code adheres to the aim of the function which is represented by input-output relationships. Au-
tomatic test case generation for this aim not only requires an high coverage of the code being tested
but also necessitates a correct understanding of the “true” desired input-output relationships in the
tested code, leaving it a challenging open problem.

Being capable of synthesizing correct code implementations given docstrings, LLMs for code seem
capable of understanding the desired input-output relationship of a function described in natural lan-
guage. This capability inspires applying these LLMs to generating test cases automatically (Chen
et al., [2021). However, the ability of these models for program testing has not been systematically
evaluated. In this paper, we systematically compare the ability of recent LLMs for code in testing
from two perspectives focusing on both the correctness and diversity of the test cases, considering
that 1) program testing is of great interest in software engineering and software security as mentioned
and 2) automatically generated test cases can further be adopted to improve the program synthesis
performance (Chen et al., [2023)). Our analyses focus on algorithmic coding, based on the popular
164 problems from HumanEval+ (Liu et al., | 2023a) and 427 sanitized problems from MBPP (Austin
et al.}2021). It is worth noting that the model may encounter various scenarios when generating test
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cases. It may generate test cases when provided with only natural language descriptions of the de-
sire of the program, or it could generate test cases when given an “optimal” oracle implementation.
In more complex situations, it may even need to test its own imperfect generated code or the code
generated by other models. We consider 4 test-case generation settings (i.e., “self-generated” which
uses each LLM to test code synthesized by the LLM itself, “all-generated” which lets all LLMs to
test the same code synthesized by a group of four LLMs , “oracle” which tests an oracle implemen-
tation, and the “placeholder” in Figure|[T) and test a collection of 11 competitive LLMs for code. We
conducted a variety of experiments, from which intriguing takeaway messages are delivered.

As previously mentioned, several very recent papers (Shi et al.l 2022} [Li et al., 2023a; [Chen et al.,
2023)) have shown that appropriate usage of generated test cases can improve the quality of program
synthesis. Yet, the quality of generated test cases largely impacts the performance of such methods.
Due to the lack of systematic evaluation of the testing ability of LLMs for code, it is unclear how to
craft test cases that could be potentially more helpful to program synthesis. The studies in this paper
also shed light on this. We will show that, substantially improved program synthesis performance
can be gained by utilizing takeaway messages in our studies. Specifically, we can achieve +11.77%
higher code pass rate on HumanEval+, in comparison with the GPT-3.5-turbo baseline. Compared
with a very recent state-of-the-art called CodeT, our solution gains +4.22% higher code pass rate.

2 EVALUATION METRICS

To make the evaluation more reliable and comprehensive, it is crucial to first design some suitable
metrics, like BLEU (Papinent et al.,|2002), ROUGE (Lin,2004), and the pass rate (Chen et al.,[2021]))
for evaluating machine translation, text summarization, and program synthesis, respectively. In this
section, we specify two main evaluation metrics to evaluate the program testing ability of LLMs,
from the perspective of correctness and diversity.

Pass rate In software engineering, we expect test cases to represent some desired “ground-truth”
functionality of the tested program/code. In practice, such “ground-truth” functionality can be de-
scribed in the header comments of a function (i.e., docstrings of the function) and tested using the
oracle implementation, as in HumanEval (Chen et al.| [2021) and MBPP |Austin et al.| (2021). The
oracle program/code should be able to pass the test, if a generated test case is correct. Therefore, we
leverage the pass rate as a measure to evaluate the correctness of the generated test cases. For a fair
comparison, we instruct each model to generate three test cases in the prompt, and, when a model
generates more than three test cases, we select the first three for evaluation. Assuming that there
are in total M programming problems in an experimental dataset and, for each problem, we have N
program/code implementations to be generated test cases for. Each model has only one chance to
generate these test cases for each program/code. Then, we calculate the pass rate as:

1 M N Dii
P=—_ = 1
TN 2o e’ (1)
1=15=1

where n;; is the number of test cases in Q;; which includes no more than three test cases generated
for the j-th program/code implementation of the ¢-th problem by the evaluated LLM at once, i.e.,
Qi; = {(zijk, Yijr) > and p;; is the number of test cases (in Q;;) that do not fail the oracle.

The pass rate defined in Eq. (I)) measures correctness of the generated test cases. However, as can be
seen in Figure|l} the model can generate duplicate test cases that are less helpful, even though they
are correct. To avoid such an evaluation bias, we further advocate deduplication in the set of test
cases that are considered as correct, which leads to computation of a deduplicated pass rate defined
as P’ = g% > > plj/ni;» where we use to denote the numbers of unique test cases.

Coverage rate In addition to the above pass rates, we further consider coverage rate as a more fine-
grained metric for evaluating the diversity of the generated test cases. According to its definition,
converge rate computes the degree to which the code is executed, given a test case. Since, for each
program/code, we keep no more than three test cases at once, we calculate how much percentage of
the control structure is covered given these test cases. Similar to Eq. (I)), we evaluate the performance
of testing all programs/code over all M x N times of generation, i.e., we calculate

1 M N
C:mzzcij, (2)

i=1 j=1
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where c;; is the per-test-case branch coverage rate. We apply the pytest |'| library to evaluate the
branch coverage for all the three test cases for each code and average the results for all pro-
grams/code and all problems. Apparently, C' < 1, and a higher C' shows better testing ability of
an LLM, since we expect all parts of the programs/code to be executed to find our all potential bugs.

3 LARGE LANGUAGE MODELS FOR CODE

In this section, we outline the evaluated models. We adopt some “small” models whose numbers of
parameters are around 1B (to be more specific, from 770M to 1.3B in our choices) and some larger
models that achieve state-of-the-art performance in the task of program synthesis.

For the small models, we use InCoder (1.3B) (Fried et al.l 2023), CodeGen2 (1B) (Nijkamp et al.,
2023a), CodeT5+ (770M) (Wang et al.l |2023b), and SantaCoder (1.1B) (Allal et al., 2023). In-
Coder is a unified generative model that can perform program/code synthesis as well as code edit-
ing, and it combines the strengths of causal language modeling and masked language modeling. The
CodeGen2 model was trained on a deduplicated subset of the Stack v1.1 dataset (Kocetkov et al.,
2023), and its training is formatted with a mixture of objectives for causal language modeling and
span corruption. CodeT5+ is an encoder-decoder model trained on several pre-training tasks includ-
ing span denoising and two variants of causal language modeling. SantaCoder was trained on the
Python, Java, and JavaScript code in the Stack dataset. The pass rate (Chen et al.,[2021]) of programs
generated by these models is compared in Table|l} When evaluating the (program) pass rate, we let
the model generate 200 code implementations for each problem, and we set the temperature to 0.2,
0.6, and 0.8 for calculating pass@1, pass@ 10, and pass@ 100, respectively.

As for larger models that achieve state-of-the-art program synthesis performance, we use CodeGen2
(16B) (Nykamp et al.| |2023a), CodeGen-Multi (16B) Nijkamp et al.| (2023b), CodeGen-Mono
(16B)|Nijkamp et al.|(2023b)), StarCoder (15B) (Li et al., 2023b), WizardCoder (15B) (Luo et al.,
2023), CodeGeeX2 (6B) (Zheng et al., 2023), and GPT-3.5-turbo. CodeGen-Multi and CodeGen-
Mono are two large models from the first version of CodeGen. CodeGen-Multi was first trained on
the pile dataset (Gao et al. [2020) and then trained on a subset of the publicly available BigQuery
dataset which contains code written in C, C++, Go, Java, JavaScript, and Python. Based on the 16B
CodeGen-Multi model, CodeGen-Mono (16B) was obtained by further tuning on a set of Python
code collected from GitHub. Given a base model that was pre-trained on 1 trillion tokens from the
Stack dataset, the 15B StarCoder model was obtained by training it on 35B tokens of Python code.
WizardCoder further empowers StarCoder with instruction tuning, following a similar instruction
evolution strategy as in WizardLM (Xu et al., 2023)). CodeGeeX2, the second generation of a multi-
lingual generative model for code, is implemented based on the ChatGLM?2 architecture and trained
on more code data. GPT-3.5-turbo is a very capable commercial LLM developed by OpenAl and
we accessed it in August, 2023. For these large LLMs, we tested pass@1 of all models except GPT-
3.5-turbo (whose result can be directly collected from |Liu et al.| (2023a))’s paper). By sorting their
pass@1 from high to low, they are ranked as: GPT-3.5-turbo (61.7%), WizardCoder (46.23%, 15B),
CodeGeeX2 (29.97%, 6B), StarCoder (27.9%, 15B), CodeGen-Mono (26.15%, 16B), CodeGen2
(19.33%, 16B), CodeGen-Multi (15.35%, 16B). The ranks on the MBPP dataset are similar.

4 CODE TO BE TESTED

For evaluating the testing ability of LLMs, we need an oracle to express the ground-truth function-
ality of the tested code. Fortunately, current datasets for evaluating program synthesis performance
often provide such oracles (see HuamnEval (Chen et al.| [2021) and MBPP (Austin et al 2021)).
In our experiments, we utilize an amended version of HumanEval called HumanEval+ (Liu et al.,
2023a)), together with MBPP (the sanitized version). These datasets are established to evaluate basic
Python programming performance of LLMs, and they contain 164 and 427 problems, respectively.

4.1 IMPERFECT CODE IMPLEMENTATIONS

In order to simulate real-world scenarios where the tested code is often buggy, we first adopt syn-
thesized programs/code as the programs/code to be tested, considering that the synthesis of even

"https://pytest.org
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Gl eyepaitEzm @ieosiEn, B e def cycpattern_check(a, b):
You are given 2 words. You need to return True if the second

. - : You are given 2 words. You need to return True if the second
word or any of its rotations is a substring in the first word 9 -

word or any of its rotations* word

for i in range(len(b)):
if b in a:
return True
b = b[l:] + b[0]
return False - > G

# Check the correctness of this function with three test cases
assert cycpattern check("abcd", "cdab") == True

assert cycpattern check("hello", "
assert cycpattern check("abcd",

Set of code generated by several

(a) Self-generated different LLMs
# Check the correctness of this function with three test cases

assert cycpattern check("a", "b") == True
def cycpattern_check(a, b): assert cycpattern check("a", "def
assert cycpattern_check ("abcde", "

You are given 2 words. You need to return True if the second

word or any of its rotations is a substring in the first word (b) All-generated
1 = len(b)
pat = b + b def cycpattern_check(a, b):
for i in range(len(a) - 1 + 1):
fow 3 o mEwEH( 4 A)E You are given 2 words. You need to return True if the second
if a[i:i+l] == pat([j:j+1]: word or any of its rotations is a substring in the first word
return True
return False pass

# Check the correctness of this function with three test cases
assert cycpattern check("rotation", "ion") == True
assert cycpattern check("rotation", "onr") == True

# Check the correctness of this function with three test cases
assert cycpattern check("abcde", "deabc") == True

assert cycpattern check("abcdef", "defabc") == True

assert cycpattern check("12345", "45123") == False assert cycpattern check("rotation”, "noi") == False

(c) Oracle (d) Placeholder
Figure 1: Testing for (a) self-generated code, (b) all-generated code, (c) oracle, and (d) placeholder.

Model Size Pass@1 Pass@10 Pass@100

InCoder 1.3B 6.99%/14.06%  14.20%/34.98%  23.76%/55.34%
CodeGen2 1B 9.19%/17.50%  16.06%/36.86%  25.90%/59.32%
CodeT5+  770M  12.95%/28.02%  25.09%/47.69%  37.56%/65.26%
SantaCoder  1.1B 15.21%/29.42%  26.01%/51.30%  43.80%/69.10%

Table 1: Program synthesis performance of the small LLMs (whose number of parameters is around
1 billion) evaluated on HumanEval+/MBPP (sanitized).

state-of-the-art LLMs is still imperfect. We evaluate the performance of each LLM in testing code
that was generated by itself (which is denoted as “Self-generated”) and code in a set consisting of
program completion results of several different LLMs (which is denoted by “All-generated”). That
said, the compared LLMs take different code implementations when generating test cases for each
programming problem in the self-generated setting. Whereas, in the all-generated setting, the same
program/code implementations are given to different LLMs for generating test cases for comparison.
In practice, we apply InCoder (1.3B), CodeGen2 (1B), CodeT5+ (770M), and SantaCoder (1.1B)
to construct the all-generated program/code set, while, in the self-generated setting, each LLM first
synthesize code and complete a program to fulfill the requirement of each programming problem,
and the LLM then generates test cases with the synthesized programs/code in its prompts. The tem-
perature for all LLMs is uniformly set to 0.2 for synthesizing the programs/code in both settings.
We obtain 100 program/code completions for each problem and we prompt each LLM to generate 3
test cases for every program/code implementation in the self-generated setting, and we sampled 100
implementations from the synthesis results of InCoder (1.3B), CodeGen2 (1B), CodeT5+ (770M),
and SantaCoder (1.1B) to form the all-generated code set, i.e., we have N = 100 for these settings.

We follow the same way of generating code as introduced in the papers of these LL.Ms. For model
without instruction tuning, like InCoder and CodeT5+, we synthesize programs/code using the de-
fault prompt given by each programming problem in the test dataset, while, for models that have
adopted instruction tuning, e.g., WizardCoder, we use the recommended prompt in their papers.

4.2 OPTIMAL CODE IMPLEMENTATIONS (ORACLE)

As a reference, we also report the performance of generating accurate and diverse test cases when
the written code is perfectly correct, which is achieved by adopting the oracle as the programs/code
to be tested (and such a setting is denoted by “Oracle”). Since |Liu et al|(2023a) have reported that
some oracle code in the HumanEval dataset can be incorrect, we adopt the amended oracle set in
HumanEval+ in this setting. We further used the revised oracle code implementations instead of
the original ones in evaluating the pass rate (i.e., P’) of the generated test cases. Considering that
the public datasets often only provide one oracle implementation for each problem, and to keep the
uncertainty of evaluation results consistent, we copy the oracle implementation by 100x and we
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prompt to generate 3 test cases for each of these copies. It can be regarded as letting N = 100, just
like in the previous settings in Section

4.3 NO IMPLEMENTATION (PLACEHOLDER)

In certain scenarios, we require test cases before the function/program has been fully implemented,
hence we also evaluate in a setting where the main body of a tested function/program is merely a
placeholder, as depicted in Figure[T[b). This scenario often occurs when the main code has not yet
been implemented for a function/program or the test engineer does not want to introduce implemen-
tation bias to the LLM when generating test cases for a function/program. We denote such a setting
as “Placeholder” in this paper. We also let N = 100, as in the oracle setting.

5 TEST CASE GENERATION

In this section, we introduce how test cases can be generated, when the implementation of a func-
tion/program is given as described in Sectiond] In this paper, a desired test case is a pair of input and
its expected output for the function/program defined in the context. As an example, Figure[T|demon-
strates some test cases for the programming problem of checking whether the two words satisfy a
specific rotation pattern. To generate test cases, we use the LLMs introduced in Section 3]

We wrote extra prompts to instruct the LLMs to generate three test cases for each given code which
include docstrings that describe the purpose of this function, as depicted in Figure|l} Our instruc-
tion commands the LLMs (1) to “check the correctness of this function with three test” and (2) to
start writing test code with an “assert” statement and the tested function, which specifies the
format of the test cases as input-output pairs that can be parsed. For instance, given the example in
Figure [I] the extra prompt should be “# Check the correctness of this function
with three test cases \n assert cycpattern_check”.

We then concatenate the extra prompt with the code and feed the concatenation into each LLM,
for extracting test cases from the model output. The LLM will try to complete the given input by
generating one or more “assert” statement(s), and we split the generation results into sub-strings,
with “assert” as the separator. Each sub-string is then considered as a test statement, and we only
take the first three statements if there exist more than three statements, as has been introduced in
Section 2] Such a split can be considered as an effective post-processing operation which largely
improves the quality of the generated test code, considering that some non-sense code pieces may
be generated in the output of the LLMs. When using HumanEval+ and MBPP, we try removing test
cases in the docstrings of the function, if there exist any, just to get rid of the broad hints from the
docstrings (Chen et al., 2023). The temperature for generating test cases is kept as 0.2.

Once obtained, the generated test cases are then compiled, and evaluated for their correctness and
diversity to report the pass rate P’ and the coverage rate C. When calculating, for each problem and
every set of completions generated, we create a temporary folder.

6 MAIN RESULTS FOR TEST CASE GENERATION

The experiment results of small and large LLMs on HumanEval+ can be found in Table[2]and Table
respectively. Table 4 shows the results on MBPP. There are several takeaways from these tables.

* First, the test cases generated by LLMs can show a descent pass rate, and this pass rate is
even higher than the code pass rate on HumanEval+, which holds for both large and small

Model Size Oracle Self-generated All-generated Placeholder

InCoder  1.3B  21.31%(61.43%) 23.37%(59.36%) 22.72% (61.10%)  25.19% (62.75%)
CodeGen2 1B 31.63%(71.55%) 30.62%(69.38%)  30.93% (69.70%)  30.69% (69.00%)
CodeTS+  770M  35.43% (71.45%) 32.34% (70.45%) 31.49% (69.75%)  32.67% (70.67%)
SantaCoder 1.1B 30.97%(71.46%) 30.43% (70.81%) 30.13% (70.55%)  30.78% (71.24%s)

Table 2: The pass rates (and coverage rate) of the test cases generated on HumanEval+ in different
settings for LLMs with around 1 billion parameters.
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Model Size Oracle Self-generated All-generated Placeholder
CodeGen-Multi  16B  43.88% (67.91%)  41.85% (69.30%)  40.38% (66.97%)  39.74% (68.28%)
CodeGen2 16B  46.34% (73.07%)  45.44% (73.17%)  42.00% (72.45%)  42.69% (72.86%)
CodeGen-Mono  16B  49.03% (74.82%)  45.73% (73.74%)  43.91% (73.66%)  44.92% (73.63%)
StarCoder 15B  55.07% (76.02%)  52.52%(72.45%)  48.20% (72.30%)  50.58% (74.52%)
CodeGeeX2 6B 57.03% (74.42%)  53.16% (73.55%)  49.28% (70.32%)  51.78% (73.08%)
WizardCoder 15B 53.89%(77.87%) 55.47%(76.07%) 48.02% (75.27%) 49.89% (75.12%)
GPT-3.5-turbo - 71.03% (77.85%) 72.45% (77.24%) 59.24% (74.99%)  66.28% (74.03%)

Table 3: The pass rates (and coverage rate) of the test cases generated on HumanEval+ in different
settings for LLMs whose parameters are obviously more than 1 billion.
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code past rate and test pass rate in
the “Oracle” setting.

Figure 3: How the correctness of the test cases changes with
their order when being generated.

LLMs. Such a result is consistent with intuitions from previous work which rejects code
that cannot pass the generated tests to improve the quality of program synthesis.

Second, the correctness of the generated test cases is positively correlated with the LLM’s
ability of generating code (see Figure [2] where each red cross represents the performance
of a model), which means an LLM showing the state-of-the-art program synthesis perfor-
mance is possibly also the state-of-the-art LLM for program testing. As shown in Tables 2]
and 8] GPT-3.5-turbo, which synthesizes programs/code with the highest correctness, pro-
vides test cases with the highest pass rate (71.03%) on HumanEval+. For an LLM, the more
accurate it is capable of synthesizing programs/code on a dataset, the more powerful testing
ability will probably be exhibited on the same dataset. There also exist a few exceptions,
e.g., SantaCoder (1.1B) outperforms CodeT5+ (770M) and CodeGen2 (1B) in generating
code, but it shows inferior performance in program testing on HumanEval+. By carefully
examining the test cases yielded by SantaCoder on HumanEval+, we found that it tends
to generate more complex and longer test cases than CodeT5+ for several problems on
HumanEval+, which are often more desirable in program testing. This is also why the San-
taCoder test cases show higher coverage rates in Table[2] To be concrete, in Problem 131 in
HumanEval+, where the program is required to return the product of all digits with an odd
position in a positive integer n (which is the input), the test input provided by CodeT5+
tends to be small for this problem, e.g., n = 2, while the SantaCoder test cases tend to have
more digits (e.g., n = 12358), which is helpful in digging out hidden bugs. Yet, generating
longer and more complex test cases is more challenging, and the correctness can be lower.

Third, as can be seen in Tables [3|and 4] generating test cases using large LLMs with their
self-generated code (in the prompts) often leads to a higher level of correctness, compared
with the placeholder results. This observation is in fact unsurprising, considering that gen-
erating code first and test case afterwards resembles the chain-of-thought prompting
2022) (if adopting the placeholder is regarded as a plain prompting), which is bene-
ficial to reasoning. Moreover, the self-generated performance of an LLM sometimes even
outperforms its testing performance with an oracle, and we ascribe this to: 1) randomness
in the style of the oracles which are few in number and/or 2) less distribution shift between
self-generated code in prompt and the training code, for some powerful LLMs.
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Model Size Oracle Self-generated All-generated Placeholder
InCoder 13B  21.56% (46.81%) 17.98% (46.11%)  19.53% (46.45%)  22.58% (46.72%)
CodeGen2 1B 25.61% (54.26%)  21.85%(53.09%)  23.15%(50.43%)  22.81% (52.11%)
CodeT5+ TI0M  29.02% (56.86%)  24.44% (52.31%)  24.84% (53.20%)  25.59% (55.81%)
SantaCoder 1.1B 32.37% (55.68%) 26.40% (52.38%) 26.20% (52.83%)  26.53% (53.86%)
CodeGen-Multi 16B 41.32% (60.63%)  35.96% (59.03%)  34.17%,(58.09%)  34.84% (58.92%)
CodeGen2 16B 45.30% (62.15%)  38.67% (60.16%)  36.77% (58.59%)  37.27% (59.16%)
CodeGen-Mono 16B 50.24% (64.39%)  43.94% (62.94%)  39.55% (61.99%)  42.41% (62.31%)
StarCoder 15B 54.84% (65.10%)  46.77% (63.60%)  42.80% (61.95%)  45.35% (62.66%)
CodeGeeX2 6B 52.45% (64.64%)  44.52% (63.72%)  41.72% (60.48%)  43.86%,(63.51%)
WizardCoder 15B  57.85%(66.68%) 46.56% (64.86%)  41.62% (60.72%)  47.45% (64.54%)
GPT-3.5-turbo - 74.30% (66.19%) 66.14% (65.30%) 49.56% (62.95%) 63.34% (64.72%)

Table 4: The pass rates (and coverage rate) of the test cases generated on MBPP.

* Fourth, with only a few exception, test cases obtained using the oracle code exhibit slightly
higher code coverage, while the coverage rate achieved in the other settings (i.e., the self-
generated, all-generated, and the placeholder settings) is often slightly lower.

The above four takeaway messages can all be inferred from Tables and [ In addition to all
these results, we conduct more experiments to achieve the following takeaway messages.

« Fifth, by analyzing the relationship between the quality of code in prompts and the correct-
ness of test, we found that correct code implementation in the prompt often leads to higher
quality of test code generation than the case when some incorrect code is given. We con-
ducted an experiments where we first select programming problems in HumanEval+, where
the code pass rate of an LLM is neither 0% or 100%. Then we separate self-generated pro-
grams/code of the model into two groups, with one group only contains programs/code that
are considered as correct and the other only contains incorrect programs/code. In Table[3]
we compare the performance of using these two sorts of code in the prompt, for generating
test cases using the same LLM. Apparently, the quality of test cases obtained with correct
programs/code is obviously higher. We further evaluate the overall testing performance of
LLMs with only correct self-generated programs/code, if there exists any, in their prompts.
Unlike in Table [5] where we do not take problems that can be 100% or 0% solved, we take
all given problems in this evaluation, except, for every problem, we eliminate all incorrect
self-generated programs/code if there exist at least one correct implementation synthesized
by the evaluated LLM. By doing so, we can observe substantially improved program testing
ability on HumanEval+ (i.e., 74.95% for GPT-3.5-turbo, 56.87% for WizardCoder, 54.33%
for CodeGeeX2, and 53.24% for StarCoder), comparing with the original self-generated
results in Table[3 The same on MBPP.

* Sixth, by conducting an additional experiment, we further compare the quality of test cases
collected from different positions in the generation results. For every set of the three gen-
erated test cases, we analyze the relationship between their correctness and the order when
they are generated. The results are illustrated in Figure[3] As can be seen in the figure, the
first generated test case often shows the best correctness and the latterly generated ones are
more incorrect. This may be due to the fact that the model tends to first generate content
with a high level of confidence (which is also more likely to be correct).

7 IMPROVING PROGRAM SYNTHESIS USING THE GENERATED TEST CASES

High quality test cases are not only desired in program analyses, but also helpful to program syn-
thesis. Previous methods have successfully used generated test cases to improve the performance
of LLMs in synthesizing programs/code. For instance, |L1 et al.| (2023a) designed a special prompt
which involves the test cases as an preliminary, if they are available, for generating programs/code.
One step further, |Chen et al.| (2023) proposed CodeT, which leverages the LLM to obtain test cases
first and tests all synthesized programs/code with these test cases by performing a dual execution
agreement, and it picks the code in the largest consensus set (i.e., the consensus set with the most
code implementations and test cases) as output to obtain state-of-the-arts program synsthesis perfor-
mance. We encourage interested reader to read the original paper.
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Model Size  w/ correct code w/incorrect code #Problem
InCoder 1.3B 28.55% 27.39% 27
CodeGen2 1B 27.25% 25.74% 11
CodeT5+ 770M 40.19% 36.78% 27
SantaCoder 1.1B 37.45% 34.08% 24
CodeGen-Multi 16B 55.49% 50.06% 32
CodeGen2 16B 43.56 % 39.31% 29
CodeGen-Mono 16B 45.18% 42.86% 56
StarCoder 15B 58.16% 57.08% 68
CodeGeeX2 6B 52.84% 48.63% 51
WizardCoder 15B 48.02% 45.12% 54
GPT-3.5-turbo - 75.39% 68.52% 126

Table 5: With the correct (self-generated) code, the LLLMs show stronger ability of generating correct
test cases on HumanEval+ (evluated only on those problems that can neither be 0% solved nor 100%
solved), than in the case where incorrect self-generated code is given in the prompts. Since most
LLMs cannot generate any correct code for many hard problems while they often generate incorrect
code even for easy problems, the number of tested problems in this experiment increases with the
power of the tested LLM, as shown in the rightmost column.

In the previous section, we have obtained results about many intriguing properties of the program
testing performance of LLMs for code. In this section, we would like to drive the readers to think
whether it is possible to utilize these results to improve the program synthesis performance, consid-
ering that the test cases (hand-crafted and given or automatically generated in particular) are widely
and successfully used in program synthesis. We shall demonstrate that, by utilizing takeaway mes-
sages in Section[6] the program synthesis performance of previous methods can be improved signif-
icantly. Taking CodeT as an example of the previous state-of-the-art, the method uses a placeholder
to generate test cases and treats all the test cases as equally correct as a prior. However, as discussed
in our third takeaway message, using self-generated code helps to achieve more powerful ability
in generating correct test cases. Moreover, if multiple test cases are provided in a single run of
generation given an LLM, the correctness of the test cases decreases with their generation order, as
shown in our fifth point. Hence, to obtain superior program synthesis performance, we introduce two
simple modifications to it: 1) we employ the “self-generated” setting instead of the “placeholder”
setting for generating test cases, which means we utilized synthesize programs in prompts when
generating test cases for each program, 2) we assign different weights to the generated test cases
based on their order in each generation result, which means we used the rank of each generated test
case to re-weight its contribution to the consensus set it belongs to.

We test the effectiveness of using 1) the prompt which involves self-generated (SG) code as the
test cases generated in this setting show higher correctness than the baseline placeholder setting
and 2) the rank-based re-weighted (RW) test cases, in improving program synthesis performance on
HumanEval+. Following|Chen et al.|(2023)), we used a temperature of 0.8 to generate code and self-
generated test cases. After obtaining the consensus set, we re-weight test case by p~! with 7 being
its order in the model output, and we let p = 0.8. That is, instead of directly using their counting
numbers, we use the sum of p'~! and the final score of a consensus set is then the sum of a) 3~ p’~!
and b) the number of code implementations in the consensus set, and code implementations in the
consensus set with the highest score are considered as the best solutions.

Table@ shows the results. We compare CodeT with CodeT+SG, CodeT+RW, and CodeT+SG+RW.
For CodeT, we follow their official implementation and generate 100 x 5 test cases for each problem.
For fair comparison, we ensure that our solutions with SR and/or RW generate the same numbers of
program implementations and test cases as CodeT does. Hence, for each problem in HumanEval+,
we synthesize a program together with its 5 test cases for 100 times when SR and/or RW are incor-
porated, i.e., we have i € {1,2,3,4,5}. It can be seen from the table that both SG and WR improves
the program synthesis performance considerably on most LLMs, except for Incoder, CodeGen2-1B,
CodeT5+, and SantaCoder for which the test cases generated in the placeholder setting show similar
or even higher correctness than in the self-generated setting and SG fails with them. For some LLMs,
SG is more powerful, while, on the other models including SantaCoder and StarCoder, RW is more
powerful. By combining SG and RW, the program synthesis performance of most powerful LLMs
in Table [6]improves, comparing to only using one of the two. On GPT-3.5-turbo and WizardCoder,
which are the best two models in synthesizing programs on HumanEval+, we achieve +4.22% and
+3.04% performance gains for CodeT, respectively, with SG & RW.
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Model Size  Baseline CodeT +SG + RW +SG & RW
InCoder 1.3B 6.99% 9.85% 9.45%  10.26% 9.98%
CodeGen2 1B 9.19% 1515% 14.89% 15.67% 15.35%
CodeT5+ 7I0M  1295% 16.57% 16.28% 17.19% 16.98%
SantaCoder 1.1B 1521% 1843% 18.17% 18.75% 18.63%
CodeGen-Multi 16B 15.35%  2450% 25.71% 25.72% 26.95%
CodeGen2 16B 19.33%  27.56% 28.51% 28.43% 29.63%
CodeGen-Mono  16B 26.15%  35.63% 36.69% 36.63% 37.95%
StarCoder 15B 27.90%  40.46% 4121% 42.12% 43.15%

CodeGeeX?2 6B 2997%  44.16% 4523% 44.92% 46.32%
WizardCoder 15B 46.23%  5841% 60.13%  59.60% 61.45%
GPT-3.5-turbo - 61.70%  69.25% 72.45%  70.75% 73.47%

Table 6: Program synthesis performance (Pass@1) of LLMs can be significantly improved by using
our takeaway messages in Section[6] The experiment is on HumanEval+.

8 RELATED WORK

Test case generation via program analysis. Generating reasonable test cases for analyzing pro-
grams is a long standing problem in the software engineering community. Various program analysis
techniques, e.g., fuzzing, have been developed for achieving this goal. AFL++ (Fioraldi et al.| [2020)
is the most popular tool which incorporate many techniques in this category. A major weakness of
these techniques is understandability of the generated test cases.

Test case generation via deep learning. The invention of transformer and self-supervised pre-
training have brought a breakthrough to programming language processing and program testing (Fio-
raldi et al., [2020; [Tufano et al., 2022; Dinella et al., |2022)). After being trained in a self-supervised
manner on a large and diverse code corpus, LLMs have demonstrated remarkable abilities in under-
standing and synthesizing programs. We have also witnessed the adaptation of pre-trained LLMs
(e.g., ChatGPT) to fuzzing (Xia et al., 2023) very recently. Similarly, Lemieux et al.|(2023) utilized
Codex to provide example test cases for under-covered functions, which prevents the coverage im-
provements stall. Nevertheless, there still lack and require in-depth analyses and intensive compar-
isons of different LLMs in program testing, considering that powerful LLMs emerge continuously.
For instance, the recent WizardCoder (Luo et al.| |2023)) exhibits an obvious program synthesis su-
periority over other contemporary open-source LLMs. In our study, we focus on the analyses and
comparison of the LLMs in writing test code and generating test cases.

Evaluation of Large Language Model. Recently, large language models (LLMs) has incited sub-
stantial interest in both academia and industry. In order to evaluate the capabilities of large language
models, a variety of effort have been devoted from the perspectives of natural/programming language
processing accuracy, robustness, ethics, biases, and trustworthiness, etc. For instance, PromptBench
(Zhu et al.| 2023) demonstrates that current LLMs are sensitive to adversarial prompts, and careful
prompt engineering is necessary for achieving descent performance with them. Another example,
DecodingTrust (Wang et al.l[2023a), offers a multifaceted exploration of trustworthiness of the GPT
models, especially GPT-3.5 and GPT-4. The evaluation expands beyond the typical trustworthiness
concerns to include several new critical aspects. Agentbench (Liu et al., 2023b) evaluates LLM as
agents on challenging tasks in interactive environments. Their experimental results show that, while
top commercial LL.Ms present a strong ability of acting as agents in complex environments, there is
a significant disparity in performance between them and their open-source competitors.

9 CONCLUSION

In this paper, we have performed thorough analyses of recent LLMs (mostly LLMs for code) in test-
ing programs/code. Through comprehensive experiments with 11 LLMs on programming bench-
mark datasets including HumanEval+ and MBPP (the sanitized version), we have uncovered a range
of intriguing characteristics of these LLMs for program/code testing. We have illustrated how the
program testing capabilities of these LLMs can be enhanced in comparing intensive empirical results
in four different settings. Based on our findings, we are also capable of improving the performance
of state-of-the-art LLMs in synthesizing programs/code with test cases of higher quality. As a pre-
liminary research work, we believe our paper can provide new research insights and spark new ideas
in program/code synthesis, test-case generation, and LLM understanding, and we look forward to
future exploration in this direction in future work.
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Model Size  Self-generated All-generated

InCoder 1.3B 54.38% 46.97%
CodeGen2 1B 56.79% 48.78%
CodeT5+ 770M 60.03% 54.16%
SantaCoder 1.1B 56.58% 54.42%
CodeGen-Multi 16B 53.09% 51.27%
CodeGen2 16B 55.66% 53.11%
CodeGen-Mono 16B 57.62% 58.05%
StarCoder 15B 60.29% 55.09%

WizardCoder 15B 71.57% 56.42%
GPT-3.5-turbo - 72.42% 62.91%

Table 7: The coverage rate of the test cases generated on HumanEval.

A APPENDIX

A.1 FURTHER ANALYSIS OF EXPERIMENTAL RESULTS

In this part, we provide further analysis of the experimental results in Section [f]

With regard to the situation where the test case quality generated by SantaCoder is lower than that
generated by CodeT5+ on the HumanEval+ dataset, we have explained that this is probably because
SantaCoder tends to generate longer and more complex test cases. Here we further demonstrate that
SantaCoder is capable to generate more accuracy output when given the same testing input as that
of CodeT5+’s. To show this, we first extract the input part of the test cases (which includes testing
inputs paired with their corresponding outputs) generated by CodeT5+ in the oracle setting. We then
let SantaCoder to generate testing outputs given these inputs, and assessed the accuracy of such test
cases. The results show that, given these testing inputs already, SantaCoder and CodeT5+ obtain an
correctness of 41.67 % and 40.34 %, respectively, showing that SantaCoder is indeed stronger, if the
same testing input is given and it does not have the chance to yeild more complex testing inputs.

A.2 ANALYSIS OF CODE COVERAGE

In the previous sections, when evaluating the code coverage of test cases, we used standard code as
the reference. To further assess the code coverage ability of test cases generated by the model, we
separately measured the coverage of test cases for their corresponding generated code. This involves
measuring the coverage of self-generated test cases for self-generated code and the coverage of all-
generated test cases for all-generated code. The results are shown in Table[7]

A.3 THE INFLUENCE OF DIFFERENT PROMPTS

As mentioned in Section 5 in the paper, the prompt for generating test cases are given by concate-
nating the function definitions and docstrings (“def cycpattern_check(a, b): \n \t ““‘....”), the code
implementation (“c=a \n ....”) or a placeholder (“pass”), and a comment given to prompt test case
generation (“# Check the correctness of this function with three test cases...”). In our early exper-
iments, we found that modifying the final comment given to prompt test case generation only has
a relatively small impact on the test case pass rate. We have tried e.g., “# Verify if the function is
accurate and generate three test cases...” and “# Generate three test data to verify the correctness
of this function...” and only observed less than 0.50% difference in correctness of the obtained test
cases.
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