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Abstract

This work studies the prediction variance of stochastic neural networks, a main type of
neural network in use. We constructively prove that as the width of an optimized stochastic
neural network tends to infinity, its predictive variance on the training set decreases to zero.
In particular, we show that a solution with vanishing variance exists when the model has
a “two-layer" structure, where the upper layer can copy independent copies of the latent
variable, and the second layer can average over such copies to cancel the noise. The main
implication of our result is that the popular belief that a powerful decoder causes the neural
network prediction variance to vanish is not the full picture. Two common examples of
learning systems that our theory can be relevant to are neural networks with dropout and
Bayesian latent variable models in a special limit. Our result thus helps us better understand
how stochasticity affects the learning of neural networks.

1 Introduction

Applications of neural networks have achieved great success in various fields. A major extension of the
standard neural networks is to make them stochastic, namely, to make the output a random function of
the input (Ajay et al., 2018; Su et al., 2019; Raissi, 2018; Kwon et al., 2020). In a broad sense, stochastic
neural networks include neural networks trained with dropout (Srivastava et al., 2014; Gal & Ghahramani,
2016), Bayesian networks (Mackay, 1992), variational autoencoders (VAE) (Kingma & Welling, 2013), and
generative adversarial networks (Goodfellow et al., 2014). In this work, we formulate a rather broad definition
of a stochastic neural network in Section 3. There are many reasons why one wants to make a neural network
stochastic. Two main reasons are (1) regularization and (2) distribution modeling. Since neural networks
with stochastic latent layers are more difficult to train, stochasticity is sometimes believed to help regularize
the model and prevent memorization of samples (Srivastava et al., 2014). The second reason is easier to
understand from the perspective of latent variable models. By making the network stochastic, one implicitly
assumes that there exist latent random variables that generate the data through some unknown function.
Therefore, by sampling these latent variables, we are performing a Monte Carlo sampling from the underlying
data distribution, which allows us to model the underlying data distribution by a neural network. This type
of logic is often invoked to motivate the VAE and GAN. Therefore, stochastic networks are of both practical
and theoretical importance to study. In the related fields, a mainstream belief about a stochastic neural
network is that it overfits any distribution easily because neural networks can approximate many sufficiently
regular distribution arbitrarily well (Lee et al., 2017); when this happens, the model ignores the stochastic
components of the architecture and outputs with very low variance. In Bayesian deep learning, the strong
power of the decoder has been conjectured to lead to various pathological phenomena in deep learning, such
as posterior collapse (Alemi et al., 2018), where the model output has a vanishing variation. However, there
is no direct proof of whether high expressivity or strong power is the cause of such problems and how a
neural network can actually reach such a pathological state. Our work answers this question of how a neural
network can achieve such a state directly and fills in this important theoretical gap.

In this work, we theoretically study stochastic neural networks. We prove with an explicit construction that
as the width of an optimized stochastic net increases to infinity, its predictive variance decreases to zero on
the training set. See Figure 1 for an illustration of this effect. Along with this proof, we propose a novel
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Figure 1: Distribution of the prediction of a trained neural network with dropout. We see that as the hidden
width d increases, the spread of the prediction decreases. Left: d = 10. Mid: d = 50, Right: d = 500. See
Section 4.1 for a detailed description of the experimental setup.

theoretical framework that allows us to abstract away the specific definitions of contemporary architectures of
neural networks and makes our result applicable to a family of functions that includes many common neural
networks as a strict subset.

This work is organized as follows. We discuss the related works in the next section. Section 3 presents the
main theoretical contributions and their implications. Section 4 substantiates the theory with numerical
simulations. Appendix Section A presents some additional experiments. Appendix Section B presents all the
proofs and some additional theoretical results.

2 Related Works

Bayesian inference promises to model the statistics of y. For example, we would like stochastic neural networks
to have well-calibrated uncertainty estimates, a trait that is highly desirable for practical, safe, and reliable
applications (Wilson & Izmailov, 2020; Gawlikowski et al., 2021; Izmailov et al., 2021). This expectation
means that a well-trained stochastic network should have a predictive variance that matches the actual level
of randomness in the labeling. Two applications we consider in this work are dropout (Srivastava et al., 2014),
which can be interpreted as a stochastic technique for approximate Bayesian inference, and VAE (Kingma
& Welling, 2013), which is among the main Bayesian deep learning methods in use. Theoretically, while a
unified approach is lacking, some previous works exist to separately study different stochastic techniques in
deep learning. A series of recent works approaches the VAE loss theoretically (Dai & Wipf, 2019). Another
line of recent works analyzes linear models trained with VAE to study the commonly encountered mode
collapse problem of VAE (Lucas et al., 2019; Koehler et al., 2021). In the case of dropout, Gal & Ghahramani
(2016) establishes the connection between the dropout technique and Bayesian learning. Another series of
work extensively studied the dropout technique with a linear network (Cavazza et al., 2018; Mianjy & Arora,
2019; Arora et al., 2020) and showed that dropout effectively controls the rank of the learned solution and
approximates a data-dependent L2 regularization. In the literature of Bayesian neural networks (BNN),
Farquhar et al. (2020) showed that a sufficiently wide mean-field BNN could approximate any sufficiently
regular distribution. Foong et al. (2020) studies the in-between predictive variance of deep nonlinear networks.

In Bayesian deep learning, a line of works suggested that a predominant problem in training with ELBO
is that the decoder is often too powerful (Bowman et al., 2015; Chen et al., 2016; Alemi et al., 2018). A
work that is particularly relevant to our works is Alemi et al. (2018), which showed that when the decoder
is sufficiently powerful to model the empirical data distribution, the model will learn to ignore the latent
variables z and perfectly reconstruct the data distribution p̂(x). When the empirical data distribution is a
mixture of delta distributions, this work implies that a sufficiently powerful decoder will have a vanishing
predictive variance. However, it is unclear from these works what it means to be “powerful" for a neural
network or how it could be achieved. Our work significantly advances this conventional perspective in two
ways. First of all, we make a positive construction of a “powerful" neural network that has a vanishing
variance. Second, we show a powerful decoder is not required for a vanishing variance (or for ignoring the
latent variable z). For example, having a powerful encoder can also make the model “ignore" the latent
variable and leads to a vanishing variance.
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3 Main Result

In this section, we present and discuss our main result. Notation-wise, let W denote a matrix, Wj∶ denote its
j-th row viewed as a vector. Let v be any vector, and vj denote its j-th element; however, when v involves a
complicated expression, we denote its j-th element as [v]j for clarity.

3.1 Problem Setting

We first introduce two basic assumptions of the network structure.
Assumption 1. (Neural networks can be decomposed into Lipshitz-continuous blocks.) Let f be a neural
network. We assume that there exist functions g1 and g2 such that f = g2 ○ g1, where ○ denotes functional
composition. Additionally, both g1 and g2 are Lipshitz-continuous.

Throughout this work, the component functions g1, g2 of a network f are called a block, which can be seen
as a generalization of a layer. It is appropriate to call g1 the input block and g2 the output block. Because
the Lipshitz constant of a neural network can be upper bounded by the product of the largest eigenvalue
of each weight matrix times the Lipshitz constant of the non-linearity, the assumption that every block is
Lipshitz-continuous applies to all existing networks with fixed weights and with Lipshitz-continuous activation
functions (such as ReLU, tanh, Swish (Ramachandran et al., 2017), Snake (Ziyin et al., 2020) etc.).

If we restrict ourselves to feedforward architectures, we can discuss the meaning of an "increasing width"
without much ambiguity. However, in our work, since the definition of blocks (layers) is abstract, it is not
immediately clear what it means to "increase the width of a block." The following definition makes it clear
that one needs to specify a sequence of blocks to define an increasing width.1

Definition 1. (Models with an increasing width.) Each block of a neural network f is labeled with two
indices d1, d2 ∈ Z+. Let f = g2 ○ g1; we write gi = d2,d1gi if for all x, d2,d1gi(x) ∈ Rd2 and x ∈ Rd1 . Moreover, to
every block g, there corresponds a countable set of blocks {i,jg}i,j∈Z+ . For a block g, its corresponding block
set is denoted as S(g) = {i,jg}i,j∈Z+ . Also, to every sequence of blocks g1, g2, ..., there also corresponds a
sequence of parameter sets w1, w2, ... such that gi = gi

wi is parametrized by wi. The corresponding parameter
set of block g is denoted as w(g).

Note that if f = g2 ○ g1, g1 = d2,d1g1 and g2 = d4,d3g2, d2 must be equal to d3; namely, specifying g1 constrains
the input dimension of the next block. It is appropriate to call d2 the width of the block d2,d1g. Since each
block is parametrized by its own parameter set, the union of all parameter sets is the parameter set of the
neural network f : f = fw. Since every block comes with the respective indices and equipped with its own
parameter set, we omit specifying the indices and the parameter set when unnecessary. The next assumption
specifies what it means to have a larger width.
Assumption 2. (A model with larger width can express a model with smaller width.) Let g be a block
and S(g) its block set. Each block g = gw in S(g) is associated with a set of parameters w such that for any
pair of functions d2,d1g, d′2,d1g′ ∈ S(g) such that d′2 > d2, any fixed w, and any surjective mappings m from
{1, ..., d′2} → {1, ..., d2}, there exists parameters w′ such that [d2,d1gw(x)]m(l) = [d

′
2,d1gw′(x)]l for all x and l.

This assumption can be seen as a constraint on the types of block sets S(w) we can choose. As a concrete
example, the following proposition shows that the block set induced by a linear layer with arbitrary input
and output dimensions followed by an element-wise non-linearity satisfies our assumption.
Proposition 1. Let d2,d1gW,b(x) = σ(Wx + b) where σ is an element-wise function, W ∈ Rd1×d2 , and b ∈ Rd2 .
Then, S(g) = {i,jgW,b(x)}i,j∈Z+ satisfies Assumption 2.

Proof. Consider two functions d1,d2g{W,b}(x) and d′1,d2g{W ′,b′}(x) in S(g). Let m be an arbitrary mapping
from {1, ..., d′1} → {1, ..., d1}. It suffices to show that there exist W ′ and b′ such that [d1,d2g{W,b}(x)]m(l) −
[d′1,d2g{W ′,b′}(x)]l = 0 for all l. For a matrix M , we use Mj∶ to denote the j-th row of M . By definition, this

1Also, note that this definition of "width" makes it possible to define different ways of "increasing" the width and is thus
more general than the standard procedure of simply increasing the output dimension of the corresponding linear transformation.
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condition is equivalent to
σ(Wm(l)∶x + b) = σ(W ′

l∶x + b′) (1)

which is achieved by setting b′ = b and W ′
l∶ =Wm(l)∶, where Wm(l)∶ is the m(l)-th row of W . ◻

Now, we are ready to define a stochastic neural network.
Definition 2. (Stochastic Neural Networks) A neural network f = g2 ○ g1 is said to be a stochastic neural
network with stochastic block g1 if g1 = g1(x, ϵ) is a function of x and a random vector ϵ, and the corresponding
deterministic function f ′ ∶= g2 ○ h1 satisfies Assumption 2, where h1 = Eϵ ○ g1.

Namely, a stochastic network becomes a proper neural network when averaged over the noise of the stochastic
block. To proceed, we make the following assumption about the randomness in the stochastic layer. We note
that this definition allows for multiple two-block decompositions of the same neural network. For example,
For a two layer neural network with tanh activation, f(x) = Utanh(Wx), one can either define W or tanh○W
as g1, and the rest of the model as g2.
Assumption 3. (Uncorrelated noise) For a stochastic block g, Covϵ[g(x, ϵ), g(x, ϵ)] = Σ(x), where Σ is a
diagonal matrix and Σii < ∞ for all i.2

This assumption applies to standard stochastic techniques in deep learning, such as dropout or the
reparametrization trick used in approximate Bayesian deep learning. Lastly, we assume the following
condition for the architecture.
Assumption 4. (Stochastic block is followed by linear transformation.) Let f = g2 ○ g1 be the stochastic
neural network under consideration, and let g1 be the stochastic layer. We assume that for all i,jg ∈ S(g2),
i,jgw = g′w′(Wx + b) for a fixed function g′ ∶ Rd → Ri with parameter set w′, where W ∈ Rd×j and bias b ∈ Rd

for a fixed integer d. In our main result, we further assume that b = 0 for notational conciseness.

In other words, we assume that the second block g2 can always be decomposed as g′ ○M , such that M
is an optimizable linear transformation. This is the only architectural assumption we make. In principle,
this can be replaced by weaker assumptions. However, we leave this as an important future work because
Assumption 4 is sufficient for the purpose of this work and is general enough for the applications we consider
(such as dropout and VAE). We also stress that the condition that g2 starts with a linear transformation
does not mean that the first proper layer of g2 is linear. Instead, M can be followed by an arbitrary Lipshitz
activation function as is usual in practice; in our definition, if it exists, this following activation is assumed
into the definition of g′.

The actual rather restrictive assumption in Assumption 4 is that the function g′ has a fixed input dimension
(like a “bottleneck"). In practice, when one scales up the model, it is often the case that one wants to scale
up the width of all other layers simultaneously. For the first block, this is allowed by assumption 2.3 We note
that this bottleneck assumption is mainly for notational concision. In the appendix B.3, we show that one
can also extend the result to the case when the input dimension (and the intermediate dimensions) of g′ also
increases as one increases the width of the stochastic layer.

Problem Setting Summary. To summarize, we require a network f to be decomposed into two blocks:
f = g2 ○ g1 and g1 is a stochastic block. Each block is associated with its indices, which specify its input
and output dimensions, and a parameter set that we optimize over. For example, we can write a block g
as g = d2,d1gi

w to specify that g is the i-th block in a neural network, is a mapping from Rd1 to Rd2 , and
that its parameters are w. However, for notational conciseness and better readability, we omit some of the
specifications when the context is clear. For the parameter w, sometimes, we view w as a set and discuss its
unions and subsets; for example, let fw = g2

w2 ○ g1
w1 ; then, we say that the parameter set w of f is the union

of the parameter set of g1 and g2: w = w1 ∪w2. Alternatively, we also view w as a vector in a subset of the
real space, so that we can look for the minimizer w in such a space (in expressions such as minw L(w)).

2Some notable examples that this assumption does not apply to are the full-covariance models such as the ones proposed in
(Louizos & Welling, 2016).

3For example, if g1 is a multilayer perceptron, it is easy to check that assumption 2 is satisfied if one increases the
intermediate layers of g1 simultaneously.
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3.2 Convergence without Prior

In this work, we restrict our theoretical result to the MSE loss. Consider an arbitrary training set {(xi, yi)}N
i=1,

when training the deterministic network, we want to find

w∗ = arg min
w

N

∑
i=1
[fw(xi) − yi]2. (2)

It is convenient to write [fw(xi) − yi]2 as Li(w). We note that it is well-known that the minimizer of the
MSE should have a minimal variance, and the actual technical contribution of this section is to give explicit
constructive proof of how such solutions can be achieved in a neural network.

An overparametrized network can be defined as a network that can achieve zero training loss on such a
dataset.
Definition 3. A neural network fw is said to be overparametrized for a non-negative differentiable loss
function ∑i Li if there exists w∗ such that ∑i Li(w∗) = 0. For a stochastic neural network f with stochastic
block g1, f is said to be overparametrized if f ′ ∶= g2 ○Eϵ ○ g1 is overparametrized, where Eϵ is the expectation
operation that averages over ϵ.

Namely, we say that a stochastic network is overparametrized if its deterministic part is overparametrized.
When there is no degeneracy in the data (if xi = xj , then yi = yj), zero training loss can be achieved for a
wide enough neural network, and this definition is essentially equivalent to assuming that there is no data
degeneracy and is thus not a strong limitation of our result. A crucial remark is that this assumption does
not imply that the corresponding stochastic network can express any distribution. For example, for linearly
interpolable data, a two-layer linear network is overparametrized, but its expressivity of distributions does
not increase with width at all. This point will become crucial when we discuss the implication of our results
in Section 3.5.

With a stochastic block, the training loss becomes (due to the sampling of the hidden representation)

Eϵ [
N

∑
i

Li] =
N

∑
i=1

Eϵ [(fw(xi, ϵ) − yi)2] . (3)

Note that this loss function can still be reduced to 0 if fw(xi, ϵ) = yi for all i with probability 1, though this
is in general not possible for a stochastic network to achieve.

With these definitions at hand, we are ready to state our main result.
Theorem 1. Let the neural network under consideration satisfy Assumptions 1 ,2, 3 and 4, and assume that
the loss function is given by equation 3. Let {d1f}d1∈Z+ be a sequence of stochastic networks such that, for fixed
integers d2, d0, d1f = d2,d1g2 ○ d1,d0g1 with stochastic block d1,d0g1

w(g1)
∈ S(g1). Let d1f be overparameterized

for all d1 ≥ d∗ for some d∗ > 0. Let w∗ = arg minw∑N
i E[L(difw(x, ϵ), yi)] be a global minimum of the loss

function. Then, for all x in the training set,

lim
k→∞

Varϵ [kd∗fw∗(x, ϵ)] = 0. (4)

Proof Sketch. The full proof is given in Appendix Section B.1. In the proof, we denote the term L(d1fw(x, ϵ), yi)
as Ld1

i (w). Let w∗ be the global minimizer of ∑N
j Eϵ [Ld1

j (w)]. Then, for any w, by definition of the global
minimum,

0 ≤
N

∑
j

Eϵ [Ld1
j (w∗)] ≤

N

∑
j

Eϵ [Ld1
j (w)] . (5)

If limd1→∞ ∑N
j Eϵ [Ld1

j (w)] = 0, we have limd1→∞ ∑N
j Eϵ [Ld1

j (w∗)] = 0, which implies that
limd1→∞Eϵ [Ld1

j (w∗)] = 0 for all j. By bias-variance decomposition of the MSE, this, in turn, implies
that Var[d1fw∗(xj)] = 0 for all j. Therefore, it is sufficient to construct a sequence of w such that
limd1→∞Eϵ∑N

j [Ld1
j (w)] = 0. The rest of the proof shows that, with the architecture assumptions we
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made, such a network can indeed be constructed. In particular, the architectural assumptions allow us to
make independent copies of the output of the stochastic block and the linear transformation after it allows us
to average over such independent copies to recover the mean with a vanishing variance, which can then be
shown to be able to achieve zero loss. ◻
Remark. The condition that the width is a multiple of d∗ is not essential and is only used for making the
proof concise. One can prove the same result without requiring d1 = kd∗. Also, the dimension of y is not
essential here. When y is high-dimensional, one can prove that for all i, Varϵ [kd∗fw∗,i(x, ϵ)] converges to
zero.

At a high level, one might wonder why the optimized model achieves zero variance. Our results suggest
that the form of the loss function may be crucial. The MSE loss can be decomposed into a bias term and a
variance term:

N

∑
i

Li = bias + variance. (6)

Minimizing the MSE loss involves both minimizing the bias term and the variance term, and the key step of
our proof involves showing that a neural network with a sufficient width can reduce the variance to zero.
We thus conjecture that convergence to a zero-variance model can be generally true for a broad class of loss
functions. For example, one possible candidate for this function class is the set of convex loss functions, which
favor a mean solution more than a solution with variance (by Jensen’s inequality), and a neural network
is then encouraged to converge to such solutions so as to minimize the variance. However, identifying this
class of loss functions is beyond the scope of the present work, and we leave it as an important future step.
Lastly, we also stress that the main results are not a trivial consequence of the MSE being convex. When
the model is linear, it is rather straightforward to show that the variance reduces to zero in the large-width
limit because taking the expectation of the model output is equivalent to taking the expectation of the latent
noise. However, this is not trivial to prove for a neural network because the net f is, in general, a nonlinear
and nonconvex function of the latent noise ϵ.

While our result does not directly deal with the predictive variance of the model on the testing set (or other
out-of-distribution data), our results do have some implication on the behavior of the out-of-distribution data
points when viewed together with the result of Foong et al. (2020). Foong et al. (2020) shows that, in many
regions of the input space, the prediction variance of the model of any interpolation of two points is bounded
by the sum of the variance on each of these points. This implies that our results may also be quite relevant
for the points not in the training set, explaining our empirical observation (See Section 4) that the variance
on the test points also drops with the variance on the training set.

3.3 Application to Dropout

Definition 4. A stochastic block g(x) is said to be a p-dropout layer if [g(x)]j = ϵj[h(x)]j , where h(x) is a
deterministic block, and ϵj are independent random variables such that ϵj = 1/p with probability p and ϵj = 0
with probability 1 − p.

Since the noise of dropout is independent, one can immediately apply the main theorem and obtain the
following corollary.
Corollary 1. For any 0 < p < 1, an optimized stochastic network with an infinite width p-dropout layer has
zero variance on the training set.

Our result thus formally proves the intuitive hypothesis in the original dropout paper (Srivastava et al., 2014)
that applying dropout to training has the effect of encouraging an averaging effect in the latent space.

3.4 Convergence with a Stochasticity Regularization

In many scenarios, we want to train a stochastic network with regularization that is, say, due to a prior term
in the loss function. We now extend our result to the case where a soft constraint exists in the loss function;
such a constraint often appears in Bayesian deep learning to encourage the learnable latent variables to
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conform to the desired distribution. The result in this section is more general and involved than Theorem 1
because the soft prior constraint matches the latent variable to the prior distribution in addition to the MSE
loss. The existence of the prior term regularizes the model and prevents a perfect fitting of the original MSE
loss, and the main message of this section is to show that even in the presence of such a (weak) regularization
term, we can still have a vanishing variance, but its decay toward zero is relatively slow.

While it is natural that a latent variable model f = g2 ○ g1 can be decomposed into two blocks, where g2 is
the decoder, and g1 is an encoder, we require one additional condition. Namely, the stochastic block ends
with a linear transformation layer.4

Definition 5. A stochastic block g(x) is said to be a encoder block if g(x) =W1h(x) + ϵj ⊙ (W2h(x) + b),
where ⊙ is the Hadamard product, W1, W2 are linear transformations and b is the bias of W2, h(x) is a
deterministic block, and ϵj are uncorrelated random variables with zero mean and unit variance.

Note that we explicitly require the weight matrix W2 to come with a bias. For the other linear transformations,
we have omitted the bias term for notational simplicity. One can check that this definition is consistent with
Definition 2. Namely, a net with an encoder block is indeed a type of stochastic net. When the training
loss only consists of the MSE, it should follow as an immediate corollary of Theorem 1 that the variance
converges to zero. However, the prior term complicates the problem. The following definition specifies the
type of the prior loss under our consideration.
Definition 6. (Prior-Regularized Loss.) Let f = g2 ○ g1, such that [g1(x)]j = W1h(x) + ϵj ⊙W2h(x) is a
encoder block. A loss function ℓ is said to be a prior-regularized loss function if ℓ = ∑i Li + ℓprior, where ∑i Li

is given by equation 3 and ℓprior = 1
dα

1
∑j ℓmean([W1h(xi)]j) + ℓvar([W2h(x) + b]j), where α > 0, ℓmean ≥ 0 and

ℓvar ≥ 0 are differentiable functions that are equal to zero if for all xi, [W1h(xi)]j = 0 and [W2h(x) + b]j = 1.

We have abstracted away the actual details of the definitions of the prior loss. For our purpose, it is sufficient
to say that the equation [W1h(xi)]j = 0 means that the loss function encourages the posterior to have a zero
mean and [W2h(x) + b]j = 1 encourages a unit variance. As an example, one can check that the standard
ELBO loss for VAE satisfies this definition. With this architecture, we prove a similar result. The proof is
given in Section B.2.
Theorem 2. Assuming that the neural networks under consideration satisfy Assumptions 1 ,2, 4, and the
stochastic block is a encoder block and satisfies Assumption 3, and that the loss function is a prior-regularized
loss with parameter α > 0, let d2, d0 be fixed integers, d1f = d2,d1g2 ○ d1,d0g1 and {d1f}d1∈Z+ be a sequence of
stochastic networks with stochastic block d1,d0g1

w(g1)
∈ S(g1). Let d1f be overparameterized for all d1 ≥ d∗ for

some d∗ > 0. Let w∗ = arg minw∑N
i E[L(fdi

w (x, ϵ), yi)] be the global minimum of the loss function. Then, for
all x in the training set,

lim
k→∞

Varϵ [kd∗fw∗(x, ϵ)] = 0. (7)

We stress that the scaling of the regularization strength as d−α
1 , where α > 0, is both relevant and important.

Our result is actually complementary to the result of Coker et al. (2021), which shows that if α ≤ 0, the
loss due to the regularization term indeed increases as d1 as we increase the width towards infinity and,
ultimately, the regularization becomes so strong that the model completely ignores the data and cannot
learn anything at all. The only meaningful limit for the model is thus α > 0. In fact, if the value of the
regularization scales as d1, the regularization strength needs to scale as α ≥ 1 for the regularization effect to
not be infinitely strong. In light of Coker et al. (2021), our result thus suggests that the stochastic networks
have an interesting bifurcative behavior at α = 0: to the one side, the model cannot learn anything; to the
other side, the model fits the data perfectly well.

One might also wonder whether a vanishing prior strength makes this setting trivial. The proof shows that it
is far from trivial because we are simultaneously scaling up the model width and the regularization strength.
In this case, even a prior with vanishing strength can have a very strong influence. The proof suggests that if
the prior strength decays as 1/dα

1 , the variance should decay roughly as d
−

min(1,α)
2

1 . Namely, the smaller the α,
the slower the rate of convergence towards 0. Additionally, the fastest exponent at which the variance can

4Such a condition is satisfied by a standard VAE encoder (Kingma & Welling, 2013), for example.
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(a) Feedforward Network with Dropout (Adam). (b) VAE (Adam).

Figure 2: Scaling of the prediction variance of different models as the width of the stochastic layer extends to
infinity. For both dropout network and VAE, we see that the prediction variance decreases towards 0 as the
width increases. For completeness, the prediction variance over an independently sampled test set is also
shown.

decay is −0.5, significantly smaller than the case for Theorem 1, where the proof suggests an exponent of −1.
This means that even a vanishing regularization strength can have a strong impact on the prediction variance
of the model. Quantitatively, as α approaches zero, the variance can decay arbitrarily slowly. Qualitatively,
our result implies that having a regularization term or not qualitatively changes the nature of the global
minima of the stochastic model.

3.5 What causes a vanishing variance?

Now, we are ready to answer the major questions we raised in the introduction. First of all, does a stochastic
neural network have a vanishing variance when it is wide? The answer is yes if the model has a “two-block"
structure and we have successfully trained the model to one of its global minima. A two-block model can do
a rather special operation: use the first block to make independent copies of the noisy latent variables and
use the second block to average. We showed that while a trained model does not have to rely on this strategy
for noise canceling, it must do worse as long as it is well-optimized.

The second question is more important: what causes the noise to vanish? In this case, our result shows that
the common belief is not the full picture. Having a powerful decoder is not required for a vanishing variance.
The key assumption in our proof is that the corresponding deterministic model is sufficiently “powerful"
to memorize all the data points, and this can be achieved in one of the following three ways: (1) having
a powerful decoder, which is the conventional understanding; (2) having a powerful encoder; (3) neither
the encoder nor the decoder is powerful, but when taken together, they can memorize all the data points.
Additionally, our work also gives a mathematical definition of “power" in the context of stochastic neural
networks: a model is powerful if its deterministic version can memorize all the training data.

3.6 Practical Implication

Practically, our theory suggests that one may be able to prevent a vanishing variance in one of the following
ways: (1) use a small and thin model; while this is often the preferred practice, it often leads to insufficient
modeling of the data due to limited model capacity; (2) use data augmentation with large models; intuitively,
this seems to be the better answer, with data augmentation, it often becomes impossible for the model to
completely memorize the dataset, and yet, one can use a sufficiently large and expressive model to model the
complicated nonlinearities in the data. We leave this as future work.
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4 Numerical Simulations

We perform experiments with nonlinear neural networks to demonstrate the studied effect of vanishing
variance. The first part describes the illustrative experiment presented at the beginning of the paper. The
second part experimentally demonstrates that a dropout network and VAE have a vanishing prediction
variance on the training set as the width tends to infinity. Additional experiments performed with weight
decay and SGD are presented in the appendix.

4.1 Illustration

In this experiment, we let the target function be y = sin(x) + η for x uniformly sampled from the domain
[−3, 3]. The target is corrupted by a weak noise η ∼ N(0, 0.1). The model is a feedforward network with
tanh activation with the number of neurons 1→ d→ 1 where d ∈ {10, 50, 500}, and a dropout with dropout
probability p = 0.1 is applied in the hidden layer. See Figure 1.

4.2 Dropout

We now systematically explore the prediction variance of a model trained with dropout. As an extension of
the previous experiment, we let both the input and the target be vectors such that x, y ∈ Rd. The target
function is yi = x3

i + ηi for i ∈ {1, ..., d}, where xi, ηi ∼ N(0, 1) and the noise η ∈ Rd is also a vector. We let
d = 20 and sample 1000 data point pairs for training. The model is a three-layer MLP with ReLU activation
functions, with the number of neurons 20→ dh → 20, where dh is the width of the hidden layer. Dropout is
applied to the post-activation values of the hidden layer. In the experiments, we set the dropout probability
p to be 0.1, and we independently sample outputs 3000 times to estimate the prediction variance. Training
proceeds with Adam for 4500 steps, with an initial learning rate of 0.01, and the learning rate is decreased by
a factor of 10 every 1500 step. See Figure 2(a) for a log-log plot of width vs. prediction variance. We see that
the prediction variance of the model on the training set decreases towards zero as the width increases, as our
theory predicts. For completeness, we also plot the prediction variance for an independently sampled test set
for completeness. We see that, for this task, the prediction variance of the test points agree well with that
of the training set. A linear regression on the slope of the tail of the width-variance curve shows that the
variances decrease roughly as d−0.7, close to what our proof suggests (d−1); we hypothesize that the exponent
is slightly smaller than 1 because the training is stopped at a finite time and the model has not fully reached
the global minimum.5.

4.3 Variational Autoencoder

In this section, we conduct experiment on a β−VAE with latent Gaussian noise. The input data x ∈ Rd is
sampled from a standard Gaussian distribution with d = 20. We generate 100 data points for training. The
VAE employs a standard encoder-decoder architecture with ReLU nonlinearity. The encoder is a two-layer
feedforward network with neurons 20→ 32→ 2×dh. The decoder is also a two-layer feedforward network with
architecture dh → 32→ 20. Note that our theory requires the prior term ℓvae not to increase with the width;
we, therefore, choose β = 0.1/dh. The training objective is the minus standard Evidence Lower Bound (ELBO)
composed of reconstruction error and the KL divergence between the parameterized variable and standard
Gaussian. We independently sample outputs 100 times to estimate the prediction variance for estimating the
variance. The results in Fig. 2(b) show that the variances of both training and test set decrease as the width
increases and follow the same pattern.

4.4 Experiments with Weight Decay

Weight decay often has the Bayesian interpretation of imposing a normal distribution prior over the variables,
and sometimes it is believed to prevent the model from making a deterministic prediction (Gal & Ghahramani,
2016). We, therefore, also perform the same experiments as in the previous two subsections, with a weight
decay strength of λ = 5e − 4. See Appendix Sec. A.1 for the results. We notice that the experimental result

5Moreover, with a finite-learning rate, SGD is a biased estimator of a minimum (Ziyin et al., 2021a).
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is similar and that applying weight decay is not sufficient to prevent the model from reaching a vanishing
variance. Conventionally, we expect the prediction of a dropout net to be of order λ and not directly dependent
on the width (Gal & Ghahramani, 2016); however, this experiment suggests that width may wield a stronger
influence on the prediction variance than the weight decay strength. Since a model cannot reach the actual
global minimum when weight decay is applied, this experiment is beyond the applicability of our theory;
therefore, this result suggests a conjecture that even in a local minimum, it can still be highly likely for
stochastic models to reach a solution with vanishing variance, and proving or disproving this conjecture can
be an important future task.

4.5 Other loss functions

Figure 3: Predictive variances of two
models trained on MNIST with the
cross-entropy loss decrease towards
zero as the width increases.

Empirically, we note that neural networks trained with other com-
mon loss functions, such as the cross-entropy loss, also exhibit the
same phenomenon. We experiment on the MNIST dataset with
two architectures: (1) a fully connected neural network with ar-
chitecture 784 → width → 10 neurons (labeled as FC ) and (2) a
simple convolutional neural network with two convolution layers and
two fully connected tanh layers with architecture: convolution →
convolution → width → 10. In both cases, we apply a dropout of
probability 0.3 to the neurons with dimension width and train with
Adam on the cross-entropy loss until the loss stops decreasing. See
Figure 3. We see that the predictive variance also decreases toward
zero, similar to the case of the MSE loss.

5 Discussion

In this work, we studied the potential causes for the prediction variance of stochastic neural networks to
vanish. We showed that when the loss function satisfies certain conditions and under mild architectural
conditions, the prediction variance of a stochastic net on the training set tends to zero as the width of the
stochastic layer tends to infinity. Our theory offers a precise mathematical explanation to a frequently quoted
anecdotal problem of a stochastic network, that the neural networks can be too powerful such that adding
noise to the latent layers is not sufficient to make a network capable of modeling a distribution well (Higgins
et al., 2016; Burgess et al., 2018; Dai & Wipf, 2019). A major limitation of our theory is that we have only
studied the global minimum, and it is important to study whether or under what conditions the variance
also vanishes for a local minimum. From a practical point of view, our result suggests that it is generally
nontrivial to train a model whose prediction variance matches the true variance of the data. Our results
thus motivate the design loss functions that encourage a nonvanishing prediction variance that matches the
desired level of uncertainty, which is an interesting future problem.
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(a) Dropout (b) VAE

Figure 4: Variance vs. the width of NNs using weight decay.

(a) Feedforward Network with Dropout (SGD). (b) VAE (SGD).

Figure 5: Empirical scaling of the prediction variance of different models as the width of the stochastic layer
extends to infinity. For both dropout network and VAE, we see that the prediction variance decreases towards
0 as the width increases.

A Additional Experiments

A.1 Weight decay

This part of experiment has been described in the main text. See Figure 4. We see that even with weight
decay, the prediction variance drops towards zero unhindered.

A.2 Training with SGD

Since our result only depends on the global minimum of the loss function, one expects to also find that the
prediction variance to decrease with a different optimization procedure. In this section, we perform the
same experiment with SGD. See Figure 5. We see that, for dropout, the result is similar to the case with
Adam. For VAE, the result is a little more subtle in the tail, where the decrease in variance slows down. We
hypothesize that it is because the SGD algorithm increase in fluctuation and reduce in stability as the width
of the hidden layer increases (Liu et al., 2021; Ziyin et al., 2021b), which causes the prediction variance to
increase and partially offsets the effect due to averaging of the parameters.
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B Proofs and Theoretical Concerns

B.1 Proof of Theorem 1

Proof. In the proof, we denote the term L(d1fw(x, ϵ), yi) as Ld1
i (w). Let w∗ be the global minimizer of

∑N
j Eϵ [Ld1

j (w)]. Then, for any w, we have by definition

0 ≤
N

∑
j

Eϵ [Ld1
j (w∗)] ≤

N

∑
j

Eϵ [Ld1
j (w)] . (8)

If limd1→∞ ∑N
j Eϵ [Ld1

j (w)] = 0, we have limd1→∞ ∑N
j Eϵ [Ld1

j (w∗)] = 0, which implies that
limd→∞Eϵ [Ld1

j (w∗)] = 0 for all j. By the bias-variance decomposition of the MSE, this, in turn, im-
plies that Var[d1fw∗(xj)] = 0 for all j. Therefore, it is sufficient to construct a sequence of w such that
limd1→∞ ∑N

j Eϵ [Ld1
j (w)] = 0.

Now, we construct such a w. Let d1f ′ denote the deterministic counterpart of d1f . By definition and by
Assumption 1, we have

d1f(x) = d2,d1g2
w2 ○ d1,d0g1

w1(x); (9)
d1f ′(x) = d2,d1g2

w2 ○Eϵ ○ d1,d0g1
w1(x). (10)

By the architecture assumption (assumption 4), there exists a function hv parametered by a parameter set v
and a linear transformation M such that we can further decompose the two neural networks as

f(x) = hv ○M ○ g1
w1
(x); (11)

f ′(x) = hv ○M ○E ○ g1
w1
(x), (12)

where M ∈ Rd×d1 for a fixed integer d and is a linear transformation belonging to the parameter set of g2.
Note that, by definition, the parameter set of the g2 block is w2 = v ∪M .

Let u∗ be a global minimum of d1f ′:

u∗ ∶= (v∗, M∗
′, w1

∗) = arg min
v,M ′,w1

N

∑
j

L(d1f ′w(x), yi), (13)

and, by the assumption of overparametrization, we also have d1f ′u∗(xj) = yj for all j.

We now specify the parameters for fw for k > 1. By assumption 2, we can find parameters w′1 such that
E[kd∗,d0g1

w′1
(x)j] = E[d∗,d0g1

w1∗
(x)]j mod d∗ for j = 1, ..., kd∗. Namely, we choose the parameters such that

the expected output of the stochastic block are k identical copies of the output of the overparametrized
deterministic model with width d∗.

Since M is a linear transformation, one can factorize it as a product of two matrices such that M = AG,
where A ∈ Rd×d∗ and G ∈ Rd∗×d1 :

f(x) = hv ○A ○G ○ g1(x)w1 ; (14)
f ′(x) = hv ○A ○G ○E ○ g1

w1
(x). (15)

Now, note that by definition, the function hv ○A for any kd∗f coincides with the g2 block of d∗f ′. Namely,
hv ○A = d2,d∗g2

w2 such that w2 = v ∪A, and we let v = v∗ and A =M∗.

Now, the last step is to specify G. We let G∗ij = 1
k

δi,j mod d, where δi,j = 1 if i = j and 0 otherwise. Namely,
G∗ is nothing but an averaging matrix that sums and rescales the deterministic layer by a factor of 1/k.

To summarize, our specification defines the following stochastic neural network:
kd∗f(x) = hv∗ ○M∗ ○G∗ ○ g1

w′1
(x). (16)
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By definition of G∗ and w′1, Eϵ[G∗ ○kd∗,d0g1
w′1
(x)] = Eϵ[d

∗,d0g1
w′1
(x)], and [G∗ ○kd∗,d0g1

w′1
(x)]j are independent

for different j. Moreover, because [d∗,d0g1
w′1
(x)]j has variance Σii by assumption, [G∗ ○ kd∗,d0g1

w′1
(x)]j has

variance Σii/k.

Now, as k →∞,
G∗ ○ kd∗,d0g1

w′1
(x) →L2 Eϵ[G∗ ○ kd∗,d0g1

w′1
(x)], (17)

where →L2 denotes convergence in mean square. Because hv ○ A is a Lipshitz continuous function by
Assumption 1,

lim
k→∞

hv∗ ○M∗ ○G∗ ○ kd∗,d0g1
w′1
(x) →L2 hv∗ ○M∗ ○Eϵ ○ d∗,d0g1

w∗1
(x). (18)

This implies that the expectation of the constructed model with increasing width converge to that of the
overparametrized determinstic model (convergence in mean square implies convergence in mean). Therefore,
defining our model as d1f∗ = hv∗ ○M∗ ○G∗ ○ kd∗,d0g1

w′1
, we obtain

Eϵ[d1f(xi)] → d∗f ′(xi). (19)

Therefore, we have, by the bias-variance decomposition for MSE:

Eϵ[d1f∗(xi, ϵ) − yi]2 = [Eϵ[d1f∗(xi, ϵ)] − yi]
2 +Var[d1f∗(xi, ϵ)] (20)

Both terms converges to 0 for all i, and so the sum of two terms converge to 0. This finishes the proof. ◻

B.2 Proof of Theorem 2

Before the proof, we first comment that the proof is quite similar to the previous case. The difference lies in
how we construct the model so as to reduce the training loss to zero as

Proof. In the proof, we denote the term L(d1fw(x, ϵ), yi) as Ld1
i (w). Let w∗ be the global minimizer of

∑N
j Eϵ [Ld1

j (w)]. Then, for any w, we have by definition

0 ≤
N

∑
j

Eϵ [Ld1
j (w∗)] ≤

N

∑
j

Eϵ [Ld1
j (w)] . (21)

If limd1→∞ ∑N
j Eϵ [Ld1

j (w)] = 0, we have limd1→∞ ∑N
j Eϵ [Ld1

j (w∗)] = 0, which implies that
limd→∞Eϵ [Ld1

j (w∗)] = 0 for all j. This, in turn, implies that Var[d1fw∗(xj)] = 0 for all j because both the
reconstruction loss and the prior are non-negative. Therefore, it is sufficient to construct a sequence of w
such that limd1→∞Eϵ∑N

j [Ld1
j (w)] = 0.

Let d1f ′ denote the deterministic counterpart of dif , and let u∗ be a global minimum of d1f ′. By the definition
of a neural network, we can write

d1f(x) = d2,d1g2
w2 ○ d1,d0g1

w1(x); (22)
d1f ′(x) = d2,d1g2

w2 ○Eϵ ○ d1,d0g1
w1(x). (23)

By the assumption of overparametrization, d1f ′u∗(xj) = yj for all j.

By the architecture assumption, there exists a function hv parametrized by a parameter set v such that we
can further decompose the two neural networks as

f(x) = hv ○M ○Z ○ gw1(x); (24)
f ′(x) = hv ○M ○E ○Z ○ gw1(x), (25)

where M ∈ Rd1×d for a fixed integer d and is a linear transformation belonging to the parameter set of g2,
and Z(x) = T1x + ϵ ⊙ (T2x + b) is the linear stochastic layer. Now, the parameter set of the network f is
w = v ∪M ∪ T1 ∪ T2 ∪ b ∪w1.
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By definition, the loss takes the form
N

∑
i

Li +
d1

∑
j

ℓ(j)mean +
d1

∑
j

ℓ(j)var (26)

We first let T2 = 0 and b = 1, which immediately minimizes the variance part of of the loss: ℓ
(j)
var = 0

for all j. By assumption, for d1 ≥ d∗, f ′(x) is overparametrized, and one can find (v∗, M∗
′, w1

∗, T ∗1 ) =
arg minv,M ′,w1 ∑N

j Ld∗
j (w) such that ∑N

i Li = 0.

For k > 1, we let [T ′1]j∶ = a[T ∗1 ]j mod d for a positive scalar a. Namely, we copy the rows of the matrix W ∗
1 so

that the expected output of the stochastic block are k identical copies of the output of the overparametrized
deterministic model with width d∗, rescaled by a factor a.6

Since M is a linear transformation, one can factorize it as a product of two matrices such that M = AG where
A ∈ Rd×d∗ and G ∈ Rd∗×d1 :

f(x) = hv ○A ○G ○ g1(x)w1 ; (27)
f ′(x) = hv ○A ○G ○E ○ g1

w1
(x). (28)

Now, by definition, the function hv ○A = d2,d∗g2
w2 such that w2 = v ∪A, and we let v = v∗ and A = M∗/a.

Again, notice that we have rescaled the matrix by a factor of 1/a.

Now, the last step is specify G. We let G∗ij = 1
k

δi,j mod d where δi,j = 1 if i = j and 0 otherwise. Namely, G∗

sums and rescales the deterministic layer by a factor of 1/k. This transformation has an averaging effect.

To summarize, our specification defines the following stochastic neural network:

f(x) = hv∗ ○M∗ ○G∗ ○ g1
w′1
(x). (29)

By definition of G∗ and w′1, Eϵ[G∗ ○kd∗,d0g1
w′1
(x)] = Eϵ[d

∗,d0g1
w′1
(x)], and [G∗ ○kd∗,d0g1

w′1
(x)]j are independent

for different j. Moreover, because [d∗,d0g1
w′1
(x)]j has variance Σii by assumption, [G∗ ○ kd∗,d0g1

w′1
(x)]j has

variance Σii/(ak). We let a = k−γ , where 1 > γ > 1 − α, and, therefore, [G∗ ○ kd∗,d0g1
w′1
(x)]j has variance

Σii/(k1−γ) which vanishes to 0 as k increases.

At the same time, because ℓ is a differentiable function of T1x,

1
(kd∗)α

kd∗

∑
j

ℓ(j)mean ∼
1

(kd∗)α
kd∗

∑
j

k−γ +O(k−2γ) (30)

= k1−γ−α(d∗)1−α (31)
→ 0, (32)

where the last line follows from the condition γ > 1 − α, which holds by assumption.7

Now, as k →∞,
G∗ ○ kd∗,d0g1

w′1
(x) →L2 Eϵ[G∗ ○ kd∗,d0g1

w′1
(x)], (33)

where →L2 denotes convergence in mean square. Because hv ○A is a Lipshitz continuous function,

lim
k→∞

hv∗ ○M∗ ○G∗ ○ kd∗,d0g1
w′1
(x) →L2 hv∗ ○M∗ ○Eϵ ○ d∗,d0g1

w∗1
(x). (34)

This implies that the expectation of the model with increasing width converge to that of the overparametrized
deterministic model (convergence in mean square implies convergence in mean. Therefore, defining our model
as d1f∗ = hv∗ ○M∗ ○G∗ ○ kd∗,d0g1

w′1

Eϵ[d1f(xi)] → d∗f ′(xi). (35)
6Note that this factor of a is one crucial difference from the previous proof. This factor of a will be crucial for reducing

ℓmean to 0.
7Namely, with this construction, the variance part of the loss scales as k−(1−γ) and the prior part of the loss scales as

k−(γ+alpha−1). The sum of the two terms are minimized if 1 − γ = γ + alpha − 1, or, γ = 1 − α/2.
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Therefore, defining our model as d1f∗ = hv∗ ○M∗ ○G∗ ○ kd∗,d0g1
w′1

, we have, by the bias-variance decomposition
for MSE:

Eϵ[d1f∗(xi, ϵ) − yi]2 = [Eϵ[d1f∗(xi, ϵ)] − yi]
2 +Var[d1f∗(xi, ϵ)], (36)

which converges to 0. This finishes the proof. ◻

B.3 Removing the Bottleneck Constraint for g2

In this section, we prove a version of Theorem 1 to demonstrate how one can remove the Bottleneck constraint
of g2. A similarly generalized version of Theorem 2 can also be proved using following the same steps, and so
we leave that as an exercise to the readers. To begin, we first need an extended version of Assumption 5.
Assumption 5. (A model with larger width can express a model with smaller width II.) Additionally, let x′

denote a subset of x (namely, dim(x′) ≤ dim(x) and for all i ∈ [1, dim(x′)], there exists j such that xj = x′i).
Let g be a block and S(g) its block set. Each block g = gw in S(g) is associated with a set of parameters
w such that for any pair of functions d1,dim(x)g, d1,dim(x′)g′ ∈ S(g), any fixed w′, and any mappings m from
{1, ..., d′1} → {1, ..., d1}, there exists parameters w such that d1,dim(x)gw(x) = d1,dim(x′)gw′(x′) for all x′.

The original Assumption 2 only specifies what it means to have a larger output dimension. This extended
version, in addition, says what it means to have a larger input dimension for a block. We note that this
additional condition is quite general and is satisfied by the usual structures, such as a fully connected layer.
As the original Assumption 2, this assumption also agrees with the standard intuitive understanding of what
it means to have a larger width.

With this additional assumption, we can remove the bottleneck requirement in the original Assumption 4.
Formally, we now require the following weak condition for the architecture.
Assumption 6. (g2 can be further decomposed into two blocks) Let f = g2 ○ g1 be the stochastic neural
network under consideration, and let g1 be the stochastic layer. We assume that for all i,jg ∈ S(g2),
i,jgw = g′w′(Wx) for a block g′ with its block set S(g′). W is a linear transformation with the standard block
set (see Proposition 1).

This generalized assumption effectively means that the model can be decomposed into three blocks:

f(x) = d2,Dg′ ○ D,d1W ○ d1,d0g1(x). (37)

With these extended assumptions, we can prove a more general version of Theorem 1. In comparison to the
original Theorem 1, this theorem effectively allows one to increase the width of all the layers that g1 and g2

implicitly contain simultaneously.
Theorem 3. Let the neural network under consideration satisfy Assumptions 1 ,2, 5, 6 and 3, and assume
that the loss function is given by equation 3. Let {d1f}d1∈Z+ be a sequence of stochastic networks, for fixed
integers d2, d0, d1f = d2,d1g2 ○ d1,d0g1 with stochastic block d1,d0g1

w(g1)
∈ S(g1). Additionally, let D =D(d1) be

an monotonically increasing function of d1 such that for d1f = d2,d1g2 ○ d1,d0g1,
d2,d1g2 = d2,D(d1)g′ ○ D(d1),d1W. (38)

Let d1f be overparameterized for all d1 ≥ d∗ for some d∗ > 0. Let w∗ = arg minw∑N
i E[L(difw(x, ϵ), yi)] be a

global minimum of the loss function. Then, for all x in the training set,

lim
k→∞

Varϵ [kd∗fw∗(x, ϵ)] = 0. (39)

Proof. In the proof, we denote the term L(d1fw(x, ϵ), yi) as Ld1
i (w). Let w∗ be the global minimizer of

∑N
j Eϵ [Ld1

j (w)]. Then, for any w, we have by definition

0 ≤
N

∑
j

Eϵ [Ld1
j (w∗)] ≤

N

∑
j

Eϵ [Ld1
j (w)] . (40)
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If limd1→∞ ∑N
j Eϵ [Ld1

j (w)] = 0, we have limd1→∞ ∑N
j Eϵ [Ld1

j (w∗)] = 0, which implies that
limd→∞Eϵ [Ld1

j (w∗)] = 0 for all j. By the bias-variance decomposition of the MSE, this, in turn, im-
plies that Var[d1fw∗(xj)] = 0 for all j. Therefore, it is sufficient to construct a sequence of w such that
limd1→∞ ∑N

j Eϵ [Ld1
j (w)] = 0.

Now, we construct such a w. Let d1f ′ denote the deterministic counterpart of d1f . By definition and by
Assumption 1, we have

d1f(x) = d2,d1g2
w2 ○ d1,d0g1

w1(x); (41)
d1f ′(x) = d2,d1g2

w2 ○Eϵ ○ d1,d0g1
w1(x). (42)

By the architecture assumption (assumption 6), there exists a function hv parametered by a parameter set v
and a linear transformation M such that we can further decompose the two neural networks as

f(x) = hv ○M ○ g1
w1
(x); (43)

f ′(x) = hv ○M ○E ○ g1
w1
(x), (44)

where M ∈ Rd×d1 for a fixed integer d and is a linear transformation belonging to the parameter set of g2.
Note that, by definition, the parameter set of the g2 block is w2 = v ∪M .

Let u∗ be a global minimum of d1f ′:

u∗ ∶= (v∗, M∗
′, w1

∗) = arg min
v,M ′,w1

N

∑
j

L(d1f ′w(x), yi), (45)

and, by the assumption of overparametrization, we also have d1f ′u∗(xj) = yj for all j.

We now specify the parameters for fw for k > 1. By assumption 2, we can find parameters w′1 such that
E[kd∗,d0g1

w′1
(x)j] = E[d∗,d0g1

w1∗
(x)]j mod d∗ for j = 1, ..., kd∗. Namely, we choose the parameters such that

the expected output of the stochastic block are k identical copies of the output of the overparametrized
deterministic model with width d∗.

Since M is a linear transformation, we factorize it as a product of two matrices such that M = AG, where
A ∈ RD(d1)×d∗ and G ∈ Rd∗×d1 :

f(x) = hv ○A ○G ○ g1(x)w1 ; (46)
f ′(x) = hv ○A ○G ○E ○ g1

w1
(x). (47)

Now, note that by assumption 5, for any subset of any x, there exists v′ such that hv′(x) = h′v∗(x′), where
h′ is the corresponding block of d∗f ′. For A, we let the beginning columns of A the same as M∗, and the
remaining columns 0:

A = (M∗ 0). (48)

With this choice, it follows that for any x ∈ Rd∗ , hv′ ○A(x) = g2(x) for the g2 block of d∗f ′.

Now, the last step is to specify G. We let G∗ij = 1
k

δi,j mod d, where δi,j = 1 if i = j and 0 otherwise. Namely,
G∗ is nothing but an averaging matrix that sums and rescales the deterministic layer by a factor of 1/k.

To summarize, our specification defines the following stochastic neural network:

kd∗f(x) = hv∗ ○M∗ ○G∗ ○ g1
w′1
(x). (49)

By definition of G∗ and w′1, Eϵ[G∗ ○kd∗,d0g1
w′1
(x)] = Eϵ[d

∗,d0g1
w′1
(x)], and [G∗ ○kd∗,d0g1

w′1
(x)]j are independent

for different j. Moreover, because [d∗,d0g1
w′1
(x)]j has variance Σii by assumption, [G∗ ○ kd∗,d0g1

w′1
(x)]j has

variance Σii/k.
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Now, as k →∞,
G∗ ○ kd∗,d0g1

w′1
(x) →L2 Eϵ[G∗ ○ kd∗,d0g1

w′1
(x)], (50)

where →L2 denotes convergence in mean square. Because hv ○ A is a Lipshitz continuous function by
Assumption 1,

lim
k→∞

hv∗ ○M∗ ○G∗ ○ kd∗,d0g1
w′1
(x) →L2 hv∗ ○M∗ ○Eϵ ○ d∗,d0g1

w∗1
(x). (51)

This implies that the expectation of the constructed model with increasing width converge to that of the
overparametrized determinstic model (convergence in mean square implies convergence in mean). Therefore,
defining our model as d1f∗ = hv∗ ○M∗ ○G∗ ○ kd∗,d0g1

w′1
, we obtain

Eϵ[d1f(xi)] → d∗f ′(xi). (52)

Therefore, we have, by the bias-variance decomposition for MSE:

Eϵ[d1f∗(xi, ϵ) − yi]2 = [Eϵ[d1f∗(xi, ϵ)] − yi]
2 +Var[d1f∗(xi, ϵ)] (53)

Both terms converges to 0 for all i, and so the sum of two terms converge to 0. This finishes the proof. ◻
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