
Minigrid & Miniworld: Modular & Customizable
Reinforcement Learning Environments for

Goal-Oriented Tasks

Maxime Chevalier-Boisvert
Mila - Québec AI Institute

maximechevalierb@gmail.com

Bolun Dai
New York University
& Farama Foundation
bolundai@nyu.edu

Mark Towers
University of Southampton

& Farama Foundation
mt5g17@soton.ac.uk

Rodrigo de Lazcano
Farama Foundation

rperezvicente@farama.org

Lucas Willems
Miple

lucas.willems@miple.co

Salem Lahlou
Mila - Québec AI Institute
lahlosal@mila.quebec

Suman Pal
Telekinesis

suman7495@gmail.com

Pablo Samuel Castro
Google DeepMind
psc@google.com

Jordan Terry
Farama Foundation

& Swarm Labs
jkterry@umd.edu

Abstract

We present the Minigrid and Miniworld libraries which provide a suite of goal-
oriented 2D and 3D environments. The libraries were explicitly created with
a minimalistic design paradigm to allow users to rapidly develop new environ-
ments for a wide range of research-specific needs. As a result, both have re-
ceived widescale adoption by the RL community, facilitating research in a wide
range of areas. In this paper, we outline the design philosophy, environment
details, and their world generation API. We also showcase the additional capa-
bilities brought by the unified API between Minigrid and Miniworld through
case studies on transfer learning (for both RL agents and humans) between the
different observation spaces. The source code of Minigrid and Miniworld can
be found at https://github.com/Farama-Foundation/Minigrid and https:
//github.com/Farama-Foundation/Miniworld along with their documentation
at https://minigrid.farama.org/ and https://miniworld.farama.org/.

1 Introduction

The capabilities of reinforcement learning (RL) agents have grown rapidly in recent years, in part
thanks to the development of deep reinforcement learning (DRL) algorithms [32, 33]. This has
been supported by suites of simulation environments such as OpenAI Gym [5] (now gymnasium) and
dm_control [38] that provide common benchmarks for comparing algorithms. These libraries focus
on providing environments where the agent learns to control itself or understand complex visual
observations (e.g., swinging up a pendulum or playing video games) rather than logical reasoning or
instruction following.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Miniworld
https://github.com/Farama-Foundation/Miniworld
https://minigrid.farama.org/
https://miniworld.farama.org/

Figure 1: Example environments from Minigrid and Miniworld.

This paper outlines the Minigrid and Miniworld libraries for 2D and 3D goal-oriented environments
which implement a suite of goal-oriented, navigation-based, and instruction-based environments.
Furthermore, the two libraries have an easily extendable environment API for implementing novel
research-specific environments. Example environments for both libraries are shown in Figure 1. In
particular, Minigrid and Miniworld focus on providing users with the following features:

1. Easy installation process - The libraries maintain a minimal list of dependencies such that
a wide range of audiences can easily use the libraries.

2. Customizability - Users can easily create new environments or add functionalities to existing
environments.

3. Easy to visualization - The environments can be viewed from the top down, making it
easier to visualize and understand the learned policy.

4. Scalable complexity - A range of environments with different complexity is provided,
which allows users to understand the limitations of the learned policy.

The libraries can be installed using Python’s package manager PIP (pip install minigrid and pip
install miniworld) with environment documentation and tutorials available at minigrid.farama.
org and miniworld.farama.org, respectively.

Minigrid and Miniworld have already been used for developing new RL algorithms in a number
of areas, for example, safe RL [39], curiosity-driven exploration [24], and meta-learning [12].
Furthermore, research has built upon Minigrid for new environments, e.g. BabyAI [6] where the
environment is constructed and evaluated using natural language-based instructions. However,
despite the popularity of the libraries, to date, no academic paper has explained the design philosophy,
environment API, or provided a case study for users.

2

minigrid.farama.org
minigrid.farama.org
miniworld.farama.org

2 Minigrid & Miniworld Libraries

In this section, we outline the design philosophy (Section 2.1), the environment specifications of
Minigrid and Miniworld (Sections 2.2 and 2.3) along with the environment API (Section 2.4). Finally,
we detail how published research has used both libraries to develop and evaluate novel Reinforcement
Learning algorithms (Section 2.5).

The environments in the two libraries are partially-observable Markov Decision Processes (POMDP)
[18]. These environments can be mathematically described by the tuple (X ,A,O, T ,R,Ω, γ) where
X represents the state space, A the action space, O the observation space, T : X × A → X the
transition function, R : X ×A → R the reward function, Ω : X → O the observation function, and
γ ∈ [0, 1) the discount factor.

2.1 Design Philosophy

Minigrid and Miniworld were originally created at Mila - Québec AI Institute to be primarily used
by graduate students. Due to the variety in usages, customizability and simplicity were the highest
priority to allow as many users to use and understand the codebase. To support this, Python and
Gym’s RL environment API [5] (now updated to Gymnasium due to Gym no longer being maintained)
was selected to implement the libraries due to their popularity within the machine learning and
reinforcement learning communities. Example code for interacting with the environment is provided
in Listing 1.

import gymnasium as gym

load the environment in upper-left corner of Figure 1
env = gym.make("MiniGrid-BlockedUnlockPickup-v0", render_mode="human")

observation, info = env.reset(seed=42)
for i in range(1000):

User-defined policy function
action = policy(observation)
observation, reward, terminated, truncated, info = env.step(action)

if terminated or truncated:
observation, info = env.reset()

env.close()

Listing 1: Code snippet for testing an RL policy in a Minigrid environment.

An additional core design point was to intentionally have as few external dependencies as possible,
as fewer dependencies make these packages easier to install and less likely to break. As a result,
Minigrid uses NumPy for the GridWorld backend along with the graphics to generate icons for each
cell. Miniworld uses Pyglet for graphics with the environments being essentially 2.5D due to the use
of a flat floorplan, which allows for a number of simplifications compared to a true 3D engine. This
allows the libraries to run relatively fast but more importantly enables users to understand the whole
environment implementations and customize them for their own needs.

2.2 Minigrid Environments

Each Minigrid environment is a 2D GridWorld made up of n×m tiles where each tile is either empty
or occupied by an object, e.g., a wall, key, or goal. Using different tile configurations, tasks of varying
complexity can be constructed. By default, the environments are deterministic with no randomness in
the transition function (T).

By default, agent observations (O) are a dictionary with three items: “image”, “direction”, and
“mission”. Example environments with their corresponding “image” and “mission” are provided

3

Figure 2: Example Minigrid environments with their mission instruction. For each of the environ-
ments, the highlighted region indicates the partial observation received by the agent.

in Figure 2. The “image” observation is a top-down render of the agent’s view which can be limited
to a fixed distance or of the whole environment. The direction is an integer representing the
direction the agent is facing. The “mission” is a text-based instruction specifying the task to solve.
The “mission” can change on each environment’s reset as the goal might change, for example,
“Minigrid-GoToObject” has a mission of “go to the {color} {obj_type}” where color can be
one of [“red”, “green”, “blue”, “purple”, “yellow”, “grey”] and obj_type can be one
of [“key”, “ball”, “box”]. As a result, the instructions can be encoded as a one-hot vector. For
more complex instructions, a language model is required to interpret for an RL agent.

The agents have a discrete action space (A) of seven options representing [“turn left”, “turn
right”, “move forward”, “pickup”, “drop”, “toggle”, “done”]. These actions are consis-
tent across all environments however some actions might not produce any effect in certain states, e.g.
“pickup” will not do anything if the agent is not next to an object that can be picked up.

The default reward function (R) for the environment is sparse such that the reward is only non-zero
when the mission is accomplished. Furthermore, the function can be easily customized for specific
user needs through overwriting the environment’s MiniGridEnv._reward function.

2.3 Miniworld Environments

Each Miniworld environment is a 3D world that consists of connected rooms with objects inside (e.g.
box, ball, or key). Like Minigrid, the worlds can be configured for various tasks with different goals
and complexity.

For the agent, the observation space (O) is, by default, an RGB image of size 80×60 from the agent’s
perspective of the world. This image size can be modified by passing obs_width and obs_height
arguments to the environment constructor. Five of the images in Figure 1 are example observations
(with the final being a top-down view of the agent in an environment). To act in the world, agents
are provided with a similar action space (A) to Minigrid with an additional move-back action. Thus,
there are in total eight discrete actions: [“turn left”, “turn right”, “move forward”, “move
back”, “pickup”, “drop”, “toggle”, “done”]. Like Minigrid, the default reward function is
sparse with the agent only being rewarded when the agent completes the environment goal but can be
modified in custom environments.

2.4 Constructing and Extending Environments

In both libraries, the environments can be created using a small set of functions. To demonstrate this
feature, we showcase two sample scripts used to define the simulation environment in Listing 2, one
for Minigrid and one for Miniworld.

The structure of the environment generation function is the same for more complex sce-
narios, with a few more helper functions. We have created tutorials for new environment
creation: https://minigrid.farama.org/main/content/create_env_tutorial and https:
//miniworld.farama.org/main/content/create_env respectively. Both libraries can be di-
rectly integrated with existing RL libraries, e.g., Stable-Baselines3 (SB3). Additionally, to aug-
ment the libraries, we have created extra wrappers that customize the behavior of the libraries,
such as adding stochastic actions and varying observation spaces, https://minigrid.farama.

4

https://minigrid.farama.org/main/content/create_env_tutorial
https://miniworld.farama.org/main/content/create_env
https://miniworld.farama.org/main/content/create_env
https://minigrid.farama.org/api/wrapper/
https://minigrid.farama.org/api/wrapper/

def _gen_grid(self, width, height):
"""Minigrid Example"""
Create an empty grid
self.grid = Grid(width, height)
Generate surrounding walls
self.grid.wall_rect(0, 0, width,

height)↪→

Place goal
self.put_obj(Goal(), width - 2,

height - 2)↪→

Place agent in a random location
self.place_agent()

def _gen_world(self):
"""Miniworld Example"""
Create a rectangular room
self.add_rect_room(min_x=0,

max_x=self.size, min_z=0,
max_z=self.size)

↪→

↪→

Place goal in a random location
self.box = self.place_entity(

Box(color="red")
)
Place agent in a random location
self.place_agent()

Listing 2: Code snippet for environment generation in Minigrid (left) and Miniworld (right).

org/api/wrapper/ and https://github.com/Farama-Foundation/Miniworld/blob/master/
miniworld/wrappers.py.

2.5 Adoption

Since their creation, Minigrid and Miniworld have been widely adopted by the RL research community
and used for various applications. Together, the two repositories have around 2400 stars and 620
forks on GitHub. We detail several instances where the two libraries have been utilized effectively.

Curriculum Learning: The two libraries provide a programmatic approach to creating new envi-
ronments on-the-fly, this functionality can be utilized for automatic environment generation. For
example, Dennis et al. [7] generated a natural curriculum of increasingly complex environments and
Parker-Holder et al. [26] harnessed the power of evolution in a principled, regret-based curriculum.

Exploration: The reward function in the two libraries is, by default, a sparse reward making them
ideal candidates for developing new exploration techniques. Using Minigrid and Miniworld, Seo et al.
[31] developed an exploration approach using state entropy as the extrinsic reward and Zhang et al.
[40] proposed a simple yet effective exploration criterion by equally weighting the novel areas.

Meta Learning & Transfer Learning: Given the ease of creating new simulation environments, the
two libraries have also been used in developing meta-learning and transfer-learning algorithms. In
Igl et al. [15], Minigrid has been used to develop regularization techniques to encourage agents to
generalize to new environments. In Liu et al. [21], Miniworld is used to develop a new meta-learning
approach that avoids local optima in end-to-end training, without sacrificing optimal exploration and
Hutsebaut-Buysse et al. [14] explored the use of pre-trained task-independent word embedding for
transfer learning.

Recent work has also used both libraries on a number of other research topics, demonstrating how
Minigrid and Miniworld prove useful for a wide variety of domains. For example, Gumbsch et al. [9]
leverage the partial observability in many of the Minigrid environments to develop POMDP planning
algorithms; Zhou and Li [42] use Minigrid environments for inverse reinforcement learning tasks;
and Zhao et al. [41] customized Minigrid to develop model-based RL algorithms.

3 Case Studies for Utilizing the Unified API

In this section, we provide two case studies to demonstrate the utility and ease of use of Minigrid and
Miniworld’s unified API and hope to inspire future studies that span both environments. The first is on
RL agent transfer learning between different observation spaces of the two libraries. The second case
study shows how human transfer learning can be conducted between different observation spaces.

5

https://minigrid.farama.org/api/wrapper/
https://minigrid.farama.org/api/wrapper/
https://github.com/Farama- Foundation/Miniworld/blob/master/miniworld/wrappers.py
https://github.com/Farama- Foundation/Miniworld/blob/master/miniworld/wrappers.py

Figure 3: Visualization of the miniworld-gotoobj-env (left) and minigrid-gotoobj-env (right).
The miniworld-gotoobj-env image shows both the top-down view and the agent view (top-right
window). During training the agent only has access to the agent view of the environment.

3.1 RL Agent Transfer Learning Between Different Observations Spaces

In this case study, we showcase the ability to transfer policies learned on Minigrid to Miniworld.
We created two similar simulation environments in Minigrid and in Miniworld, where the task is
to follow an instruction to go to an object, we call the two environments minigrid-gotoobj-env
and miniworld-gotoobj-env (screenshots of the two environments are shown in Figure 3). In both
environments, the agent is given an instruction to “go to the {color} {object}" with the color and
object being randomly selected from [“blue", “green", “grey", “purple", “red", “yellow"] and
[“ball", “box", “key"], respectively.

When transferring the learned weights, one key question is which part of the agent’s weights should
be transferred. We first trained a PPO agent [30] on minigrid-gotoobj-env and then we transferred
the learned weights to the PPO agent for miniworld-gotoobj-env. The PPO policy consists of a
mission instruction encoder, an image encoder, an actor network, and a critic network. The policy
transfer is made easy due to the unified APIs for Minigrid and Miniworld. We tested with 12 different
weight transfer options, the results are given in Table 1.

To measure the effectiveness of the transfer learning, we define the transfer improvement as

Transfer_Improvement =
Transfer_Learning_AUC− Miniworld_Learning_AUC

Miniworld_Learning_AUC
(1)

where Transfer_Learning_AUC represents the area under the curve (AUC) of the reward curve for
the agent that is initialized with Minigrid learned weights, and Miniworld_Learning_AUC represents
the AUC of the reward curve for the agent with randomly initialized weights. Both the transfer
learning agent and the Miniworld learning agent are trained for 200k time steps. As Table 1 shows:
(1) the transfer learning behavior was improved when the critic network and mission embedding
weights were not frozen; (2) transferring only the critic network and mission embeddings produces
better results compared with also transferring the actor network weights.

3.2 Transfer Learning Between Different Observations Spaces for 10 Human
Subjects

In this case study, we show how we can use the Minigrid and Miniworld libraries to collect and
visualize human data. We utilized two similar environments in the Minigrid and Miniworld libraries,
where there are four rooms and the goal is to reach a target position denoted with a green box,
in the least amount of steps. In both cases, the human subject has only partial observation of the
environment. We performed two sets of experiments. The first set of experiments lets the subject
collect experience in the Minigrid environment for 10 episodes, then transfers to the Miniworld
environment, and plays for another 10 episodes. The second set of experiments directly asks the
subject to play on the Miniworld environment for 10 episodes. In both the Minigrid and Miniworld
environments, the action space has dimension three with the actions: turn left, turn right, and go
forward. To make the human experience more similar to the RL agent, we randomly assign the

6

Transferred Weights Non-Frozen Weights Frozen Weights

Mean (%) STD (%) Mean (%) STD (%)

M 0.089 6.760 -3.775 8.421
A -8.881 14.399 -4.670 14.997
C 3.993 3.189 2.760 2.703
AM -20.668 13.915 -13.199 9.634
CM 3.207 2.808 0.001 3.957
ACM -9.494 9.217 -30.958 16.540

Table 1: Transfer improvement for the 12 sets of experiments. For the transferred weights, “M":
represents mission embedding weights, “A": represents actor network weights, and “C": represents
critic network weights. “Frozen Weights” refers to freezing the transferred weights, while “Non-
Frozen Weights” refers to not freezing the transferred weights.

three actions to the 1-9 numbers keys on the keyboard. The average rewards over 10 episodes on the
Miniworld environments are shown in Table 2 and a sample subject trajectory is shown in Figure 4.
Similar to what is shown in Figure 4, we empirically observe an adaption phase to the random key
assignment during the first episode for every human subject.

Subject No. Minigrid ⇒ Miniworld Subject No. Directly Miniworld

Mean STD Mean STD

1 0.93 0.04 6 0.89 0.04
2 0.84 0.28 7 0.91 0.04
3 0.74 0.37 8 0.94 0.04
4 0.89 0.04 9 0.82 0.28
5 0.93 0.05 10 0.94 0.04

Table 2: Subject mean reward for the two sets of experiments. The “Minigrid ⇒ Miniworld” refers
to the first set of experiments, and “Directly Miniworld” refers to the second set of experiments.

3.3 Implementation Details

In this section, we discuss how the case studies were implemented using the Minigrid and Miniworld
libraries. The RL agent transfer learning case study represents a custom experimental setting
not natively supported by Minigrid, Miniworld, and SB3. Thus, on top of the two libraries, we
implemented the following functionalities:

1. created the minigrid-gotoobj-env (26 lines for _gen_grid()) and
miniworld-gotoobj-env (19 lines for _gen_world()) environments;

2. augmented miniworld-gotoobj-env with mission instructions (3 lines of code similar to
the _gen_mission() from Minigrid);

3. created a custom wrapper for minigrid-gotoobj-env to process the mission instructions
(10 lines of code that are highly similar to the ImgObsWrapper in Minigrid);

4. created a custom feature extractor in SB3 for minigrid-gotoobj-env (23 lines mostly
copied from the SB3 NatureCNN class);

5. created and trained a PPO agent on minigrid-gotoobj-env using SB3 (6 lines);

7

Figure 4: Trajectories from one human subject when testing transferring experience on Minigrid
environments to Miniworld. The numbers correspond to the episode number.

6. transfer the learned policy from minigrid-gotoobj-env to miniworld-gotoobj-env (14-
51 lines depending on the settings, can be reduced using a for loop).

In total, the implementation of this highly customized case study required 101 - 138 lines of code,
highlighting the facility of use that our design provides. For the human transfer learning case
study, we utilized two existing simulation environments, namely MiniGrid-FourRooms-v0 and
MiniWorld-FourRooms-v0. The human action input is achieved using the already existing manual
control feature. To render the human trajectories, we altered the existing manual control feature and
included data recording and data plotting functionalities. Although additional effort was required,
given the Pythonic design of the two libraries, it only required three hours of coding. A detailed list
of the required implementations is provided in the supplementary materials. For research with similar
purposes, we plan to open-source our case study implementations as a separate codebase.

4 Related Works

Simulation libraries have been a crucial part of DRL research since the success of playing Atari
games using deep RL [25]. However, most simulation environments focus on fixed, single tasks,
such as swinging up a pendulum or making a humanoid stand up. Extending these environments to
support custom objectives (e.g. “use the key to open the door and then get to the goal” is difficult).

In the robot learning community, there has been an increase in the number of benchmark simulation
environments that focus on goal-oriented tasks, notably the pixmc environments [28] and the Franka
kitchen environment [10]. Despite their popularity within the robot learning community, for RL
research that solely focuses on the decision-making process, these robotic simulation benchmarks
might not be the best experimental platform. One key issue is that these robot simulation benchmarks
often utilize physics simulators, e.g., MuJoCo [37] and IssacSim [22], which are significantly more
difficult to extend than Minigrid and Miniworld.

Historically, the RL community has made ample use of GridWorld-like environments for their research
and education (notably by Sutton and Barto [35]). Given their wide usage, there have also been
simulation libraries that focus on 2D GridWorld-like environments. MazeBase [34] is a simulation

8

library for GridWorld-like 2D games. However, because it is written in Lua and does not support
the OpenAI gym API, it is difficult to integrate with existing deep learning and DRL libraries (e.g.,
PyTorch [27] and SB3 [29]). Griddly [2] is another library that provides GridWorld environments with
a highly optimized and flexible game engine. Although Griddly provides more functionalities than
Minigrid, it comes at the cost of higher complexity, making it difficult to understand and customize.
DeepMind Lab2D [4] and Melting Pot [20] are also 2D GridWorld simulation environments. However,
compared to Minigrid, they mainly focus on multi-agent reinforcement learning tasks and do not
support human language instructions. Crafter [13] and some of the Minigrid environments (e.g.,
MiniGrid-MultiRoom) are both designed to evaluate the generalization, exploration, and long-term
reasoning ability of RL agents. However, Crafter environments are more difficult compared to
Minigrid environments. For RL researchers, Minigrid environments are better suited in the initial
development phase of their algorithms, while Crafter environments can be used when the algorithm
is more mature.

For Miniworld, the most relevant work is ViZDoom. The ViZDoom research platform [19] is a set of
simulation environments based on the popular first-person shooter (FPS) game Doom that enables
RL agents to make tactical and strategic decisions. At a high level, the type of environments that
can be created are comparable in Miniworld and ViZDoom. However, ViZDoom uses a custom-
designed language to create new scenarios, while Miniworld uses a small set of Python functions for
environment creation. This makes Miniworld easier to use for the RL research community, which is
more familiar with Python. Nevertheless, ViZDoom does support shooting games, depth information,
and audio which are not supported by Miniworld. Another 3D simulation library with a similar
purpose is DeepMind Lab [3], but given that the game engine is written in C and the levels are written
using Lua, there is a steep learning curve for customizing it. 3D simulation environments like Habitat
3D [23, 36] and Unity-based simulation environments [17] also enable the agent to navigate and
interact with its surroundings. Compared to Miniworld, they can simulate more complex dynamics
and are more photo-realistic. However, for target-reaching and object-collection tasks where the goal
is not deployment on embodied AI systems, Miniworld provides a much simpler and lightweight
simulation solution that enables faster iteration and evaluation of new research ideas. Open-ended
3D environments like Avalon [1], MineRL [11], Malmo [16], and MineDojo [8] also have similar
capabilities. But their focus is more on evaluating the RL agent’s ability to generalize on a wide
range of tasks, while Miniworld environments mostly focus on a single task.

5 Conclusion

The Minigrid and Miniworld libraries provide modular and customizable RL environments for goal-
oriented tasks. We detailed the design philosophy behind the two libraries and provided a walkthrough
of their API along with research areas that already utilize the two libraries. In our case studies, we
have shown the unified API among two libraries provides an easy way to study transfer learning
between different observation spaces and human decision-making. In future works, we plan to further
develop the libraries’ capabilities for human-in-the-loop decision-making.

Limitations: The libraries have two main limitations, first, the environment creation process priori-
tizes simplicity with minimal functions, which limits the type of environments that can be created.
Second, the two libraries are implemented in Python, which makes them computationally slower than
environments that utilize highly-optimized game engines in C++.

Societal Impact: Since the libraries have idealized system dynamics, the learned policy might not be
directly applicable to real-world applications without introducing safeguard mechanisms.

Acknowledgements

Minigrid and Miniworld were originally created as part of research work done at Mila - Québec AI
Institute. We thank Manuel Goulão for their contribution to the documentation website.

9

References
[1] J. Albrecht, A. J. Fetterman, B. Fogelman, E. Kitanidis, B. Wróblewski, N. Seo, M. Rosenthal,

M. Knutins, Z. Polizzi, J. Simon, and K. Qiu. Avalon: A benchmark for RL generalization
using procedurally generated worlds. In NeurIPS Datasets and Benchmarks Track, 2022.

[2] C. Bamford. Griddly: A platform for AI research in games. Software Impacts, 8:100066, 2021.

[3] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Küttler, A. Lefrancq,
S. Green, V. Valdés, A. Sadik, J. Schrittwieser, K. Anderson, S. York, M. Cant, A. Cain,
A. Bolton, S. Gaffney, H. King, D. Hassabis, S. Legg, and S. Petersen. DeepMind Lab. CoRR,
abs/1612.03801, 2016.

[4] C. Beattie, T. Köppe, E. A. Duéñez-Guzmán, and J. Z. Leibo. Deepmind lab2d. CoRR,
abs/2011.07027, 2020.

[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI Gym. CoRR, abs/1606.01540, 2016.

[6] M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen, and
Y. Bengio. BabyAI: A platform to study the sample efficiency of grounded language learning.
In Proceedings of International Conference on Learning Representations, New Orleans, LA,
May 2019.

[7] M. Dennis, N. Jaques, E. Vinitsky, A. M. Bayen, S. Russell, A. Critch, and S. Levine. Emergent
complexity and zero-shot transfer via unsupervised environment design. In Proceedings of
Advances in Neural Information Processing Systems 33, Virtual, December 2020.

[8] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D.-A. Huang, Y. Zhu,
and A. Anandkumar. Minedojo: Building open-ended embodied agents with internet-scale
knowledge. In Thirty-sixth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2022.

[9] C. Gumbsch, M. V. Butz, and G. Martius. Sparsely changing latent states for prediction and
planning in partially observable domains. In Advances in Neural Information Processing
Systems 34, Virtual, pages 17518–17531, December 2021.

[10] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay Policy Learning: Solving
long-horizon tasks via imitation and reinforcement learning. In Proceedings of the Conference
on Robot Learning, Virtual, pages 1025–1037, October 2020.

[11] W. H. Guss, B. Houghton, N. Topin, P. Wang, C. Codel, M. Veloso, and R. Salakhutdinov.
MineRL: A large-scale dataset of Minecraft demonstrations. Twenty-Eighth International Joint
Conference on Artificial Intelligence, 2019.

[12] R. L. Gutierrez and M. Leonetti. Information-theoretic task selection for meta-reinforcement
learning. In Proceedings of Advances in Neural Information Processing Systems 33, Virtual,
December 2020.

[13] D. Hafner. Benchmarking the spectrum of agent capabilities. In The Tenth International
Conference on Learning Representations, Virtual Event, April 2022.

[14] M. Hutsebaut-Buysse, K. Mets, and S. Latré. Pre-trained word embeddings for goal-conditional
transfer learning in reinforcement learning. CoRR, abs/2007.05196, 2020.

[15] M. Igl, K. Ciosek, Y. Li, S. Tschiatschek, C. Zhang, S. Devlin, and K. Hofmann. Generalization
in reinforcement learning with selective noise injection and information bottleneck. In Pro-
ceedings of Advances in Neural Information Processing Systems 32, Vancouver, Canada, pages
13956–13968, December 2019.

[16] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell. The malmo platform for artificial
intelligence experimentation. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, New York, NY, USA, pages 4246–4247, July 2016.

[17] A. Juliani, V. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and D. Lange. Unity: A general
platform for intelligent agents. CoRR, abs/1809.02627, 2018.

[18] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Partially observable markov decision
processes for artificial intelligence. In KI-95: Advances in Artificial Intelligence, pages 1–17.
Springer Berlin Heidelberg, 1995.

10

[19] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaskowski. ViZDoom: A Doom-based
AI research platform for visual reinforcement learning. In Proceedings of IEEE Conference on
Computational Intelligence and Games, Santorini, Greece, pages 1–8. IEEE, September 2016.

[20] J. Z. Leibo, E. A. Duéñez-Guzmán, A. Vezhnevets, J. P. Agapiou, P. Sunehag, R. Koster,
J. Matyas, C. Beattie, I. Mordatch, and T. Graepel. Scalable evaluation of multi-agent rein-
forcement learning with melting pot. In Proceedings of the 38th International Conference on
Machine Learning, Virtual Event, volume 139, pages 6187–6199, July 2021.

[21] E. Z. Liu, A. Raghunathan, P. Liang, and C. Finn. Decoupling exploration and exploitation
for meta-reinforcement learning without sacrifices. In Proceedings of the 38th International
Conference on Machine Learning, Virtual Event, volume 139, pages 6925–6935, July 2021.

[22] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac Gym: High performance GPU based physics
simulation for robot learning. In Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks, Virtual, December 2021.

[23] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra. Habitat: A Platform for Embodied
AI Research. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2019.

[24] A. N. Mavor-Parker, K. A. Young, C. Barry, and L. D. Griffin. How to stay curious while
avoiding noisy tvs using aleatoric uncertainty estimation. In Proceedings of International
Conference on Machine Learning, Baltimore, MD, volume 162, pages 15220–15240, July 2022.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[26] J. Parker-Holder, M. Jiang, M. Dennis, M. Samvelyan, J. N. Foerster, E. Grefenstette, and
T. Rocktäschel. Evolving curricula with regret-based environment design. In Proceedings of
International Conference on Machine Learning, Baltimore, MD, volume 162, pages 17473–
17498, July 2022.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Proceedings of Advances in Neural Information
Processing Systems 32, Vancouver, Canada, pages 8024–8035, December 2019.

[28] I. Radosavovic, T. Xiao, S. James, P. Abbeel, J. Malik, and T. Darrell. Real-world robot learning
with masked visual pre-training. In Proceedings of the Conference on Robot Learning, Auckland,
New Zealand, pages 416–426, 2022.

[29] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22:
268:1–268:8, 2021.

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

[31] Y. Seo, L. Chen, J. Shin, H. Lee, P. Abbeel, and K. Lee. State entropy maximization with
random encoders for efficient exploration. In Proceedings of the 38th International Conference
on Machine Learning, Virtual Event, volume 139, pages 9443–9454, July 2021.

[32] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):
484–489, 2016.

[33] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. P. Lillicrap, K. Simonyan, and D. Hassabis. Mastering chess and
shogi by self-play with a general reinforcement learning algorithm. CoRR, abs/1712.01815,
2017.

11

[34] S. Sukhbaatar, A. Szlam, G. Synnaeve, S. Chintala, and R. Fergus. Mazebase: A sandbox for
learning from games. CoRR, abs/1511.07401, 2015.

[35] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

[36] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner, N. Maestre, M. Mukadam,
D. Chaplot, O. Maksymets, A. Gokaslan, V. Vondrus, S. Dharur, F. Meier, W. Galuba, A. Chang,
Z. Kira, V. Koltun, J. Malik, M. Savva, and D. Batra. Habitat 2.0: Training home assistants
to rearrange their habitat. In Advances in Neural Information Processing Systems (NeurIPS),
2021.

[37] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control.
In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,
Vilamoura, Portugal, pages 5026–5033, October 2012.

[38] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, T. Lillicrap,
N. Heess, and Y. Tassa. dm_control: Software and tasks for continuous control. Software
Impacts, 6:100022, 2020.

[39] A. Wachi, Y. Wei, and Y. Sui. Safe policy optimization with local generalized linear function
approximations. In Proceedings of Advances in Neural Information Processing Systems 34,
Virtual, pages 20759–20771, December 2021.

[40] T. Zhang, H. Xu, X. Wang, Y. Wu, K. Keutzer, J. E. Gonzalez, and Y. Tian. Noveld: A simple yet
effective exploration criterion. In Proceedings of Advances in Neural Information Processing
Systems 34, Virtual, pages 25217–25230, December 2021.

[41] M. Zhao, Z. Liu, S. Luan, S. Zhang, D. Precup, and Y. Bengio. A consciousness-inspired
planning agent for model-based reinforcement learning. In Advances in Neural Information
Processing Systems 34, Virtual, pages 1569–1581, December 2021.

[42] W. Zhou and W. Li. A hierarchical bayesian approach to inverse reinforcement learning with
symbolic reward machines. In Proceedings of International Conference on Machine Learning,
Baltimore, MD, USA, volume 162, pages 27159–27178, July 2022.

12

	Introduction
	Minigrid & Miniworld Libraries
	Design Philosophy
	Minigrid Environments
	Miniworld Environments
	Constructing and Extending Environments
	Adoption

	Case Studies for Utilizing the Unified API
	RL Agent Transfer Learning Between Different Observations Spaces
	Transfer Learning Between Different Observations Spaces for 10 Human Subjects
	Implementation Details

	Related Works
	Conclusion

