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Abstract

Intelligent generation of vector graphics has very
promising applications in the fields of advertising and logo
design, artistic painting, animation production, etc. How-
ever, current mainstream vector image generation methods
lack the encoding of image appearance information that
is associated with the original vector representation and
therefore lose valid supervision signal from the strong cor-
relation between the discrete vector parameter (drawing in-
struction) sequence and the target shape/structure of the
corresponding pixel image. On the one hand, the gener-
ation process based on pure vector domain completely ig-
nores the similarity measurement between shape parame-
ter (and their combination) and the paired pixel image ap-
pearance pattern; on the other hand, two-stage methods
(i.e., generation-and-vectorization) based on pixel diffusion
followed by differentiable image-to-vector translation suf-
fer from wrong error-correction signal caused by approxi-
mate gradients. To address the above issues, we propose a
novel generation framework based on dual-domain (vector-
pixel) diffusion with cross-modality impulse signals from
each other. First, in each diffusion step, the current repre-
sentation extracted from the other domain is used as a con-
dition variable to constrain the subsequent sampling opera-
tion, yielding shape-aware new parameterizations; second,
independent supervision signals from both domains avoid
the gradient error accumulation problem caused by cross-
domain representation conversion. Extensive experimen-
tal results on popular benchmarks including font and icon
datasets demonstrate the great advantages of our proposed
framework in terms of generated shape quality.

1. Introduction

Vector graphics are a representation of images using a se-
quence of drawing instructions. Unlike traditional raster
graphics, vector graphics preserve their geometric proper-
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Figure 1. Current mainstream approaches each come with dis-
tinct challenges: 1. Pure Vector Generation: No pixel supervi-
sion. The similarity measurement between shape parameters (and
their combination) and the paired pixel image appearance pattern
is ignored. 2. Generation and Vectorization: No Vector Supervi-
sion. The quality of generated vector graphics relies heavily on
the vectorizer. 3. Cross-domain Supervision: Inaccurate Gradient.
Gradients estimated by differentiable rasterization are inaccurate,
causing wrong error-correction signal.

ties and visual quality regardless of the resolution. More-
over, well-designed vector graphics, with their planar ele-
ments organized in a way that closely aligns with human
cognitive logic for shapes, make editing more intuitive and
convenient. As a result, vector graphics have gained sig-
nificant popularity in the realms of creativity, art, design
and the development of technologies capable of generating
high-quality vector images has become a primary objective
for designers.

However, current mainstream methods for generating
vector graphics lack the encoding of image appearance as-
sociated with the original vector image, i.e., offering no ef-
fective linkage between pixel pattern and the correspond-
ing drawing primitives during learning. As a result, they
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lose the effective supervision signal from the strong corre-
lation between the discrete vector parameter (drawing in-
struction) sequence and the target shape/structure of the
corresponding pixelized image, which makes it difficult to
generate vector graphics with high shape quality. Specif-
ically, on the one hand, the generation process based on
pure vector fields completely ignores the similarity mea-
surement between shape instructions/parameters (and their
combination) and the paired pixel image appearance pat-
terns. Vector graphics are composed of independent in-
struction sequences, and the data describing vector graph-
ics contain many heterogeneous attributes (such as instruc-
tion categories and parameters). This leads to discontinu-
ity, non-smoothness, and non-uniformity of data distribu-
tion in the vector space from the perspective of shape and
visual quality, which makes it difficult to guarantee the qual-
ity of shape without sufficient reference information guid-
ance. For instance, Deepsvg [2] operates purely in the vec-
tor space and can only generate simple font data. The ab-
sence of supervised information from paired pixel images
is a crucial factor resulting in serious shape quality degra-
dation for more complex icon data. On the other hand, us-
ing a two-stage method that combines pixel-based genera-
tion techniques with a non-trainable pixel-to-vector trans-
lation module introduces the wrong error-correction signal
caused by approximate gradients (as the vector-to-pixel pro-
cess is essentially non-differentiable and the reverse process
has one-to-many mappings). Since the vectorization pro-
cess requires differentiable rasterization [11], this approach
heavily relies on the approximate gradients calculated from
the pixel domain, ignoring the sequential characteristics and
combination properties of each vector primitive during the
decoding process from vector to pixel. This not only com-
promises the authenticity and flexibility of the vector graph-
ics but also hinders the interpretability of the generated in-
struction sequence for vectorization [3][20][13]. For exam-
ple, Im2vec [20] generates vector graphics based on pixel
image features and differentiable rasterization supervision
signal, resulting in the unexpected issue of dense instruc-
tion stacking. Although SVG-VAE [13] does not employ
differentiable rasterization, it combines the learning of pixel
image distribution and vector graphic generation in a con-
catenated and staged training manner, leading to weak cou-
pling of information between the two steps.

To address both issues, we propose a novel generative
framework based on dual-domain (vector-pixel) diffusion
with mutual impulse signals. Firstly, we construct a syn-
chronized and parallel diffusion model for both vector and
pixel domains. In each diffusion step, a shape-aware cross-
attention module is introduced by extracting self-domain
representations as well as cross-domain representations, to
generate next-step samples from this cross-domain condi-
tional distribution. This mutual impulse design strength-

ens the similarity measurement and builds immediate link-
age/interaction between shape instructions/parameters and
the corresponding pixel patterns, which helps to guide
the vector sampling process toward a more appearance-
compatible manner. Secondly, during the training of our
dual-domain diffusion model, we utilize independent super-
vision signals in the vector and pixel domains. This ap-
proach avoids the reliance on differentiable rasterization,
addressing issues such as gradient error accumulation and
unrealistic/inflexible instruction sequences. Moreover, to
achieve more visually reasonable/plausible vector graphics,
we propose a differentiable geometric constraint by utiliz-
ing prior knowledge of vector graphics such as smoothness
and closure within our training framework, which helps to
further optimize the shape visual quality of the generated
vector graphics with higher accuracy in detail representa-
tion and more naturally artistic essence. Extensive experi-
mental results demonstrate the state-of-the-art (SOTA) per-
formance achieved by our approach, in both quantitative
and qualitative evaluations. In font benchmark datasets, our
method generates diverse font samples with regularity and
artistic appeal. Similarly, in complex icon datasets, our gen-
erated samples consider the correctness of sequential char-
acteristics and combination properties of vector primitives,
as well as the visual quality of shape.

2. Related works
Vector Graphics Generation. Vector graphics, unlike
raster images, utilize well-defined geometric primitives
(e.g., curves, Bézier shapes) to describe visual concepts, fa-
cilitating vision representation in a compact and scalable
parameter format. While generative models achieve re-
markable results in the raster domain, their applications to
vector graphics are not well explored. Most existing meth-
ods focus on advanced shape synthesis [6] or sketch gen-
eration [21] based on a simple dataset [7]. SVG-VAE [13]
is a pioneering work to build sequential generative mod-
els on vector graphics, achieving compelling font gener-
ation results in a Variational Auto-encoder (VAE) frame-
work. However, SVG-VAE fails to handle complex vec-
tor graphics with more than 10 commands. Deepsvg [2]
further expands the scope of vector graphics generation by
modeling the hierarchical structure of vector graphics with
a transformer-based generative model. Both SVG-VAE and
Deepsvg are limited to simple data with fixed patterns.
Iconshop [26] sequentializes and tokenizes vector graph-
ics paths into a uniquely decodable token sequence and
achieves remarkable text-guided vector graphics icon gen-
eration quality with autoregressive transformers. However,
Iconshop overfits the feature mapping between text and vec-
tor space, leading to non-smoothness in shape transition.
Im2Vec [20] generates vector graphics without supervision
in the vector domain, which uses raster images as inputs and
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optimizes the generated vectors via the gradients estimated
by differentiable rasterization [11]. Nevertheless, directly
aligning vector graphics with the raster images ignores the
natural expression and logic (temporal ordering) of vector
graphics, causing intrinsic information loss.
Diffusion Models. While diffusion models make remark-
able achievements in many domains such as natural lan-
guage processing [12], shape generation [1], 3D shape mod-
eling [14], and particularly image generation [17][9][5],
their applications to vector graphics generation are not well
explored. Sketchknitter [25] learns data distributions over
the stroke-point locations and achieves compelling sketch
generation with a diffusion model. However, it faces chal-
lenges in generating vector graphics with multiple shapes
and filled properties. VectorFusion [10] distills [18] the pre-
trained text-to-image diffusion model [22] for iterative gen-
eration of vector graphics. However, it relies heavily on the
gradients estimated by differentiable rasterization [11] and
is limited by the bias of pre-trained image diffusion.

3. Method
In this section, we introduce in detail our proposed vector-
pixel dual-domain diffusion pipeline, as illustrated in Fig. 2.
This pipeline possesses two parallel diffusion processes op-
erating on the vectorized image representation domain as
well as the corresponding/matched pixel image domain in a
synchronized manner, ensuring complementary supervision
signals from both domains. A cross-attention mechanism
based conditional feature injection module is developed to
guide the shape-vector diffusion sampling process towards
a more appearance-oriented way, which plays a crucial
role in establishing the dependency/interaction structure be-
tween the pixel pattern and the associated shape (and shape
combinations) parameterization. In addition, a shape prior
regularizer is dedicatedly proposed to ensure local shape
smoothness and global shape closure. Details are given as
follows.

3.1. Prerequisite: Vector Graphics Representation

Vector graphics represent images through a collection of
closed shapes, denoted as v = {s1, ..., snv}. Each shape
si is constructed using specific drawing instructions, such
as lines, rectangles, circles and Bézier curves, where si =
{ci,1, ..., ci,nsi

} (nsi signifies the number of instructions
within a given shape, which varies across different shapes.
i is the subscript number of the shape within a vector image
v).

These instructions comprise a shape type ti,j and corre-
sponding geometric parameters ai,j , formulated as ci,j =
{ti,j , ai,j}. j is the subscript number of the instruction
within a shape. Drawing notations from Deepsvg’s [2],
we streamline vector graphics attributes and focus on four
essential instruction types including 1) Move To (’m’, en-

coded to ti,j = (−1,−1) · λ, ai,j = (x, y)); 2) Line
To (’l’, encoded to ti,j = (−1, 1) · λ, ai,j = (x, y));
3) Cubic Bezier (’c’, encoded to ti,j = (1,−1) · λ,
ai,j = (x1, y1, x2, y2, x, y)); 4) Close Shape (’z’, encoded
to ti,j = (1, 1) · λ, ai,j = ∅). λ is the signal amplitude of
the instruction type. (x, y) is ending point coordinate and
(x1, y1), (x2, y2) are control point coordinates. Each shape
si begins with the ’m’ command as ci,1, progresses through
’l’ or ’c’ commands for drawing, and concludes with the ’z’
command as ci,nsi

to ensure the shape’s closure. We fill the
geometric parameters to the same dimension. Especially for
the ’z’ command, we fill (x, y) of ci,1 as its ending point.
By concatenating instructions of all shapes, we obtain the
representation of the vector image v as v ∈ Rn×cv .

3.2. Dual-Diffusion: Modelling and Pipeline

We could rasterize the vector image v to obtain the cor-
responding pixel image p. v is a serialized vector vari-
able with one-dimensional attribute arrangement (i.e. in-
structions), v ∈ Rn×cv , and p is a grid-based matrix (or
tensor) variable with two-dimensional spatial attribute ar-
rangement (i.e. pixel values), p ∈ Rh×w×cp .

To jointly diffuse v and p, we can concatenate them into
a joint space x = {v,p} with proper dimensionality re-
shaping. In this way, we can consider p(x) = p(v,p) as
a joint probabilistic distribution, and conventional diffusion
theory and computation could be readily applied to itera-
tively generate both vector pixel representation of the same
image instance. However, v and p are strongly dependent
since the pixel image p could be fully reconstructed by ex-
ecuting rendering instructions by v. It is also worth men-
tioning that given pixel image p, there might exist multi-
ple feasible encodings of v, i.e., one-to-many mapping. To
this end, conventional diffusion process/pipeline should be
modified/upgraded to cope with our scenario, i.e., joint sam-
pling two inter-dependent and mutually constrained high di-
mensional variables.

In the meantime, the ultimate goal of building this dual-
domain diffusion process is to encourage cross-domain su-
pervision signal to be fully exploited to correctly guide the
sampling process to generate appearance-compatible shape
samples. Namely, we wish to well establish the dependency
structure between the vector instruction (and their combined
instruction sequence) and the corresponding pixel patterns
in a bi-directional way (i.e., in both inference and train-
ing), therefore error-correction signals from both domains
could help to boost the model learning of each domain. To
facilitate the above objective, our pipeline design is two-
fold. First, during each diffusion sampling step, we inject
guidance signal from the other domain as conditional vari-
ables, which helps to regulate/modulate the generated sam-
ples to convey more structural constraint information from
the other knowledge side. For example, when generating
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Figure 2. Overview of our framework. Our framework possesses two synchronous diffusion processes operating on the vector domain
and the corresponding pixel domain, enabling mutual gradient propagation. Cross-domain Conditional Information Injection is developed
to guide the shape-vector diffusion sampling process towards a more appearance-oriented way, which is crucial for establishing the mutual
interaction between the pixels and the associated shape parameterization. Additionally, a shape prior regularizer is dedicatedly proposed to
ensure local shape smoothness and global shape closure.

a vector sample, this module checks whether the shape of
such sample well fits the pixel appearance pattern. Second,
the diffusion flow of each domain is directly supervised by
the respective ground truth. Therefore, incorrect gradients
induced by approximate inverse rendering (from pixel to
vector) could be properly avoided.

The probabilistic modeling of the proposed dual-domain
diffusion process is as follows. Similar to the fundamen-
tal theory of diffusion models, the training of dual-diffusion
consists of both forward and reverse processes. At time step
t, the forward process takes a data sample x0 = {v0,p0}
(where v0 and p0 are corresponding data pairs), and obtains
a noisy data sample xt by fusing x0 with additive Gaus-
sian noise. The noisy data sample satisfies the distribution
q(xt|x0) (see Eq. (1)). Here, Iv denotes the identity ma-
trix corresponding to v, Ip denotes the identity matrix cor-
responding to p, and ᾱt =

∏t
i=1 αi, where ᾱt is a noise

schedule that gradually changes from 1 to 0.

xt = {vt,pt}
vt =

√
ᾱtv0 +

√
1− ᾱtϵvt ; ϵvt ∼ N (0, Iv)

pt =
√
ᾱtp0 +

√
1− ᾱtϵpt ; ϵpt ∼ N (0, Ip)

q(xt|x0) = q(vt|v0) · q(pt|p0)

(1)

The reverse process of dual-diffusion learns the denois-
ing process from xt at time t to xt−1 at time t − 1,
starting from a pure Gaussian noise xT and progressively
denoising to eventually obtain the generated sample x0.
Specifically, we consider the reverse conditional probabil-
ity q(xt−1|xt,x0). Since q(xt−1|xt,x0) follows a Gaus-
sian distribution [16], and xt = {vt,pt} are independent
in each dimension during the noise addition process, we

can derive the mathematical representation in Eq. (2), where
αt = 1− βt, β̃t =

1−ᾱt−1

1−ᾱt
· βt.

q(xt−1|xt,x0) = q(vt−1|vt,v0) · q(pt−1|pt,p0)

=N (vt−1;
1

√
αt

(
vt −

1− αt√
1− ᾱt

ϵvt

)
, β̃tIv)

·N (pt−1;
1

√
αt

(
pt −

1− αt√
1− ᾱt

ϵpt

)
, β̃tIp)

(2)

We employ a neural network θ = {θv, θp} to approxi-
mate the conditional probability distribution during the re-
verse process, denoted as pθ(xt−1 | xt) in Eq. (3).

pθ(xt−1|xt) = pθv(vt−1|vt,pt) · pθp(vt−1|vt,pt)

=N (vt−1;
1

√
αt

(
vt −

1− αt√
1− ᾱt

ϵθv (vt,pt, t)
)
, β̃tIv)

·N (pt−1;
1

√
αt

(
pt −

1− αt√
1− ᾱt

ϵθp (vt,pt, t)
)
, β̃tIp)

(3)
Using the cross-entropy between the data distribu-

tion and the predicted distribution as the loss objective,
and following the transformation of the variational lower
bound as used by Sohl-Dickstein et al. [23] (Lt =
DKL(q(xt|xt+1,x0) ∥ pθ(xt | xt+1))), we can derive a
similar training loss in Eq. (4)

Lv(t) = ∥ϵvt − ϵθv(vt,pt, t)∥2

Lp(t) = ∥ϵpt − ϵθp(vt,pt, t)∥2

Lt = Lv(t) + Lp(t)

(4)

During the sampling process, through Eq. (3), it is read-
ily apparent that the prediction of xt−1 = {vt−1,pt−1}
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from xt = {vt,pt} can be calculated using Eq. (5), where
ϵv ∼ N (0, Iv) and ϵp ∼ N (0, Ip).

vt−1 =
1

√
αt

(
vt −

1− αt√
1− ᾱt

ϵθv (vt,pt, t)
)
+

√
β̃tϵv

pt−1 =
1

√
αt

(
pt −

1− αt√
1− ᾱt

ϵθp (vt,pt, t)
)
+

√
β̃tϵp

(5)

3.3. Cross-domain Conditional Information Injec-
tion via Cross-Attention

For the proposed dual-domain diffusion model, following
Ho et al. [9], we respectively use a 1D U-Net and a 2D U-
Net as the base diffusion architecture for the vector-domain
denoiser ϵθv and the pixel-domain denoiser ϵθp , as depicted
in Fig. 2. Two data flows run synchronously on this archi-
tecture: a data flow purely operates on the vector representa-
tion domain including diffusion denoising for forward and
supervision by the score of noisy data for backward, and
similarly another data flow runs on the pixel domain.

It is straightforward and reasonable to encourage direct
feature interaction at each resolution layer in the vector and
pixel domains by Multilayer Perceptron after proper dimen-
sionality reshaping. However, In the U-Net architecture, the
effective information capacity of features is constrained. A
substantial portion of this capacity is devoted to data dis-
tribution information, which limits the availability of shape
and visual information critical for interaction.

To efficiently introduce cross-domain knowledge guid-
ance/interaction, we embed a cross-attention module
(named appearance-aware injection in the vector domain
and shape-aware injection in the pixel domain) after the
convolution operation at each resolution level of the U
structure, aiming at injecting strong reference information
from the other domain to regulate/modularize the output
sample of the current step. Namely, we can rely on the
appearance-aware injection scheme to form the conditional
sampling probability pθv(vt−1|vt,pt) for sampling vt−1 at
time step t− 1, vp−1 vice versa.

More concretely, we construct 2D Conditional Embed-
ding using the ResNet architecture, which extracts the 2D
features from pt, flattens them to 1D, and passes them
through fully connected layers to produce the output em-
bedding. Appearance-aware injection receives convolu-
tional features f i

v at the current resolution level i and Ept

obtained by pt via 2D Conditional Embedding from pixel
domain as the local conditional representation, outputting
features with shape perception f̂ i

v(see Eq. (6), where Q, K,
and V are linear mappings projecting the representations
into the same dimensional space).

f̂ i
v = softmax

(Q(f i
v)K(Ept)

⊤
√
d

)
·V(Ept

) (6)

On the contrary, we construct 1D Conditional Embed-
ding through 1D U-Net architecture with linear attention in
each resolution layer, which outputs the 1D feature of vt as
embedding. Shape-aware injection receives convolutional
features f i

p at the current resolution level i and Evt
obtained

by vt via 1D Conditional Embedding from vector domain
as the local conditional representation, outputting features
with shape perception f̂ i

p (see Eq. (7)). Both f̂ i
v and f̂ i

p are
then fed to their respective subsequent resolution levels.

f̂ i
p = softmax

(Q(f i
p)K(Evt)

⊤
√
d

)
·V(Evt

) (7)

Moreover, supervision signals are available for both data
flows. By developing a mutual information injection struc-
ture and independently supervising dual pathways, the vec-
tor generation model gains an enhanced understanding of
the dependency relationship between pixel and vector rep-
resentations. This allows for the generation of vector in-
structions that more accurately reflect/interpret user’s de-
sign specifications.

3.4. Shape Prior Regularizer and Training Objec-
tives

For each closed shape si in a vector graphic v, we consider
that it should satisfy the following two priors: 1) local shape
smoothness, closely related to the quality of shape local de-
tails; and 2) global shape closure, essential for maintaining
the overall integrity and completeness of the shape.

Local shape smoothness. si is made up of several draw-
ing instructions, (si = {ci,1, ..., ci,nsi

}). To encourage lo-
cal smoothness, we constrain the tangents of consecutive
curves as l⃗ei,j and l⃗si,j+1 to be as close as possible. To this
end, we calculate the angle distance between l⃗ei,j and l⃗si,j+1

and introduce binary weights ωs
i,j , such that ωs

i,j = 1 when
angle value less than the angle threshold α0; otherwise it is
0. The local smoothness of v could be expressed by the loss
function Ls(v) as:

Ls(v) =

∑nv

i=1

∑nsi
−1

j=1 ωs
i,j

(
1− l⃗ei,j ·⃗l

s
i,j+1

∥⃗lei,j∥∥⃗lsi,j+1∥

)2

∑nv

i=1

∑nsi
−1

j=1 ωs
i,j

(8)

Global shape closure. Abuse of the ’z’ instruction for
closure without constraint on the starting and ending points
of si can lead to discontinuity. We therefore explicitly con-
strain the starting and ending points of a shape to be as close
as possible. To accommodate the non-differentiable nature
of recognizing the ’z’ instruction, we use an approximate
weight 1

1+ekc∥ti,j−(λ,λ)∥ to assign high weight to the ’z’ in-
struction and extremely low weight elsewhere. We calculate
the closure loss function Lc(v) for v as Eq. (9) where pei,j
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Figure 3. Generation results on Font and Icon datasets. Our method generates high-quality vector graphics with well-organized details.

represents the ending point of ci,j .

Lc(v) =

∑nv

i=1

∑nsi
j=2

1

1+ekc∥ti,j−(λ,λ)∥ ∥pei,j−1 − pei,j∥2∑nv

i=1

∑nsi
j=2

1

1+ekc∥ti,j−(λ,λ)∥

(9)
Based on the above constraints, we build an additional

neural network fθr named Shape Prior Regularizer (SPR)
after the denoiser to further regularize/improve the sample
exploring the above prior knowledge of vector graphics. At
time t, after obtaining the predicted noise ϵθv (vt,pt, t),
we predict the original data in a parametric manner as
ṽ0 = 1√

ᾱt
(vt −

√
1− ᾱtϵθv (vt,pt, t)), and then obtain

ṽ
′

0 = fθr (ṽ0). We require Li
t = ∥ṽ′

0 − ṽ0∥2 to maintain
the integrity of the overall information. Therefore, for a dif-
fusion step t, the total loss function Lr

t is as:

Lr
t = ωi · Li

t + ωs · Ls(vt) + ωc · Lc(vt) (10)

During training, the gradient of Lr
t is back-propagated

only for t < tr. During sampling, when t < tr, we pass the
predicted noise through parametric calculation and the reg-
ular network to obtain ṽ

′

0, which is then transmitted to the
next denoising step. This approach integrates prior knowl-
edge into the final generated sample v0.

Overall training objectives. We introduce ωp to bal-
ance the weights of both domain losses. We also introduce
ωrt to control the backpropagation of Lr

t only for t < tr:
ωrt = 1 when t < tr, and ωrt = 0 when t ≥ tr. The
overall loss function L is given by:

L = Et∼[1,T ],x0,ϵvt,ϵpt

[
Lvt + ωpLpt + ωrtL

r
t

]
(11)

4. Experiment

4.1. Experimental Setup

Dataset. We employ two datasets in our study. The first
is the Font data benchmark from [2]. The second is the
Icon dataset, which is specifically constructed for our study
based on FIGR-8-SVG dataset [4]. To maintain a high sam-
ple density across various instruction sequence lengths, we
cap the maximum instruction sequence length at 96 and fil-
ter out categories with insufficient samples. Consequently,
we build Icon dataset with 82 classes containing a total of
218K samples. Our training, generation, and extension ex-
periments are conducted on these two datasets.

Evaluation Metrics. The evaluation metrics mainly
consider two aspects: 1) Similarity between data distribu-
tion of generated samples and the original dataset. Since
vector samples need to meet visual design requirements, we
employ CLIP [19] to extract features of images rasterized
by vector graphics for evaluation. We calculate the Fréchet
Inception Distance (FID) [8] between the features of gener-
ated samples and the entire dataset. 2) Visual quality of the
generated samples. We identify the top k instances in the
original dataset that are most similar to a generated sample,
based on the Euclidean Distance of the CLIP feature. Fur-
thermore, we compute the average Euclidean distance of the
CLIP feature between the generated sample and these k in-
stances from the original dataset. This metric is referred
to as the Visualization Distance (VD). Since CLIP features
comprise both visual and shape information, Visualization
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Deepsvg [2] provides irregular shapes, especially on more detailed and complex samples. Image Diffusion + LIVE [15] shows a marginal
improvement in visual quality. The results generated by Im2vec [20] have a much larger error compared with other methods. Our approach
achieves excellent results in both artistic appeal and the structural integrity of the shapes.

Distance (VD) can measure the visual quality of the gener-
ated samples based on the k retrieved references.

Implementation Details. In our model configuration,
the Shape Prior Regularizer incorporates the Transformer
model [24]. The weights of the loss functions are set as
ωp = 0.2, ωi = 1.0, ωs = 0.05, and ωc = 2.0, respec-
tively. Regarding data representation, the size of the raster-
ized image p is fixed at 64 × 64 pixels, and the amplitude
of vector graphic instructions λ is fixed at 1.0. The total
steps of the diffusion model T = 1000, the angle threshold
α0 = 5◦, the parameter kc (see Eq. (9)) is fixed at 5.0, and
tr (see Eq. (10)) is set to 32. For the training process, we
utilize a batch size of 120 and conduct the training for 700k
steps. For the testing process, k is set to 5 for Visualization
Distance calculation.

4.2. Visual and Quantitative Comparison

For visual comparison, we generate 128 samples for each
category in both datasets. For the Font dataset, 7936 sam-
ples are generated over 62 categories; for the Icon dataset,
10496 samples are generated over 82 categories. We show
our generated vector graphics in Fig. 3. Our results demon-
strate that the samples generated by our method exhibit
a high level of semantic recognizability, coupled with a
natural and artistic aesthetic. Furthermore, these samples
are characterized by their clear and well-organized details.
(For additional information, please refer to the supplemen-
tary materials.) We randomly select vector images in the
original dataset and retrieve them by Euclidean distance of
the CLIP feature within the samples generated by differ-

ent methods. In Fig. 4, we present the most similar gener-
ated sample of each method during retrieval. The samples
of Pure Vector Generation (Deepsvg [2]) lack regularity,
particularly in more detailed and complex samples such as
the flowers and leaves illustrated in Fig. 4). The two-stage
method (Image Diffusion + LIVE [15]) shows a marginal
improvement in visual quality, but mutual occlusion occurs
among the primitives of the flower shown in Fig. 4. Cross-
domain Supervision (Im2vec [20]) even fails to reasonably
generate the proper number of primitives. The generated
results have a much larger error compared with other meth-
ods. Our approach demonstrates excellent performance in
both artistic appeal and the structural integrity of the shapes.

Method FID↓ VD↓
Icon Font Icon Font

Deepsvg [2] 27.42 8.66 0.0482 0.0190
Two-stage [15] 15.90 11.7 0.0195 0.0120

Im2Vec [20] 43.69 28.34 0.0817 0.0643
Ours 6.09 6.66 0.0119 0.0066

Table 1. Quantitative comparisons. We report the FID and VD
results on Icon and Font datasets. “Two-stage” denotes the method
using “Image Diffusion + LIVE”.

On different datasets, we calculate evaluation metrics for
the generated samples by category and then compute the
average evaluation metrics. We present the average met-
rics of each method on Font and Icon datasets in Tab. 1.
The results indicate that our method achieves the best per-
formance in both data distribution fitting and visualization
quality. In contrast, Deepsvg struggles to control visual in-
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formation, resulting in poor quality, especially on complex
Icon dataset. Due to the gradient errors and instability of
differentiable rasterization, Im2vec and Image Diffusion +
LIVE tend to be underperformed.

!
0 0.2 0.42 0.44 0.46 0.48 0.50

0.54 0.520.58 0.561 0.8

!
0 0.2 0.42 0.44 0.46 0.48 0.50
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Figure 5. Visualization of interpolation results. Our method
achieves smooth shape transition.

4.3. Interpolation Results

To verify the smoothness and continuity in the noisy data
space for our method, as well as the ability to exhibit
transitions at the shape level during the iterative denois-
ing process, we conduct the following interpolation exper-
iments. Following DDPM [9], we randomly encode two
unified variables x0 = {v0,p0} and x

′

0 = {v′

0,p
′

0} into
the noisy data space at diffusion step t: xt = {vt,pt}
and x

′

t = {v′

t,p
′

t}. Then, through the denoising process,
x̄t = (1 − µ)x0 + µx

′

0 is decoded back to the original
space yielding x̄0 = {v̄0, p̄0}, with v̄0 as the final in-
terpolated result. We consider the instruction type encod-
ing (±λ,±λ). When two instruction type encodings are
blended with weights µ1 and µ2 (µ1 > µ2), the result
semantics remain consistent with the instruction type cor-
responding to µ1. An equilibrium probabilistic space for
instruction type is achieved only at µ = 0.5. Therefore,
during interpolation, we conduct dense interpolation around
µ = 0.5, and sparser at other values, to accurately capture
nuances in the interpolation process with t = 400. The re-
sults for two groups under Icon data, as shown in Fig. 5,
demonstrate that our method achieves a smooth transition
while retaining good visual quality.

4.4. Ablation Study

In our ablation studies, we assess the impact of two key
components in our methodology: Cross-domain Condi-
tional Information Injection via Cross-Attention and Shape
Prior Regularizer. Our method without Cross-domain Con-
ditional Information Injection equals to pure vector diffu-

w/o SPRPure Vector Diffusion Ours

Figure 6. Visualization of generated instances. We utilize the same
retrieved data to sample from different methods.

sion. The results are shown in Tab. 2. It reveals that
Cross-domain Conditional Information Injection via Cross-
Attention significantly enhances the overall quality of the
generated distribution. Shape Prior Regularizer contributes
to quality improvement, particularly in finer details. Visual
comparisons in Fig. 6 illustrate that the absence of Cross-
domain Conditional Information Injection leads to less ef-
fective information transfer, resulting in poor visual effects.
Compared to scenarios without Shape Prior Regularizer,
our complete method demonstrates more precise closure of
shapes and smoother transitions at the junctions of drawing
curves.

Method Pure Vector Diffusion w/o SPR Ours
FID↓ 7.70 6.37 6.09
VD↓ 0.0214 0.0133 0.0119

Table 2. We investigate the crucial designs of our method on
Icon dataset. Pure Vector Diffusion equals to our method with-
out Cross-domain Conditional Information Injection.

5. Conclusion
In this work, we propose a novel generation framework for
vector graphics based on dual-domain (vector-pixel) diffu-
sion with mutual impulse. Experimental results on various
datasets and tasks demonstrate that our framework gener-
ates high visual quality vector graphics with natural artistic
beauty and well-organized details.
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