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Abstract

Neural solvers have shown remarkable success in tackling Vehicle Routing Prob-1

lems (VRPs). However, their application to scenarios with complex real-world2

constraints is still at an early stage. Recent works successfully employ variants of3

the Lagrange multiplier method to handle such constraints, but their limitation lies4

in the use of a uniform multiplier across all problem instances, overlooking the5

fact that the difficulty of satisfying constraints varies significantly across instances.6

To address this limitation, we propose an instance-level adaptive constrained opti-7

mization framework that reformulates the Lagrangian dual problem by assigning8

each instance its own multiplier. To efficiently optimize this new problem, we9

design a multiplier-conditioned policy that solves instances with a controllable10

level of constraint awareness, which effectively decouples policy optimization11

from the optimization of multipliers. By leveraging this conditioned policy, we12

customize the optimization of multipliers for each test instance by adapting to its13

particular constraint violations. Experimental results on the Travelling Salesman14

Problem with Time Window (TSPTW), and TSP with Draft Limit (TSPDL) show15

that our method exhibits advantages compared to the strong solver LKH3 and16

significantly outperforms state-of-the-art neural methods. Our code is available at17

https://anonymous.4open.science/r/ICO-E52F.18

1 Introduction19

The Vehicle Routing Problem (VRP) is a classic kind of NP-hard combinatorial optimization problem20

with broad real-world applications in manufacturing [62], transportation [57], and logistics [39].21

VRP solvers in the Operational Research (OR) community, which are typically based on heuristic22

search [29] and integer programming [4], have achieved remarkable success in the past but are often23

limited by high computational overheads. To address this, neural networks have been leveraged24

to develop efficient, data-driven heuristics for solving VRPs [64, 35, 40, 49, 37, 33, 11, 69, 45],25

demonstrating faster solving speeds and competitive solution quality against strong OR solvers. A26

prominent approach among these neural solvers is utilizing reinforcement learning-based policies to27

sequentially construct solutions [5], which has shown effectiveness on canonical problems like TSP28

and Capacitated VRP (CVRP) [41, 19, 47].29

Real-world applications of VRP, however, often involve constraints that are more complex than those30

in the canonical problems. For example, in many business scenarios such as public transportation [12,31

56] and dial-a-ride systems [16], the arrival time of vehicle must fall into a customer-requested time32

window, known as the time window constraint. This constraint significantly restricts the feasible33

region such that even finding a feasible solution is proved to be NP-complete [55], which can pose34

great challenges to most existing solvers. Other examples of complex constraints in VRPs include35

the global priority rule in disaster relief [52] and the draft limits in maritime transportation [26]. To36
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Figure 1: (a) Illustration of the drawback inherent in single-multiplier (λ) methods. Constraint
violations of different instances are plotted. The single-λ methods tend to overemphasize (insuffi-
ciently emphasize) constraints on some instances with relatively low (high) constraint violations.
(b) Performance comparison of LKH3, single-λ models and our proposed instance-level adaptive
method, on TSPDL with 50 nodes.

handle these hard constraints, classical OR solvers often employ techniques like penalty functions37

to incorporate constraint violations into the objective function. In the strong solver LKH3 [30], the38

penalty function is prioritized over the original distance cost, highlighting its emphasis on handling39

constraints. However, as shown in pervious works [9] and our experiments (see Table 1), the feasibility40

rate obtained by the traditional solvers is still unsatisfactory when runtime budgets are limited.41

Neural solvers have achieved remarkable performance on various VRPs, even surpassing LKH3 on42

large-scale problems [48] and specific problem variants [72]. However, the research of their extension43

to VRPs with complex constraints is still at an early stage. To better handle complex constraints,44

existing studies have refined neural methods from several perspectives, including constraint-aware45

feature design [15], improvement in network architecture [21], modifications to the objective func-46

tion [71, 14, 60], and development of novel masking mechanisms [9]. For instance, Chen et al.47

[15] introduced a multi-step look-ahead strategy, integrating the future time window information48

to enhance constraint-related features. Similarly, Bi et al. [9] designed a look-ahead-based mask49

mechanism to proactively exclude actions that would violate constraints in future steps. From the50

perspective of constrained optimization, Tang et al. [60] adopted the Lagrange multiplier method51

to explicitly optimize constraint violations together with the route distance. Notably, the most re-52

cent Lagrange multiplier-based implementation [9] has achieved state-of-the-art performance on53

common benchmarks, regarded as a general and effective solution for complex VRPs. However,54

these Lagrangian-based methods directly extend the canonical formulation to the optimization of55

neural solvers by employing a uniform multiplier across all problem instances, thereby neglecting56

the disparity in constraint violations among instances, as illustrated in Figure 1a. This limitation can57

significantly hinder the adaptability of neural models, resulting in suboptimal performance. More58

related works about neural solvers and constrained optimization are introduced in Appendix C.59

To address this issue, we introduce a new formulation of the Lagrangian dual problem that assigns60

each instance a specific multiplier, enabling adaptive constrained optimization at the instance level.61

Compared to the methods that rely on a single multiplier, this instance-specific formulation offers62

greater flexibility by optimizing the trade-off between solution quality and constraint satisfaction63

for each individual instance. However, directly optimizing instance-specific multipliers for millions64

of training instances poses significant computational challenges. To address this issue, we develop65

a multiplier-conditioned policy that decouples the optimization of the policy from that of the mul-66

tipliers, effectively reformulating the dual problem into two separate subproblems. By leveraging67

this conditioned policy, the outer subproblem of optimizing multipliers can be efficiently solved68

independently during the inference stage.69

We conduct experiments on two challenging constrained VRPs: Travelling Salesman Problems70

with Time Window (TSPTW), and TSP with Draft Limit (TSPDL). Notably, these two problems71

pose greater challenges in satisfying constraints compared to CVRPTW and CVRPDL, as the72
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constraint violations of the latter can be addressed more easily by assigning additional vehicles to73

the violated nodes. The experimental results demonstrate that our adaptive optimization approach74

significantly surpasses the state-of-the-art neural method [9] that relies on a single multiplier. For75

instance, Figure 1b compares the optimality gap and infeasibility rate on TSPDL50 (TSPDL with76

50 nodes), where our proposed method has clear advantages. Moveover, compared to the strong77

solver LKH3 under the same runtime budget, our neural method reduces the infeasibility rate78

by 95.56% − 1.33% = 94.23% on TSPTW100 and 7.02% − 0.91% = 6.11% on TSPDL100,79

while achieving competitive optimality gap. These results highlight neural methods as a promising80

alternative to OR solvers for addressing constrained VRPs.81

2 Background82

2.1 Constrained VRPs83

The objective of VRPs [18] is to determine a tour that minimizes the total travel distance while84

visiting all the customer nodes. Formally, a VRP instance is defined on a graph G = (V,E), where85

V represents the set of all customer nodes along with a depot node, and E denotes the set of directed86

edges between each pair of nodes (i.e., the graph is fully connected). The vehicles are required to start87

and end their tours at the depot node. In this paper, we focus on two types of challenging constraints:88

Time window constraint and draft limit constraint.89

Time window. The time window constraint nartually arises in many business scenarios that require90

flexible time scheduling [61]. In this context, each node is accosiated with a time window [li, ui]91

that defines the earlist time li and the latest time ui of visiting that node. The constraint ensures that92

the arrival time at each node does not exceed the end of its designated time window. If the arrival93

time ti is earlier than the start time (i.e., ti < li), the vehicle must wait until the time window starts.94

Formally, a TSPTW instance I is expressed as:95

min
τ

fI(τ) =
∑

(n,v)∈τ

dI(n, v), s.t. gI(τ) =

n−1∑
i=0

max{ti − ui, 0} ≤ 0,

where τ denotes the tour, and dI(n, v) is the distance between nodes n and v. The goal is to find a96

tour τ that minimizes the total distance fI(τ) while satisfying the time window constraint gI(τ) ≤ 0.97

Draft limit. The draft limit in ports is an important factor that influences the routing actions in98

maritime transportation [26]. The draft of a ship is the distance between the waterline and the bottom99

of the ship, affected by the cumulative load. The draft limits in ports are designed to avoid overloaded100

ships entering these ports. In this context, each node represents a port with a maximum draft mi and101

a non-negative demand δi. The constraint requires that the cumulative load, ci =
∑i−1

j=1 δτj , over the102

last i− 1 steps must not exceed the maximum draft mi of the i-th visited port. Formally, this can be103

expressed as gI(τ) =
∑n−1

i=0 max{ci −mi, 0} ≤ 0.104

2.2 Lagrange Multiplier Method105

To solve constrained VRPs, the constraint violation can be integrated into the objective function106

through the formulation of the Lagrangian dual problem [7]:107

max
λ≥0

min
τ

[fI(τ) + λ · gI(τ)],

where λ is a non-negative dual variable (i.e., multiplier), quantifing the impact of a constraint on108

the objective function. The Lagrangian dual problem can be optimized by alternatively updating109

the primal and dual variables. This involves solving the primal problem for a fixed dual variable,110

which can be addressed using a classical VRP solver, followed by updating the dual variable based111

on the observed constraint violations [38]. The update of the dual variable is often realized using112

subgradient ascent as:113

λ← λ+ α · gI(τ),
where α is the learning rate. Through the iterative adjustment, the dual variable is continuously refined114

according to the current level of constraint violation, enabling a better balance between solution115
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quality and constraint satisfaction. More iterative update methods for the dual variable include116

quadratic method [31] and proportional-integral-derivative control [58]. Compared to traditional117

penalty-based approaches, the Lagrange multiplier method avoids reliance on fixed penalty parameters118

and has the potential to yield optimal solutions if the strong duality holds [10]. However, the Lagrange119

multiplier method is designed to optimize an individual problem instance. A gap arises nartually120

when it is applied to the training process involving a large number of instances.121

2.3 Lagrange Multiplier-based Training Methods for Neural Vehicle Routing122

When reinforcement learning (RL) is employed to train neural networks for constructing solu-123

tions to VRPs [5], the expected return of the RL policy πθ on a given instance I is defined as124

J (πθ, I) = Eτ∼πθ(·|I)[−fI(τ)], and the expected constraint violation is given by JC(πθ, I) =125

Eτ∼πθ(·|I)[−gI(τ)]. Using these definitions, the Lagrangian dual problem of policy optimization is126

formulated as127

min
λ≥0

max
θ

EI∼D[J (πθ, I) + λ · JC(πθ, I)].

Unlike typical constrained RL [1, 68, 28], where the focus is on solving a specific instance, the128

trained policy in this framework is designed to generalize to unseen instances from the same problem129

class. To achieve this, the training objective involves maximizing the expected performance over130

a distribution D of instances. In practice, the training process is conducted on a dataset DI that131

contains a large number of synthetic problem instances.132

To optimize this (or a similar) dual problem, Tang et al. [60] proposed an approach that alternatively133

updates the policy πθ and the multiplier λ. Specifically, the policy πθ is optimized by policy gradient134

algorithms such as REINFORCE [67], while the multiplier λ is optimized by subgradient ascent.135

More recently, Bi et al. [9] chose to fix the value of λ as a pre-defined constant for efficiency and136

scalability. In our experiments (see Table 1), we observe that dynamically updating the policy-level137

single λ is inferior to the fixed λ setting in most cases.138

Limitations of Lagrangian-based training. The Lagrange multiplier method was originally139

designed for optimizing a single problem instance. However, existing approaches directly extend this140

method to the training of neural solvers and ties multipliers to the RL policy, forming a policy-level141

dual approach, where λ updates with policy changes but remains invariant across instances. This142

simple adaptation overlooks the fact that different instances can exhibit significantly varying levels of143

constraint violations, as demonstrated in Figure 1a, thereby resulting in suboptimal performance.144

3 Method145

To address the aforementioned limitations, we propose an Instance-level adaptive Constrained146

Optimization (ICO) method. In this section, we first provide an overview of the proposed ICO147

approach, followed by a detailed description of its training process and network architecture.148

3.1 Instance-level Adaptive Constrained Optimization149

We leverage instance-specific multipliers to effectively handle the varying degrees of constraint150

violations across instances, which can enable a more flexible trade-off between optimizing the151

objective and satisfying the constraints. Formally, the new dual problem is formulated as152

min
{λi}N

i=1

max
θ

N∑
i=1

[J (πθ, Ii) + λi · JC(πθ, Ii)], (1)

where N is the number of training instances and λi is the dual variable specific to instance Ii. This153

dual formulation has the potential to simultaneously improve solution quality and enhance constraint154

satisfaction, provided that both the primal and dual variables are effectively optimized. However,155

it is extermely challenging and computationally expensive to optimize the instance-specific dual156

variables for millions of training instances. In the common training method of neural solvers [41],157

more than one hundred million training instances are generated on the fly, and each instance is only158

used once during training without additional iterations to refine its corresponding multiplier. This159

training process necessitates an efficient and scalable approach to adaptively manage instance-specific160
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multipliers. Therefore, we discard the expensive alternating update method and decouple the original161

bi-level optimization problem into two separate subproblems: Solve the inner subproblem of Eq. (1)162

as phase 1 and solve the outer subproblem based on the inner results as phase 2.163

Phase 1: Solve the inner subproblem. In the first phase, we solve the inner maximization problem164

separately while considering varying values of λ, aiming to obtain a manifold of policies capable165

of solving instances with continuously varying levels of constraint awareness. To achieve this, we166

propose training a λ-conditioned policy πθ(·|λ) that takes λ as input and performs as trained using167

the specified λ, i.e.,168

πθ(·|λ) ≈ argmax
π

N∑
i=1

[J (π, Ii) + λ · JC(π, Ii)],

where the right side represents the optimal policy corresponding to the given λ. With this condition169

mechanism, the constraint sensitivity of the policy can be seamlessly controlled by adjusting the170

input value of λ, without requiring any modification to the network parameters. This can effectively171

decouple the policy optimization process from the optimization of the multipliers, thereby enhancing172

scalability of the Lagrangian-based training method. The detailed training algorithm and network173

architecture for the λ-conditioned policy are provided in Section 3.2.174

Phase 2: Solve the outer subproblem. The second phase is performed during the inference stage,175

where instance-specific λ values are optimized based on the feedback provided by the trained λ-176

conditioned policy. For each new instance, we iteratively update λ by subgradient ascent to minimize177

its specific constraint violations, thereby adjusting the policy to achieve an appropriate trade-off. This178

process alternates between sampling a solution using the policy πθ(·|λ) and updating λ based on the179

observed constraint violations. Formally, the process is described as follows:180

τt−1 ∼ πθ(·|λt−1, I), λt = λt−1 + α · gI(τt−1),

where t denotes the iteration timestep, and gI(τt−1) is the constraint violation of the sampled solution.181

Note that we initialize all λ values using an identical λ0. Furthermore, we also explore to utilize182

Proportional-Integral-Derivative (PID) control to adjust the λ-value as proposed by Stooke et al. [58],183

detailed in Appendix F.2.184

3.2 Multiplier-Conditioned Policy185

The λ-conditioned policy serves as a key component in optimizing the decoupled dual problem. We186

design a two-stage training algorithm for the λ-conditioned policy, consisting of a pre-training stage187

for efficient convergence and a fine-tuning stage to achieve a precise alignment between λ values188

and instance hardness, which is schematically illustrated in Figure 2. Detailed description of the two189

training stages is as follows.190

Pre-training stage. The pre-training stage is conducted on randomly sampled λ values, which191

is computationally efficient and can effectively enable the generalization ability across varying λ192

conditions. The training objective can be expressed as193

max
θ

EI∼DEλ∼Dλ
[J (πθ(·|λ), I) + λ · JC(πθ(·|λ), I)].

Specifically, we randomly sample λi from a pre-defined distribution Dλ for each training instance Ii,194

constituting a pair sample (λi, Ii). The reward function of the instance Ii is reweighted by its own195

multiplier λi. Following the shared baseline method [41], we sample multiple solutions {τ j}Pj=1196

for each (λi, Ii) pair and estimate the baseline by the average reward of these solutions. Then, we197

compute the policy gradient∇θJ(θ) using the REINFORCE [67] algorithm as198

Rj = −(fIi(τ j) + λi · (gIi(τ j) + cIi(τ
j))),∀j ∈ [P ],

∇θJ(θ) =
1

P

P∑
j=1

(Rj − 1

P

P∑
k=1

Rk) log πθ(τ
j |λi, Ii),

where [P ] denotes the set {1, ..., P}, and cIi(τ
j) is the number of timeout nodes, which we use as a199

heuristic penalty reward, following the reward design of [9]. The factor Rj − 1
P

∑P
k=1 R

k represents200
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Figure 2: A sketch of the two training stages. In both stages, the λ-conditioned policy is trained
using REINFORCE. The primary distinction lies in the handling of the multiplier λ. During the
pre-training stage, λ is randomly sampled to facilitate early convergence and to enhance the policy’s
adaptability across diverse λ values. In contrast, the fine-tuning stage employs an iterative update
mechanism for λ, ensuring that its values are precisely adjusted to account for constraint violations.

the advantage that measures relative reward improvement over the shared baseline. Intuitively,201

the training algorithm reinforces the probability of generating positive advantage trajectories (i.e.,202

solutions) while decreasing the probability of generating negative ones. The pseudo code of the203

pre-training process is provided in Appendix B. Through this training process with random λ, the204

conditioned policy obtains the adaptability to different levels of constraint awareness. Additionally,205

this pre-training phase ensures sufficient convergence of the policy, effectively reducing the occurrence206

of infeasible instances to a manageable level. Once these objectives are achieved, the training207

transitions to the subsequent stage, where instance-specific λ values are iteratively optimized.208

Fine-tuning stage. To achieve an effective alignment between λ values and instance hardness, we209

further fine-tune the pre-trained policy using iteratively updated λ values. In this stage, we initialize210

a uniform and small initial value λ(0) for all instances and alternate between optimizing the policy211

and updating the multipliers. For policy optimization, we continue to employ the REINFORCE212

algorithm with an average baseline, as used in the pre-training stage. For updating the multipliers,213

the subgradient is computed based on the minimal constraint violation value across a set of sampled214

solutions {τ j}Pj=1. Formally, the λ values are updated by the following rule:215

λ
(t)
i = λ

(t−1)
i + α min

j∈[P ]
(gIi(τ

j) + cIi(τ
j)),

where α is the learning rate. After each iteration, we retain the infeasible instances and their216

corresponding λ values in the batch while replacing the feasible instances with new ones. It is217

important to note that the pre-trained policy is already capable of finding feasible solutions for the218

majority of instances. Therefore, the proportion of infeasible instances in each batch is typically219

small. Moreover, to further enhance training efficiency and avoid excessive focus on particularly220

hard instances, we impose a maximum iteration limit and a cap on the infeasible instance ratio. The221

pseudo code of the fine-tuning process is provided in Appendix B.222

Network architecture. The λ-conditioned policy solves instances with a controllable level of223

constraint awareness, determined by the condition variable λ. Similar conditioned policies have been224

explored in related works, particularly for multi-objective optimization [44, 66] and latent space225

search [13]. Among them, there are two possible ways to incorporate the target variable into the policy226

network: (1) embedding it into the initial input features or (2) embedding it into the decoder’s context.227

In this paper, we adopt the λ-conditioned initial embedding, which empirically demonstrates superior228

performance in adjusting trade-off behaviors (see Appendix F.4). Specifically, building on the POMO229

model [41], we incorporate a linear transformation of λ into the original initial embeddings. The230

embedding is computed as:231

h
(0)
i = Wλλ+Wh[xi, yi, li, ui]

⊤,
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where Wλ ∈ Rd×1 and Wh ∈ Rd×4 are trainable parameters, and [xi, yi, li, ui] represents the con-232

catenation of the node’s coordinates (xi, yi) and its time window bounds (li, ui). This concatenated233

feature vector serves as the input representation for each node. The output h(0)
i is then used as the234

initial embedding for the encoder network, which employs the multi-head attention mechanism [63]235

to perform message passing and update node embeddings. Intuitively, the λ-conditioned embedding236

adjusts the relative importance of distance-related features (e.g., node coordinates) and constraint-237

related features (e.g., time window bounds) based on the value of λ, thereby enabling a controllable238

level of constraint awareness. The rest of the architecture closely follows the standard model [41].239

4 Experiments240

In this section, we evaluate the effectiveness of our ICO method through comparison experiments241

and ablation studies. Additional results are included in Appendix F due to space limitation.242

4.1 Experimental Settings243

Problem instance generation. Following prior works [40], we randomly sample node coordinates244

(xi, yi) from a uniform distribution U(0, 1) within a square. For generating the time windows of245

TSPTW and draft limits of TSPDL, we utilize the code from Bi et al. [9] and adopt the hard settings,246

which are sufficiently challenging to examine state-of-the-art neural and OR solvers.247

Implementation details. Our model is implemented based on the POMO framework [41], incorpo-248

rating the PI mask [9] to restrict the search space. We only employ the PIP decoder to predict masks249

during the training process on instances with the number of nodes n = 100. The prior distribution of250

λ in the pre-training stage, i.e., D(λ), is set to a triangular distribution T (0.1, 0.5, 2.0). The learning251

rate for updating λ is set to 0.5 for TSPTW and 0.2 for TSPDL. The common hyperparameters shared252

between our method and prior works follow their default settings [41, 9]. In evaluation, our method253

employs × 8 instance augmentation and 16 iterations to update λ during the inference stage. To254

align the runtime consumption, we use sampling strategies for PIP. More implementation details are255

provided in Appendix E due to space limitation.256

Baselines. We compare our proposed method against state-of-the-art neural methods and OR257

solvers. For OR solvers, we include LKH3 [30], one of the strongest solver specifically designed258

for VRPs; and OR-Tools [20], a general-purpose solver capable of handling various constraints. For259

neural methods, we consider the state-of-the-art PIP framework [9]. For TSPTW(DL)100, we report260

the results of the models with the PIP decoder. Our experiments encompass four configurations of261

PIP: λ = 0.5, λ = 1.0, λ = 2.0, and a dynamically updated λ. Specifically, in the dynamic setting,262

the value of λ is periodically adjusted using subgradient ascent every 1000 epochs. The subgradient263

is estimated based on the average constraint violation observed on the validation dataset.264

Metrics. We evaluate performance and efficiency using four metrics: infeasibility rate, average265

optimality gap, normalized HyperVolume (HV) and runtime. Among these, the HV serves as a266

comprehensive indicator, capturing both feasibility and solution quality. A detailed explanation of267

these metrics is provided in Appendix E.3.268

4.2 Main Results269

Comparison with single-λ models. The performance comparisons on TSPTW and TSPDL across270

different problem scales are presented in Table 1. On TSPTW100, the proposed ICO method reduces271

the infeasibility rate from 4.33% (achieved by POMO+PIP with λ = 1.0) to an impressive 1.33%,272

representing a substantial reduction of 3.00%. Similarly, on TSPTW50, the infeasibility rate is273

lowered from 1.56% to just 0.50%. Even when the λ value in single-λ models is increased to 2.0,274

these models still lag behind the ICO method in terms of feasibility, with the sole exception being275

TSPDL100. In addition to improving feasibility rates, the ICO method consistently outperforms276

single-λ models in terms of optimality gaps. For instance, the ICO method achieves a smaller gap of277

9.22% on TSPDL100, compared to 10.77% achieved by the best POMO+PIP model. Moreover, the278

ICO method showcases the highest HV scores on all benchmarks, indicating its superior trade-off279

performance in balancing solution quality and constraint satisfaction.280
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Table 1: Experimental results on TSPTW and TSPDL. Test instances are generated using the hard
settings [9]. LKH3 (less time) and OR-Tools (less time) denote the OR methods with reduced runtime
budgets to align with neural solvers. The best and the runner-up results are highlighted in Blue and
Violet, respectively.

Methods TSPTW50 TSPTW100

Inf. Rate ↓ Avg. Gap ↓ HV ↑ Time ↓ Inf. Rate ↓ Avg. Gap ↓ HV ↑ Time ↓
LKH3 0.12% 0.0% 1.00 7h 0.07% 0.0% 1.00 1.4d
OR-Tools 65.72% 0.0% 0.34 2.4h 89.07% 0.0% 0.11 1.6d

LKH3 (less time) 57.34% 0.01% 0.43 100s 95.56% 0.03% 0.04 8m
OR-Tools (less time) 65.72% 0.02% 0.34 99s 89.07% 0.51% 0.10 8m
AM + PIP (λ = 1.0) 2.99% 0.34% 0.90 105s 7.80% 0.70% 0.79 8m
POMO + PIP (λ = 0.5) 1.95% 0.08% 0.96 108s 4.90% 0.17% 0.92 9m
POMO + PIP (λ = 1.0) 1.56% 0.16% 0.95 108s 4.33% 0.25% 0.91 9m
POMO + PIP (λ = 2.0) 1.41% 0.19% 0.95 108s 4.71% 0.39% 0.88 9m
POMO + PIP (dynamic λ) 0.98% 0.13% 0.93 108s 4.94% 0.45% 0.87 9m

ICO (Ours) 0.50% 0.07% 0.98 91s 1.33% 0.14% 0.96 8m

Methods TSPDL50 TSPDL100

Inf. Rate ↓ Avg. Gap ↓ HV ↑ Time ↓ Inf. Rate ↓ Avg. Gap ↓ HV ↑ Time ↓
LKH3 0.0% 0.0% 1.00 6.8h 0.0% 0.0% 1.00 1.2d
OR-Tools 100.0% / / 10.6s 100.0% / / 56.8s

LKH3 (less time) 7.42% 4.23% 0.20 70s 7.02% 6.76% 0.20 6m
OR-Tools (less time) 100.0% / / 3s 100.0% / / 29s
POMO + PIP (λ = 0.5) 3.44% 2.36% 0.58 71s 62.94% 20.95% / 5m
POMO + PIP (λ = 1.0) 1.18% 2.33% 0.78 71s 3.23% 10.77% 0.31 5m
POMO + PIP (λ = 2.0) 0.12% 2.89% 0.85 71s 0.11% 12.24% 0.38 5m
POMO + PIP (dynamic λ) 0.13% 2.99% 0.84 71s 0.01% 14.78% 0.26 5m

ICO (Ours) 0.01% 2.32% 0.88 69s 0.91% 9.22% 0.49 5m

Comparion with strong OR solvers. In Table 1, we also compare our neural methods with strong281

OR solvers, LKH3 and OR-Tools, under aligned runtime conditions. The results show that our ICO282

method achieves a dramatic improvement in infeasibility rates, reducing them from 95.56% to 1.33%283

(94.23% reduction) on TSPTW100 and from 7.02% to 0.91% (6.11% reduction) on TSPDL100.284

Regarding solution quality, our method significantly outperforms OR-Tools on TSPTW100 and even285

surpasses LKH3 on TSPDL50. While the solution quality of our neural approach on the other three286

benchmarks still lags behind LKH3, the substantial improvements in feasibility and competitive287

performance overall underscore the strengths of our neural method.288

Comparison under different inference strategies. In Table 2, we extend the scope of our289

comparative experiments to incorporate additional inference strategies, including Greedy (vs. T = 1),290

Sampling (vs. T > 1), and Efficient Active Search (EAS) [32]. The results consistently demonstrate291

that ICO outperforms the best-performing PIP model (denoted as PIP*) in most scenarios. In292

particular, our ICO integrates well with EAS, achieving near-zero infeasibility rates and gaps. The293

only exception on ICO (T = 1) can be attributed to the small initial λ value. Notably, we observe294

that ICO (T = 2) even surpasses PIP* (Sampling 16) while consuming much less runtime, which295

highlights the superiority of our proposed ICO. To defense the prolonged runtime of ICO, we further296

compare ICO (T = 16) with LKH3 post search. The results indicate that even adding a strong297

post-search such as LKH3 to the baseline, our ICO method remains superior in reducing infeasibility.298

Analysis of anytime performance. During inference, our ICO method iteratively samples solutions299

and updates λ, making the anytime performance throughout the iterative process a critical factor.300

Figure 3 shows the convergence curves of infeasibility rate and average optimality gap on TSPTW50301

and TSPTW100. The results indicate that, while ICO starts with a higher infeasibility rate, it302

converges rapidly and outperforms single-λ models in later iterations. In terms of optimality gap,303

ICO consistently achieves better results throughout the process.304

Extension to more problem variants. Our proposed method can be seamlessly extended to solve305

more VRP variants. In Appendix F.1, we conduct comparison experiments on two kinds of CVRPTW.306

The results show that our proposed ICO method still have advantages on CVRPTW.307
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Table 2: Comparisons under different inference strategies, including Greedy, Sampling, Efficient
Active Search (EAS) [32] and LKH3 post search. When EAS is integrated, the number of parallel
solutions (i.e., POMO size) is increased to 10 for estimating the average baseline. We select the
best PIP model from the four configurations according to the HV metric, denoted by PIP*. For
LKH3 post search, the solutions generated by PIP*(Greedy) are used as the initial solutions of LKH3.
Sampling/EAS 16 refers to conducting 16 iterations, while T represents the iteration count of our ICO
method. The best and the runner-up results are highlighted in Blue and Violet, respectively.

Methods TSPTW50 (10k instances) TSPTW100 (1k instances)

Inf. Rate ↓ Avg. Gap ↓ HV ↑ Time ↓ Inf. Rate ↓ Avg. Gap ↓ HV ↑ Time ↓
PIP* (Greedy) 3.05% 0.22% 0.927 9s 9.00% 0.23% 0.868 4s
PIP* (Sampling 2) 2.53% 0.10% 0.955 14s 7.20% 0.22% 0.887 7s
PIP* (Sampling 16) 2.11% 0.09% 0.961 63s 5.80% 0.19% 0.906 43s
PIP* (EAS 16) 1.22% 0.05% 0.978 11m 0.50% 0.04% 0.987 9m
PIP* (Greedy) + LKH3 1.40% 0.01% 0.984 100s 6.17% -0.07% 0.951 50s

ICO (T = 1) 2.14% 0.10% 0.959 9s 14.10% 0.15% 0.833 4s
ICO (T = 2) 1.67% 0.09% 0.966 14s 3.60% 0.17% 0.931 7s
ICO (T = 16) 0.50% 0.07% 0.981 90s 1.10% 0.14% 0.961 48s
ICO (EAS 16) 0.17% 0.03% 0.993 11m 0.20% 0.02% 0.994 9m
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Figure 3: Anytime performance comparion between our ICO method and the single-λ methods.

4.3 Ablation Study308

In this subsection, we present a series of experiments to investigate the impact of each component.309

Detailed results and analyses are provided in Appendix F due to space limitation.310

• Analysis of update rules for λ in inference stage. See Appendix F.2.311

• Analysis of training strategies. See Appendix F.3.312

• Analysis of the λ-conditioned network architecture. See Appendix F.4.313

• Analysis of the pre-defined λ distribution. See Appendix F.5.314

• Sensitivity analysis of λ-related hyperparameters. See Appendix F.6.315

5 Conclusion316

In this paper, we propose a novel approach ICO to address the limitations of existing Lagrangian-317

based neural methods in solving complex constained VRPs. Unlike prior methods that rely on a318

single, uniform multiplier across all problem instances, ICO leverages instance-specific multipliers319

to improve adaptability and better optimize the trade-off between solution quality and constraint320

satisfaction for every problem instance. Experimental results on two challenging constrained VRP321

benchmarks, TSPTW and TSPDL, demonstrate that ICO significantly reduces infeasibility rates322

compared to both state-of-the-art neural methods and strong OR solvers like LKH3. These empirical323

findings suggest that our ICO framework can be a promising alternative for strong OR solvers when324

tackling constrained combinatorial problems. One limitation of this study lies in the fact that the325

proposed ICO framework necessitates a minimum of two iterations to update the λ values, resulting in326

an extended inference runtime. Future research could explore methods for directly predicting optimal327

λ values, improving the training strategies of the conditioned policy, and enabling generalization328

across diverse sets of constraints.329
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A Illustration of our proposed method553
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Figure 4: An illustration is presented to compare previous policy-level multiplier methods with our
proposed instance-level adaptive approach. The policy-level methods are limited in their ability
to address distinct constraint violations across diverse instances, as they apply uniform multipliers
irrespective of instance-specific variations. In contrast, our instance-level method inherently aligns
multiplier values with the specific constraint violations of each instance, thereby achieving more
precise and adaptive handling of constraints.

B Pseudo Code of the Training Process554

Algorithm 1 Pre-training of the λ-conditioned policy

Input: Distribution Dλ, number of batches T , batch size B, number of parallel sampling P
Initialize policy network parameters θ
for t = 0 to T − 1 do

Generate a batch of instances {Ii}Bi=1
Sample multipliers λi ∼ Dλ, ∀i ∈ {1, ..., B}
Sample multiple solutions {τ ji }Pj=1 ∼ πθ(·|λi, Ii), ∀i ∈ {1, ..., B}
Compute baseline bi ← 1

P

∑P
j=1−(fIi(τ

j
i ) + λi(gIi(τ

j
i ) + cIi(τ

j
i ))), ∀i ∈ {1, ..., B}

Compute policy gradient∇θJ(θ)← 1
BP

∑B
i=1

∑P
j=1(−(fIi(τ

j
i ) + λi(gIi(τ

j
i ) + cIi(τ

j
i )))−

bi)∇θ log πθ(τ
j
i |λi, Ii)

Update parameters θ ← θ + α∇θJ(θ)
end for
Output: θ

C Related Works555

Prevalent paradigms of neural VRP. Many researchers have focused on end-to-end neural556

methods that learn to generate solutions through deep neural networks [6, 11]. These neural solvers557

can be categorized into three paradigms [50]: (1) Learn-to-Construct (L2C) methods sequentially558

extends solutions from scratch in an autoregressive manner, typically trained via reinforcement559

learning [51] or imitation learning [19]. These L2C methods have proven to be applicable to a560

variety of combinatorial problems [70] and industrial applications [42]. (2) Learn-to-Predict (L2P)561

methods operate under a variable-independent assumption, directly predicting the entire solution562
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Algorithm 2 Fine-tuning of the λ-conditioned policy

Input: Number of batches T , batch size B, number of parallel sampling P , multiplier learning
rate αλ, policy learning rate α, maximum number of itertations K, maximum infeasible ratio δ
Initialize policy network parameters θ
Generate a batch of instances {Ii}Bi=1

Initialize multipliers λi ← λ(0), ∀i ∈ {1, ..., B}
Initialize iteration counts ki ← 0, ∀i ∈ {1, ..., B}
for t = 0 to T − 1 do

Sample multiple solutions {τ ji }Pj=1 ∼ πθ(·|λi, Ii), ∀i ∈ {1, ..., B}
Compute baseline bi ← 1

P

∑P
j=1−(fIi(τ

j
i ) + λi(gIi(τ

j
i ) + cIi(τ

j
i ))), ∀i ∈ {1, ..., B}

Compute policy gradient∇θJ(θ)← 1
BP

∑B
i=1

∑P
j=1(−(fIi(τ

j
i ) + λi(gIi(τ

j
i ) + cIi(τ

j
i )))−

bi)∇θ log πθ(τ
j
i |λi, Ii)

Update parameters θ ← θ + α∇θJ(θ)
Adjust the maximum number of iterations K according to the current infeasibility ratio, ensuring
the ratio of retained infeasible instances does not exceed the maximum ratio δ
for each instance Ij without feasible solutions do

Update λj ← λj + αλ minm∈[P ](gIj (τ
m
j ) + cIj (τ

m
j ))

Increment kj ← kj + 1
end for
for each instance Ij with zero kj or kj > K do

Generate a new instance to replace Ij
Initialize λj ← λ(0) and kj ← 0

end for
end for
Output: θ

without conditional dependence [35]. While computationally efficient, L2P methods often suffer563

from limited expressiveness. To address this issue, recent research has introduced diffusion models to564

enhance the L2P paradigm by leveraging their ability to generate multimodal distributions of optimal565

solutions [59, 43]. (3) Learn-to-Search (L2S) methods adopt the iterative framework of traditional566

search heuristics. During the search process, L2S methods usually leverage a RL policy to control or567

select search operators [49, 46], thereby guiding the search directions towards near-optimal solutions.568

Recent advances in neural VRP. Recent advancements in neural methods for solving VRPs focus569

on improving scalability and robustness through innovative architectures and learning strategies.570

For example, the large-scale performance is improved by employing divide-and-conquer strate-571

gies [23, 69], leveraging heavy decoder architectures [47], incorporating distance-related bias [73],572

and exploiting local transferability [24, 22]; the robustness against distribution shifts is improved573

by distributional robust optimization [33], multi-distribution knowledge distillation [8], meta learn-574

ing [74] and ensemble learning [34]. Furthermore, it is observed that the performance of neural575

solvers can be enhanced by utilizing a population of complementary models [27, 76, 25]. Moveover,576

Liu et al. [45] proposed to develop a foundation model for a class of VRP variants, leveraging the577

shared problem structure to achiece better performance. Building on this, Zhou et al. [75] further578

improved model capability by introducing the mixture-of-experts structure. Besides these efforts, this579

paper focuses on complex constrained VRPs, which are common in real-world applications [12, 26]580

but have not received much attention in the research community. Only a few works [60, 15, 9]581

try to address it through feature enhancement or Lagrange multiplier method. In this context, we582

introduce a novel instance-level adpative framework for Lagrangian-based neural methods, reducing583

the infeasiblity rate significantly.584

Learning for constrained optimization in other domains. Most neural solvers for constrained585

optimization problems rely on expert-designed rules to prevent constraint violations during the586

decoding process [3, 59, 36]. For instance, Ahn et al. [3] proposed a clean-up phase that rolls back587

invalid actions, thereby enforcing feasibility through a hard constraint mechanism. However, these588

expert-driven rules often fail in complex scenarios, such as the constrained VRPs studied in this work,589

as well as in many continuous optimization problems. To address constraint violations in such cases,590
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optimization techniques based on penalty functions and Lagrange multipliers have been integrated591

into unsupervised learning [2] and self-supervised learning pipelines [53]. However, a common592

limitation arises when a single multiplier or penalty factor is applied across diverse problem instances593

with varying degrees of constraint violations. This challenge, though important, has been largely594

overlooked in prior studies [2, 65, 54]. Only a related study on continuous optimization [53] noticed595

this issue and introduced a primal-dual network to predict instance-specific dual variables during596

training. While this approach improves upon the single multiplier method, it remains constrained by597

the computational overhead associated with alternating primal-dual ascent and the limited accuracy598

of dual variable predictions.599

D Instance Generation600

In our experiments, we consider two categories of problem, TSPTW and TSPDL. Following prior601

works [40], we randomly sample coordinates (xi, yi) for each node i (including the depot) from a602

uniform distribution U(0, 1) within a square. For generating the time windows and draft limits, we603

utilize the code of Bi et al. [9] and adopt the hard settings, which are sufficiently challenging to604

examine state-of-the-art neural and OR solvers. The generation process of time windows and draft605

limits is detailed as follows.606

Time windows. After generating the node coordinates, the pairwise travel times are calculated607

based on the Euclidean distance between any two nodes. For the generation of time windows, we608

adopt the configuration of a widely recognized benchmark [17] in our experiments. Specifically, the609

process begins with the construction of a random tour τ (i.e., a random permutation of the nodes).610

Subsequently, the time window [li, ui] for each node i is iteratively generated, where the lower611

bound li and upper bound ui are uniformly sampled from a range determined by the cumulative612

travel distance ϕi of the partial solution up to node i and the maximum window size 2η. More613

formally, li ∼ U [ϕi − η, ϕi] and ui ∼ U [ϕi, ϕi + η]. This procedure guarantees the existence of614

at least one feasible solution for each instance, and the tight coupling between the time windows615

and the randomized tours introduces significant complexity to the problem, thereby increasing the616

computational difficulty of satisfying constraints. In this paper, the maximum window size η is set617

to 50, and we employ a scale factor ρ = 100 to normalize the node coordinates and time windows618

according to [9].619

Draft limits. In the context of TSPDL, each node is associated with a demand value and a maximum620

draft limit, which is designed to avoid overloaded ships entering these ports (i.e., nodes). From an621

initial feasible setting, the draft limit of each node is set to the summarized demands of other nodes,622

thereby ensuring that any node demand can not exceed its own draft limit. Subsequently, a fraction623

parameter, denoted as p%, is introduced to adjust the draft limits of non-depot nodes. Specifically,624

p% of the non-depot nodes are randomly selected, and each of them is assigned a draft limit drawn as625

a random integer from the range [δi,
∑n

i=1 δi], where δi is the demand of the i-th node. Finally, a626

feasibility validation is conducted (e.g., utilizing bin-counting constraints) to ensure that the assigned627

draft limits do not lead to instances without feasible solutions. In our experiment, the node demands628

are set to 1 and the fraction parameter p% is set to 90%.629

E Implementation Details630

E.1 Training Details631

The training procedure of our ICO method contains two stages: a pre-training stage and a fine-tuning632

stage. The pre-training stage involves a total of 10, 000 epochs, while the fine-tuning stage comprises633

1, 000 epochs. Each training epoch processes 10, 000 synthetic problem instances. For both stages,634

we select the model checkpoint that achieves the best inference performance on a validation dataset635

as the final model. It is worth noting that the training process of our ICO method includes 1, 000636

more epochs compared to the training process of POMO+PIP. To ensure a fair comparison, we extend637

the training of the provided POMO+PIP checkpoints by an additional 1, 000 epochs.638

The fine-tuning stage involves the iterative updating of λ values. In this process, the initial values639

λ(0) is uniformly set to 0.1 for all problem instances. If the policy fails to find feasible solutions640
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on a specific instance, the λ value corresponding to this instance is updated based on the constraint641

violation, where the learning rate of λ is set to 0.5 for TSPTW and 0.2 for TSPDL, since the scales642

of constraint violations on TSPTW and TSPDL are different. These hyperparameters in updating643

λ are aligned with the corresponding hyperparameters in the inference stage, narrowing the gap of644

training and inference. To improve computational efficiency and mitigate the risk of overfocusing645

on challenging instances, the number of iterations is limited to a maximum of 4, and the ratio of646

infeasible instances within a batch must not exceed 25%. During the fine-tuning on TSPDL50, we647

observe that the fine-tuned policy tends to overemphasize the constraints, resulting in a near zero648

infeasibility rate but a significant deterioration in objective values. To mitigate this issue, we adjust649

the learning rate of fine-tuning process on TSPDL50 to 1 × 10−6, while learning rates of other650

training process remain the default setting (i.e., 1× 10−4).651

E.2 Inference Details652

The instance-specific λ values are iteratively updated based on constraint violations during the653

inference stage. In this process, the λ values are initialized as 0.1 for all instances except instances654

of TSPDL100, since it is observed that the conditioned policy fails to obtain feasible solutions for655

most instances of TSPDL100 when using λ = 0.1. Consequently, the intial λ value for TSPDL100656

is increased to 0.5. During the updating process of λ, the learning rate is configured as 0.5 for657

TSPTW and 0.2 for TSPDL. These different learning rates are to accommodate the different scales658

of constraint violations on these two problem types. In the comparison experiments, the number of659

iterations for updating λ is set to 16.660

E.3 Experimental Settings661

Metrics. Four metrics are applied: Infeasibility rate, average optimality gap, normalized Hyper-662

Volume (HV) and runtime. The instance-level infeasibility rate measures the proportion of instances663

where the solver fails to find any feasible solution. These metrics are calculated on a test dataset664

containing 10,000 instances. To compute the optimality gap, we use the solutions obtained by LKH3665

through full-time search as reference solutions. Unlike some prior works that compute the optimality666

gap directly from the average objective [40], we calculate the optimality gap on an instance-by-667

instance basis and then average these values. It is important to note that the calculation of objective668

values and optimality gaps only includes instances with feasible solutions. Therefore, the average669

objective value may not serve as a fully reliable metric for performance comparison, as the sets of670

instances with feasible solutions can vary across different methods. To measure the comprehensive671

performance of both solution quality and feasibility, we further compute the normalized HV based672

on the infeasibility rate and average optimality gap. The reference point for computing HV is set to673

(100%, 5%) for TSPTW and (10%, 20%) for TSPDL, where the first number represent the infeasibil-674

ity rate and the other denotes the average gap. To evaluate the computational efficiency, we compare675

the total runtime of solving 10,000 instances with batch parallelism on a single GPU (NVIDIA RTX676

4090 Ti). For OR solvers like LKH3 and OR-Tools, we record the runtime of parallel computation on677

16 CPU cores.678

Evalution configurations of baselines. To align the runtime consumption, POMO+PIP employs679

×28 sampling for intances with n = 50 and ×20 sampling for instances with n = 100, where680

AM+PIP adopts ×200 sampling for both n = 50 and n = 100 instances. These different sampling681

configurations are to align with the additional runtime caused by the computation of λ-conditioned682

embeddings in our ICO method. The evaluation batch sizes for both POMO-PIP and our ICO method683

are set to 2,500 for instances with n = 50 and 1000 for instances with n = 100.684

F Additional Results685

F.1 Extension to more problem variants.686

The idea of instance-level adaptive dual variables is not specially designed for TSPTW and TSPDL;687

rather, it can be extended to other domains that simultaneously require constraint handling and cross-688

instance (or cross-environment) generalization of the RL policy, with domain-specific adaptations.689

To demonstrate generality, we extend our method to more VRP variants. After summarizing the690

18



hard-constrained VRPs addressed in prior works [15, 21, 9, 60, 14], we find that CVRPTW is the691

only problem not addressed in our experiments. While the decision space of CVRPTW appears692

more complex, it is, in fact, easier to satisfy its constraints compared to TSPTW and TSPDL. This is693

because its time window constraints can be easily satisfied by a shortcut: Add more vehicles.694

To construct a challenging benchmark, we propose to set a maximum limit on the number of695

vehicles, which also aligns more closely with real-world applications. We conduct new experiments696

on CVRPTW50 with limited vehicles using JAMPR’s time window generation code [21]. Since697

PIP has not been extended to this problem, we used POMO as the backbone to implement ICO.698

Experimental results in Table 3 show that our ICO significantly outperforms the POMO baseline,699

especially in infeasibility rate.700

Table 3: Experimental results on new problem variants: CVRPTW50 and CVRPTW50 with limited
vehicles. To compute HV, we use reference point (1%, 15) for CVRPTW50 and (10%, 15) for
CVRPTW50 with limited vehicles. The best results are highlighted in bold.

CVRPTW50 CVRPTW50 with limited vehicles
Method Inf. rate Obj. HV Time Inf. rate Obj. HV Time

POMO (λ = 0.5) 0.69% 13.99 0.021 39s 4.35% 14.05 0.036 38s
POMO (λ = 1.0) 0.25% 14.22 0.039 40s 3.26% 14.28 0.033 38s
POMO (λ = 2.0) 0.31% 14.49 0.023 39s 2.51% 14.51 0.025 38s

ICO 0.10% 14.00 0.060 40s 1.16% 14.09 0.054 40s

F.2 Analysis of Different Update Rules for λ701

Proportional-Integral-Derivative (PID) control for updating λ. From the perspective of control702

theory, the subgradient ascent process of λ behaves as integral control, while Stooke et al. [58]703

proposed to further incorporate proportional and derivative control into the update rule, avoiding704

oscillations encountered by the integral-only controller. The proportional control is to hasten the705

constraint satisfaction in response to the immediate constraint violation. The derivative control706

prevents the oscillations by monitoring the variation tendency of constraint violations. By adding the707

terms of proportional, integral and derivative control, the update rule of PID control is expressed as:708

∆t = gI(τt),

It = It−1 + gI(τt),

δt = max{gI(τt)− gI(τt−1), 0},
λt = KP ·∆t +KI · It +KD · δt,

where ∆t represents the proportional term of time step t, It denotes the t-th step integral term709

that accumulates the constraint violations of previous steps, δt computes the derivative term of the710

constraint violation, and KP ,KI ,KD are tuning parameters that measure the weights of three terms.711

Intuitively, this PID method provides a richer set of controllers than subgradient ascent, but it also712

introduces more hyperparameters that require manual tuning. In our experiments, KP is set to 0.1713

and KD is set to 1.0 on both problem types, and KI is set to 0.5 on TSPTW and 0.01 on TSPDL.714

In Table 4, we compare the performance of different update rules of λ in inference stage: fixed λ715

values (λ ∈ {0.5, 1.0, 2.0}), randomly sampled λ values, the subgradient ascent method and the716

PID control method [58]. For the random sampling strategy, λ values are drawn randomly from the717

uniform distribution U(0.1, 2.0) at each iteration.718

The results in the last three rows indicate that both the subgradient ascent method and the PID719

control method generally outperform the random sampling strategy, with particularly improvements720

in reducing the infeasibility rate. As evidenced in the first three rows, employing fixed λ values leads721

to significantly inferior performance compared to the adaptive variation of λ, underscoring the critical722

importance of dynamically adjusting λ for each instance. It is worth noting that the random sampling723

approach also demonstrates competitive performance, indicating that simply varying the λ values724

randomly for each instance has a high probability of identifying effective λ values. By comparing725
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the results of the last two rows, it is observed that the PID control method does not achieve superior726

performance as expected, which can be attributed to two factors: (1) the hyperparameters of PID are727

challenging to tune; (2) the subgradient ascent method is already involved in the fine-tuning process,728

while the PID control is not integrated into the training, limiting its effectiveness.729

Table 4: Additional results of different update rules of λ on TSPTW and TSPDL. The best results are
highlighted in bold.

Methods TSPTW (n = 50) TSPTW (n = 100) TSPDL (n = 50) TSPDL (n = 100)

Inf. rate Avg. Gap Inf. rate Avg. Gap Inf. rate Avg. Gap Inf. rate Avg. Gap

ICO (λ = 0.5) 1.43% 0.19% 4.34% 0.26% 2.63% 2.50% 42.14% 13.16%
ICO (λ = 1.0) 1.52% 0.23% 4.03% 0.36% 0.23% 2.77% 2.01% 10.79%
ICO (λ = 2.0) 1.55% 0.24% 4.27% 0.38% 0.07% 3.15% 0.38% 11.62%

ICO (random) 0.55% 0.07% 2.40% 0.14% 0.12% 2.28% 0.40% 10.73%
ICO (subgradient) 0.51% 0.07% 1.33% 0.14% 0.01% 2.32% 0.91% 9.22%
ICO (PID control) 0.55% 0.07% 1.39% 0.14% 0.05% 2.36% 0.26% 9.25%

F.3 Analysis of training strategies730

Figure 5 illustrates the performance of POMO+PIP (with λ = 1), the pre-trained policy, and the731

fine-tuned policy. The comparison between the pre-trained and fine-tuned policies reveals that the732

fine-tuning process leads to a substantial reduction in both infeasibility rate and average gap, except733

the average gap on TSPDL50. Notably, even the pre-trained policy alone surpasses the single-λ734

POMO+PIP, further highlighting the advantages of the proposed approach.735
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Figure 5: Comparison of the pre-trained policy and fine-tuned policy.

F.4 Analysis of Network Architectures736

The λ-conditioned policy network takes λ as the condition varibable and adjust the constraint737

awareness according to the varying value of λ. Among existing network architectures in other738

domains [66, 44], there are two alternative approaches to implement the conditioned policy: (1)739

condition λ in the initial embeddings; (2) condition λ in the decoder’s context. The second approach,740

referred to as the λ-conditioned context method, is detailed as follows.741

λ-conditioned context. Building upon the POMO model [41], the conditioned context method742

integrates a linear embedding of λ into the decoder’s context embedding, formulated as q = Wλλ+743

W q[hc, tc]. Here, Wλ ∈ Rd×1 and W q ∈ Rd×d are trainable parameters, and [hc, tc] denotes the744

concatenation of the current node embedding hc and the current time tc, together forming the context745

used for selecting candidate nodes. The resulting output, q, functions as the query input for the746

subsequent multi-head attention layer in the decoder. This conditioned context approach incorporates747

the information of λ into the core component of the decoder, enabling an efficient adjustment of the748

policy’s behavior.749

In Table 5, we compare the performance of the network with λ-conditioned context and network750

with λ-conditioned embeddings on TSPTW100 and TSPDL100. Here we report the results of the751

pre-trained policies. The experimental results demonstrate that the λ-conditioned embedding method752

achieves significantly superior performance in both infeasibility rate and average optimality gap. This753

performance advantage can be attributed to the fact that the λ-conditioned embedding utilizes the754
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Table 5: Additional results of different network architectures on TSPTW and TSPDL. The best results
are highlighted in bold.

Methods TSPTW (n = 100) TSPDL (n = 100)

Inf. rate Avg. Gap Inf. rate Avg. Gap

Network with λ-conditioned context 2.83% 0.30% 2.31% 13.34%
Network with λ-conditioned embeddings 2.28% 0.17% 1.14% 10.01%

full capacity of the entire network to process λ-related information, while the conditioned context755

approach restricts the λ-related information to the decoder, thereby limiting its effectiveness.756

F.5 Analysis of the distribution D(λ) in training stage757

In the pre-training stage of the conditioned policy, random values of λ are sampled from a pre-defined758

distribution D(λ) for training. Empirically, the distribution D(λ) has a non-negligible influence759

on the performance of the pre-trained policy. A natural and straightforward option for D(λ) is760

the uniform distribution within an appropriate range. However, as shown in Figure 6, the trained761

policy just silghtly violates constraints on the majority of instances, where only a small subset of762

instances in the long tail experience significant constraint violations. Therefore, we adopt a triangular763

distribution T (0.1, 0.5, 2.0), which biases the sampling towards smaller λ values, thereby prioritizing764

the optimization of instances with low constraint violations. Figure 7 compares the performance of765

the policy trained with a uniform distribution U(0.1, 2.0) and the policy trained with a triangular766

distribution T (0.1, 0.5, 2.0) on the TSPTW50 dataset. The results demonstrate that the triangular767

distribution leads to superior overall performance as expected.768
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Figure 6: Histogram of constraint violation
statistics on the validation dataset.
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F.6 Sensitivity of λ-related hyperparameters in inference stage769

Since the optimization landscape for λ is typically non-convex due to the hardness of combinatorial op-770

timization, the initial value and learning rate of λ are both important for the optimization performance.771

Here we conduct a sensitivity analysis of λ from these two perspectives, including the initial value of772

λ (denoted as λ0) and the learning rate for updating λ (denoted as α). During the inference stage,773

we evaluated performance across λ0 ∈ {0.1, 0.15, 0.20, 0.5, 1.0} and α ∈ {0.1, 0.2, 0.5, 0.7, 1.0}774

on TSPTW50 and TSPDL50. Each hyperparameter was varied while keeping the other fixed at its775

default value. Results in Table 6 and 7 show that:776

• In 16 out of 18 settings, our ICO method surpasses the best-performing PIP model in777

hypervolume (HV), showing its robustness.778

• Although the performance variance (shown in the last row) is relatively small, it is not779

negligible. This underscores the importance of carefully tuning λ-related hyperparameters780

to achieve optimal performance.781

21



Interestingly, some settings (e.g., α = 0.7 for TSPTW50) slightly outperform the default, suggesting782

that advanced hyperparameter optimization techniques could further enhance performance.783

Table 6: Sensitivity analysis in inference stage on TSPTW50. λ0 denotes the initial value of λ and α
represents the learning rate of λ.

Inf. rate Gap HV Better HV than PIP

PIP with the best HV 1.95% 0.08% 0.965 -

λ0 = 0.1 (default) 0.50% 0.07% 0.981 Yes
λ0 = 0.15 0.47% 0.08% 0.979 Yes
λ0 = 0.2 0.48% 0.08% 0.979 Yes
λ0 = 0.5 0.84% 0.19% 0.954 No
λ0 = 1.0 0.97% 0.23% 0.945 No

α = 0.1 0.59% 0.07% 0.980 Yes
α = 0.2 0.49% 0.07% 0.981 Yes
α = 0.5 (default) 0.50% 0.07% 0.981 Yes
α = 0.7 0.48% 0.07% 0.981 Yes
α = 1.0 0.55% 0.07% 0.981 Yes

Avg ± Std 0.59% ± 0.17% 0.10% ± 0.06% 0.974 ± 0.0133 -

Table 7: Sensitivity analysis in inference stage on TSPDL50. λ0 denotes the initial value of λ and α
represents the learning rate of λ.

Inf. rate Gap HV Better HV than PIP

PIP with the best HV 0.12% 2.89% 0.845 -

λ0 = 0.1 (default) 0.01% 2.32% 0.883 Yes
λ0 = 0.15 0.01% 2.33% 0.883 Yes
λ0 = 0.2 0.01% 2.33% 0.883 Yes
λ0 = 0.5 0.01% 2.51% 0.874 Yes
λ0 = 1.0 0.01% 2.79% 0.859 Yes

α = 0.1 0.06% 2.23% 0.883 Yes
α = 0.2 (default) 0.01% 2.32% 0.883 Yes
α = 0.5 0.00% 2.47% 0.877 Yes
α = 0.7 0.00% 2.58% 0.871 Yes
α = 1.0 0.00% 2.80% 0.860 Yes

Avg ± Std 0.01% ± 0.02% 2.47% ± 0.20% 0.876 ± 0.009 -
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G Licenses784

Table 8: List of licenses for the codes and datasets we used in this work.

Resource Type Link License
OR-Tools [20] Code https://github.com/google/or-tools Apache License 2.0
LKH3 [30] Code http://webhotel4.ruc.dk/ keld/research/LKH-3/ Available for academic research use
AM [40] Code https://github.com/wouterkool/attention-learn-to-route MIT License
POMO [41] Code https://github.com/yd-kwon/POMO MIT License
EAS [32] Code https://github.com/ahottung/EAS Available online
JAMPR [21] Code https://github.com/jokofa/JAMPR MIT License
PIP [9] Code https://github.com/jieyibi/PIP-constraint MIT License
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contributions made in the paper and important assumptions and limitations. A No or795

NA answer to this question will not be perceived well by the reviewers.796

• The claims made should match theoretical and experimental results, and reflect how797

much the results can be expected to generalize to other settings.798

• It is fine to include aspirational goals as motivation as long as it is clear that these goals799

are not attained by the paper.800

2. Limitations801

Question: Does the paper discuss the limitations of the work performed by the authors?802

Answer: [Yes]803

Justification: We discussed the primary limitation of this work in the conclusion section.804

Guidelines:805

• The answer NA means that the paper has no limitation while the answer No means that806

the paper has limitations, but those are not discussed in the paper.807

• The authors are encouraged to create a separate "Limitations" section in their paper.808

• The paper should point out any strong assumptions and how robust the results are to809

violations of these assumptions (e.g., independence assumptions, noiseless settings,810

model well-specification, asymptotic approximations only holding locally). The authors811

should reflect on how these assumptions might be violated in practice and what the812

implications would be.813

• The authors should reflect on the scope of the claims made, e.g., if the approach was814

only tested on a few datasets or with a few runs. In general, empirical results often815

depend on implicit assumptions, which should be articulated.816

• The authors should reflect on the factors that influence the performance of the approach.817

For example, a facial recognition algorithm may perform poorly when image resolution818

is low or images are taken in low lighting. Or a speech-to-text system might not be819

used reliably to provide closed captions for online lectures because it fails to handle820

technical jargon.821

• The authors should discuss the computational efficiency of the proposed algorithms822

and how they scale with dataset size.823

• If applicable, the authors should discuss possible limitations of their approach to824

address problems of privacy and fairness.825

• While the authors might fear that complete honesty about limitations might be used by826

reviewers as grounds for rejection, a worse outcome might be that reviewers discover827

limitations that aren’t acknowledged in the paper. The authors should use their best828

judgment and recognize that individual actions in favor of transparency play an impor-829

tant role in developing norms that preserve the integrity of the community. Reviewers830

will be specifically instructed to not penalize honesty concerning limitations.831

3. Theory assumptions and proofs832

Question: For each theoretical result, does the paper provide the full set of assumptions and833

a complete (and correct) proof?834

Answer: [NA]835
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Justification: This paper is an empirical study.836

Guidelines:837

• The answer NA means that the paper does not include theoretical results.838

• All the theorems, formulas, and proofs in the paper should be numbered and cross-839

referenced.840

• All assumptions should be clearly stated or referenced in the statement of any theorems.841

• The proofs can either appear in the main paper or the supplemental material, but if842

they appear in the supplemental material, the authors are encouraged to provide a short843

proof sketch to provide intuition.844

• Inversely, any informal proof provided in the core of the paper should be complemented845

by formal proofs provided in appendix or supplemental material.846

• Theorems and Lemmas that the proof relies upon should be properly referenced.847

4. Experimental result reproducibility848

Question: Does the paper fully disclose all the information needed to reproduce the main ex-849

perimental results of the paper to the extent that it affects the main claims and/or conclusions850

of the paper (regardless of whether the code and data are provided or not)?851

Answer: [Yes]852

Justification: We provided all the key information to reproduce our results.853

Guidelines:854

• The answer NA means that the paper does not include experiments.855

• If the paper includes experiments, a No answer to this question will not be perceived856

well by the reviewers: Making the paper reproducible is important, regardless of857

whether the code and data are provided or not.858

• If the contribution is a dataset and/or model, the authors should describe the steps taken859

to make their results reproducible or verifiable.860

• Depending on the contribution, reproducibility can be accomplished in various ways.861

For example, if the contribution is a novel architecture, describing the architecture fully862

might suffice, or if the contribution is a specific model and empirical evaluation, it may863

be necessary to either make it possible for others to replicate the model with the same864

dataset, or provide access to the model. In general. releasing code and data is often865

one good way to accomplish this, but reproducibility can also be provided via detailed866

instructions for how to replicate the results, access to a hosted model (e.g., in the case867

of a large language model), releasing of a model checkpoint, or other means that are868

appropriate to the research performed.869

• While NeurIPS does not require releasing code, the conference does require all submis-870

sions to provide some reasonable avenue for reproducibility, which may depend on the871

nature of the contribution. For example872

(a) If the contribution is primarily a new algorithm, the paper should make it clear how873

to reproduce that algorithm.874

(b) If the contribution is primarily a new model architecture, the paper should describe875

the architecture clearly and fully.876

(c) If the contribution is a new model (e.g., a large language model), then there should877

either be a way to access this model for reproducing the results or a way to reproduce878

the model (e.g., with an open-source dataset or instructions for how to construct879

the dataset).880

(d) We recognize that reproducibility may be tricky in some cases, in which case881

authors are welcome to describe the particular way they provide for reproducibility.882

In the case of closed-source models, it may be that access to the model is limited in883

some way (e.g., to registered users), but it should be possible for other researchers884

to have some path to reproducing or verifying the results.885

5. Open access to data and code886

Question: Does the paper provide open access to the data and code, with sufficient instruc-887

tions to faithfully reproduce the main experimental results, as described in supplemental888

material?889
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Answer: [Yes]890

Justification: The code and README files will be provided in the supplemental materials.891

Guidelines:892

• The answer NA means that paper does not include experiments requiring code.893

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/894

public/guides/CodeSubmissionPolicy) for more details.895

• While we encourage the release of code and data, we understand that this might not be896

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not897

including code, unless this is central to the contribution (e.g., for a new open-source898

benchmark).899

• The instructions should contain the exact command and environment needed to run to900

reproduce the results. See the NeurIPS code and data submission guidelines (https:901

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.902

• The authors should provide instructions on data access and preparation, including how903

to access the raw data, preprocessed data, intermediate data, and generated data, etc.904

• The authors should provide scripts to reproduce all experimental results for the new905

proposed method and baselines. If only a subset of experiments are reproducible, they906

should state which ones are omitted from the script and why.907

• At submission time, to preserve anonymity, the authors should release anonymized908

versions (if applicable).909

• Providing as much information as possible in supplemental material (appended to the910

paper) is recommended, but including URLs to data and code is permitted.911

6. Experimental setting/details912

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-913

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the914

results?915

Answer: [Yes]916

Justification: Important settings and details are provided in the experiment section. Other917

necessary details are provided in the appendix.918

Guidelines:919

• The answer NA means that the paper does not include experiments.920

• The experimental setting should be presented in the core of the paper to a level of detail921

that is necessary to appreciate the results and make sense of them.922

• The full details can be provided either with the code, in appendix, or as supplemental923

material.924

7. Experiment statistical significance925

Question: Does the paper report error bars suitably and correctly defined or other appropriate926

information about the statistical significance of the experiments?927

Answer: [No]928

Justification: Training consumption of our neural models is relatively high.929

Guidelines:930

• The answer NA means that the paper does not include experiments.931

• The authors should answer "Yes" if the results are accompanied by error bars, confi-932

dence intervals, or statistical significance tests, at least for the experiments that support933

the main claims of the paper.934

• The factors of variability that the error bars are capturing should be clearly stated (for935

example, train/test split, initialization, random drawing of some parameter, or overall936

run with given experimental conditions).937

• The method for calculating the error bars should be explained (closed form formula,938

call to a library function, bootstrap, etc.)939

• The assumptions made should be given (e.g., Normally distributed errors).940
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• It should be clear whether the error bar is the standard deviation or the standard error941

of the mean.942

• It is OK to report 1-sigma error bars, but one should state it. The authors should943

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis944

of Normality of errors is not verified.945

• For asymmetric distributions, the authors should be careful not to show in tables or946

figures symmetric error bars that would yield results that are out of range (e.g. negative947

error rates).948

• If error bars are reported in tables or plots, The authors should explain in the text how949

they were calculated and reference the corresponding figures or tables in the text.950

8. Experiments compute resources951

Question: For each experiment, does the paper provide sufficient information on the com-952

puter resources (type of compute workers, memory, time of execution) needed to reproduce953

the experiments?954

Answer: [Yes]955

Justification: Provided in the appendix.956

Guidelines:957

• The answer NA means that the paper does not include experiments.958

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,959

or cloud provider, including relevant memory and storage.960

• The paper should provide the amount of compute required for each of the individual961

experimental runs as well as estimate the total compute.962

• The paper should disclose whether the full research project required more compute963

than the experiments reported in the paper (e.g., preliminary or failed experiments that964

didn’t make it into the paper).965

9. Code of ethics966

Question: Does the research conducted in the paper conform, in every respect, with the967

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?968

Answer: [Yes]969

Justification: No ethics issues.970

Guidelines:971

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.972

• If the authors answer No, they should explain the special circumstances that require a973

deviation from the Code of Ethics.974

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-975

eration due to laws or regulations in their jurisdiction).976

10. Broader impacts977

Question: Does the paper discuss both potential positive societal impacts and negative978

societal impacts of the work performed?979

Answer: [No]980

Justification: This paper studies a general method for optimizing classical problems, which981

is not directly related to any societal impact.982

Guidelines:983

• The answer NA means that there is no societal impact of the work performed.984

• If the authors answer NA or No, they should explain why their work has no societal985

impact or why the paper does not address societal impact.986

• Examples of negative societal impacts include potential malicious or unintended uses987

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations988

(e.g., deployment of technologies that could make decisions that unfairly impact specific989

groups), privacy considerations, and security considerations.990
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• The conference expects that many papers will be foundational research and not tied991

to particular applications, let alone deployments. However, if there is a direct path to992

any negative applications, the authors should point it out. For example, it is legitimate993

to point out that an improvement in the quality of generative models could be used to994

generate deepfakes for disinformation. On the other hand, it is not needed to point out995

that a generic algorithm for optimizing neural networks could enable people to train996

models that generate Deepfakes faster.997

• The authors should consider possible harms that could arise when the technology is998

being used as intended and functioning correctly, harms that could arise when the999

technology is being used as intended but gives incorrect results, and harms following1000

from (intentional or unintentional) misuse of the technology.1001

• If there are negative societal impacts, the authors could also discuss possible mitigation1002

strategies (e.g., gated release of models, providing defenses in addition to attacks,1003

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1004

feedback over time, improving the efficiency and accessibility of ML).1005

11. Safeguards1006

Question: Does the paper describe safeguards that have been put in place for responsible1007

release of data or models that have a high risk for misuse (e.g., pretrained language models,1008

image generators, or scraped datasets)?1009

Answer: [NA]1010

Justification: The studied classical optimization problems have no risk to affect safety.1011

Guidelines:1012

• The answer NA means that the paper poses no such risks.1013

• Released models that have a high risk for misuse or dual-use should be released with1014

necessary safeguards to allow for controlled use of the model, for example by requiring1015

that users adhere to usage guidelines or restrictions to access the model or implementing1016

safety filters.1017

• Datasets that have been scraped from the Internet could pose safety risks. The authors1018

should describe how they avoided releasing unsafe images.1019

• We recognize that providing effective safeguards is challenging, and many papers do1020

not require this, but we encourage authors to take this into account and make a best1021

faith effort.1022

12. Licenses for existing assets1023

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1024

the paper, properly credited and are the license and terms of use explicitly mentioned and1025

properly respected?1026

Answer: [Yes]1027

Justification: We properly cited the used papers and codes. Their licenses are included in1028

the appendix.1029

Guidelines:1030

• The answer NA means that the paper does not use existing assets.1031

• The authors should cite the original paper that produced the code package or dataset.1032

• The authors should state which version of the asset is used and, if possible, include a1033

URL.1034

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1035

• For scraped data from a particular source (e.g., website), the copyright and terms of1036

service of that source should be provided.1037

• If assets are released, the license, copyright information, and terms of use in the1038

package should be provided. For popular datasets, paperswithcode.com/datasets1039

has curated licenses for some datasets. Their licensing guide can help determine the1040

license of a dataset.1041

• For existing datasets that are re-packaged, both the original license and the license of1042

the derived asset (if it has changed) should be provided.1043
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• If this information is not available online, the authors are encouraged to reach out to1044

the asset’s creators.1045

13. New assets1046

Question: Are new assets introduced in the paper well documented and is the documentation1047

provided alongside the assets?1048

Answer: [Yes]1049

Justification: Our code and models are well documented and anomymized.1050

Guidelines:1051

• The answer NA means that the paper does not release new assets.1052

• Researchers should communicate the details of the dataset/code/model as part of their1053

submissions via structured templates. This includes details about training, license,1054

limitations, etc.1055

• The paper should discuss whether and how consent was obtained from people whose1056

asset is used.1057

• At submission time, remember to anonymize your assets (if applicable). You can either1058

create an anonymized URL or include an anonymized zip file.1059

14. Crowdsourcing and research with human subjects1060

Question: For crowdsourcing experiments and research with human subjects, does the paper1061

include the full text of instructions given to participants and screenshots, if applicable, as1062

well as details about compensation (if any)?1063

Answer: [NA]1064

Justification: Datasets are synthetic.1065

Guidelines:1066

• The answer NA means that the paper does not involve crowdsourcing nor research with1067

human subjects.1068

• Including this information in the supplemental material is fine, but if the main contribu-1069

tion of the paper involves human subjects, then as much detail as possible should be1070

included in the main paper.1071

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1072

or other labor should be paid at least the minimum wage in the country of the data1073

collector.1074

15. Institutional review board (IRB) approvals or equivalent for research with human1075

subjects1076

Question: Does the paper describe potential risks incurred by study participants, whether1077

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1078

approvals (or an equivalent approval/review based on the requirements of your country or1079

institution) were obtained?1080

Answer: [NA]1081

Justification: Not applicable.1082

Guidelines:1083

• The answer NA means that the paper does not involve crowdsourcing nor research with1084

human subjects.1085

• Depending on the country in which research is conducted, IRB approval (or equivalent)1086

may be required for any human subjects research. If you obtained IRB approval, you1087

should clearly state this in the paper.1088

• We recognize that the procedures for this may vary significantly between institutions1089

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1090

guidelines for their institution.1091

• For initial submissions, do not include any information that would break anonymity (if1092

applicable), such as the institution conducting the review.1093

16. Declaration of LLM usage1094
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Question: Does the paper describe the usage of LLMs if it is an important, original, or1095

non-standard component of the core methods in this research? Note that if the LLM is used1096

only for writing, editing, or formatting purposes and does not impact the core methodology,1097

scientific rigorousness, or originality of the research, declaration is not required.1098

Answer: [NA]1099

Justification: We only use LLMs for writing.1100

Guidelines:1101

• The answer NA means that the core method development in this research does not1102

involve LLMs as any important, original, or non-standard components.1103

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1104

for what should or should not be described.1105
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