© © N O O A~ W N =

9

20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36

Adaptive Constrained Optimization for
Neural Vehicle Routing

Anonymous Author(s)
Affiliation
Address

email

Abstract

Neural solvers have shown remarkable success in tackling Vehicle Routing Prob-
lems (VRPs). However, their application to scenarios with complex real-world
constraints is still at an early stage. Recent works successfully employ variants of
the Lagrange multiplier method to handle such constraints, but their limitation lies
in the use of a uniform multiplier across all problem instances, overlooking the
fact that the difficulty of satisfying constraints varies significantly across instances.
To address this limitation, we propose an instance-level adaptive constrained opti-
mization framework that reformulates the Lagrangian dual problem by assigning
each instance its own multiplier. To efficiently optimize this new problem, we
design a multiplier-conditioned policy that solves instances with a controllable
level of constraint awareness, which effectively decouples policy optimization
from the optimization of multipliers. By leveraging this conditioned policy, we
customize the optimization of multipliers for each test instance by adapting to its
particular constraint violations. Experimental results on the Travelling Salesman
Problem with Time Window (TSPTW), and TSP with Draft Limit (TSPDL) show
that our method exhibits advantages compared to the strong solver LKH3 and
significantly outperforms state-of-the-art neural methods. Our code is available at
https://anonymous.4open.science/t/ICO-ES2F,

1 Introduction

The Vehicle Routing Problem (VRP) is a classic kind of NP-hard combinatorial optimization problem
with broad real-world applications in manufacturing [62], transportation [57], and logistics [39]].
VRP solvers in the Operational Research (OR) community, which are typically based on heuristic
search [29]] and integer programming [4]], have achieved remarkable success in the past but are often
limited by high computational overheads. To address this, neural networks have been leveraged
to develop efficient, data-driven heuristics for solving VRPs [64, [35] 140, 149} 137, [33] [11} 169} 45],
demonstrating faster solving speeds and competitive solution quality against strong OR solvers. A
prominent approach among these neural solvers is utilizing reinforcement learning-based policies to
sequentially construct solutions [5]], which has shown effectiveness on canonical problems like TSP
and Capacitated VRP (CVRP) [41, |19} 47].

Real-world applications of VRP, however, often involve constraints that are more complex than those
in the canonical problems. For example, in many business scenarios such as public transportation [12}
56| and dial-a-ride systems [16]], the arrival time of vehicle must fall into a customer-requested time
window, known as the time window constraint. This constraint significantly restricts the feasible
region such that even finding a feasible solution is proved to be NP-complete [55], which can pose
great challenges to most existing solvers. Other examples of complex constraints in VRPs include
the global priority rule in disaster relief [52] and the draft limits in maritime transportation [26]. To

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/ICO-E52F

37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69

70
71
72

4.25
- - — Expected violation degree of the single multiplier method I;KHT (iamedblljdg.te;)/\ 05
. X) —_ ingle-A model wi =0.
High violations Low violations Medium violations ?i 4.00 A Single-A model with A=1.0
1 Q Single-A model with A =2.0
© 3.75
st 8 1 o A Single-A model with dynamic A
fiStance 1 I ffitient 23.50 Y Our proposed method
nsutrigcien =7
Instance 7 1 > A T
Instance 6 1 emphasis Es2s
S
1 o
Instance 5 L 3 3.00{ A
Instance 4 | =
. © 2.75
Instance 3 14
1 >
Instance 2 1 <250
Instance 1 I 225 * A
1 0 1 2 3 4 5 6 7
Constraint Violations Infeasibility Rate (%)
(a) (b)

Figure 1: (a) Illustration of the drawback inherent in single-multiplier (\) methods. Constraint
violations of different instances are plotted. The single-A methods tend to overemphasize (insuffi-
ciently emphasize) constraints on some instances with relatively low (high) constraint violations.
(b) Performance comparison of LKH3, single-\ models and our proposed instance-level adaptive
method, on TSPDL with 50 nodes.

handle these hard constraints, classical OR solvers often employ techniques like penalty functions
to incorporate constraint violations into the objective function. In the strong solver LKH3 [30], the
penalty function is prioritized over the original distance cost, highlighting its emphasis on handling
constraints. However, as shown in pervious works [9] and our experiments (see Table[I)), the feasibility
rate obtained by the traditional solvers is still unsatisfactory when runtime budgets are limited.

Neural solvers have achieved remarkable performance on various VRPs, even surpassing LKH3 on
large-scale problems [48]] and specific problem variants [[72]. However, the research of their extension
to VRPs with complex constraints is still at an early stage. To better handle complex constraints,
existing studies have refined neural methods from several perspectives, including constraint-aware
feature design [15]], improvement in network architecture [21]], modifications to the objective func-
tion [71} 14, |60], and development of novel masking mechanisms [9]. For instance, Chen et al.
[15] introduced a multi-step look-ahead strategy, integrating the future time window information
to enhance constraint-related features. Similarly, Bi et al. [9] designed a look-ahead-based mask
mechanism to proactively exclude actions that would violate constraints in future steps. From the
perspective of constrained optimization, Tang et al. [60]] adopted the Lagrange multiplier method
to explicitly optimize constraint violations together with the route distance. Notably, the most re-
cent Lagrange multiplier-based implementation [9] has achieved state-of-the-art performance on
common benchmarks, regarded as a general and effective solution for complex VRPs. However,
these Lagrangian-based methods directly extend the canonical formulation to the optimization of
neural solvers by employing a uniform multiplier across all problem instances, thereby neglecting
the disparity in constraint violations among instances, as illustrated in Figure[Tal This limitation can
significantly hinder the adaptability of neural models, resulting in suboptimal performance. More
related works about neural solvers and constrained optimization are introduced in Appendix [C]

To address this issue, we introduce a new formulation of the Lagrangian dual problem that assigns
each instance a specific multiplier, enabling adaptive constrained optimization at the instance level.
Compared to the methods that rely on a single multiplier, this instance-specific formulation offers
greater flexibility by optimizing the trade-off between solution quality and constraint satisfaction
for each individual instance. However, directly optimizing instance-specific multipliers for millions
of training instances poses significant computational challenges. To address this issue, we develop
a multiplier-conditioned policy that decouples the optimization of the policy from that of the mul-
tipliers, effectively reformulating the dual problem into two separate subproblems. By leveraging
this conditioned policy, the outer subproblem of optimizing multipliers can be efficiently solved
independently during the inference stage.

We conduct experiments on two challenging constrained VRPs: Travelling Salesman Problems
with Time Window (TSPTW), and TSP with Draft Limit (TSPDL). Notably, these two problems
pose greater challenges in satisfying constraints compared to CVRPTW and CVRPDL, as the

73
74
75
76
77
78
79
80
81

82

83

84
85
86
87
88
89

90
91
92
93
94
95

96
97

98

99
100
101
102
103
104

105

106
107

108
109
110
111
112
113

114
115

constraint violations of the latter can be addressed more easily by assigning additional vehicles to
the violated nodes. The experimental results demonstrate that our adaptive optimization approach
significantly surpasses the state-of-the-art neural method [9]] that relies on a single multiplier. For
instance, Figure [Ib]compares the optimality gap and infeasibility rate on TSPDL50 (TSPDL with
50 nodes), where our proposed method has clear advantages. Moveover, compared to the strong
solver LKH3 under the same runtime budget, our neural method reduces the infeasibility rate
by 95.56% — 1.33% = 94.23% on TSPTW100 and 7.02% — 0.91% = 6.11% on TSPDL100,
while achieving competitive optimality gap. These results highlight neural methods as a promising
alternative to OR solvers for addressing constrained VRPs.

2 Background

2.1 Constrained VRPs

The objective of VRPs [18] is to determine a tour that minimizes the total travel distance while
visiting all the customer nodes. Formally, a VRP instance is defined on a graph G = (V, E'), where
V represents the set of all customer nodes along with a depot node, and E' denotes the set of directed
edges between each pair of nodes (i.e., the graph is fully connected). The vehicles are required to start
and end their tours at the depot node. In this paper, we focus on two types of challenging constraints:
Time window constraint and draft limit constraint.

Time window. The time window constraint nartually arises in many business scenarios that require
flexible time scheduling [61]]. In this context, each node is accosiated with a time window [I;, u;]
that defines the earlist time /; and the latest time u; of visiting that node. The constraint ensures that
the arrival time at each node does not exceed the end of its designated time window. If the arrival
time t; is earlier than the start time (i.e., t; < [;), the vehicle must wait until the time window starts.
Formally, a TSPTW instance I is expressed as:

n—1
IIlTiIlf](T) = Z dr(n,v), s.t. gr(t) = Zmax{ti —u;,0} <0,
(n,v)er i=0

where 7 denotes the tour, and d;(n,v) is the distance between nodes n and v. The goal is to find a
tour 7 that minimizes the total distance f7(7) while satisfying the time window constraint gy (7) < 0.

Draft limit. The draft limit in ports is an important factor that influences the routing actions in
maritime transportation [26]. The draft of a ship is the distance between the waterline and the bottom
of the ship, affected by the cumulative load. The draft limits in ports are designed to avoid overloaded
ships entering these ports. In this context, each node represents a port with a maximum draft m; and
a non-negative demand J;. The constraint requires that the cumulative load, ¢; = Z;;ll 5Tj, over the

last ¢ — 1 steps must not exceed the maximum draft m,; of the -th visited port. Formally, this can be

expressed as g7 (7) = 31" max{¢; — m;, 0} < 0.

2.2 Lagrange Multiplier Method

To solve constrained VRPs, the constraint violation can be integrated into the objective function
through the formulation of the Lagrangian dual problem [7]:

max mTin[fI(T) + X gr(7)],

where) is a non-negative dual variable (i.e., multiplier), quantifing the impact of a constraint on
the objective function. The Lagrangian dual problem can be optimized by alternatively updating
the primal and dual variables. This involves solving the primal problem for a fixed dual variable,
which can be addressed using a classical VRP solver, followed by updating the dual variable based
on the observed constraint violations [38]]. The update of the dual variable is often realized using
subgradient ascent as:

)\<—)\+O['g[(7-),

where « is the learning rate. Through the iterative adjustment, the dual variable is continuously refined
according to the current level of constraint violation, enabling a better balance between solution

116
117
118
119
120
121

122

123
124
125
126
127

128
129
130
131
132

133
134
135
136
137
138

139
140
141
142
143
144

145

146
147
148

149

150
151
152

153
154
155
156
157
158
159
160

quality and constraint satisfaction. More iterative update methods for the dual variable include
quadratic method [31] and proportional-integral-derivative control [58]]. Compared to traditional
penalty-based approaches, the Lagrange multiplier method avoids reliance on fixed penalty parameters
and has the potential to yield optimal solutions if the strong duality holds [10]. However, the Lagrange
multiplier method is designed to optimize an individual problem instance. A gap arises nartually
when it is applied to the training process involving a large number of instances.

2.3 Lagrange Multiplier-based Training Methods for Neural Vehicle Routing

When reinforcement learning (RL) is employed to train neural networks for constructing solu-
tions to VRPs [3], the expected return of the RL policy my on a given instance [is defined as
J(mo,I) = Erryn[—f1(7)], and the expected constraint violation is given by Jco(mg,I) =
Err, (.11 [—91(7)]. Using these definitions, the Lagrangian dual problem of policy optimization is
formulated as

r)&i](r)lméaxIEIND[j(mJ) + X TJo(me, I)].

Unlike typical constrained RL [1} |68} 28], where the focus is on solving a specific instance, the
trained policy in this framework is designed to generalize to unseen instances from the same problem
class. To achieve this, the training objective involves maximizing the expected performance over
a distribution D of instances. In practice, the training process is conducted on a dataset D; that
contains a large number of synthetic problem instances.

To optimize this (or a similar) dual problem, Tang et al. [60] proposed an approach that alternatively
updates the policy my and the multiplier A. Specifically, the policy 7y is optimized by policy gradient
algorithms such as REINFORCE [[67], while the multiplier A is optimized by subgradient ascent.
More recently, Bi et al. [9] chose to fix the value of A as a pre-defined constant for efficiency and
scalability. In our experiments (see Table[I]), we observe that dynamically updating the policy-level
single A is inferior to the fixed A setting in most cases.

Limitations of Lagrangian-based training. The Lagrange multiplier method was originally
designed for optimizing a single problem instance. However, existing approaches directly extend this
method to the training of neural solvers and ties multipliers to the RL policy, forming a policy-level
dual approach, where A updates with policy changes but remains invariant across instances. This
simple adaptation overlooks the fact that different instances can exhibit significantly varying levels of
constraint violations, as demonstrated in Figure[Ta] thereby resulting in suboptimal performance.

3 Method

To address the aforementioned limitations, we propose an Instance-level adaptive Constrained
Optimization (ICO) method. In this section, we first provide an overview of the proposed ICO
approach, followed by a detailed description of its training process and network architecture.

3.1 Instance-level Adaptive Constrained Optimization

We leverage instance-specific multipliers to effectively handle the varying degrees of constraint
violations across instances, which can enable a more flexible trade-off between optimizing the
objective and satisfying the constraints. Formally, the new dual problem is formulated as

N
min max » [J(mwg, ;) + N - To(me, I;)], M

i=1

where N is the number of training instances and J; is the dual variable specific to instance I;. This
dual formulation has the potential to simultaneously improve solution quality and enhance constraint
satisfaction, provided that both the primal and dual variables are effectively optimized. However,
it is extermely challenging and computationally expensive to optimize the instance-specific dual
variables for millions of training instances. In the common training method of neural solvers [41]],
more than one hundred million training instances are generated on the fly, and each instance is only
used once during training without additional iterations to refine its corresponding multiplier. This
training process necessitates an efficient and scalable approach to adaptively manage instance-specific

161
162
163

164
165
166
167
168

170
171
172
173
174

175
176
177
178
179
180

181
182
183
184

185

186
187
188
189
190

191
192
193

194
195
196

197
198

199
200

multipliers. Therefore, we discard the expensive alternating update method and decouple the original
bi-level optimization problem into two separate subproblems: Solve the inner subproblem of Eq.
as phase 1 and solve the outer subproblem based on the inner results as phase 2.

Phase 1: Solve the inner subproblem. In the first phase, we solve the inner maximization problem
separately while considering varying values of), aiming to obtain a manifold of policies capable
of solving instances with continuously varying levels of constraint awareness. To achieve this, we
propose training a A-conditioned policy 7y (+|\) that takes A as input and performs as trained using
the specified A, i.e.,

N
mo(-|\) & argmax Y [J(m, L) + X - Jo(m, 1)),
i i=1

where the right side represents the optimal policy corresponding to the given A. With this condition
mechanism, the constraint sensitivity of the policy can be seamlessly controlled by adjusting the
input value of \, without requiring any modification to the network parameters. This can effectively
decouple the policy optimization process from the optimization of the multipliers, thereby enhancing
scalability of the Lagrangian-based training method. The detailed training algorithm and network
architecture for the A-conditioned policy are provided in Section

Phase 2: Solve the outer subproblem. The second phase is performed during the inference stage,
where instance-specific A values are optimized based on the feedback provided by the trained A-
conditioned policy. For each new instance, we iteratively update A by subgradient ascent to minimize
its specific constraint violations, thereby adjusting the policy to achieve an appropriate trade-off. This
process alternates between sampling a solution using the policy my(-|A) and updating X based on the
observed constraint violations. Formally, the process is described as follows:

Ti—1 ~ ([M1, D), Ao =M1 + - gr(Te—1),

where ¢ denotes the iteration timestep, and g7 (7;—1) is the constraint violation of the sampled solution.
Note that we initialize all A values using an identical A\g. Furthermore, we also explore to utilize
Proportional-Integral-Derivative (PID) control to adjust the A-value as proposed by Stooke et al. [S8]],
detailed in Appendix

3.2 Multiplier-Conditioned Policy

The A-conditioned policy serves as a key component in optimizing the decoupled dual problem. We
design a two-stage training algorithm for the A-conditioned policy, consisting of a pre-training stage
for efficient convergence and a fine-tuning stage to achieve a precise alignment between A values
and instance hardness, which is schematically illustrated in Figure 2] Detailed description of the two
training stages is as follows.

Pre-training stage. The pre-training stage is conducted on randomly sampled A values, which
is computationally efficient and can effectively enable the generalization ability across varying A
conditions. The training objective can be expressed as

m;%XE]N'DE)\NDA [‘7(7@(‘/\), I) + A \70(7'(9('|>‘)a I)]

Specifically, we randomly sample \; from a pre-defined distribution D), for each training instance I;,
constituting a pair sample (\;, I;). The reward function of the instance I; is reweighted by its own
multiplier ;. Following the shared baseline method [41]], we sample multiple solutions {77 }le

for each (\;, I;) pair and estimate the baseline by the average reward of these solutions. Then, we
compute the policy gradient VyJ(6) using the REINFORCE [67]] algorithm as

Rj = 7(f1i(7-j) +)‘7 : (gli(Tj) + CIi(Tj)))a\v/j S [PL
1 0 1 & .
VoJ(0) = =) (R — =Y RMlogme(ri|\i, I),

where [P] denotes the set {1, ..., P}, and cr, (77) is the number of timeout nodes, which we use as a
heuristic penalty reward, following the reward design of [9]]. The factor R/ — % kpzl RF represents

201
202
203
204
205
206
207
208

209
210
211
212
213
214
215

216
217
218
219
220
221
222

223
224
225
226
227
228
229

231

1. Pair sample 2. Forward and solve

Solutions
Multiplier Instance
°°, A-conditioned D‘.' ° %,
o] H o
. 00 policy 0 %
© Depot Backward e Violated node
Random Updated C>3. REINFORCE A-weighted
Multiplier Multiplier reward
@) _ ,@-1)
Ai~D, A =4 +
a - min; g;,(7) 95,(@) f1,(®)
Feedback from
Pre-training Fine-tuning constraint violations

Figure 2: A sketch of the two training stages. In both stages, the A-conditioned policy is trained
using REINFORCE. The primary distinction lies in the handling of the multiplier A\. During the
pre-training stage, A is randomly sampled to facilitate early convergence and to enhance the policy’s
adaptability across diverse A values. In contrast, the fine-tuning stage employs an iterative update
mechanism for), ensuring that its values are precisely adjusted to account for constraint violations.

the advantage that measures relative reward improvement over the shared baseline. Intuitively,
the training algorithm reinforces the probability of generating positive advantage trajectories (i.e.,
solutions) while decreasing the probability of generating negative ones. The pseudo code of the
pre-training process is provided in Appendix [B| Through this training process with random J, the
conditioned policy obtains the adaptability to different levels of constraint awareness. Additionally,
this pre-training phase ensures sufficient convergence of the policy, effectively reducing the occurrence
of infeasible instances to a manageable level. Once these objectives are achieved, the training
transitions to the subsequent stage, where instance-specific A values are iteratively optimized.

Fine-tuning stage. To achieve an effective alignment between A values and instance hardness, we
further fine-tune the pre-trained policy using iteratively updated A values. In this stage, we initialize
a uniform and small initial value A\(%) for all instances and alternate between optimizing the policy
and updating the multipliers. For policy optimization, we continue to employ the REINFORCE
algorithm with an average baseline, as used in the pre-training stage. For updating the multipliers,
the subgradient is computed based on the minimal constraint violation value across a set of sampled
solutions {77} le. Formally, the A\ values are updated by the following rule:

AP =AY o min (gr, (79) + e, (7)),
JE[P]

where « is the learning rate. After each iteration, we retain the infeasible instances and their
corresponding A values in the batch while replacing the feasible instances with new ones. It is
important to note that the pre-trained policy is already capable of finding feasible solutions for the
majority of instances. Therefore, the proportion of infeasible instances in each batch is typically
small. Moreover, to further enhance training efficiency and avoid excessive focus on particularly
hard instances, we impose a maximum iteration limit and a cap on the infeasible instance ratio. The
pseudo code of the fine-tuning process is provided in Appendix [B]

Network architecture. The A-conditioned policy solves instances with a controllable level of
constraint awareness, determined by the condition variable A. Similar conditioned policies have been
explored in related works, particularly for multi-objective optimization [44, 66] and latent space
search [[13]]. Among them, there are two possible ways to incorporate the target variable into the policy
network: (1) embedding it into the initial input features or (2) embedding it into the decoder’s context.
In this paper, we adopt the A-conditioned initial embedding, which empirically demonstrates superior
performance in adjusting trade-off behaviors (see Appendix [F.4). Specifically, building on the POMO
model [41]], we incorporate a linear transformation of A into the original initial embeddings. The
embedding is computed as:

hl(.o) = W\ + Whizi, ys, li,w] T,

232
233

234
235
236
237
238
239

240

241
242

243

244
245
246
247

248
249
250
251
252

254
255
256

257
258
259

261
262
263
264

270
271
272
273
274
275
276
277
278
279
280

where W* € R?*! and W’ € R%** are trainable parameters, and [x;, y;, [;, u;] represents the con-
catenation of the node’s coordinates (x;,y;) and its time window bounds (I;, u;). This concatenated

feature vector serves as the input representation for each node. The output hgo) is then used as the
initial embedding for the encoder network, which employs the multi-head attention mechanism [[63]]
to perform message passing and update node embeddings. Intuitively, the A-conditioned embedding
adjusts the relative importance of distance-related features (e.g., node coordinates) and constraint-
related features (e.g., time window bounds) based on the value of A, thereby enabling a controllable
level of constraint awareness. The rest of the architecture closely follows the standard model [41]].

4 Experiments

In this section, we evaluate the effectiveness of our ICO method through comparison experiments
and ablation studies. Additional results are included in Appendix [F]due to space limitation.

4.1 Experimental Settings

Problem instance generation. Following prior works [40], we randomly sample node coordinates
(24,y;) from a uniform distribution U (0, 1) within a square. For generating the time windows of
TSPTW and draft limits of TSPDL, we utilize the code from Bi et al. [9] and adopt the hard settings,
which are sufficiently challenging to examine state-of-the-art neural and OR solvers.

Implementation details. Our model is implemented based on the POMO framework [41], incorpo-
rating the PI mask [9] to restrict the search space. We only employ the PIP decoder to predict masks
during the training process on instances with the number of nodes n = 100. The prior distribution of
A in the pre-training stage, i.e., D(\), is set to a triangular distribution 7°(0.1, 0.5, 2.0). The learning
rate for updating A is set to 0.5 for TSPTW and 0.2 for TSPDL. The common hyperparameters shared
between our method and prior works follow their default settings [41,9]. In evaluation, our method
employs x 8 instance augmentation and 16 iterations to update A during the inference stage. To
align the runtime consumption, we use sampling strategies for PIP. More implementation details are
provided in Appendix [E|due to space limitation.

Baselines. = We compare our proposed method against state-of-the-art neural methods and OR
solvers. For OR solvers, we include LKH3 [30]], one of the strongest solver specifically designed
for VRPs; and OR-Tools [20], a general-purpose solver capable of handling various constraints. For
neural methods, we consider the state-of-the-art PIP framework [9]. For TSPTW(DL)100, we report
the results of the models with the PIP decoder. Our experiments encompass four configurations of
PIP: A = 0.5, A = 1.0, A = 2.0, and a dynamically updated A. Specifically, in the dynamic setting,
the value of A is periodically adjusted using subgradient ascent every 1000 epochs. The subgradient
is estimated based on the average constraint violation observed on the validation dataset.

Metrics. We evaluate performance and efficiency using four metrics: infeasibility rate, average
optimality gap, normalized HyperVolume (HV) and runtime. Among these, the HV serves as a
comprehensive indicator, capturing both feasibility and solution quality. A detailed explanation of
these metrics is provided in Appendix [E.3]

4.2 Main Results

Comparison with single-\ models. The performance comparisons on TSPTW and TSPDL across
different problem scales are presented in Table[I] On TSPTW 100, the proposed ICO method reduces
the infeasibility rate from 4.33% (achieved by POMO+PIP with A = 1.0) to an impressive 1.33%,
representing a substantial reduction of 3.00%. Similarly, on TSPTW50, the infeasibility rate is
lowered from 1.56% to just 0.50%. Even when the A value in single-\ models is increased to 2.0,
these models still lag behind the ICO method in terms of feasibility, with the sole exception being
TSPDL100. In addition to improving feasibility rates, the ICO method consistently outperforms
single-\ models in terms of optimality gaps. For instance, the ICO method achieves a smaller gap of
9.22% on TSPDL100, compared to 10.77% achieved by the best POMO+PIP model. Moreover, the
ICO method showcases the highest HV scores on all benchmarks, indicating its superior trade-off
performance in balancing solution quality and constraint satisfaction.

281
282
283
284
285

287
288

289
290
291
292
293
294
295
296
297
298

299
300
301

303
304

305
306
307

Table 1: Experimental results on TSPTW and TSPDL. Test instances are generated using the hard
settings [9]. LKH3 (less time) and OR-Tools (less time) denote the OR methods with reduced runtime
budgets to align with neural solvers. The best and the runner-up results are highlighted in Blue and
Violet, respectively.

Methods TSPTWS50 TSPTW100
| Inf. Rate | Avg.Gap] HV T Time] | Inf. Rate| Avg. Gap] HV T Time]
LKH3 0.12% 0.0% 1.00 Th 0.07% 0.0% 1.00 1.4d
OR-Tools 65.72% 0.0% 0.34 2.4h 89.07% 0.0% 0.11 1.6d
LKH3 (less time) 57.34% 0.01% 0.43 100s 95.56% 0.03% 0.04 8m
OR-Tools (less time) 65.72% 0.02% 0.34 99s 89.07% 0.51% 0.10 8m
AM + PIP (A = 1.0) 2.99% 0.34% 0.90 105s 7.80% 0.70% 0.79 8m
POMO + PIP (A = 0.5) 1.95% 0.08% 0.96 108s 4.90% 0.17% 0.92 9m
POMO + PIP (A = 1.0) 1.56% 0.16% 0.95 108s 4.33% 0.25% 0.91 9m
POMO + PIP (A = 2.0) 1.41% 0.19% 0.95 108s 4.71% 0.39% 0.88 9m
POMO + PIP (dynamic \) 0.98 % 0.13% 0.93 108s 4.94% 0.45% 0.87 9m
ICO (Ours) ‘ 0.50% 0.07% 0.98 91s ‘ 1.33% 0.14% 0.96 8m
Methods TSPDL50 TSPDL100
| Inf. Rate | Avg. Gap| HVT Time| | Inf. Rate| Avg. Gap| HV 1T Time |

LKH3 0.0% 0.0% 1.00 6.8h 0.0% 0.0% 1.00 1.2d
OR-Tools 100.0% / / 10.6s 100.0% / / 56.8s
LKH3 (less time) 7.42% 4.23% 0.20 70s 7.02% 6.76 % 0.20 6m
OR-Tools (less time) 100.0% / / 3s 100.0% / / 29s
POMO + PIP (A = 0.5) 3.44% 2.36% 0.58 71s 62.94% 20.95% / S5m
POMO + PIP (A = 1.0) 1.18% 2.33% 0.78 T1s 3.23% 10.77% 0.31 Sm
POMO + PIP (A = 2.0) 0.12% 2.89% 0.85 T1s 0.11% 12.24% 0.38 Sm
POMO + PIP (dynamic \) 0.13% 2.99% 0.84 71s 0.01% 14.78% 0.26 S5m
ICO (Ours) ‘ 0.01% 2.32% 0.88 69s ‘ 0.91% 9.22% 0.49 Sm

Comparion with strong OR solvers. In Table[I] we also compare our neural methods with strong
OR solvers, LKH3 and OR-Tools, under aligned runtime conditions. The results show that our ICO
method achieves a dramatic improvement in infeasibility rates, reducing them from 95.56% to 1.33%
(94.23% reduction) on TSPTW100 and from 7.02% to 0.91% (6.11% reduction) on TSPDL100.
Regarding solution quality, our method significantly outperforms OR-Tools on TSPTW 100 and even
surpasses LKH3 on TSPDL50. While the solution quality of our neural approach on the other three
benchmarks still lags behind LKH3, the substantial improvements in feasibility and competitive
performance overall underscore the strengths of our neural method.

Comparison under different inference strategies. In Table 2] we extend the scope of our
comparative experiments to incorporate additional inference strategies, including Greedy (vs. T' = 1),
Sampling (vs. T' > 1), and Efficient Active Search (EAS) [32]. The results consistently demonstrate
that ICO outperforms the best-performing PIP model (denoted as PIP*) in most scenarios. In
particular, our ICO integrates well with EAS, achieving near-zero infeasibility rates and gaps. The
only exception on ICO (1" = 1) can be attributed to the small initial A value. Notably, we observe
that ICO (T" = 2) even surpasses PIP* (Sampling 16) while consuming much less runtime, which
highlights the superiority of our proposed ICO. To defense the prolonged runtime of ICO, we further
compare ICO (T' = 16) with LKH3 post search. The results indicate that even adding a strong
post-search such as LKH3 to the baseline, our [CO method remains superior in reducing infeasibility.

Analysis of anytime performance. During inference, our ICO method iteratively samples solutions
and updates A, making the anytime performance throughout the iterative process a critical factor.
Figure 3] shows the convergence curves of infeasibility rate and average optimality gap on TSPTW50
and TSPTW100. The results indicate that, while ICO starts with a higher infeasibility rate, it
converges rapidly and outperforms single-\ models in later iterations. In terms of optimality gap,
ICO consistently achieves better results throughout the process.

Extension to more problem variants. Our proposed method can be seamlessly extended to solve
more VRP variants. In Appendix [FI] we conduct comparison experiments on two kinds of CVRPTW.
The results show that our proposed ICO method still have advantages on CVRPTW.

308

309
310

311

312

313

314

316

317
318
319

321
322
323
324
325
326
327
328
329

Table 2: Comparisons under different inference strategies, including Greedy, Sampling, Efficient
Active Search (EAS) [32] and LKH3 post search. When EAS is integrated, the number of parallel
solutions (i.e., POMO size) is increased to 10 for estimating the average baseline. We select the
best PIP model from the four configurations according to the HV metric, denoted by PIP*. For
LKH3 post search, the solutions generated by PIP*(Greedy) are used as the initial solutions of LKH3.
Sampling/EAS 16 refers to conducting 16 iterations, while 7" represents the iteration count of our ICO
method. The best and the runner-up results are highlighted in Blue and Violet, respectively.

Methods | TSPTW50 (10k instances) | TSPTW100 (1k instances)
| Inf. Rate | Avg.Gap| HV1 Time| | Inf Rate| Avg. Gap] HV1 Time|
PIP* (Greedy) 3.05% 0.22% 0.927 9s 9.00% 0.23% 0.868 4s
PIP* (Sampling 2) 2.53% 0.10% 0.955 14s 7.20% 0.22% 0.887 7s
PIP* (Sampling 16) 2.11% 0.09% 0.961 63s 5.80% 0.19% 0.906 43s
PIP* (EAS 16) 1.22% 0.05% 0.978 11m 0.50% 0.04% 0.987 9m
PIP* (Greedy) + LKH3 1.40% 0.01% 0.984 100s 6.17% -0.07 % 0.951 50s
ICO(T =1) 2.14% 0.10% 0.959 9s 14.10% 0.15% 0.833 4s
ICO(T =2) 1.67% 0.09% 0.966 14s 3.60% 0.17% 0.931 7s
ICO (T = 16) 0.50% 0.07% 0.981 90s 1.10% 0.14% 0.961 48s
ICO (EAS 16) 0.17% 0.03% 0.993 11m 0.20% 0.02% 0.994 9m
TSPTWS0 TSPTWS0 TSPTW100 TSPTW100
_05

s o3 N §

% 5 i S04 ¥

E %0.24 E %

21 6 £ k :? ° £os ¥

2 Sene % S

2 = Ly =

£ 08 3 = 502

z g I/

0 25 50 75 0 25 75 15 30 45 15 30 45
Runtime (s) Runtime (s) Runtime (s) Runtime (s)

PIP(A=0.5) —— PIP(A=10) —— PIP(A=2.0) PIP (dynamicA) ~ —— ICO (Ours)

Figure 3: Anytime performance comparion between our ICO method and the single-A methods.

4.3 Ablation Study

In this subsection, we present a series of experiments to investigate the impact of each component.
Detailed results and analyses are provided in Appendix [F]due to space limitation.

* Analysis of update rules for)\ in inference stage. See Appendix

* Analysis of training strategies. See Appendix

* Analysis of the \-conditioned network architecture. See Appendix
* Analysis of the pre-defined \ distribution. See Appendix [F5]

* Sensitivity analysis of \-related hyperparameters. See Appendix[F.6]

5 Conclusion

In this paper, we propose a novel approach ICO to address the limitations of existing Lagrangian-
based neural methods in solving complex constained VRPs. Unlike prior methods that rely on a
single, uniform multiplier across all problem instances, ICO leverages instance-specific multipliers
to improve adaptability and better optimize the trade-off between solution quality and constraint
satisfaction for every problem instance. Experimental results on two challenging constrained VRP
benchmarks, TSPTW and TSPDL, demonstrate that ICO significantly reduces infeasibility rates
compared to both state-of-the-art neural methods and strong OR solvers like LKH3. These empirical
findings suggest that our ICO framework can be a promising alternative for strong OR solvers when
tackling constrained combinatorial problems. One limitation of this study lies in the fact that the
proposed ICO framework necessitates a minimum of two iterations to update the A values, resulting in
an extended inference runtime. Future research could explore methods for directly predicting optimal
A values, improving the training strategies of the conditioned policy, and enabling generalization
across diverse sets of constraints.

330

331
332
333

335
336

337
338
339

340
341

342
343
344

345
346
347

348
349

350
351
352
353

355
356

357
358

359
360

362
363

364
365
366
367

368
369
370
371

372
373
374

376
377

References

[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization.
In Proceedings of the 34th International Conference on Machine Learning (ICML), pages
22-31, Sydney, Australia, 2017.

[2] Utku Umur Acikalin, Aaron M. Ferber, and Carla P. Gomes. Learning to explore and exploit
with gnns for unsupervised combinatorial optimization. In The 13th International Conference
on Learning Representations (ICLR), Singapore, 2025.

[3] Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum indepen-
dent sets. In Proceedings of the 37th International Conference on Machine Learning, (ICML),
pages 134—144, Virtual, 2020.

[4] David Applegate, Robert Bixby, Vasek Chvatal, and William Cook. Concorde TSP solver.
http://www.math.uwaterloo.ca/tsp/concorde/m, 2006.

[5] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural com-
binatorial optimization with reinforcement learning. In Proceedings of the 5th International
Conference on Learning Representations (ICLR), Toulon, France, 2017.

[6] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: A methodological tour d’horizon. European Journal of Operational Research,
290(2):405-421, 2021.

[7] Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic
press, 2014.

[8] Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng
Chee. Learning generalizable models for vehicle routing problems via knowledge distillation.
In Advances in Neural Information Processing Systems 35 (NeurIPS), pages 31226-31238, New
Orleans, LA, 2022.

[9] Jieyi Bi, Yining Ma, Jianan Zhou, Wen Song, Zhiguang Cao, Yaoxin Wu, and Jie Zhang.
Learning to handle complex constraints for vehicle routing problems. In Advances in Neural
Information Processing Systems 37 (NeurlIPS), 2024.

[10] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2014.

[11] Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Velickovié. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1-61, 2023.

[12] Diego Cattaruzza, Nabil Absi, Dominique Feillet, and Jestis Gonzdlez-Feliu. Vehicle routing
problems for city logistics. EURO Journal on Transportation and Logistics, 6(1):51-79, 2017.

[13] Félix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexan-
dre Laterre, and Tom Barrett. Combinatorial optimization with policy adaptation using latent
space search. In Advances in Neural Information Processing Systems 36 (NeurIPS), pages
7947-7959, New Orleans, LA, 2023.

[14] Jinbiao Chen, Huanhuan Huang, Zizhen Zhang, and Jiahai Wang. Deep reinforcement learning
with two-stage training strategy for practical electric vehicle routing problem with time windows.
In Proceedings of the 17th International Conference on Parallel Problem Solving from Nature
(PPSN), volume 13398, pages 356370, Dortmund, Germany, 2022.

[15] Jingxiao Chen, Ziqin Gong, Minghuan Liu, Jun Wang, Yong Yu, and Weinan Zhang.
Looking ahead to avoid being late: Solving hard-constrained traveling salesman problem.
arxiv:2403.05318, 2024.

[16] Jean-Frangois Cordeau and Gilbert Laporte. The dial-a-ride problem (DARP): Variants, model-
ing issues and algorithms. Quarterly Journal of the Belgian, French and Italian Operations
Research Societies, 1:89-101, 2003.

10

http://www.math.uwaterloo.ca/tsp/concorde/m

378
379

380
381

382
383
384
385

386

388
389

390
391
392

393
394
395

403
404
405

406
407
408

410
411
412

413
414

415
416

417
418

419
420
421

422
423
424

[17] Rodrigo Ferreira da Silva and Sebastidn Urrutia. A general VNS heuristic for the traveling
salesman problem with time windows. Discrete Optimization, 7(4):203-211, 2010.

[18] George B Dantzig and John H Ramser. The truck dispatching problem. Management Science, 6
(1):80-91, 1959.

[19] Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO:
Bisimulation quotienting for generalizable neural combinatorial optimization. In Advances in
Neural Information Processing Systems 36 (NeurlPS), pages 77416-77429, New Orleans, LA,
2023.

[20] Jonas K Falkner and Lars Schmidt-Thieme. OR-Tools routing library. URL https:
//developers.google.com/optimization/routing/|

[21] Jonas K. Falkner and Lars Schmidt-Thieme. Learning to solve vehicle routing problems with
time windows through joint attention. arXiv:2006.09100, 2020.

[22] Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. INViT: A generalizable routing prob-
lem solver with invariant nested view transformer. In Proceedings of the 41st International
Conference on Machine Learning (ICML), pages 12973-12992, Vienna, Austria, 2024.

[23] Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to
arbitrarily large TSP instances. In Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI), pages 7474-7482, Virtual, 2021.

[24] Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
solvers for vehicle routing problems via ensemble with transferrable local policy. In Proceedings
of the 33rd International Joint Conference on Artificial Intelligence (IJCAI), pages 69146922,
Jeju, Korea, 2024.

[25] Chengrui Gao, Haopu Shang, Ke Xue, and Chao Qian. Neural solver selection for combinatorial
optimization. In Proceedings of the 42nd International Conference on Machine Learning
(ICML), Vancouver, Canada, 2025.

[26] Jgrgen Glomvik Rakke, Marielle Christiansen, Kjetil Fagerholt, and Gilbert Laporte. The
traveling salesman problem with draft limits. Computers & Operations Research, 39(9):2161—
2167, 2012.

[27] Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett.
Winner takes it all: Training performant RL populations for combinatorial optimization. In
Advances in Neural Information Processing Systems 36 (NeurIPS), pages 48485-48509, New
Orleans, LA, 2023.

[28] Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A
review of safe reinforcement learning: Methods, Theories, and Applications. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 46(12):11216-11235, 2024.

[29] Keld Helsgaun. An effective implementation of the Lin—Kernighan traveling salesman heuristic.
European Journal of Operational Research, 126(1):106—130, 2000.

[30] Keld Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained
traveling salesman and vehicle routing problems. Technical report, 2017.

[31] Magnus R Hestenes. Multiplier and gradient methods. Journal of optimization theory and
applications, 4(5):303-320, 1969.

[32] André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. In Proceedings of the 10th International Conference on Learning
Representations (ICLR), Virtual, 2022.

[33] Yuan Jiang, Yaoxin Wu, Zhiguang Cao, and Jie Zhang. Learning to solve routing problems via

distributionally robust optimization. In Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI), pages 9786-9794, Virtual, 2022.

11

https://developers.google.com/optimization/routing/
https://developers.google.com/optimization/routing/
https://developers.google.com/optimization/routing/

425
426
427
428

429
430

431
432
433

434
435
436

437
438

439
440
441

442
443
444

445
446
447

448
449
450

451
452
453

454
455
456

457
458
459
460

461
462
463

464
465
466

467
468

470

471
472
473
474

[34] Yuan Jiang, Zhiguang Cao, Yaoxin Wu, Wen Song, and Jie Zhang. Ensemble-based deep
reinforcement learning for vehicle routing problems under distribution shift. In Advances in
Neural Information Processing Systems 36 (NeurIPS), pages 53112-53125, New Orleans, LA,
2023.

[35] Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional
network technique for the travelling salesman problem. arXiv:1906.01227, 2019.

[36] Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework
for combinatorial optimization on graphs. In Advances in Neural Information Processing
Systems 33 (NeurIPS), Vancouver, Canada, 2020.

[37] Minsu Kim, Jinkyoo Park, and joungho kim. Learning collaborative policies to solve NP-hard
routing problems. In Advances in Neural Information Processing Systems 34 (NeurlPS), pages
10418-10430, Virtual, 2021.

[38] Niklas Kohl and Oli BG Madsen. An optimization algorithm for the vehicle routing problem
with time windows based on lagrangian relaxation. Operations Research, 45(3):395-406, 1997.

[39] Grigorios D Konstantakopoulos, Sotiris P Gayialis, and Evripidis P Kechagias. Vehicle routing
problem and related algorithms for logistics distribution: A literature review and classification.
Operational Research, 22(3):2033-2062, 2022.

[40] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems!
In Proceedings of the 7th International Conference on Learning Representations (ICLR), New
Orleans, LA, 2019.

[41] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai
Min. POMO: Policy optimization with multiple optima for reinforcement learning. In Advances
in Neural Information Processing Systems 33 (NeurIPS), pages 21188-21198, Virtual, 2020.

[42] Yao Lai, Yao Mu, and Ping Luo. MaskPlace: Fast chip placement via reinforced visual
representation learning. In Advances in Neural Information Processing Systems 35 (NeurlIPS),
New Orleans, LA, 2022.

[43] Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2T: From distribution learning in
training to gradient search in testing for combinatorial optimization. In Advances in Neural
Information Processing Systems 36 (NeurIPS), pages 50020-50040, New Orleans, LA, 2023.

[44] Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective
combinatorial optimization. In Proceedings of the 10th International Conference on Learning
Representations (ICLR), Virtual, 2022.

[45] Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan. Multi-task
learning for routing problem with cross-problem zero-shot generalization. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages
1898-1908, Barcelona, Spain, 2024.

[46] Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving
vehicle routing problems. In Proceedings of the 7th International Conference on Learning
Representations (ICLR), New Orleans, LA, 2019.

[47] Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. In Advances in Neural Information
Processing Systems 36 (NeurlPS), pages 8845-8864, New Orleans, LA, 2023.

[48] Fu Luo, Xi Lin, Yaoxin Wu, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu
Zhang. Boosting neural combinatorial optimization for large-scale vehicle routing problems.
In Proceedings of the 13th International Conference on Learning Representations (ICLR),
Singapore, 2025.

[49] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. In
Advances in Neural Information Processing Systems 34 (NeurIPS), pages 11096—11107, Virtual,
2021.

12

475
476
477

478
479

481
482

483
484

486
487
488

489

491
492
493

494

496
497
498

499
500
501

502
503

505

506
507
508

509
510
511

512
513

514
515
516

517
518
519

520
521

[50] Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible
regions of routing problems with flexible neural k£-Opt. In Advances in Neural Information
Processing Systems 36 (NeurIPS), pages 49555-49578, New Orleans, LA, 2023.

[51] Mohammadreza Nazari, Afshin Oroojlooy, Martin Tak4¢, and Lawrence V Snyder. Reinforce-
ment learning for solving the vehicle routing problem. In Advances in Neural Information
Processing Systems 31 (NeurIPS), pages 9861-9871, Montréal, Canada, 2018.

[52] Kiran Venkata Panchamgam. Essays in retail operations and humanitarian logistics. PhD
thesis, Robert H. Smith School of Business, University of Maryland, College Park, 2011.

[53] Seonho Park and Pascal Van Hentenryck. Self-supervised primal-dual learning for constrained
optimization. In Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI),
pages 4052-4060, Washington, DC, 2023.

[54] Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework
for unsupervised neural combinatorial optimization. In Proceedings of the 41st International
Conference on Machine Learning (ICML), Vienna, Austria, 2024.

[55] Martin WP Savelsbergh. Local search in routing problems with time windows. Annals of
Operations Research, 4:285-305, 1985.

[56] Reza Shahin, Pierre Hosteins, Paola Pellegrini, Pierre-Olivier Vandanjon, and Luca Quadrifoglio.
A survey of flex-route transit problem and its link with vehicle routing problem. Transportation
Research Part C: Emerging Technologies, 158:104437, 2024.

[57] David M Stein. Scheduling dial-a-ride transportation systems. Transportation Science, 12(3):
232-249, 1978.

[58] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by PID lagrangian methods. In Proceedings of the 37th International Conference on Machine
Learning (ICML), volume 119, pages 9133-9143, Virtual Event, 2020.

[59] Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial
optimization. In Advances in Neural Information Processing Systems 36 (NeurIPS), pages
3706-3731, New Orleans, LA, 2023.

[60] Qiaoyue Tang, Yangzhe Kong, Lemeng Pan, and Choonmeng Lee. Learning to solve soft-
constrained vehicle routing problems with lagrangian relaxation. arXiv:2207.09860, 2022.

[61] Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications. SIAM,
2014.

[62] Stefan Treitl, Pamela C Nolz, and Werner Jammernegg. Incorporating environmental aspects in
an inventory routing problem. a case study from the petrochemical industry. Flexible Services
and Manufacturing Journal, 26:143-169, 2014.

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems 30 (NeurIPS), pages 5998—-6008, Long Beach, CA, 2017.

[64] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems 28 (NeurlPS), pages 2692-2700, Montreal, Canada, 2015.

[65] Haoyu Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for combi-
natorial optimization with principled objective relaxation. In Advances in Neural Information
Processing Systems 35 (NeurIPS), New Orleans, LA, 2022.

[66] Zhenkun Wang, Shunyu Yao, Genghui Li, and Qingfu Zhang. Multiobjective combinatorial opti-
mization using a single deep reinforcement learning model. IEEE Transactions on Cybernetics,
54(3):1984-1996, 2024.

[67] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3):229-256, 1992.

13

522
523
524

525
526
527
528

529
530
531

532
533
534
535

536
537
538
539

540
541
542

543
544

546
547
548
549

550
551
552

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Yihang Yao, Zuxin Liu, Zhepeng Cen, Jiacheng Zhu, Wenhao Yu, Tingnan Zhang, and Ding
Zhao. Constraint-conditioned policy optimization for versatile safe reinforcement learning. In
Advances in Neural Information Processing Systems 36 (NeurIPS), New Orleans, LA, 2023.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. GLOP:
Learning global partition and local construction for solving large-scale routing problems in
real-time. In Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI), pages
2028420292, Vancouver, Canada, 2024.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning
to dispatch for job shop scheduling via deep reinforcement learning. In Advances in Neural
Information Processing Systems 33 (NeurIPS), pages 1621-1632, Vancouver, Canada, 2020.

Rongkai Zhang, Anatolii Prokhorchuk, and Justin Dauwels. Deep reinforcement learning
for traveling salesman problem with time windows and rejections. In Proceedings of the
International Joint Conference on Neural Networks (IJCNN), pages 1-8, Glasgow, United
Kingdom, 2020.

Zhi Zheng, Shunyu Yao, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Ke Tang. DPN:
Decoupling partition and navigation for neural solvers of min-max vehicle routing problems.
In Proceedings of the 41st International Conference on Machine Learning (ICML), Vienna,
Austria, 2024.

Changliang Zhou, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang.
Instance-conditioned adaptation for large-scale generalization of neural combinatorial optimiza-
tion. arXiv:2405.01906, 2024.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In Proceedings of the 40th International Confer-
ence on Machine Learning (ICML), pages 42769—-42789, Honolulu, HI, 2023.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu.
MVMOoE: Multi-task vehicle routing solver with mixture-of-experts. In Proceedings of the 41th
International Conference on Machine Learning (ICML), pages 61804-61824, Vienna, Austria,
2024,

Jianan Zhou, Yaoxin Wu, Zhiguang Cao, Wen Song, Jie Zhang, and Zhiqi Shen. Collaboration!
towards robust neural methods for routing problems. In Advances in Neural Information
Processing Systems 37 (NeurIPS), Vancouver, Canada, 2024.

14

553

554

555

556
557
558
559
560
561
562

A TIllustration of our proposed method

Fix or Updat? by Update 4; < 4, + a- g
Uniform Aedta Tigi Instance-level |- -
Multiplier e Multipliers '“*—~ 1= & 2 =7
o © 0o © o © ° © 0 © o ©
Instances [o © © 00°%0| |0 g Instances [0 © ° 00%0 [0 90
©o0° ° o ° ° o© 0 o o
Policy A-conditioned policy

1

1

1

1

1

1

1

1

1

1

1

1

|

1 s

Decoder H Conditioned | o .

! Encoder
1

1

1

1

1

1

1

1

1

1

1

© Depot
® Violated © Depot
Soluti p— 0@ p— ® Violated
olutions o @ Oq e © . o ° °
4 o0 V2 050, Solutions o e PRI OO.O
o o ° ® 0 o
Distinct o g1 92 Align with % 91 92
Violations |] I - Violations |] I -
(a) Previous policy-level multiplier methods (b) Our proposed instance-level adaptive method

Figure 4: An illustration is presented to compare previous policy-level multiplier methods with our
proposed instance-level adaptive approach. The policy-level methods are limited in their ability
to address distinct constraint violations across diverse instances, as they apply uniform multipliers
irrespective of instance-specific variations. In contrast, our instance-level method inherently aligns
multiplier values with the specific constraint violations of each instance, thereby achieving more
precise and adaptive handling of constraints.

B Pseudo Code of the Training Process

Algorithm 1 Pre-training of the A-conditioned policy

Input: Distribution D), number of batches T, batch size I, number of parallel sampling P
Initialize policy network parameters 0
fort =0to7T"— 1do
Generate a batch of instances {I;}2
Sample multipliers A\; ~ Dy, Vi€ {1,...,B}
Sample multiple solutions {7; }I_, ~ mo(-|Ai, I;), Vi€ {1,..., B}
Compute baseline b; + Zle —(fr, (7)) + Nilgr, () + e, (7)), Vie{l,.., B}
Compute policy gradient VJ(6) 5p 32,21 32514 (—(f1, (7)) + Nilgn, (7)) + er, (7)) —
bi)VQ 1og) (TlJ |)\i» Ii)
Update parameters 0 < 0 + aVyJ(0)
end for
Output: 0

C Related Works

Prevalent paradigms of neural VRP. Many researchers have focused on end-to-end neural
methods that learn to generate solutions through deep neural networks [0, [11]]. These neural solvers
can be categorized into three paradigms [50]: (1) Learn-to-Construct (L.2C) methods sequentially
extends solutions from scratch in an autoregressive manner, typically trained via reinforcement
learning [S1] or imitation learning [19]. These L2C methods have proven to be applicable to a
variety of combinatorial problems [70] and industrial applications [42]]. (2) Learn-to-Predict (L2P)
methods operate under a variable-independent assumption, directly predicting the entire solution

15

563

565
566
567
568

569
570
571
572

574
575
576
577
578
579
580
581
582
583
584

585
586
587
588
589
590

Algorithm 2 Fine-tuning of the A-conditioned policy

Input: Number of batches 7', batch size B, number of parallel sampling P, multiplier learning
rate «, policy learning rate v, maximum number of itertations /', maximum infeasible ratio &
Initialize policy network parameters 0
Generate a batch of instances {I;}2
Initialize multipliers \; < A0, Vi € {1,..., B}
Initialize iteration counts k; < 0, Vi € {1,..., B}
fort =0toT — 1do ,
Sample multiple solutions {77 }/_, ~ m(-|\;, I;), Vi€ {1,..., B}
Compute baseline b; + Zle —(fr,(7]) + Ni(gr. (7)) + e, (7)), Vie{l,..,B}
Compute policy gradient V. (6) + g 32,2, 3357, (—(fr. (7)) + Xigr, (7)) + er (7)) —
b;)Vglog (7] |\, I;)
Update parameters 6 < 6 + aVyJ(6)
Adjust the maximum number of iterations K according to the current infeasibility ratio, ensuring
the ratio of retained infeasible instances does not exceed the maximum ratio §
for each instance I; without feasible solutions do
Update \; < \j + ax min,,e(p) (g1, (7]") + cr, (7]))
Increment k; <— k; + 1
end for
for each instance I; with zero k; or k; > K do
Generate a new instance to replace I;
Initialize \; < A\(?) and k; < 0
end for
end for
Output: 0

without conditional dependence [35]. While computationally efficient, L2P methods often suffer
from limited expressiveness. To address this issue, recent research has introduced diffusion models to
enhance the L2P paradigm by leveraging their ability to generate multimodal distributions of optimal
solutions [59,43]. (3) Learn-to-Search (L2S) methods adopt the iterative framework of traditional
search heuristics. During the search process, L2S methods usually leverage a RL policy to control or
select search operators [49] 46, thereby guiding the search directions towards near-optimal solutions.

Recent advances in neural VRP. Recent advancements in neural methods for solving VRPs focus
on improving scalability and robustness through innovative architectures and learning strategies.
For example, the large-scale performance is improved by employing divide-and-conquer strate-
gies [231169]], leveraging heavy decoder architectures [47]], incorporating distance-related bias [[73],
and exploiting local transferability [24, [22]; the robustness against distribution shifts is improved
by distributional robust optimization [33], multi-distribution knowledge distillation [8], meta learn-
ing [74] and ensemble learning [34]]. Furthermore, it is observed that the performance of neural
solvers can be enhanced by utilizing a population of complementary models [27, 76, 25]. Moveover,
Liu et al. [45] proposed to develop a foundation model for a class of VRP variants, leveraging the
shared problem structure to achiece better performance. Building on this, Zhou et al. [75] further
improved model capability by introducing the mixture-of-experts structure. Besides these efforts, this
paper focuses on complex constrained VRPs, which are common in real-world applications [12} [26]
but have not received much attention in the research community. Only a few works [60} 15} 9]
try to address it through feature enhancement or Lagrange multiplier method. In this context, we
introduce a novel instance-level adpative framework for Lagrangian-based neural methods, reducing
the infeasiblity rate significantly.

Learning for constrained optimization in other domains. = Most neural solvers for constrained
optimization problems rely on expert-designed rules to prevent constraint violations during the
decoding process [3,159,36]]. For instance, Ahn et al. [3]] proposed a clean-up phase that rolls back
invalid actions, thereby enforcing feasibility through a hard constraint mechanism. However, these
expert-driven rules often fail in complex scenarios, such as the constrained VRPs studied in this work,
as well as in many continuous optimization problems. To address constraint violations in such cases,

16

591
592
593
594
595
596
597
598
599

600

601
602
603

605
606

607
608
609
610
611
612
613
614
615
616
617
618
619

620
621
622
623
624
625
626
627
628
629

630

631

633
634
635
636
637
638

639
640

optimization techniques based on penalty functions and Lagrange multipliers have been integrated
into unsupervised learning [2]] and self-supervised learning pipelines [53]. However, a common
limitation arises when a single multiplier or penalty factor is applied across diverse problem instances
with varying degrees of constraint violations. This challenge, though important, has been largely
overlooked in prior studies [2} 65} 54]. Only a related study on continuous optimization [53] noticed
this issue and introduced a primal-dual network to predict instance-specific dual variables during
training. While this approach improves upon the single multiplier method, it remains constrained by
the computational overhead associated with alternating primal-dual ascent and the limited accuracy
of dual variable predictions.

D Instance Generation

In our experiments, we consider two categories of problem, TSPTW and TSPDL. Following prior
works [40]], we randomly sample coordinates (z;, y;) for each node i (including the depot) from a
uniform distribution U (0, 1) within a square. For generating the time windows and draft limits, we
utilize the code of Bi et al. [9] and adopt the hard settings, which are sufficiently challenging to
examine state-of-the-art neural and OR solvers. The generation process of time windows and draft
limits is detailed as follows.

Time windows. After generating the node coordinates, the pairwise travel times are calculated
based on the Euclidean distance between any two nodes. For the generation of time windows, we
adopt the configuration of a widely recognized benchmark [17] in our experiments. Specifically, the
process begins with the construction of a random tour 7 (i.e., a random permutation of the nodes).
Subsequently, the time window [l;, ;] for each node 7 is iteratively generated, where the lower
bound /; and upper bound u; are uniformly sampled from a range determined by the cumulative
travel distance ¢; of the partial solution up to node ¢ and the maximum window size 2. More
formally, I; ~ Ul¢; — n, ¢;] and u; ~ Ulp;, ¢; + n]. This procedure guarantees the existence of
at least one feasible solution for each instance, and the tight coupling between the time windows
and the randomized tours introduces significant complexity to the problem, thereby increasing the
computational difficulty of satisfying constraints. In this paper, the maximum window size 7 is set
to 50, and we employ a scale factor p = 100 to normalize the node coordinates and time windows
according to [9].

Draft limits. In the context of TSPDL, each node is associated with a demand value and a maximum
draft limit, which is designed to avoid overloaded ships entering these ports (i.e., nodes). From an
initial feasible setting, the draft limit of each node is set to the summarized demands of other nodes,
thereby ensuring that any node demand can not exceed its own draft limit. Subsequently, a fraction
parameter, denoted as p%, is introduced to adjust the draft limits of non-depot nodes. Specifically,
p% of the non-depot nodes are randomly selected, and each of them is assigned a draft limit drawn as
a random integer from the range [;, > ., &;], where §; is the demand of the i-th node. Finally, a
feasibility validation is conducted (e.g., utilizing bin-counting constraints) to ensure that the assigned
draft limits do not lead to instances without feasible solutions. In our experiment, the node demands
are set to 1 and the fraction parameter p% is set to 90%.

E Implementation Details

E.1 Training Details

The training procedure of our ICO method contains two stages: a pre-training stage and a fine-tuning
stage. The pre-training stage involves a total of 10, 000 epochs, while the fine-tuning stage comprises
1,000 epochs. Each training epoch processes 10, 000 synthetic problem instances. For both stages,
we select the model checkpoint that achieves the best inference performance on a validation dataset
as the final model. It is worth noting that the training process of our ICO method includes 1, 000
more epochs compared to the training process of POMO+PIP. To ensure a fair comparison, we extend
the training of the provided POMO+PIP checkpoints by an additional 1,000 epochs.

The fine-tuning stage involves the iterative updating of A values. In this process, the initial values
A9 is uniformly set to 0.1 for all problem instances. If the policy fails to find feasible solutions

17

641
642
643
644
645
646
647
648
649
650
651

652

653

655
656
657
658
659
660

661

662
663
664
665
666
667
668
669
670
671
672
673
674

676
677
678

679
680
681
682
683
684

685

686

687
688
689
690

on a specific instance, the A value corresponding to this instance is updated based on the constraint
violation, where the learning rate of) is set to 0.5 for TSPTW and 0.2 for TSPDL, since the scales
of constraint violations on TSPTW and TSPDL are different. These hyperparameters in updating
A are aligned with the corresponding hyperparameters in the inference stage, narrowing the gap of
training and inference. To improve computational efficiency and mitigate the risk of overfocusing
on challenging instances, the number of iterations is limited to a maximum of 4, and the ratio of
infeasible instances within a batch must not exceed 25%. During the fine-tuning on TSPDL50, we
observe that the fine-tuned policy tends to overemphasize the constraints, resulting in a near zero
infeasibility rate but a significant deterioration in objective values. To mitigate this issue, we adjust
the learning rate of fine-tuning process on TSPDL50 to 1 x 1079, while learning rates of other
training process remain the default setting (i.e., 1 x 107%).

E.2 Inference Details

The instance-specific A values are iteratively updated based on constraint violations during the
inference stage. In this process, the A values are initialized as 0.1 for all instances except instances
of TSPDL100, since it is observed that the conditioned policy fails to obtain feasible solutions for
most instances of TSPDL100 when using A = 0.1. Consequently, the intial A value for TSPDL100
is increased to 0.5. During the updating process of A, the learning rate is configured as 0.5 for
TSPTW and 0.2 for TSPDL. These different learning rates are to accommodate the different scales
of constraint violations on these two problem types. In the comparison experiments, the number of
iterations for updating A is set to 16.

E.3 Experimental Settings

Metrics. Four metrics are applied: Infeasibility rate, average optimality gap, normalized Hyper-
Volume (HV) and runtime. The instance-level infeasibility rate measures the proportion of instances
where the solver fails to find any feasible solution. These metrics are calculated on a test dataset
containing 10,000 instances. To compute the optimality gap, we use the solutions obtained by LKH3
through full-time search as reference solutions. Unlike some prior works that compute the optimality
gap directly from the average objective [40], we calculate the optimality gap on an instance-by-
instance basis and then average these values. It is important to note that the calculation of objective
values and optimality gaps only includes instances with feasible solutions. Therefore, the average
objective value may not serve as a fully reliable metric for performance comparison, as the sets of
instances with feasible solutions can vary across different methods. To measure the comprehensive
performance of both solution quality and feasibility, we further compute the normalized HV based
on the infeasibility rate and average optimality gap. The reference point for computing HV is set to
(100%, 5%) for TSPTW and (10%, 20%) for TSPDL, where the first number represent the infeasibil-
ity rate and the other denotes the average gap. To evaluate the computational efficiency, we compare
the total runtime of solving 10,000 instances with batch parallelism on a single GPU (NVIDIA RTX
4090 Ti). For OR solvers like LKH3 and OR-Tools, we record the runtime of parallel computation on
16 CPU cores.

Evalution configurations of baselines. To align the runtime consumption, POMO+PIP employs
%28 sampling for intances with n = 50 and x20 sampling for instances with n = 100, where
AMA+PIP adopts x200 sampling for both n = 50 and n = 100 instances. These different sampling
configurations are to align with the additional runtime caused by the computation of A-conditioned
embeddings in our ICO method. The evaluation batch sizes for both POMO-PIP and our ICO method
are set to 2,500 for instances with n = 50 and 1000 for instances with n = 100.

F Additional Results

F.1 Extension to more problem variants.

The idea of instance-level adaptive dual variables is not specially designed for TSPTW and TSPDL;
rather, it can be extended to other domains that simultaneously require constraint handling and cross-
instance (or cross-environment) generalization of the RL policy, with domain-specific adaptations.
To demonstrate generality, we extend our method to more VRP variants. After summarizing the

18

691
692
693
694

695
696
697
698
699

701

702
703
704
705
706
707
708

709
710
711
712
713
714

715
716
7
718

719
720
721
722
723
724
725

hard-constrained VRPs addressed in prior works [[15} 21} 9] 160} [14], we find that CVRPTW is the
only problem not addressed in our experiments. While the decision space of CVRPTW appears
more complex, it is, in fact, easier to satisfy its constraints compared to TSPTW and TSPDL. This is
because its time window constraints can be easily satisfied by a shortcut: Add more vehicles.

To construct a challenging benchmark, we propose to set a maximum limit on the number of
vehicles, which also aligns more closely with real-world applications. We conduct new experiments
on CVRPTWS50 with limited vehicles using JAMPR’s time window generation code [21]]. Since
PIP has not been extended to this problem, we used POMO as the backbone to implement ICO.
Experimental results in Table 3] show that our ICO significantly outperforms the POMO baseline,
especially in infeasibility rate.

Table 3: Experimental results on new problem variants: CVRPTWS50 and CVRPTWS50 with limited
vehicles. To compute HV, we use reference point (1%, 15) for CVRPTWS50 and (10%, 15) for
CVRPTWS50 with limited vehicles. The best results are highlighted in bold.

CVRPTW50 | CVRPTW50 with limited vehicles
Method Inf. rate Ob;. HV Time | Inf. rate Obj. HV Time

POMO (A =0.5) 0.69% 1399 0.021 39s 435% 14.05 0.036 38s
POMO (A =1.0) 0.25% 1422 0.039 40s 3.26% 14.28 0.033 38s
POMO (A =2.0) 031% 1449 0.023 39s 251% 1451 0.025 38s

ICO 0.10% 1400 0.060 40s | 1.16% 14.09 0.054 40s

F.2 Analysis of Different Update Rules for \

Proportional-Integral-Derivative (PID) control for updating \. = From the perspective of control
theory, the subgradient ascent process of A behaves as integral control, while Stooke et al. [58]]
proposed to further incorporate proportional and derivative control into the update rule, avoiding
oscillations encountered by the integral-only controller. The proportional control is to hasten the
constraint satisfaction in response to the immediate constraint violation. The derivative control
prevents the oscillations by monitoring the variation tendency of constraint violations. By adding the
terms of proportional, integral and derivative control, the update rule of PID control is expressed as:

Ay = gI(Tt)’

L =11+ g1(me),

0 = max{gr(m) — gr(7—1),0},
N=Kp - AN+ Kr- I + Kp -0y,

where A; represents the proportional term of time step ¢, I; denotes the ¢-th step integral term
that accumulates the constraint violations of previous steps, d; computes the derivative term of the
constraint violation, and Kp, Ky, Kp are tuning parameters that measure the weights of three terms.
Intuitively, this PID method provides a richer set of controllers than subgradient ascent, but it also
introduces more hyperparameters that require manual tuning. In our experiments, K p is set to 0.1
and Kp is set to 1.0 on both problem types, and K7 is set to 0.5 on TSPTW and 0.01 on TSPDL.

In Table] we compare the performance of different update rules of \ in inference stage: fixed A
values (A € {0.5,1.0,2.0}), randomly sampled X values, the subgradient ascent method and the
PID control method [58]]. For the random sampling strategy, A values are drawn randomly from the
uniform distribution U (0.1, 2.0) at each iteration.

The results in the last three rows indicate that both the subgradient ascent method and the PID
control method generally outperform the random sampling strategy, with particularly improvements
in reducing the infeasibility rate. As evidenced in the first three rows, employing fixed \ values leads
to significantly inferior performance compared to the adaptive variation of A, underscoring the critical
importance of dynamically adjusting A for each instance. It is worth noting that the random sampling
approach also demonstrates competitive performance, indicating that simply varying the A values
randomly for each instance has a high probability of identifying effective A values. By comparing

19

726
727
728
729

731
732

734
735

736

737
738
739
740
741

742
743
744
745
746
747
748
749

750
751
752
753
754

the results of the last two rows, it is observed that the PID control method does not achieve superior
performance as expected, which can be attributed to two factors: (1) the hyperparameters of PID are
challenging to tune; (2) the subgradient ascent method is already involved in the fine-tuning process,
while the PID control is not integrated into the training, limiting its effectiveness.

Table 4: Additional results of different update rules of A\ on TSPTW and TSPDL. The best results are
highlighted in bold.

| TSPTW (n=50) | TSPTW (n=100) | TSPDL (n=50) | TSPDL (n = 100)
| Inf. rate Avg. Gap | Inf. rate Avg. Gap | Inf. rate Avg. Gap | Inf. rate Avg. Gap

Methods

ICO (A =0.5) 1.43% 0.19% 4.34% 0.26% 2.63% 2.50% 42.14% 13.16%
ICO (A =1.0) 1.52% 0.23% 4.03% 0.36% 0.23% 2.77% 2.01% 10.79%
ICO (A =2.0) 1.55% 0.24% 4.27% 0.38% 0.07% 3.15% 0.38% 11.62%
ICO (random) 0.55% 0.07% 2.40% 0.14% 0.12% 2.28% 0.40% 10.73%
ICO (subgradient) | 0.51% 0.07% 1.33% 0.14% 0.01% 2.32% 0.91% 9.22%
ICO (PID control) | 0.55% 0.07% 1.39% 0.14% 0.05% 2.36% 0.26% 9.25%

F.3 Analysis of training strategies

Figure [3] illustrates the performance of POMO+PIP (with A\ = 1), the pre-trained policy, and the
fine-tuned policy. The comparison between the pre-trained and fine-tuned policies reveals that the
fine-tuning process leads to a substantial reduction in both infeasibility rate and average gap, except
the average gap on TSPDL50. Notably, even the pre-trained policy alone surpasses the single-\
POMO+PIP, further highlighting the advantages of the proposed approach.

TSPTW50 Results s TSPTW100 Results a TSPDL50 Results TSPDL100 Results
s POMO+PIP ’ B POMO+PIP = POMO+PIP s POMO+PIP
18 mm Pre-trained policy m Pre-trained policy mm Pre-trained policy m Pre-trained policy

B Fine-tuned policy B Fine-tuned policy B Fine-tuned policy B Fine-tuned policy

Gap o9 \nf. rate Gap O \nf. rate Gap

Inf. rate

Figure 5: Comparison of the pre-trained policy and fine-tuned policy.

F.4 Analysis of Network Architectures

The A-conditioned policy network takes A as the condition varibable and adjust the constraint
awareness according to the varying value of A. Among existing network architectures in other
domains [66], 44], there are two alternative approaches to implement the conditioned policy: (1)
condition A in the initial embeddings; (2) condition A in the decoder’s context. The second approach,
referred to as the A\-conditioned context method, is detailed as follows.

A-conditioned context. Building upon the POMO model [41]], the conditioned context method
integrates a linear embedding of \ into the decoder’s context embedding, formulated as ¢ = WA\ +
W4lhe, t¢]. Here, W» € R¥! and W7 € R¥*9 are trainable parameters, and [h¢,t°] denotes the
concatenation of the current node embedding h¢ and the current time ¢¢, together forming the context
used for selecting candidate nodes. The resulting output, g, functions as the query input for the
subsequent multi-head attention layer in the decoder. This conditioned context approach incorporates
the information of A into the core component of the decoder, enabling an efficient adjustment of the
policy’s behavior.

In Table 3] we compare the performance of the network with A\-conditioned context and network
with A-conditioned embeddings on TSPTW100 and TSPDL100. Here we report the results of the
pre-trained policies. The experimental results demonstrate that the A-conditioned embedding method
achieves significantly superior performance in both infeasibility rate and average optimality gap. This
performance advantage can be attributed to the fact that the A-conditioned embedding utilizes the

20

756

757

758
759
760
761
762

764
765
766
767
768

769

770
771
772
773
774
775
776

777
778

779
780
781

Table 5: Additional results of different network architectures on TSPTW and TSPDL. The best results
are highlighted in bold.

| TSPTW (n = 100) | TSPDL (n = 100)
| Inf. rate Avg. Gap | Inf. rate Avg. Gap

Network with A-conditioned context 2.83% 0.30% 2.31% 13.34%
Network with A-conditioned embeddings | 2.28% 0.17 % 1.14% 10.01%

Methods

full capacity of the entire network to process A-related information, while the conditioned context
approach restricts the A-related information to the decoder, thereby limiting its effectiveness.

F.5 Analysis of the distribution D()\) in training stage

In the pre-training stage of the conditioned policy, random values of A are sampled from a pre-defined
distribution D()) for training. Empirically, the distribution D(\) has a non-negligible influence
on the performance of the pre-trained policy. A natural and straightforward option for D()) is
the uniform distribution within an appropriate range. However, as shown in Figure[6] the trained
policy just silghtly violates constraints on the majority of instances, where only a small subset of
instances in the long tail experience significant constraint violations. Therefore, we adopt a triangular
distribution 7°(0.1, 0.5, 2.0), which biases the sampling towards smaller A values, thereby prioritizing
the optimization of instances with low constraint violations. Figure[7|compares the performance of
the policy trained with a uniform distribution U(0.1,2.0) and the policy trained with a triangular
distribution 7°(0.1,0.5,2.0) on the TSPTW50 dataset. The results demonstrate that the triangular
distribution leads to superior overall performance as expected.

TSPTW50 Results

7500 1.2 B uniform U(0.1,2)
B triangular T(0.1, 0.5, 2.0)
- " 0.8
é 5000 g
3 @©
o >
(]
frs 0.4
2500
0 Inf. rate Gap
0 10 20 SQ 4@ '50 60 70 M trics
Constraint violations €
Figure 6: Histogram of constraint violation Figure 7: Performance of using two different
statistics on the validation dataset. D()) configurations during the pre-training
stage.

F.6 Sensitivity of \-related hyperparameters in inference stage

Since the optimization landscape for) is typically non-convex due to the hardness of combinatorial op-
timization, the initial value and learning rate of A are both important for the optimization performance.
Here we conduct a sensitivity analysis of A from these two perspectives, including the initial value of
A (denoted as \g) and the learning rate for updating A (denoted as «). During the inference stage,
we evaluated performance across Ao € {0.1,0.15,0.20,0.5,1.0} and « € {0.1,0.2,0.5,0.7,1.0}
on TSPTW50 and TSPDL50. Each hyperparameter was varied while keeping the other fixed at its
default value. Results in Table [l and [l show that:

* In 16 out of 18 settings, our ICO method surpasses the best-performing PIP model in
hypervolume (HV), showing its robustness.

* Although the performance variance (shown in the last row) is relatively small, it is not
negligible. This underscores the importance of carefully tuning A-related hyperparameters
to achieve optimal performance.

21

Interestingly, some settings (e.g., « = 0.7 for TSPTW50) slightly outperform the default, suggesting
that advanced hyperparameter optimization techniques could further enhance performance.

Table 6: Sensitivity analysis in inference stage on TSPTWS50.)\, denotes the initial value of A and «
represents the learning rate of \.

Inf. rate Gap HV Better HV than PIP

PIP with the best HV 1.95% 0.08% 0.965 -

Ao = 0.1 (default) 0.50% 0.07% 0.981 Yes
Ao =0.15 0.47% 0.08% 0.979 Yes
Ao =0.2 0.48% 0.08% 0.979 Yes
Ao =0.5 0.84% 0.19% 0.954 No
Ao =1.0 0.97% 0.23% 0.945 No
a=0.1 0.59% 0.07% 0.980 Yes
a=02 0.49% 0.07% 0.981 Yes
a = 0.5 (default) 0.50% 0.07% 0.981 Yes
a=0.7 0.48% 0.07% 0.981 Yes
a=1.0 0.55% 0.07% 0.981 Yes
Avg £ Std 0.59% + 0.17% 0.10% £+ 0.06% 0.974 + 0.0133 -

Table 7: Sensitivity analysis in inference stage on TSPDL50.)\o denotes the initial value of A and o
represents the learning rate of \.

Inf. rate Gap HV Better HV than PIP

PIP with the best HV 0.12% 2.89% 0.845 -

Ao = 0.1 (default) 0.01% 2.32% 0.883 Yes
Ao =0.15 0.01% 2.33% 0.883 Yes
Ao =0.2 0.01% 2.33% 0.883 Yes
Ao =0.5 0.01% 2.51% 0.874 Yes
Ao =1.0 0.01% 2.79% 0.859 Yes
a=0.1 0.06% 2.23% 0.883 Yes
o = 0.2 (default) 0.01% 2.32% 0.883 Yes
a=0.5 0.00% 2.47% 0.877 Yes
a=0."7 0.00% 2.58% 0.871 Yes
a=1.0 0.00% 2.80% 0.860 Yes
Avg + Std 0.01% +=0.02% 2.47% + 0.20% 0.876 & 0.009 -

22

72« G Licens

€S

Table 8: List of licenses for the codes and datasets we used in this work.

Resource Type Link License

OR-Tools [20] Code https://github.com/google/or-tools Apache License 2.0

LKH3 [30] Code http://webhotel4.ruc.dk/ keld/research/LKH-3/ Available for academic research use
AM [40] Code https://github.com/wouterkool/attention-learn-to-route, MIT License

POMO [41] Code https://github.com/yd-kwon/POMO MIT License

EAS [32] Code https://github.com/ahottung/EAS Auvailable online

JAMPR [21] Code https://github.com/jokofa/JAMPR MIT License

PIP [9] Code https://github.com/jieyibi/PIP-constraint MIT License

23

https://github.com/google/or-tools
http://webhotel4.ruc.dk/~keld/research/LKH-3/
https://github.com/wouterkool/attention-learn-to-route
https://github.com/yd-kwon/POMO
https://github.com/ahottung/EAS
https://github.com/jokofa/JAMPR
https://github.com/jieyibi/PIP-constraint

785

786

787
788

789

801

802

803

804

805

806
807

808

809
810
811
812
813
814
815
816
817
818
819
820
821

822
823

824
825

826
827

829
830
831

832

833
834

835

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our contributions are clearly presented in the abstract and introduction.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the primary limitation of this work in the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

24

836

837

838
839

841
842
843
844
845
846
847

848

849
850
851

852

853

854

855

856
857
858

859
860

861
862
863
864
865
866
867
868
869
870
871
872
873
874

876
877
878
879
880
881
882
883
884
885

886

888
889

Justification: This paper is an empirical study.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provided all the key information to reproduce our results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

25

890

891

892

893

894
895

896
897
898
899

900
901
902

903
904

905
906
907

908
909

910
911
912

913
914
915

916

917
918

919

920

921
922

923
924
925

926
927

928

929

930

931
932
933
934
935
936
937
938
939

940

Answer: [Yes]
Justification: The code and README files will be provided in the supplemental materials.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Important settings and details are provided in the experiment section. Other
necessary details are provided in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Training consumption of our neural models is relatively high.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

941
942

943
944
945

946
947
948

949
950
951

952
953

955

956

957

958

959
960

961
962

963
964

966

967
968

969

970

971

972

973
974

975
976

977

978
979

980

981
982

983

984

985
986

987
988
989
990

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Provided in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: No ethics issues.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This paper studies a general method for optimizing classical problems, which
is not directly related to any societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

27

https://neurips.cc/public/EthicsGuidelines

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005

1006

1007
1008
1009

1010

1011

1012

1013

1014
1015
1016
1017
1018
1019
1020
1021
1022

1023

1024
1025
1026

1027

1028
1029

1030

1031
1032

1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The studied classical optimization problems have no risk to affect safety.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cited the used papers and codes. Their licenses are included in
the appendix.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

28

paperswithcode.com/datasets

1044
1045

1046

1047
1048

1049

1050

1051

1052
1053
1054
1055
1056
1057
1058
1059

1060

1061
1062
1063

1064

1065

1066

1067

1068

1069
1070
1071
1072
1073
1074

1075
1076

1077
1078
1079
1080

1081

1082

1083

1084

1085
1086
1087
1088
1089
1090
1091
1092
1093

1094

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Our code and models are well documented and anomymized.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Datasets are synthetic.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LM usage

29

1095
1096
1097
1098

1099

1100

1101

1102
1103
1104
1105

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use LLMs for writing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

30

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Constrained VRPs
	Lagrange Multiplier Method
	Lagrange Multiplier-based Training Methods for Neural Vehicle Routing

	Method
	Instance-level Adaptive Constrained Optimization
	Multiplier-Conditioned Policy

	Experiments
	Experimental Settings
	Main Results
	Ablation Study

	Conclusion
	Illustration of our proposed method
	Pseudo Code of the Training Process
	Related Works
	Instance Generation
	Implementation Details
	Training Details
	Inference Details
	Experimental Settings

	Additional Results
	Extension to more problem variants.
	Analysis of Different Update Rules for
	Analysis of training strategies
	Analysis of Network Architectures
	Analysis of the distribution D() in training stage
	Sensitivity of -related hyperparameters in inference stage

	Licenses

