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Abstract

Model multiplicity describes the existence of multiple models
that fit the data equally well but can produce different predic-
tions for individual samples, so-called predictive multiplicity.
In medicine, these models can admit conflicting predictions
for the same patient—a risk that is poorly understood and in-
sufficiently addressed.

In this study, we empirically analyze predictive multiplicity
across multiple medical tasks and model architectures, and
show practical strategies to mitigate it. Our analysis reveals
that (1) standard validation metrics fail to identify a uniquely
optimal model. (2) Models with statistically indistinguishable
performance show variability in patient-level predictions, re-
sulting in arbitrary and potentially harmful outcomes under
any single model. However, predictive multiplicity does not
affect samples equally, and the converse can be used to reduce
predictive multiplicity. We find that (3) high model capac-
ity decreases predictive multiplicity by improving accuracy.
Lastly, (4) ensembles with an abstention strategy enhance ex-
pected per-sample accuracy and stability.

Together, these findings highlight that predictive multiplicity
is not merely a theoretical curiosity but a pervasive and prac-
tically significant issue in medical Al. We argue that account-
ing for multiplicity should be considered a core component of
model evaluation and deployment in safety-critical domains.

Code — https://github.com/tofooschnitzel/mm4mi

1 Introduction and Prior Work

Model multiplicity (Black, Raghavan, and Barocas 2022)
describes the existence of many plausible models for the
same dataset without a principled way to determine a single
optimal model. In practice, multiple machine learning mod-
els can fit the same data equally well according to a given
performance metric (e.g., loss or accuracy), but may differ
in their internal structure (e.g., the value of their parameters)
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and, more critically, in their individual predictions. Yet, for
deployment typically a single model is chosen — commonly,
without consideration for other, equally valid options. Us-
ing such a model is particularly problematic in high-stakes
scenarios when other, equally well-performing models exist
that produce different predictions on the same data point(s).
If such a model is deployed in a clinical setting, a patient’s
diagnosis—and their treatment—may ultimately depend on
the choice of this specific model rather than on relevant
properties of the patient’s data. This raises critical concerns
about the justification for deploying this model in practice.

The phenomenon of model multiplicity is not novel and
has appeared under various names, inter alia, the Rashomon
Effect (Breiman 2001), underspecification (D’ Amour et al.
2022) or instability (Riley and Collins 2023). Prior work
has discussed its opportunities (Rudin et al. 2024) and chal-
lenges, notably predictive multiplicity (Marx, Calmon, and
Ustun 2020), where equally valid models produce conflict-
ing predictions. While predictive multiplicity may be neg-
ligible in low-stakes settings or beneficial in some contexts
(e.g., to avoid systemic exclusion; Creel and Hellman 2022),
it poses serious risks in medicine, where model predictions
inform counseling, resource allocation, and clinical care.
Conflicting predictions from equally valid models can erode
trust, cause inconsistent treatment, and ultimately harm pa-
tients. Despite its relevance, systematic studies of predic-
tive multiplicity in medicine remain scarce. Existing work
identifies underspecificaton as a general source of instability
(D’ Amour et al. 2022) without addressing its impact on in-
dividual predictions, or proposes bootstrapping approaches
(Riley and Collins 2023; Riley et al. 2023) that are largely
infeasible for modern ML; see Appendix C for details.

In this study, we address this gap through a compre-
hensive empirical analysis of predictive multiplicity across
multiple medical tasks (abdominal CTs, blood cell im-
ages, breast ultrasounds and OCT scans) and architectures
(ResNet50, GC ViT, EfficientNet, and ConvNeXt). Results
for the ResNet50 appear in the main text; additional archi-
tectures are in the Appendix A. Recognizing and address-
ing model multiplicity not only exposes limitations of the
“single model” paradigm but also offers a path to improve



predictive stability and accuracy by levering inter-model
(dis)agreement. Our large-scale study, based on the train-
ing of 1,400 models, leads to the following conclusions that
form the core contributions of our work:

1. Validation performance is an unreliable indicator of gen-
eralization and (thus) fails to identify an optimal model.

2. Relying on a single model exposes some patients to ar-
bitrary predictions. Yet, the underlying structure can be
exploited to improve stability and accuracy.

3. Higher-capacity models, when improving accuracy, re-
duce predictive multiplicity.

4. Ensembles with abstention eliminate measurable predic-
tive multiplicity and improve accuracy.

2 Methodology

Deployment typically relies on a single, “optimal” model,
without considering other, equally valid alternatives. We in-
stead examine the set of models that fit the data equally well
and thus represent equally plausible solutions, the so-called
Rashomon set (Breiman 2001). Following prior work (e.g.,
D’Amour et al. 2022; Black, Leino, and Fredrikson 2022),
we explore this set empirically by randomizing the initial-
ization of model weights. Specifically, we replace the clas-
sification head of an ImageNet-pretrained model with a ran-
domly initialized one and train the entire model. For each
dataset/architecture pair we train 50 model instances, which
differ only in the weight initialization of the last layer while
keeping all other components fixed. This results in a total
of 1,400 models—1,000 for the main experiments and 400
to analyze model capacity. In brief, our experiments cover
aforementioned medical imaging datasets and model archi-
tectures and perform competitively (and often surpass) prior
results; see Appendix B for details on datasets, architectures,
training procedure, and performance).

To assess whether models are of equal quality, we avoid
an ad hoc threshold for performance differences and in-
stead apply the hypothesis testing framework of Paes et al.
(2023). We use the Clopper-Pearson (CP) interval (Clopper
and Pearson 1934), an exact method for constructing con-
fidence intervals for binomial error rates, and apply it to
model accuracies (the inverse of error). The model with the
highest accuracy —i.e., the lowest empirical error—serves as
the reference ;. We then compare each model’s confidence
interval to the reference interval: if two intervals overlap at
the 95% significance level, we consider the models statis-
tically indistinguishable. The Rashomon parameter € cor-
responds to the smallest decrease in empirical accuracy at
which the condition no longer holds, representing the mini-
mal deviation required to reject the null hypothesis of equal
true accuracy. We compute € numerically using bisection
(see Appendix D for implementation details).

To quantify prediction stability at the per-sample level,
we define Adjusted Pairwise Prediction Agreement (APPA).
APPA measures the probability that two models, drawn uni-
formly at random from the empirical Rashomon set, as-
sign the same prediction to a sample x. The measure is
normalized by the number of models M and classes K
(see Appendix E for a detailed derivation). By definition,

APPA(x) € [0,1], where APPA = 1 indicates maximal
expected agreement between two models (high stability),
APPA = 0 maximal disagreement (low stability), and in-
termediate values indicate partial expected agreement.
Lastly, we evaluate the effectiveness of ensembles to re-
duce predictive multiplicity by comparing prediction stabil-
ity and coverage rates between two single models or two
ensembles (of size two or five). Prediction stability is mea-
sured as the expected pairwise agreement between two dis-
tinct models (or ensembles of equal size) on the test set and
averaged over 100 repetitions. To avoid zero-inflation, we
draw model or ensemble pairs without replacement from the
empirical Rashomon set. For ensembles, we apply a conser-
vative decision rule: a prediction is made only if all con-
stituent models agree; otherwise, the ensemble abstains.

3 Results
The illusion of an optimal model

The true Rashomon set is the set of statistically indistin-
guishable “good” models. In practice, we face two con-
straints: model quality can only be assessed on finite sam-
ples, and for complex model classes, an exhaustive charac-
terization of the Rashomon set is infeasible—e.g., in neural
networks the size of the Rashomon set is tied to the num-
ber of local minima, which grows exponentially with the
number of parameters (Auer, Herbster, and Warmuth 1995).
Thus, we explore the Rashomon empirically by varying the
random seed used to initialize the weights of the last layer.
This approach results in a set of models with substantial
variation in their performance on the finite validation and
test set: accuracy differs by up to 16% (Breast Ultrasound
in Figure 1). While prior work often designates a fixed 1%
tolerance in loss from a reference model as the criterion for
indistinguishability (e.g., Coston, Rambachan, and Choulde-
chova 2021), we instead apply the hypothesis testing frame-
work of Paes et al. (2023). Using the most accurate model
among the 50 in the empirical Rashomon set as a reference,
we determine the smallest decrease in accuracy that leads
to the rejection of the null hypothesis of equal true error
rates, based on validation and test performance. Figure 1
visualizes the indistinguishability region between ¢ (refer-
ence performance) and ¢ (rejection threshold). The width of
this region depends on the Type-I error level (a=0.05), the
baseline loss € of the best empirical model, and the number
of validation and test samples n; see Appendix D for details.
As shown in Figure 1, all obtained models are statisti-
cally indistinguishable at the 95% significance level. In other
words, while their validation and test accuracies vary, statis-
tical testing reveals no evidence of true performance differ-
ences on the underlying distribution. Moreover, within the
empirical Rashomon set, validation performance poorly pre-
dicts test performance: models that perform well on the vali-
dation set often underperform on the test set, and vice versa.
Notably, the initial model (dashed line in Figure 1) for which
we performed the hyperparameter search is in no way “spe-
cial” regarding validation or test set performance relative to
the other models. Better and worse models exist despite this
being the model that has been explicitly optimized for.
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Figure 1: Variation in accuracy within the empirical
Rashomon set. Each plot shows a dataset, with points repre-
senting models trained from different random initialization.
Models in the green region are indistinguishable at the 95%
significance level. Dashed lines mark the initial model for
which we performed a hyperparameter search.

In summary, these findings imply that validation and test
performance cannot uniquely identify an “optimal” model.
Crucially, even the initial model for which we perform a hy-
perparameter search is as good a draw as any other model
from the set. Selecting the model with the highest valida-
tion performance becomes an arbitrary decision among other
equally valid alternatives. Consequently, the standard selec-
tion criteria—choosing the model with the highest validation
performance—is not only inadequate but potentially harm-
ful to the patients receiving inferior predictions.

On arbitrary predictions under any single model

So far, we have focused on the average performance metrics
within the empirical Rashomon set. We now turn to model
predictions to examine the arbitrariness of diagnostic out-
comes when relying on a single model. We use APPA (as
defined in Section 2) to quantify prediction stability at the
per-sample level, i.e., vis-a-vis a patient. The pink points in
Figure 2 reveal that arbitrary predictions occur in all datasets
but to varying degrees—from 2.5% of samples in Blood Cell
to 48.7% in Breast Ultrasound. Importantly, (dis)agreement
is not uniformly distributed across the data but concentrated
on specific samples: those that are frequently predicted cor-
rectly (high accuracy) also exhibit high inter-model agree-
ment (high APPA). This positive relationship is expected as
both metrics depend on how models distribute their predic-
tions across classes; intuitively, when multiple models pre-
dict the correct class, they necessarily agree more often.

Although per-sample accuracy and agreement are corre-
lated by definition, they capture distinct aspects of model
behavior. Predictive multiplicity is not about whether a pre-
diction is correct, but whether it could have been different
under an equally valid model. Accuracy measures correct-
ness relative to the ground truth, while predictive multiplic-
ity reflects the consistency of predictions across models—
regardless of correctness. Consequently, high APPA is often
associated with correct predictions but can also occur for in-
correct ones, indicating systematic bias shared across mod-
els (see top-left regions in Figure 2). In contrast, low APPA
implies that a prediction depends strongly on the specific
model instance and is associated with higher error.

The relationship between accuracy and predictive multi-
plicity extends to the model level. Intuitively, error provides
the “space” for disagreement: a higher error rate creates
more opportunities for conflicting predictions. Indeed, the
Generalization Disagreement Equality (GDE) (Jiang et al.
2021) formalizes this link, stating that the expected dis-
agreement rate between independently trained models (e.g.
with different random seeds) approximately equals their
error rate. More precisely, this equality holds for well-
calibrated ensembles, a property that SGD-trained networks,
such as ours, naturally exhibit (Lakshminarayanan, Pritzel,
and Blundell 2017).
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Figure 2: Prediction stability as a function of accuracy. For
clarity, samples are binned by accuracy and APPA; point
size reflects their relative frequency (normalized by dataset
size). Color encodes stability (green: APPA = 1.0, i.e., sta-
ble samples; pink: APPA < 1.0). Across datasets, correctly
predicted samples tend to exhibit high APPA. Samples in
the top-left corner are, however, consistently misclassified
revealing systematic failure modes.

In summary, predictive multiplicity poses a serious risk



for high-stakes applications: relying on any single model ex-
poses some patients to arbitrary outcomes—predictions not
driven by meaningful patterns in the data but ultimately de-
termined by a random seed. Yet, analyzing predictive mul-
tiplicity alongside accuracy reveals where and why models
converge or diverge, offering both diagnostic insight (e.g.,
bias detection) and practical means (e.g., stability-based fil-
tering) for building more reliable systems. Importantly, pre-
dictive multiplicity is not inherently negative—it can help
identify bias and expose misclassifications that would other-
wise go unnoticed.

Reducing Predictive Multiplicity Through
Accuracy Maximization

Before moving on how to leverage predictive multiplicity
in practice, we take a closer look at the relationship be-
tween model capacity, accuracy, and predictive multiplicity.
Overparameterized networks—where the number of model
parameters exceeds the number of training samples—have
been shown to generalize effectively (e.g., Allen-Zhu, Li,
and Liang 2019). According to the GDE (Jiang et al. 2021),
we expect networks with lower test error to exhibit less pre-
dictive multiplicity. However, Black et al. (2021) theoreti-
cally demonstrate that multiplicity is closely liked to vari-
ance. In particular, when higher accuracy is achieved by in-
creasing model complexity (and thus variance), we should
expect an increase in predictive multiplicity. This relation-
ship is further supported by their empirical findings (Black
and Fredrikson 2021; Black et al. 2021), which compares
low-complexity linear models to (highly) expressive deep
neural networks. We build on those findings by examining
predictive multiplicity in neural networks of different capac-
ities. To operationalize capacity, we use EfficientNet vari-
ants: EfficientNetBO (5.3M parameters) and B4 (19.5M).
Both EfficientNet variants operate in the overparameterized
regime for datasets with 546 to 97,477 training samples.

Table 3 summarizes the overall effect of increasing model
capacity. For Blood Cell and Abdominal CT, using a higher-
capacity model (B4 instead of BO) results in little change
in accuracy and APPA (< 0.6%). In contrast, for OCT
Scan and Breast Ultrasound we see clear improvements—
4.4% improvement in accuracy and up to 12.8% more sta-
ble samples. This pattern is also reflected in the proportion
of affected samples—those whose stability or correctness
changes between models (see last row in Table 3).

To understand how the composition changes by increas-
ing model capacity, we examine how the affected samples
are distributed across categories in Figure 3. Two categories
are of specific interest: Previously stable samples that be-
come unstable (pink in Figure 3). These represent the cost
of model switching—cases that were previously handled re-
liably but now produce inconsistent predictions which de-
pend on the specific, selected model. However, when we use
more than one model, we can detect these cases as they are
unstable across multiple models and refer them to manual
review (see subsection 3). Further, the fraction of previously
undetectable errors—samples that were both stable and in-
correct under the lower-capacity models (green)—decreases
after switching to the higher-capacity model for the datasets
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Figure 3: Changes by increasing model capacity (only
affected samples). Samples are grouped as (I) correct-
stable, (II) unstable, and (III) incorrect-stable. Bundles con-
nect category transitions from EfficientNetBO (left) to Effi-
cientNetB4 (right), illustrating how samples shift between
groups. Pink bundles mark the cost of model switching (pre-
viously stable-correct samples becoming unstable) while
green bundles indicate newly detectable errors (previously
consistently misclassified samples become unstable and thus
identifiable). For Abdominal CT and OCT Scan, overall util-
ity improves; for others the effect is minimal (for Blood Cell
only 2.6% of samples are affected).

which achieve higher accuracy (Abdominal CT and OCT
Scan). Reducing the size of this category is desirable, as
these samples are consistently misclassified across models
and cannot be identified under a single model.

In summary, our results suggest that in already overpa-
rameterized models capacity alone does not determine pre-
dictive multiplicity. When increasing capacity does not im-
prove accuracy, we observe only marginal changes in pre-
dictive multiplicity (affecting only a small fraction of sam-
ples); however, when higher capacity leads to improved ac-
curacy, predictive multiplicity consistently decreases. This
indicates that the relationship between capacity and multi-
plicity is mediated by accuracy: greater expressiveness can
either introduce minor additional variability when perfor-
mance remains stagnant or, when it enhances generalization,
substantially reduce predictive multiplicity. Yet, awareness
and systematic monitoring of such shifts in the composition
of affected samples—and of which individuals/groups are
impacted—remain essential, particular in high-stakes do-
mains like healthcare, where collective performance gains
must be carefully balanced against individual rights.

Prediction reliability requires more than one model

Using more than one model allows the detection of pre-
dictions that would be arbitrary under a single model. Fur-



Blood Cell Abdominal CT OCT Scan Breast Ultrasound
Accuracy BO 99.0 £ 0.1 952 +03 86.7+ 1.3 84.7 £ 3.7
Accuracy B4 99.1 £0.1 959+0.3 91.1 £0.8 89.1+14
1 Acc 0.1 0.7 4.4 4.4
A APPA (raw / binarized) -0.1/-0.6 -0.1/-0.6 2.77/9.9 12.8/12.8
Affected (raw / binarized) 39/1.9 16.0/5.4 259/14.3 66.0/30.8

Table 1: Performance and stability across model capacities. The first two rows report mean test accuracy (% std) in % for
EfficientNetBO (relatively low capacity) and B4 (high capacity) across 50 models from the empirical Rashomon set. Subsequent
rows show the effects of increasing model capacity from BO to B4 (in %): the change in mean accuracy (T Acc), the change in
mean APPA, and the corresponding proportion of samples whose APPA values differ between models (Affected). Raw denotes
the continous APPA values; binarized APPA is set to 1 when raw APPA = 1.0, 0 otherwise. When higher-capacity models
achieve higher accuracy, stability increases (higher APPA); otherwise, the aggregated effects are minimal.

ther, we can abstain from predicting when there is insuffi-
cient consensus (Black, Leino, and Fredrikson 2022), and
flag ambiguous and potentially harmful predictions. The ca-
pacity to abstain does not come without costs: while it im-
proves reliability and robustness, it requires multiple models
and may reduce coverage, as not all samples receive predic-
tions. To evaluate the effectiveness, we compare coverage
rates, correctness (across covered samples), and predictive
stability across single models and ensembles consisting of
two, five, and ten models. To assess predictive stability, we
compute the expected pairwise agreement between two dis-
tinct models or ensembles of equal size (see Appendix F for
more details). Intuitively, this metric captures how often two
equally plausible models/ ensembles agree, complementing
existing measures of disagreement and discrepancy (Black,
Raghavan, and Barocas 2022; Marx, Calmon, and Ustun
2020; D’ Amour et al. 2022). For the ensembles, we apply
a conservative decision rule: a prediction is made only if all
constituent models agree; otherwise, the ensemble abstains.
Note that we can assess agreement between ensembles only
on samples where both ensembles made a prediction; we
additionally display the fraction of samples that cannot be
evaluated because they are not predicted by the alternative
ensemble in (purple, low opacity in Figure 3).

As shown in Figure 4, using ensembles reduces predictive
multiplicity across all datasets and model architectures. The
main exception is the Breast Ultrasound dataset where sta-
bility decreases (see Figure F and Figure 8 in the Appendix
for more details). The reported stability values for ensem-
bles (in comparison to single models) should be interpreted
as conservative estimates, since samples for which another
ensemble of the same size would abstain from making a pre-
diction are excluded; for these cases, stability cannot be as-
sessed. With respect to accuracy, and in line with prior work,
ensembles improve predictive performance (see, for exam-
ple, Dietterich (2000) for an overview). This improvement
is reflected in an increased proportion of correct predictions
among the covered samples, as indicated by the expansion
of the darker regions within the green bars in Figure 4 (see
also Figure 8 in the Appendix for a sample-wise analysis).
This demonstrates that ensembles not only reduce predic-
tive multiplicity (compared to an alternative, equally plausi-
ble predictor), but also concentrate their predictions on cases
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Figure 4: Ensembles substantially reduce predictive multi-
plicity. Coverage rate (green) and expected pairwise agree-
ment (purple) of the test set across ensembles of sizes 1,
2, 5, and 10. For coverage, the darker segment indicates
the correctly covered samples. For expected pairwise agree-
ment, the darker segment represents stable samples, while
the lighter segment corresponds to samples for which no
judgment can be made due to missing coverage from the
other ensemble. Error bars show standard deviation.



where they are more likely to be correct.

To sum up, using ensembles instead of single models im-
proves both the stability of predictions (with respect to alter-
native models or ensembles) and predictive accuracy. This
improvement comes at the cost of reduced coverage. No-
tably, ensembles improve correctness only for samples that
are ambiguous across ensemble members (i.e., those that
suffer from predictive multiplicity); they do not aid in de-
tecting samples that are misclassified consistently.

4 Discussion

We presented a comprehensive evaluation of the empiri-
cal Rashomon set in the medical domain and show that
the existence of multiple equally valid models challenges
conventional practices of model selection and deployment.
While grounded in healthcare, our findings likely extend to
other high-stakes domains facing similar constraints of un-
certainty, limited data, and ethical responsibility. Tradition-
ally, studies of the Rashomon effect consider only models
with small performance differences as functionally equiva-
lent. Using the hypothesis testing framework of Paes et al.
(2023), we find that even models with substantial differ-
ences can be statistically indistinguishable, underscoring the
limits of conventional performance-based comparisons. This
aligns with previous work (Jordan 2024), which demon-
strates that apparent performance variance across finite test
sets often reflects finite-sample noise rather than true gen-
eralization differences—a problem amplified in data-limited
domains like medicine. Consequently, sampling variability
may distort the empirical Rashomon set by overfitting id-
iosyncrasies of the finite test set. If performance differences
between plausible models grow too large, this may indicate
that the problem itself is ill-suited for reliable classification.
These findings highlight important directions for future re-
search and call for rethinking statistical and methodological
practices in model evaluation (see also Appendix C).

The existence of multiple models with equal quality ren-
ders the selection of a single, supposedly “best”-performing
model effectively arbitrary, undermining the justification for
the model and its predictions. Relying on one such model
exposes some patients to effectively arbitrary and poten-
tially harmful outcomes—those whose predictions would
differ under another, equally valid model. Creel and Hellman
(2022) argue that isolated arbitrary decisions are not inher-
ently morally problematic, except when other rights make
non-arbitrariness normatively relevant. In medicine, such
rights arguably exist: patients are entitled to informed con-
sent! and to consistent, evidence-based, and non-arbitrary
treatment (Olejarczyk and Young 2024; Varkey 2021).
While we identified technical sources of arbitrariness, ques-
tions such as fo what extent should patients have a right
to non-arbitrary, consistent treatment? and how should in-

"While the form and legal status of informed consent vary
across cultural and regulatory contexts, its foundation in patient
self-determination is broadly acknowledged (Angell 1988). Arbi-
trariness in model outcomes risks violating this principle, since pa-
tients cannot meaningfully consent to decisions based on shifting
rationales among equally valid models.

formed consent be interpreted under model multiplicity? re-
quire further ethical and legal analysis. In how far existing
regulatory frameworks—such as the EU Artificial Intelli-
gence Act and related data governance provisions—already
capture these concerns warrants closer examination. If left
unaddressed, model multiplicity, and particularly predictive
multiplicity, may complicate the ethical and legal justifica-
tion of Al-assisted decision-making in healthcare.

Contrary to Black, Raghavan, and Barocas (2022), we

find that higher-capacity models can enhance both accuracy
and predictive stability. We agree, however, that “accuracy
is not an antidote to multiplicity, and model selection can-
not simply be reduced to accuracy-maximization” (Black,
Raghavan, and Barocas 2022) — even more, accuracy-
maximization is an insufficient criterion for model selec-
tion. However, in real-world applications, where overparam-
eterized models are the norm, the number of trainable pa-
rameters may, in fact, have limited relevance for predictive
multiplicity. Samples with higher expected accuracy are pre-
dicted more consistently across models, suggesting that pre-
dictive multiplicity is not inherently detrimental but can be
leveraged beyond the single-model paradigm. Using ensem-
bles and predicting only on consistent samples improves
both accuracy and stability. An ensemble with selective
abstention—deferring unstable cases to human review—
eliminates measurable multiplicity and aligns predictive
confidence with clinical accountability. Our consensus-
based approach, which requires unanimous model agree-
ment, is intentionally simple. More sophisticated methods,
such as the statistical consistency test by Black, Leino, and
Fredrikson (2022), may be better suited for deployment. The
optimal agreement criterion and ensemble size should de-
pend on the application domain, balancing computational
cost and desired confidence.
Our work is not without limitations. We do not fully charac-
terize the broader impact of predictive multiplicity on med-
ical diagnosis tasks, and we focus exclusively on classifi-
cation problems thereby omitting the full diversity of clini-
cal scenarios and modeling paradigms. In line with that, we
do not assess how predictive multiplicity influences down-
stream clinical decision-making or patient outcomes — an
important area for future research. Our aim is to demon-
strate the implications of predictive multiplicity in medi-
cal application domains and to motivate further investigation
into mitigating the risks that model multiplicity poses to the
adoption of machine learning in high-stakes domains.

5 Conclusion

In this study we show that predictive multiplicity is both
pervasive and consequential in medical Al. Small, seem-
ingly inconsequential training variations can lead to differ-
ent predictions for individual patients despite statistically
indistinguishably overall performance of the models. This
finding challenges the widespread assumption that a sin-
gle “best” model can reliably guide decisions in high-stakes
(clinical) contexts. Our results reveal that multiplicity is not
a rare anomaly but a fundamental property of modern pre-
dictive modeling. Recognizing it as a structural property of
the learning landscape—rather than a nuisance—calls for a



rethinking of how models are evaluated, selected, and de-
ployed in high-stakes settings. Ultimately, predictive multi-
plicity matters most where it is least tolerable, at the point of
care, where treatment decisions depend on individual predic-
tions. By acknowledging and characterizing predictive mul-
tiplicity, we seek to catalyze the development of diagnostic
machine learning systems that are not only accurate, but also
robust, equitable, and trustworthy.

A Generalization across Architectures

Figures 5, 6, and 7 present results across four architectures
(ResNet50, GC ViT, EfficientNetB2, and ConvNeXtBase).
Overall, the findings described in the main text gener-
alize across architectures. The only notable difference is
that two models from the Abdominal CT/ConvNeXtBase
combination would have been excluded from the empirical
Rashomon set due to their performance (see Figure 5). Inter-
estingly, based on accuracy alone, these models would likely
appear functionally equivalent—underscoring the value of a
formal approach for verifying model-quality equivalence.

B General Methodology

The following section describes the datasets, model architec-
tures, and training procedures in greater detail. We used four
medical imaging datasets spanning diverse modalities and
classification tasks: Abdominal CT (Bilic et al. 2023), Breast
Ultrasound (Al-Dhabyani et al. 2020), Blood Cell (Acevedo
et al. 2020), and OCT Scan (Kermany et al. 2018). See Ta-
ble B for an overview of dataset properties. All experiments
rely on the official training, validation, and test splits to en-
sure comparability with prior work (see Yang et al. 2023).

Dataset #Train #Val #Test Labels
Abdominal CT 34,561 2,392 8,825 11
Blood Cell 11,959 1,712 3,421 8
Breast Ultras. 546 78 156 2
OCT Scan 97,477 10,832 1,000 4

Table 2: Number of training, validation, test samples and
classes for each dataset.

We evaluated four model architectures ResNet50 (He
et al. 2016), GC ViT (Hatamizadeh et al. 2023), Efficient-
Net(Tan and Le 2019) (variants BO and B4 in subsection 3;
B2 for all others), and ConvNeXtBase (Liu et al. 2022), all
pretrained on ImageNet (Deng et al. 2009). To differ ran-
dom weight initialization, we replaced the final classifica-
tion layer with a randomly initialized dense layer matching
the number of classes in the respective dataset, using a Glo-
rot uniform initializer (Glorot and Bengio 2010).

All training was conducted under deterministic conditions
with fixed random seeds. Within each dataset/architecture
combination, variation across models (i.e., the Rashomon
set exploration) was induces solely by varying the random
seed, which determined the initial weights of the final clas-
sification layer via the Glorot uniform initializer. All other
factors were fixed to ensure reproducibility.

All models were trained with a batch size of 64 using
the AdamW optimizer (Loshchilov and Hutter 2017), with
exponential decay rates of 0.9 and 0.999 for the first and
second-moment estimates, respectively. To select the ini-
tial learning rate, we performed a sweep over 0.01, 0.001,
0.0001 with a fixed random seed (seed = 0); the best-
performing learning rate was used in all subsequent exper-
iments without further tuning. We employed a cosine de-
cay learning rate schedule (Loshchilov and Hutter 2016),
the decay steps matched the number of epochs. We trained
for a fixed number of epochs without early stopping, with
the number of epochs depending on the dataset: 15 epochs
for Breast Ultrasound, five epochs for Blood Cell, OCT
Scan, and Abdominal CT. We used sparse categorical cross-
entropy for all other datasets. Classification accuracy served
as the primary performance metric. Table B reports both
the performance of the initial model and the mean perfor-
mance across the 50 models from the empirical Rashomon
set. Across datasets, our models perform competitively and
often surpass reported benchmarks.

All models and training procedures were implemented
using Keras 3.8. We used different GPUs for different
dataset/architecture combinations; however, all model in-
stances within one empirical Rashomon set were trained on
the same GPU to ensure consistency.

C Related Literature

In the following we provide a more detailed discussion
of related literature that complements the brief overview
presented in the main text. The phenomenon of model
multiplicity was first described by Breiman (2001) as the
Rashomon Effect. They observed that small perturbations
in the training set for decision trees and different weight
initializations for small neural networks can lead to differ-
ent solutions while having approximately equal error rates.
More recent work showed that model multiplicity is ubiqui-
tous in modern machine learning and a key obstacle to reli-
able training models that behave as expected in deployment
(D’Amour et al. 2022). The existence of multiple equally
performing models is particularly relevant with respect to
their effect and consequences in the real world. Several
works highlight the opportunities that model multiplicity of-
fers (Rudin et al. 2024), like the selection of fairer (Dutta
et al. 2020; Wick, Tristan et al. 2019), more interpretable
(Chen et al. 2018), or more robust models (D’ Amour et al.
2022) without impairing predictive performance. Challenges
arising from model multiplicity are among others the in-
consistency of explanations (Hancox-Li 2020; Pawelczyk,
Broelemann, and Kasneci 2020), the risk of fair-washing ex-
planations (Anders et al. 2020) or fairness metrics (Black,
Gillis, and Hall 2024), and predictive multiplicity (Marx,
Calmon, and Ustun 2020)—the main focus of this paper.
Despite the relevance of predictive multiplicity in the
medical domain, systematic investigations into its risks and
mitigation remains limited. To the best of our knowledge
previous work in the medical domain has leveraged model
multiplicity for trustworthy explanations (Kobylifiska et al.
2024), explored the role of underspecification in model ro-
bustness (i.e., a cause for model and predictive multiplicity)
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Figure 5: Variation in accuracy within the empirical Rashomon set. Each plot corresponds to a dataset/architecture combina-
tion, with points representing models trained from different random initialization. Models within the green region cannot be
distinguished at the 95% significance level. Notably, only two models from the Abdominal CT/ConvNeXtBase combination
show a statistically significant performance difference—an effect that would likely remin undetected without formal statistical
testing. The dashed line marks the model for which we performed a hyperparameter search. Axes are scaled uniformly within
each dataset (0.02 units per grid cell).
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Figure 6: Prediction stability as a function of accuracy. Each plot corresponds to a dataset/architecture combination, for visual
clarity, samples are binned by accuracy and APPA. Point size reflects their relative frequency, normalized by dataset size for
comparability. Color encodes stability (green: APPA — 1.0, i.e., stable samples, pink: APP < 1.0). Across all datasets and
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Benchmark  ResNet50 GC ViT EfficientNetB2 ConvNeXt
Breast Ultrasound 86.8 80.8 (83.9) 84.6(84.6) 89.7 (88.5) 88.5 (87.1)
Blood Cell 96.6 98.9 (99.0) 98.7 (98.7) 99.0 (99.1) 99.2 (99.2)
OCT Scan 77.6 87.4(88.3) 87.4(86.0) 86.4 (88.1) 92.5(91.4)
Abdominal CT 92.0 94.6 (94.4) 91.2(91.6) 93.5 (93.6) 95.3 (95.2)

Table 3: For each dataset (columns) and model architecture (rows), we report the initial model’s test performance and, in
parenthesis, the mean test accuracy across 50 models from the empirical Rashomon set. Best-performing initial models per
dataset are highlighted in bold. Benchmark results are from Yang et al. (2023) (highest accuracy across seven architectures).

(D’ Amour et al. 2022) without addressing how such instabil-
ity affects individual predictions, or proposed bootstrapping
as a remedy to predictive multiplicity (Riley et al. 2023; Ri-
ley and Collins 2023).

Bootstrapping trains ensemble members on different re-
sampled versions of the training data to induce diversity.
While effective for deterministic models lacking intrinsic
sources of randomness, modern machine learning models in-
herently incorporate stochasticity, e.g., through random ini-
tialization, data shuffling, and optimization dynamics. Fur-
ther, bootstrapping is computationally intensive and often
not economically sensible; Riley and Collins (2023) recom-
mend the training of at least 200 models. Moreover, it is im-
practical in medical applications, where datasets are typi-
cally small due to privacy constraints, regulatory limits, and
the high cost of expert annotation (Kaissis et al. 2020). When
models have multiple local optima, bootstrapping can even
degrade performance, as each ensemble member only ob-
serves a fraction of the (already limited) training data. Em-
pirically, Lakshminarayanan, Pritzel, and Blundell (2017)
found that training each model on the entire dataset—with
random initialization and data shuffling—achieved better
performance than bootstrapping. In summary, while boot-
strapping is conceptually simple, ensembling full-data mod-
els offers a more practical and effective approach for deep
learning models with inherent stochasticity and in data-
limited medical settings. In our experiments (see Section 3),
we found that ensembles of as few as five models with an
abstention capability substantially reduce predictive multi-
plicity while improving accuracy.

D Numerical Rashomon Parameter
Estimation

To identify the range of statistically indistinguishable mod-
els within the empirical Rashomon set, we determine the
smallest error rate e for which the CP confidence intervals of
two models’ empirical errors no longer overlap. This point
marks the boundary at which we can reject the null hypoth-
esis that both models have equal true error rates at signifi-
cance level o (we choose o = 0.05).

We compute € numerically using a bisection search. Given
the number of samples in the respective (finite) dataset n
and ¢y, which we define as the lowest obtained error rate
among the 50 models in the empirical Rashomon set, we
first compute its upper CP bound U B(«, neg, n) (see Ta-
ble B for the number of samples per dataset and split; see
Table D for ¢ and € values). We then search for the smallest

Dataset Model Validation Test
€0 € €0 €
Breast ResNet 5.1 218 9.6 218

GCVviT 5.1 218 122 250
EB2 26 167 71 179
Conv 5.1 21.8 109 237

ResNet 0.7 1.8 07 1.4
GCviT 09 21 1.1 1.9
EB2 0.6 1.8 0.7 1.5
Conv 0.5 1.6 0.6 1.3

Abdominal CT ResNet 0.6 1.4 52 6.2
GCViT 1.2 2.3 7.0 8.2
EB2 0.6 1.4 5.8 6.9
Conv 0.4 1.2 4.0 4.9

ResNet 2.0 26 9.1 13.1
GCviT 2.1 27 119 164
EB2 19 25 104 146
Conv 1.6 22 64 99

Blood Cell

OCT Scan

Table 4: Values of the reference model ¢y and Rashomon
parameter €.

€, such that LB(«, ne,n) = UB(a, neg, n), where LB and
UB are the lower and upper CP confidence limits respec-
tively. The bisection procedure iterates until convergences
(tolerance < 1078) or after 10,000 steps. We adopt an ex-
act binomial model by rounding ne to the nearest integer,
ensuring that the CP bounds are computed from valid dis-
crete sample counts. Note that overlapping confidence inter-
vals are no formal statistical test for evaluate the equality of
means (e.g., Schenker and Gentleman 2001); the approach
is conservative and may miss small but statistically signif-
icant differences. However its simplicity and graphical in-
terpretability makes it appealing for practitioners (see Paes
et al. 2023 for more details and alternatives).

The Rashomon parameter € is determined by the base-
line error €, the dataset size n and the confidence level
(1 — ). Intuitively, a smaller « (i.e., higher confidence)
leads to wider CP intervals, which in turn increase the in-
distinguishability region. A larger ¢y (worse baseline perfor-
mance) also enlarges the region, since performance differ-
ences must be larger before they become statistically mean-
ingful. Finally, increasing n narrows the region, because
more data reduces statistical uncertainty and makes small



differences detectable.

Model selection is often guided by marginal error rates,
i.e., a model’s overall accuracy, which is well-captured by
the CP confidence intervals presented in the main body. Mc-
Nemar’s test (McNemar 1947) complements this perspec-
tive by assessing whether two models differ on the same in-
stances: rather than comparing average error levels, it eval-
uates whether two models disagree on the same instances,
thereby revealing differences that marginal errors may ob-
scure.

We first apply McNemar’s test to the first model—the one
selected via hyperparameter search—and assess how many
of the 49 alternative models in the empirical Rashomon set
cannot be distinguished from it at the 95% significance level.
Table 5 reports the proportion of alternative models that are
statistically indistinguishable on the validation and test sets,
that is, the proportion for which the null hypothesis cannot
be rejected (p > 0.05). These results corroborate our conclu-
sions in the subsection 3: the first model is not exceptional.
Across datasets, 85-100% of models are statistically indis-
tinguishable from it on the validation set, and the majority
remain so on the test set (besides the Abdominal CT/ GCViT
and OCT Scan/ EfficientNetB2). For the datasets Abdominal
CT and OCT Scan, we see more variability, especially w.r.t.
the test set, suggesting split instability. Overall, according
to McNemar’s test, the first model appears far from unique,
reinforcing that model selection is highly underdetermined.

We next apply the same procedure using the best model
among the 50 candidates as the reference model. Relative to
the first model, the proportion of statistically indistinguish-
able models becomes smaller, slightly for Blood Cell, Breast
Ultrasound and CheXpert, but more substantially for Ab-
dominal CT and OCT Scan. For example, on Abdominal
CT with ConvNeXtBase, only 16.3% of models are indis-
tinguishable from the best model on the validation split, and
12.2% on the test split.

While varying model initialization results in models that
perform better according to McNemar’s test, even the “best”
model is far from unique: in every combination, other mod-
els exist that cannot be distinguished from it, indicating that
it does not represent a single “optimal” solution.

E APPA

We assess per-sample prediction stability using Adjusted
Pairwise Prediction Agreement, which quantifies the prob-
ability that two models, sampled uniformly at random from
the empirical Rashomon set produce the same predictions.

Formally, let M > 1 denote the number of models, each
predicting a class ¢ € {1, ..., K'} for the same sample z. For
a given input z, let n.(z) represent the number of models
that predict class c. The unnormalized pairwise prediction
agreement is defined as

Zf:l ne(x)(ne(x) — 1) )
M(M —1) '

As the minimal attainable pairwise agreement depends on

both the number of models M and classes K (intuitively,

with fewer classes than models, some models must neces-

sarily coincide in their predictions), we normalize by the

PPA(z) =

achievable minimum PPA,;;, (M, K). This minimum cor-
responds to model predictions being distributed as uniformly
as possible across classes; with ¢, = M mod K, r classes
receive ¢ + 1 predictions, and (K — r) classes receive g pre-
dictions, resulting in

(K —7r)glg—1)+r(qg+1)q
M(M - 1) '

PPA i (M, K) = )

We then compute APPA (x) as

PPA(z) — PPAin(M, K)

APPA(z) = = PPAn (M, K) 3)
which captures the excess agreement beyond what is ex-
pected from maximally uniform predictions, enabling com-
parison across tasks with differing numbers of models or
classes. PPA,,;, is a reasonable default in the absence of
prior knowledge about the distribution. When information
about the true distribution is available (such as the preva-
lence), using this prior can be a more appropriate choice.

F Ensembling predictions

We evaluate the effectiveness of ensembles to reduce predic-
tive multiplicity by comparing prediction stability and cov-
erage rates pairwise between single models and ensembles
of size two, five, and ten. Prediction stability is measured as
the expected pairwise agreement between two distinct mod-
els (or ensembles of equal size) on the test set and averaged
over 100 repetitions. To avoid zero-inflation, we draw model
or ensemble pairs without replacement from the empirical
Rashomon set. For ensembles, we apply a conservative deci-
sion rule: a prediction is made only if all constituent models
agree; otherwise, the ensemble abstains.

Figure 8 shows per-sample distributions of coverage, sta-
bility (measured by APPA), and correctness for increasing
ensemble sizes across all datasets (for ResNet50). For each
dataset and ensemble size k € {1,2,5, 10}, predictions are
obtained from multiple random disjoint ensembles, and per-
sample metrics are computed by aggregating over 100 en-
semble draws. To enable distributional comparison, samples
are sorted for each metric and ensemble size, and plotted as
a function of the fraction of samples sorted by the respec-
tive metric. Coverage quantifies the probability that a sam-
ple receives a prediction from the ensemble. As expected,
increasing ensemble size leads to lower coverage, indicating
that larger ensembles are more conservative in issuing pre-
dictions. This is reflected by stability, measured via APPA,
which captures the consistency of predictions across ensem-
bles. As ensemble size increases, stability improves for a
growing fraction of samples in all datasets. The increase
in stability with more ensemble members is little for the
Blood Cell dataset which exhibits uniformly high stability
even for a single model, indicating that predictions are al-
ready consistent and that additional ensemble members pro-
vide only marginal gains. Correctness, defined as the prob-
ability of being correct conditional on making a prediction,
reveals a more nuanced behavior. While increasing ensem-
ble size generally improves correctness, the effect is het-
erogeneous across samples. In particular, the sorted correct-
ness curves exhibit a change in curvature. For lower-quantile
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Figure 8: Per-sample coverage, stability, and correctness as a function of ensemble size across datasets, exemplary for ResNet50.
For each dataset and ensemble size (k € {1,2,5,10}), we compute per-sample metrics over random disjoint single models or
ensembles (of equal size) and visualize their empirical distributions by sorting samples according to the respective metric
value. The x-axis denotes the fraction of samples, and the y-axis shows the corresponding metric value. Coverage measures the
probability that a sample is predicted by the ensemble, stability (APPA) captures the agreement of predictions across sampled
ensembles, and correctness measures the probability that a prediction is correct given that a prediction is made. Increasing
ensemble size consistently reduces coverage while improving stability across datasets, with dataset-specific saturation behav-
ior. Correctness exhibits a heterogeneous response to ensembling, revealing distinct regimes of samples with limited versus
substantial gains from larger ensembles.



First model ResNet50 GCViIT EfficientNetB2 ConvNeXtBase
Blood Cell 100.0/959 98.0/100.0 91.8/100.0 100.0/95.9
Abdominal CT 61.2/85.7 959/34.7 100.0/ 89.8 85.7/67.3
OCT Scan 100.0/63.3 100.0/55.1 83.7/40.8 959/51.0
Breast Ultrasound  83.7/75.5 100.0/100.0 100.0/98.0 100.0/ 100.0
Best model ResNet50 GCViIT EfficientNetB2 ConvNeXtBase
Blood Cell 79.6/38.8 93.9/91.8 87.8/98.0 959/81.6
Abdominal CT 61.2/469 51.0/16.3 83.7/26.5 16.3/12.2
OCT Scan 85.7/18.4 71.4/34.7 83.7/36.7 63.3/16.3
Breast Ultrasound  63.3/40.8 87.8/85.7 83.7/59.2 100.0/91.8

Table 5: Percentage of models in the Rashomon set under McNemar’s test for each architecture/dataset pair. For each entry,
the left value corresponds to the validation split, and the right value corresponds to the test split. The upper block uses the first
model as a reference, while the lower block uses the best model.

ResNet50 GCViT EfficientNetB2 ConvNeXtBase
Blood Cell 99.30/99.39 99.12/99.32  99.39/99.46 99.63/99.70
Abdominal CT 95.89/97.54 93.31/95.88 95.91/97.60 96.35/97.65
OCT Scan 94.59/96.24 93.95/96.19 95.28/97.04 95.93/97.42
Breast Ultrasound 89.99/87.85 91.17/93.48  89.40/86.97 92.86/93.73

Table 6: Percentage of stable predictions are higher for ensembles than for single models, except for ResNet50 and Efficient-
NetB2 on the Breast Ultrasound dataset. We report the mean percentage of samples with stable predictions for a single model
and an ensemble of size ten models over 100 repetitions. For a single model, stability is computed over all test samples (full
coverage) by comparing predictions to those of another single model. For an ensemble, stability is computed only on samples
for which all ensemble members agree and is evaluated by comparison with an ensemble of the same size. Note, reported
ensemble percentages are conservative estimates, as samples on which another ensemble of the same size would abstain from

prediction are excluded; for these samples, no stability assessment can be made.

samples, correctness improves slowly with ensemble size,
indicating errors that are largely irreducible and likely dom-
inated by systematic bias or intrinsic ambiguity. In contrast,
higher-quantile samples benefit substantially from ensem-
bling, with correctness increasing rapidly as ensemble size
SrOwS.

Taken together, these results show that increasing en-
semble size trades coverage for stability and selectively
improves correctness. While ensembles enhance predictive
consistency and accuracy for a substantial subset of sam-
ples, they also expose a class of samples for which errors
remain largely irreducible, highlighting the importance of
per-sample analysis when assessing ensemble behavior.
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