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Abstract
Decisions made by machine learning models may
have lasting impacts over time, making long-term
fairness a crucial consideration. It has been shown
that when ignoring the long-term effect of deci-
sions, naively imposing fairness criterion in static
settings can actually exacerbate bias over time.
To explicitly address biases in sequential decision-
making, recent works formulate long-term fair-
ness notions in Markov Decision Process (MDP)
framework. They define the long-term bias to be
the sum of static bias over each time step. How-
ever, we demonstrate that naively summing up the
step-wise bias can cause a false sense of fairness
since it fails to consider the importance difference
of states during transition. In this work, we intro-
duce a new long-term fairness notion called Equal
Long-term BEnefit RaTe (ELBERT), which ex-
plicitly considers state importance and can pre-
serve the semantics of static fairness principles in
the sequential setting. Moreover, we show that the
policy gradient of Long-term Benefit Rate can be
analytically reduced to standard policy gradient.
This makes standard policy optimization methods
applicable for reducing the bias, leading to our
proposed bias mitigation method ELBERT-PO.
Experiments on three dynamical environments
show that ELBERT-PO successfully reduces bias
and maintains high utility.

1. Introduction
The growing use of machine learning in decision making
systems has raised concerns about potential biases to differ-
ent sub-populations from underrepresented ethnicity, race,
or gender (Dwork et al., 2012). In the real-world scenario,
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the decisions made by these systems can not only cause
immediate unfairness, but can also have long-term effects
on the future status of different groups. For example, in a
loan application decision-making case, excessively denying
loans to individuals from a disadvantaged group can have
a negative impact on their future financial status and thus
exacerbate the unfair inferior financial status in the long run.

It has been shown that when ignoring the long-term effects,
naively imposing static fairness constraints such as demo-
graphic parity (Dwork et al., 2012) or equal opportunity
(EO) (Hardt et al., 2016) can actually harm minorities (Liu
et al., 2018; D’Amour et al., 2020). To explicitly address
biases in sequential decision making problems, recent works
(Wen et al., 2021; Chi et al., 2021; Yin et al., 2023) formulate
the long-term effects in the framework of Markov Decision
Process (MDP). MDP models the dynamics through the
transition of states, e.g. how the number of applicants and
their financial status change at the next time step given the
current decisions. Also, MDP allows leveraging techniques
in reinforcement learning (RL) for finding policies with
better utility and fairness.

In sequential decision-making, states have different impor-
tance for fairness considerations. It is possible to transit
from less important states to more important ones and vice
versa. However, existing fairness criteria in the MDP frame-
work fail to account for such difference. For example, con-
sider the loan approval decision-making with two time steps
and EO as the fairness criterion, as shown in Figure 1. For
group blue, the state at time t+ 1 is more important than
time t, since there are more blue applicants at t+ 1. For
group red, state t is more important than t+ 1. For group
blue, the bank provides a high 100

100
acceptance rate on a

more important state t+ 1 and a low 0
1 acceptance rate on

a less important state at t. However, for group red, the bank
supplies a low 0

100 acceptance rate on a more important
state at t and a high 1

1
acceptance rate on a less important

state at t+ 1. Therefore, group blue is more advantaged
than group red, and bias emerges. In fact, overall, the bank
makes an overall 100

101 acceptance rate for group blue, much
higher than 1

101 for group red.

In a prior work (Yin et al., 2023), the authors define the
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Figure 1. (Left) A loan application example with two groups in blue and red. At time step t, the bank approves 0 loans out of 1 qualified
applicant from group blue and 0 loans out of 100 qualified applicants from group red. At time t+ 1, the bank approves 100 loans out of
100 qualified applicants from group blue and 1 loans out of 1 qualified applicants from group red. (Right) The acceptance rate is 0 at
time t and 1 at time t+ 1 for both groups, and thus the step-wise biases are zero and introduce a false sense of fairness. In contrast, our
proposed Long-term Benefit Rate calculates the bias as | 1

101
− 100

101
| and successfully identifies the bias.

long-term bias as the sum of step-wise bias (e.g. divergence
of group acceptance rates), which, in the loan approval case,
is calculated as ( 01 −

0
100 )

2 + (100
100
− 1

1
)2 = 0. Another

prior metric (Chi et al., 2021; Wen et al., 2021) defines
the long-term bias as the difference of cumulative group
rewards (e.g. acceptance rates) between two groups, i.e.
( 01 + 100

100
) − ( 0

100 + 1
1
) = 0. Neither of these metrics

consider the state importance difference, i.e., the state with
100 qualified applicants is more important than the one with
only 1 applicant. In fact, both metrics claim that there is no
bias in this situation, leading to a false sense of fairness.

In this work, we introduce a new long-term fairness criterion
called Equal Long-term Benefit Rate (ELBERT). Specifi-
cally, we define Long-term Benefit Rate, a general measure
for the long-term well-being of a group, to be the ratio
between the cumulative group supply (e.g. number of ap-
proved loans) and cumulative group demand (e.g. number
of qualified applicants). For instance, in the loan application
example, Long-term Benefit Rate calculates 100

101 for group
blue and 1

101 for group red. By first summing up group
supply and group demand separately and then taking the
ratio, Long-term Benefit Rate takes into account that the
group demand can vary over time steps. Thus ELBERT ex-
plicitly accounts for the change of state importance during
transition, eliminating the false sense of fairness induced by
prior metrics. Moreover, ELBERT is a general and versatile
framework that can adapt several static fairness notions to
their sequential setting counterparts through customization
of group supply and group demand.

Furthermore, we propose a principled bias mitigation
method, ELBERT Policy Optimization (ELBERT-PO), to
reduce the differences of Long-term Benefit Rate among
groups. Note that optimizing Long-term Benefit Rate is
challenging since it is not in the standard form of cumula-
tive reward in RL and how to compute its policy gradient
was previously unclear. To address this, we show that the

policy gradient of Long-term Benefit Rate can be analyti-
cally reduced to the standard policy gradient in RL. This
makes efficient bias mitigation viable through adapting stan-
dard policy optimization methods. Experiments on three
simulation environments show that our formulation and so-
lution lead to significant improvement on group fairness
while maintaining high utility.

Summary of Contributions. (1) We propose a new long-
term fairness notion in the MDP setting, Equal Long-term
Benefit Rate, which adapts static fairness notions and consid-
ers importance difference of states during transition. (2) We
show that we can mitigate bias by manipulating Long-term
Benefit Rate through adapting standard policy optimization
methods. (3) Experimentally, we show that our bias miti-
gation method significantly improves fairness in sequential
decision making.

2. ELBERT: Equal Long-term Benefit Rate for
long-term fairness

Standard MDP Notations. A general sequential decision-
making problem can be formulated as an MDP M =
⟨S,A, µ, T,R, γ⟩, where S is the state space (e.g. credit
scores of applicants in the loan approval decision making
mentioned above), µ is the initial state distribution, A is the
action space (e.g. reject or approval), T : S × A → ∆(S)
is the transition dynamic, R : S × A → R is the im-
mediate reward function (e.g. bank’s earned profits) and
γ is the discounting factor. The goal of RL is to find
a policy π : S → ∆(A) to maximize cumulative re-
ward η(π) := Eπ

[∑∞
t=0 γ

tR(st, at)
]
, where s0 ∼ µ,

at ∼ π(·|st), st+1 ∼ T (·|st, at).

2.1. Supply-Demand Markov Decision Process for
long-term fairness

Our goal is to formulate fairness in MDP, which requires
defining the long-term well-being of each group. This mo-
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tivates us to rethink the static notions of group well-being
and how to adapt them to MDP.

Supply and demand in static settings. In many static
fairness notions, the formulation of the group well-being
can be unified as the ratio between supply and demand. For
example, equal opportunity (EO)(Hardt et al., 2016) defines
the well-being of group g as P[Ŷ = 1|G = g, Y = 1] =
P[Ŷ=1,Y=1,G=g]

P[Y=1,G=g] , where Ŷ ∈ {0, 1} is the binary decision
(loan approval or rejection), Y ∈ {0, 1} is the target variable
(repay or default) and G is the group ID. In practice, given
a dataset, the well-being of group g, using the notion of EO,
is calculated as Sg

Dg
, where the supply Sg is the number of

samples with {Ŷ = 1, Y = 1, G = g} and the demand Dg

is the number of samples with {Y = 1, G = g}.

Note that such formulation in terms of supply and demand
is not only restricted to EO, but is also compatible to other
static fairness notions such as demographic parity (Dwork
et al., 2012), equalized odds (Hardt et al., 2016) and accu-
racy parity. We provide additional details in Appendix A.

Adapting to MDP. In the sequential setting, each time
step corresponds to a static dataset that comes with group
supply and group demand. Therefore, to adapt them to MDP,
we assume that in addition to immediate reward R(st, at),
the agent receives immediate group supply Sg(st, at) and
immediate group demand Dg(st, at) at every time step t.
This is formalized as the Supply-Demand MDP (SD-MDP)
as shown in Figure 2 and defined as follows.

Environment
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𝒔𝒕
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𝒂𝒕

Reward
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Figure 2. Supply Demand MDP (SD-MDP). In addition to the
standard MDP (in black), SD-MDP returns group demand and
group supply as fairness signals (in green).

Definition 2.1 (Supply-Demand MDP (SD-MDP)). Given
a group index set G and a standard MDP M =
⟨S,A, µ, T,R, γ⟩, a Supply-Demand MDP is MSD =
⟨S,A, µ, T,R, γ, {Sg}g∈G, {Dg}g∈G⟩. Here {Sg}g∈G

and {Dg}g∈G are immediate group supply and group de-
mand function for group g.

Compared with the standard MDP, in SD-MDP, an agent re-
ceives additional fairness signals Sg(st, at) and Dg(st, at)
after taking action at at each time step. To characterize the

long-term group supply and group demand of a policy π,
we define cumulative group supply and group demand as
follows.
Definition 2.2 (Cumulative Supply and Demand). De-
fine the cumulative group supply as ηSg (π) :=

Eπ

[∑∞
t=0 γ

tSg(st, at)
]

and cumulative group demand as
ηDg (π) := Eπ

[∑∞
t=0 γ

tDg(st, at)
]
.

2.2. Proposed long-term fairness metric: Equal
Long-term Benefit Rate (ELBERT)

In the following definitions, we propose to measure the well-
being of a group by the ratio of cumulative group supply
and group demand and propose the corresponding fairness
metric: Equal Long-term Benefit Rate (ELBERT).
Definition 2.3 (Long-term Benefit Rate). Define the Long-

term Benefit Rate of group g as
ηS
g (π)

ηD
g (π)

. Define the bias
of a policy as the maximal difference of Long-term Ben-

efit Rate among groups, i.e., b(π) = maxg∈G
ηS
g (π)

ηD
g (π)

−

ming∈G
ηS
g (π)

ηD
g (π)

.

RL with ELBERT. Under the framework of ELBERT, the
goal of reinforcement learning with fairness constraints is to
find a policy to maximize the cumulative reward and keep
the bias under a threshold ϵ. In other words,

max
π

η(π) s.t. b(π) = max
g∈G

ηSg (π)

ηDg (π)
−min

g∈G

ηSg (π)

ηDg (π)
≤ ϵ.

(1)

Relationship with static fairness notions. Note that in the
special case when the length of time horizon is 1, Long-term
Benefit Rate reduces to Sg

Dg
, i.e., the static fairness notion.

Versatility. By choosing the proper definition of group
supply Sg and group demand Dg according to the static
fairness notion, Equal Long-term Benefit Rate is customized
to adapt the static notion to sequential decision-making.

Comparison to other fairness metrics in MDP. The fair-
ness notion called return parity proposed in previous work
(Wen et al., 2021; Chi et al., 2022) use cumulative individual
rewards to measure the group well-being. It can be viewed
as a special case of Long-term Benefit Rate with the demand
function Dg(s, a) being a constant function, and ignoring
the importance difference of states during transition. As
demonstrated in Section 1, this metric can cause a false
sense of fairness.

3. Achieving Equal Long-term Benefit Rate
In this section, we will develop a bias mitigation algorithm,
ELBERT Policy Optimization (ELBERT-PO) to solve the
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RL problem with the fairness considerations in Equation (1).
In Section 3.1, we will formulate the training objective as
a policy optimization problem and lay out the challenge
of computing the policy gradient of this objective. In Sec-
tion 3.2, we demonstrate how to compute the policy gradient
of this objective by reducing it to standard policy gradient.
In Section 3.3, we extend the objective and its solution to
multi-group setting and deal with the non-smoothness of the
maximum and minimum operator.

3.1. Training objective and its challenge

Objective. We first consider the special case of two groups
G = {1, 2}, where Long-term Benefit Rate reduces to
| η

S
1 (π)

ηD
1 (π)

− ηS
2 (π)

ηD
2 (π)
|. To solve the constrained problem in Equa-

tion (1), we propose to solve the unconstrained relaxation
of it by maximizing the following objective:

J(π) = η(π)−αb(π)2 = η(π)−α( η
S
1 (π)

ηD1 (π)
− ηS2 (π)

ηD2 (π)
)2 (2)

where α is a constant controlling the trade-off between the
total return and the bias.

Challenge: policy gradient of b(π). To optimize the objec-
tive above, it is natural to use policy optimization methods
that estimate the policy gradient and use stochastic gradient
ascent to directly improve policy performance. However, in
order to compute the policy gradient ∇πJ(π) of the objec-
tive function J(π) in Equation (2), one needs to compute
∇πη(π) and∇πb(π). Although the term∇πη(π) is a stan-
dard policy gradient that has been extensively studied in
RL(Schulman et al., 2016), it was previously unclear how
to deal with ∇πb(π) = ∇π(

ηS
1 (π)

ηD
1 (π)

− ηS
2 (π)

ηD
2 (π)

). In particular,
since b(π) is not of the form of expected total return, one
cannot directly apply Bellman Equation to compute b(π).
Therefore, it is unclear how to leverage standard policy
optimization methods(Schulman et al., 2017; 2015) to the
objective function J(π).

3.2. Solution to the objective

In this section, we show how to apply existing policy op-
timization methods to solve the objective in Equation (2).
This is done by analytically reducing the policy gradient
∇πb(π) of the bias to standard policy gradients.

Gradient of the objective. For the simplicity of nota-
tion, we denote the term b(π)2 in Equation (2) as a func-

tion of Long-term Benefit Rate { η
S
g (π)

ηD
g (π)
}g∈G as b(π)2 =

h(
ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

), where h(z1, z2) = (z1 − z2)
2. Therefore,

J(π) = η(π) − h(
ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

). By chain rule, we can

compute the gradient of the objective as follows.

∇πJ(π) = ∇πη(π)− α
∑
g∈G

∂h

∂zg
∇π(

ηSg (π)

ηDg (π)
) (3)

where ∂h
∂zg

is the partial derivative of h w.r.t. its g-th co-

ordinate, evaluated at ( ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

). Note that ∇πη(π)

in Equation (3) is a standard policy gradient, whereas

∇π(
ηS
g (π)

ηD
g (π)

) is not.

Reduction to standard policy gradient. To estimate

∇π(
ηS
g (π)

ηD
g (π)

), we apply the chain rule again as follows

∇π(
ηSg (π)

ηDg (π)
) =

1

ηDg (π)
∇πη

S
g (π)−

ηSg (π)

ηDg (π)2
∇πη

D
g (π) (4)

Therefore, in order to estimate ∇π(
ηS
g (π)

ηD
g (π)

), one only
needs to estimate the expected total supply and demand
ηSg (π), η

D
g (π) as well as the standard policy gradients

∇πη
S
g (π),∇πη

D
g (π).

Advantage function for policy gradient. It is
common to compute a policy gradient ∇πη(π) using
Eπ{∇π log π(at|st)At}, where At is the advantage func-
tion of the reward R. Denote the advantage functions
of R, {Sg}g∈G, {Dg}g∈G as At, {AS

g,t}g∈G, {AD
g,t}g∈G.

∇π(
ηS
g (π)

ηD
g (π)

) in Equation (4) can thus be written as

Eπ

{
∇π log π(at|st)(

1

ηDg (π)
AS

g,t −
ηSg (π)

ηDg (π)2
AD

g,t)

}
(5)

By plugging Equation (5) into Equation (3), we obtain the
gradient of the objective J(π) using advantage functions as
follows

∇πJ(π) = Eπ{∇π log π(at|st)Afair
t } (6)

Therefore, ∇πJ(π) = Eπ{∇π log π(at|st)Afair
t }, where

Afair
t = At − α

∑
g∈G

∂h
∂zg

( 1
ηD
g (π)

AS
g,t −

ηS
g (π)

ηD
g (π)2

AD
g,t) is de-

fined as the fairness-aware advantage function. In practice,
we use PPO (Schulman et al., 2017) with the fairness-aware
advantage function Afair

t to update the policy network for
better training stability. The resulting algorithm ELBERT
Policy Optimization (ELBERT-PO), is given in Algorithm 1.
In particular, in line 11-13, PPO objective JCLIP(θ) is used,
where Êπθ

denotes the empirical average over samples col-
lected by πθ and ϵ is a hyperparameter for clipping.

3.3. Extension to multi-group setting

Challenge: Non-smoothness in multi-group bias. When
there are multiple groups, the objective is J(π) = η(π)−
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Algorithm 1 ELBERT Policy Optimization (ELBERT-PO)

1: Input: Group set G, bias trade-off factor α, bias func-
tion h, temperature β (if multi-group)

2: Initialize policy network πθ(a|s), value networks Vϕ(s),
VϕS

g
(s), VϕD

g
(s) for all g ∈ G

3: for k ← 0, 1, ... do
4: Collect a set of trajectories D ← {τk} by running

πθ in the environment, each trajectory τk contains
τk :← {(st, at, rt, st+1)} , t ∈ [|τk|]

5: Compute the cumulative rewards, supply and demand
η, ηSg , η

D
g of πθ using Monte Carlo

6: for each gradient step do
7: Sample a mini-batch from D
8: Compute advantages At, A

S
g,t, A

D
g,t using the cur-

rent value networks Vϕ(s), VϕS
g
(s), VϕD

g
(s) and

mini-batch for all g ∈ G

9: Compute ∂h
∂zg

at ( ηS
1

ηD
1
, · · · , ηS

M

ηD
M

)

10: Compute the fairness-aware advantage function:

Afair
t = At − α

∑
g∈G

∂h

∂zg
(
1

ηDg
AS

g,t −
ηSg

(ηDg )2
AD

g,t)

11: Rt(θ)← πθ(st, at)/πθold(st, at)

12: JCLIP(θ)← Êπθ
[min(Rt(θ)A

fair
t , clip(Rt(θ), 1−

ϵ, 1 + ϵ)Afair
t )]

13: Update the policy network θ ← θ + τ∇θJ
CLIP(θ)

14: Fit Vϕ(s), VϕS
g
(s), VϕD

g
(s) by regression on the

mean-squared error
15: end for
16: end for

αb(π)2 = η(π) − α(maxg∈G
ηS
g (π)

ηD
g (π)

− ming∈G
ηS
g (π)

ηD
g (π)

)2.
However, the max and min operator can cause non-
smoothness in the objective during training. This is because
only the groups with the maximal and minimal Long-term
Benefit Rate will affect the bias term and thus the gradient
of it. This is problematic especially when there are sev-
eral other groups with Long-term Benefit Rate close to the
maximal or minimal values. The training algorithm should
consider all groups and decrease all the high Long-term
Benefit Rate and increase low ones.

Soft bias in multi-group setting. To solve this, we re-
place the max and min operator in b(π) with their smoothed
version controlled by the temperature β > 0 and de-

fine the soft bias bsoft(π) as 1
β log

∑
g∈G exp(β

ηS
g (π)

ηD
g (π)

) −
1

−β log
∑

g∈G exp(−β ηS
g (π)

ηD
g (π)

). The relationship between
the exact and soft bias is characterized by the following:

Proposition 3.1. Given a policy π, the number of groups M
and the temperature β, b(π) ≤ bsoft(π) ≤ b(π) + 2 logM

β .

In other words, the soft bias is an upper bound of the exact
bias and moreover, the quality of such approximation
is controllable: the gap between the two decreases as
β increases and vanishes when β → ∞. We provide
the proof in Appendix B. Therefore, we maximize
J(π) = η(π) − αbsoft(π)2 in the multi-group settings.
We write bsoft(π)2 = h(

ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

, ...,
ηS
M (π)

ηD
M (π)

) where

h(z) = [ 1β log
∑

g exp(βzg) −
1

−β log
∑

g exp(−βzg)]2,
z = (z1, · · · , zM ) and J(π) = η(π) −
h(

ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

, ...,
ηS
M (π)

ηD
M (π)

). The gradient ∇πJ(π) is
still computed by Equation (3) and the training pipeline still
follows Algorithm 1.

4. Related Work
Fairness criterion in MDP. A line of work has formulated
fairness in the framework of MDP. The work in (D’Amour
et al., 2020) proposes to study long-term fairness in MDP
using simulation environments and shows that static fair-
ness notions can contradict with long-term fairness. Return
parity (Chi et al., 2022; Wen et al., 2021) assumes that the
long-term group benefit can be represented by the sum of
group benefit at each time step. However, as illustrated in
Section 1, this assumption is problematic since it ignores the
importance difference among states during transition. The
work (Yin et al., 2023) formulates the long-term bias as the
sum of static bias at each time steps, suffering from the same
problem. Our proposed ELBERT explicitly considers the
importance difference among states through the SD-MDP.
Another work (Yu et al., 2022) assumes that there exists
a long-term fairness measure for each state and proposes
A-PPO, a advantage regularized policy optimization method
to encourage the bias at the next time step to be smaller than
the bias at the current time step. However, the assumption
of (Yu et al., 2022) does not hold in general since for a tra-
jectory that ends with a certain state, the long-term fairness
depends on the whole history of state-action pairs instead of
only a single state. Moreover, APPO only encourages the
bias of the next time step to be smaller than the current one,
whereas our proposed ELBERT-PO considers the bias in all
future steps.

Long-term fairness in other temporal models. Long-
term fairness is also studied in other temporal models. The
work in (Liu et al., 2018) shows that naively imposing static
fairness constraints in a one-step feedback model can actu-
ally harm the minority, showing the necessity of explicitly
accounting for sequential decisions. Effort-based fairness
(Heidari et al., 2019; Guldogan et al., 2022) measures bias
as the disparity in the effort made by individuals from each
group to get a target outcome, where the effort only consid-
ers one future time step. Long-term fairness has also been
studied in multi-armed bandit (Chen et al., 2020), which
do not consider how decisions influences the state of the
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environment. In this work, we study long-term fairness in
MDP since it is a general framework to model the dynamics
in real world and allows leveraging existing RL techniques
for finding high-utility policy with fairness constraints.

5. Experiment
In this section, we investigate the effectiveness of the
proposed ELBERT-PO in the loan approval environ-
ment (D’Amour et al., 2020). In Appendix C.3, we also
demonstrate the performance of ELBERT-PO in a multi-
group setting in the attention allocation environment.

Lending environment. In this environment, a bank (the
RL agent) decides whether to accept or reject loan appli-
cations and the applicants arrive one at a time sequentially.
There are two groups among applicants (G = {1, 2}). The
applicant at each time t is from one of the groups gt and has
a credit score sampled from the credit score distribution of
group gt. A higher credit score means higher repaying prob-
ability if the loan is approved. Group 2 is disadvantaged
with a lower mean of the initial credit score distribution
compared with Group 1. As for the dynamics, at time t, the
credit score distribution of group gt shifts higher if its group
member gets loan approval (i.e. Ŷt = 1) and repays the loan
(i.e. Yt = 1). The immediate reward is the increment of the
bank cash at each time step.

Bias metric. The bias is defined by∣∣∑t 1{Gt=0,Yt=Ŷt=1}∑
t 1{Gt=0,Yt=1} −

∑
t 1{Gt=1,Yt=Ŷt=1}∑

t 1{Gt=1,Yt=1}
∣∣, which

is the long-term extension of EO, where the group
well-being is measured by the true positive rate. In
the Long-term Benefit Rate framework, group supply
Dg(st, at) = 1{Gt = g, Yt = Ŷt = 1} and group demand
Sg(st, at) = 1{Gt = g, Yt = 1}.

Baselines. Following Yu et al. (2022), we consider the
following RL baselines. (1) A-PPO (Yu et al., 2022), which
regularizes the advantage function to decrease the bias of
the next time steps but does not consider the biases in all
future steps. (2) Greedy PPO (G-PPO), which greedily
maximizes reward without any fairness considerations. (3)
Reward-Only Fairness Constrained PPO (R-PPO), a heuris-
tic method which directly injects the bias of all previous
time steps into the current reward. We list all the hyperpa-
rameters settings in Appendix C.2.

Results: ELBERT-PO reduces the bias while maintaining
high reward. We present the learning curve of ELBERT-
PO and baselines in Figure 3. In the lending experiment,
ELBERT-PO reduces the bias to 0.09, which significantly
decreases the bias of G-PPO by about 70% and is about
33% lower than A-PPO and R-PPO. This demonstrates the
importance of formulating the long-term fairness criterion
using cumulative demand and supply as well as considering
the biases of all future time steps during training, as done
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Figure 3. Learning curve for the loan application environment.
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Figure 4. Learning curve of ELBERT-PO with different α.

by ELBERT-PO. Also, ELBERT-PO converges to obtain
the same reward as baselines. Therefore, it shows that in
the loan application environment, ELBERT-PO successfully
reduces the bias while still attaining high reward.

Effect of α. In Figure 4, the learning curve with different
values of α is shown. We observe that larger α leads to
lower bias, though such effect is diminishing as α becomes
larger. In terms of reward, we find that increasing α leads
to slower convergence. This is expected since the reward
signal becomes weaker as α increases. However, we find
that ELBERT-PO on all considered α values converge to the
same reward value. This suggests that lower bias does not
necessarily leads to lower rewards.

6. Conclusions and discussions
In this work, we introduce a new long-term fairness notion
called Equal Long-term Benefit Rate (ELBERT). ELBERT
explicitly accounts for the varying state importance in se-
quential decision-making through the Supply-Demand MDP.
We analytically reduce the policy gradient of Long-term
Benefit Rate to standard policy gradient, which leads to
the ELBERT-PO method for bias mitigation. Experimental
results demonstrate that ELBERT-PO successfully reduces
bias while maintaining high utility. One limitation is that
ELBERT-PO uses on-policy RL methods and might suffer
from poor sample complexity. Future work includes design-
ing off-policy algorithms for ELBERT-PO to improve the
sample complexity.
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Supplementary Material

A. Fairness notions with the supply and demand formulation
In this section, we demonstrate that in the static settings, the supply and demand formulation in Section 2 can cover many
popular fairness notions. This means that the proposed Supply Demand MDP is expressive enough to extend several popular
static fairness notions to the sequential settings. In the following, we give a list of examples to show, in the static setting,
how to formulate several popular fairness criteria as the ratio between the supply and demand. For simplicity, we consider
the agent’s decision to be binary, though the analysis naturally extends to multi-class settings.

Notations. Denote Ŷ ∈ {0, 1} as the binary decision (loan approval or rejection), Y ∈ {0, 1} as the target variable (repay
or default) and G as the group ID.

Demographic Parity. The well-being of a group g in Demographic Parity (DP) (Dwork et al., 2012) is defined as
P[Ŷ = 1|G = g] = P[Ŷ=1,G=g]

P[G=g] and DP requires such group well-being to equalized among groups. In practice, given a

dataset, the well-being of group g is calculated as Sg

Dg
, where the supply Sg is the number of samples with {Ŷ = 1, G = g}

(e.g. the number of accepted individuals in group g) and the demand Dg is the number of samples with {G = g} (e.g. the
total number of individuals from group g).

Equal Opportunity. The well-being of a group g in Equal Opportunity (EO) (Dwork et al., 2012) is defined as P[Ŷ =

1|G = g, Y = 1] = P[Ŷ=1,Y=1,G=g]
P[Y=1,G=g] and EO requires such group well-being to equalized among groups. In practice,

given a dataset, the well-being of group g is calculated as Sg

Dg
, where the supply Sg is the number of samples with

{Ŷ = 1, Y = 1, G = g} (e.g. the number of qualified and accepted individuals in group g) and the demand Dg is the
number of samples with {Y = 1, G = g} (e.g. the number of qualified individuals from group g).

Equality of discovery probability: a special case of EO Equality of discovery probability (Elzayn et al., 2019) requires
that the discovery probability to be equal among groups. For example, in predictive policing setting, it requires that
conditional on committing a crime (Y = 1), the probability that an individual is apprehended (Ŷ = 1) should be independent
of the district ID (group ID) g. This is a special case of EO in specific application settings.

Equalized Odds. Equalized Odds (Dwork et al., 2012) requires that both the True Positive Rate (TPR) P[Ŷ = 1|G =

g, Y = 1] = P[Ŷ=1,Y=1,G=g]
P[Y=1,G=g] and the False Positive Rate (FPR) P[Ŷ = 1|G = g, Y = 0] = P[Ŷ=1,Y=0,G=g]

P[Y=0,G=g] equalize

among groups. In practice, given a dataset, (a) the TPR of group g is calculated as
ST
g

DT
g

, where the supply ST
g is the number

of samples with {Ŷ = 1, Y = 1, G = g} (e.g. the number of qualified and accepted individuals in group g) and the demand
DT

g is the number of samples with {Y = 1, G = g} (e.g. the number of qualified individuals from group g). (b) The FPR of

group g is calculated as
SF
g

DF
g

, where the supply SF
g is the number of samples with {Ŷ = 1, Y = 0, G = g} (e.g. the number

of unqualified but accepted individuals in group g) and the demand DF
g is the number of samples with {Y = 0, G = g} (e.g.

the number of unqualified individuals from group g).

Extending Equalized Odds to sequential settings using SD-MDP. The long-term adaption of Equalized Odds can
be included by the Supply Demand MDP via allowing it to have two sets of supply-demand pairs: for every group
g, (DT

g , S
T
g ) and (DF

g , S
F
g ). In particular, define the cumulative supply and demand for both supply-demand pairs:

the cumulative group supply for TPR ηS,Tg (π) := Eπ

[∑∞
t=0 γ

tST
g (st, at)

]
and cumulative group demand for TPR as

ηD,T
g (π) := Eπ

[∑∞
t=0 γ

tDT
g (st, at)

]
. The cumulative group supply for FPR ηS,Fg (π) := Eπ

[∑∞
t=0 γ

tSF
g (st, at)

]
and

cumulative group demand for FPR as ηD,F
g (π) := Eπ

[∑∞
t=0 γ

tDF
g (st, at)

]
. Since the bias considers both TPR and FPR, we

define the bias for both: bT (π) = maxg∈G
ηS,T
g (π)

ηD,T
g (π)

−ming∈G
ηS,T
g (π)

ηD,T
g (π)

and bF (π) = maxg∈G
ηS,F
g (π)

ηD,F
g (π)

−ming∈G
ηS,F
g (π)

ηD,F
g (π)

.
The goal of RL with Equalized Odds constraints can be formulated as
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max
π

η(π)

s.t. bT (π) = max
g∈G

ηS,Tg (π)

ηD,T
g (π)

−min
g∈G

ηS,Tg (π)

ηD,T
g (π)

≤ ϵ

bF (π) = max
g∈G

ηS,Fg (π)

ηD,F
g (π)

−min
g∈G

ηS,Fg (π)

ηD,F
g (π)

≤ ϵ.

(7)

In practice, we treat the hard constraints as regularization and use the following objective function
J(π) = η(π)− αbT (π)2 − αbF (π)2 (8)

where α is a trade-off constant between return and fairness. The gradient∇π(Jπ) can still be computed using techniques
presented in 3, since both bias terms bT (π) and bF (π) are still in the form of ratio between cumulative supply and demand.

Accuracy Parity Accuracy Parity defines the well-being of group g as P[Ŷ = Y |G = g] = P[Ŷ=Y,G=g]
P[G=g] , which is the

accuracy of predicting Y using Ŷ among individuals from the group g. In practice, this is computed by Sg

Dg
, where the

supply Sg is the number of samples with {Ŷ = Y,G = g} (e.g. the number of individuals with correct predictions in group
g) and the demand Dg is the number of samples with {G = g} (e.g. the total number of individuals from group g).

B. Relationship between the soft bias and the bias
We would like to show the mathematical relationship between the soft bias and bias, as shown in Proposition 3.1. This
is done by analyzing the max and min operator as well as their soft counterparts through the log sum trick, which is also
explored in prior work (Xu et al., 2023). We restate the full proposition and present the proof below.

Proposition B.1. Given a policy π, the number of groups M and the temperature β, define the soft bias as

bsoft(π) =
1

β
log

∑
g∈G

exp(β
ηSg (π)

ηDg (π)
)− 1

−β
log

∑
g∈G

exp(−β
ηSg (π)

ηDg (π)
).

The bias is defined as

b(π) = max
g∈G

ηSg (π)

ηDg (π)
−min

g∈G

ηSg (π)

ηDg (π)
.

We have that

b(π) ≤ bsoft(π) ≤ b(π) +
2 logM

β
.

Proof. First consider the first term 1
β log

∑
g∈G exp(β

ηS
g (π)

ηD
g (π)

) in the soft bias bsoft(π).

On the one hand, we have that

1

β
log

∑
g∈G

exp(β
ηSg (π)

ηDg (π)
) >

1

β
log exp(βmax

g∈G

ηSg (π)

ηDg (π)
)

= max
g∈G

ηSg (π)

ηDg (π)

(9)

On the other hand, we have that

1

β
log

∑
g∈G

exp(β
ηSg (π)

ηDg (π)
) ≤ 1

β
logM exp(βmax

g∈G

ηSg (π)

ηDg (π)
)

= max
g∈G

ηSg (π)

ηDg (π)
+

logM

β

(10)
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Therefore, maxg∈G
ηS
g (π)

ηD
g (π)

< 1
β log

∑
g∈G exp(β

ηS
g (π)

ηD
g (π)

) ≤ maxg∈G
ηS
g (π)

ηD
g (π)

+ logM
β .

Similarly, it can be shown that ming∈G
ηS
g (π)

ηD
g (π)

− logM
β ≤ 1

−β log
∑

g∈G exp(−β ηS
g (π)

ηD
g (π)

) < ming∈G
ηS
g (π)

ηD
g (π)

.

By subtracting the two, we conclude that b(π) ≤ bsoft(π) ≤ b(π) + 2 logM
β .

C. Experimental Details
C.1. Full description of the environments

Lending In the first environment, we consider credit approval for lending in a sequential setting (Liu et al., 2018). As the
agent in this scenario, a bank decides whether to accept or reject loan requests from a queue of applicants from either of
two groups with ID 1 or 2 respectively. The applicants arrive one-by-one in a sequential manner. At each time step t, the
applicant’s group ID gt is sampled uniformly from G = {1, 2}. Given the current applicant’s group ID gt ∈ {0, 1}, the
corresponding credit score ct ∈ {1, 2, · · · , C} is sampled from the credit distribution µt,gt ∈ ∆(C), where ∆(C) denotes
the set of all discrete distributions over {1, 2, · · · , C}. We note here that the credit distributions of both groups, µt,1 and
µt,2 are time-varying and will introduce their dynamics in detail later. Regardless of their group IDs gt, the applicants with
higher credit score is more likely to repay (i.e., Yt = 1), whether the loan is approved (i.e., Ŷt = 1) or not (i.e., Ŷt = 0).
Group 2 is disadvantaged with a lower mean of initial credit score compared to Group 1 in the beginning of the sequential
decision-making process. The agent makes the decision Ŷt ∈ {0, 1} using the observation gt and ct. With Ŷt and Yt, the
agent gets an immediate reward Rt (agent’s earned cash at step t), and the credit score distribution of group Gt changes
depending on Ŷt and Yt.

While trying to maximizing the cumulative reward, the agent also tries to balance the group well-being measured by the true
positive rate. The fairness criterion here is an long-term extension of EO defined as∣∣∣∣∑t 1{Gt = 0, Yt = Ŷt = 1}∑

1{Gt = 0, Yt = 1}
−

∑
t 1{Gt = 1, Yt = Ŷt = 1}∑

1{Gt = 1, Yt = 1}

∣∣∣∣ (11)

As for the dynamics of both group’s credit score distribution, given the current group ID gt, the credit score will shift
according to Ŷt and Yt. Specifically, the credit score of current applicant will be affected and shift form ct to a new score c′t,
i.e.,

µt+1,gt(c
′
t)− µt,gt(c

′
t) = µt,gt(ct)− µt+1,gt(ct) = ε ≥ 0. (12)

In the original setting from (Liu et al., 2018), the credit score will shift deterministically only if the loan is approved.
It will increase by 1 if the loan is repaid, otherwise it will decrease by 1. We use the rows of right stochastic matrices
Pgt,Ŷ ,Y ∈ RC×C to represent the distribution of c′t given ct with the specific gt, Y and Ŷ . In the original setting,
C = 7, ε = 0.01 and {Pgt,Ŷ ,Y } are given by Pgt,0,0 = Pgt,0,1 = I7×7 and

Pgt,1,0 =



1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


, Pgt,1,1 =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


(13)

for all gt ∈ {1, 2}. The initial credit score distributions of two groups are given by
µ0,1 =

[
0 0.1 0.1 0.2 0.3 0.3 0

]
, µ0,2 =

[
0.1 0.1 0.2 0.3 0.3 0 0

]
. (14)

In addition, we extend the original setting into a more general case. The first modification is that the credit score of the
rejected applicant from Group gt ∈ {1, 2} still shift as if the loan was accepted with probability δgt > 0. The seconds
difference is that the credit score shifts in a stochastic manner rather than in a deterministic way as before. Specifically, we
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keep C = 7, ε = 0.01 and set δ1 = 0.3, δ2 = 0.1. The modified {Pgt,Ŷ ,Y } are given by

Pgt,1,0 =



0.5 0 0 0 0.5 0 0
0.9 0.1 0 0 0 0 0
0.2 0.7 0.1 0 0 0 0
0 0.2 0.7 0.1 0 0 0
0 0 0.2 0.7 0.1 0 0
0 0 0 0.2 0.7 0.1 0
0 0 0 0 0.2 0.7 0.1


, Pgt,1,1 =



0.2 0.7 0.1 0 0 0 0
0 0.2 0.7 0.1 0 0 0
0 0 0.2 0.7 0.1 0 0
0 0 0 0.2 0.7 0.1 0
0 0.5 0 0 0.2 0.2 0.1
0 0 0 0 0 0.2 0.8
0 0 0 0 0 0 1


(15)

and Pgt,0,Y = δgtPgt,1,Y +(1−δgt)I7×7 for all gt ∈ {1, 2} and Y ∈ {0, 1}. We modify the initial credit score distributions
of two groups to

µ0,1 =
[
0.05 0.05 0 0.2 0.1 0.3 0.3

]
, µ0,2 =

[
0 0 0.3 0.3 0.3 0.05 0.05

]
. (16)

For both the original setting and our new setting, the repaying probability of applicant with credit score g is given by
{ρg}7g=1 = {0.1, 0.2, 0.45, 0.6, 0.65, 0.7, 0.7}. (17)

Such modification introduces more stochasticity into the environment, which requires the RL agent to account for more
long-term effects and thus is more challenging. As shown in Section 5, the proposed ELBERT-PO obtains high utility and
low bias in such challenging environment.

Attention allocation. In the third environment, the agent’s task is to allocate 6 attention units to 5 sites to discover
incidents, where each site has different initial incident rate. Since each site is considered a group, this environment is
in a multi-group setting. To describe the dynamics, let ag,t and µg,t be the allocated attention and incident rate for the
group g at time t. The number of incidents yg,t is sampled from Poisson(µg,t) with incident rate µg,t, and the number of
discovered incident is ŷg,t = min(ag,t, yg,t). The incident rate changes according to µg,t+1 = µg,t − d · ag,t if ag,t > 0
and µg,t+1 = µg,t + d otherwise, where d is a constant. The agent’s reward is R(st, at) =

∑
g ŷg,t − ζ

∑
g(yg,t − ŷg,t),

where the coefficient ζ balances between discovering and missing incidents.

Here the group well-being is defined as the ratio between the total number of discovered incidents over time and the total
number of incidents, and thus the bias is defined as

max
g∈G

∑
t ŷg,t∑
t yg,t

−min
g∈G

∑
t ŷg,t∑
t yg,t

. (18)

For the parameter, we keep ζ = 0.25 and use d = 0.1 as the dynamic rate. The initial incident rate is given by
{µg,0}5g=1 = {8, 6, 4, 3, 1.5} (19)

as same as the original setting.

Attention allocation: original version. In the original version of this environment used in (Yu et al., 2022), the agent’s task
is to allocate 6 attention units to 5 sites (groups) to discover incidents, where each site has a different initial incident rate. The
agent’s action is at = {ag,t}5g=1, where ag,t is the number of allocated attention units for group g. The number of incidents
yg,t is sampled from Poisson(µg,t) with incident rate µg,t and the number of discovered incident is ŷg,t = min(ag,t, yg,t).
The incident rate changes according to µg,t+1 = µg,t − d · ag,t if ag,t > 0 and µg,t+1 = µg,t + d otherwise, where the
dynamic rate d is a constant. The agent’s reward is R(st, at) =

∑
g ŷg,t − ζ

∑
g(yg,t − ŷg,t), where the coefficient ζ

balances between the discovered and missed incidents. In the original version, ζ = 0.25 and d = 0.1. The initial incident
rates are given by

{µg,0}5g=1 = {8, 6, 4, 3, 1.5}. (20)

The group well-being is defined as the ratio between the total number of discovered incidents over time and the total number
of incidents, and thus the bias is defined as

max
g∈G

∑
t ŷg,t∑
t yg,t

−min
g∈G

∑
t ŷg,t∑
t yg,t

. (21)

Attention allocation: harder version. To modify the environment to be more challenging, we consider a more general
environment by introducing more complexity. Different from the original setting in (Yu et al., 2022) where the dynamic
rate is the same among groups, we consider a more general case where the dynamic rates vary among different groups.
Moreover, for the group g, the dynamic rate for increasing incident rate dg is different from that for decreasing incidient
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rate dg. Specifically, the incident rate changes according to µg,t+1 = µg,t − dg · ag,t if ag,t > 0 and µg,t+1 = µg,t + dg
otherwise, where the constants dg and dg are the dynamic rates for reduction and growth of the incident rate of group g. The
parameters are given by the following.

{dg}5g=1 = {0.004, 0.01, 0.016, 0.02, 0.04}, {dg}5g=1 = {0.08, 0.2, 0.4, 0.8, 2} (22)
Meanwhile, we increase the number of attention units to allocate from 6 to 30 and the initial incident rates to

{µg,0}5g=1 = {30, 25, 22.5, 17.5, 12.5}. (23)
The agent’s reward is R(st, at) = −ζ

∑
g(yg,t − ŷg,t), i.e., the opposite of the sum of missed incidents. Here ζ = 0.25.

Note that we use a different reward function from the original setting.

Explanation of the harder environment. The new version of the attention environment is more challenging for learning a
fair policy with high rewards due to the following reasons. (1) The higher number of attention units indicates the larger action
space in which searching for the optimal policy will be more challenging. (2) For all groups, the increasing dynamic rates
are much higher than the decreasing dynamic rates, making it harder for the incident rate to decrease. (3) The disadvantaged
groups, i.e., the groups with higher initial incident rates, have lower dynamic rates for both decreasing and increasing
incident rate. This makes learning a fair policy harder since lower decreasing dynamic rates make the incident rates harder
to decrease, and lower increasing dynamic rates means the policy could allocate less units to these groups without harming
the reward too much, causing increasing bias.

C.2. Hyperparameters

For each method in all three environments, we use 10−6 as the learning rate in lending and 10−5 in attention environment,
and train for 5× 106 time steps.

For the bias coefficient α for ELBERT-PO, we use α = 400 in lending and α = 20000 in other two environments. In
attention allocation with multiple groups, we set the temperature β of soft bias as 20. For the hyperparameters of baseline
method R-PPO, we choose ζ0 = 1 in all environments, and ζ1 = 2 in lending, ζ1 = 10 in attention allocation. For the
hyperparameters of baseline method A-PPO, we choose β0 = 1 in all environments, and β1 = β2 = 0.25, ω = 0.005 in
lending, β1 = β2 = 0.15, ω = 0.05 in attention allocation.

All experiments are run on NVIDIA GeForce RTX 2080 Ti GPU.

C.3. Experiments in multi-group settings

In this section, we demonstrate the preliminary results of ELBERT-PO in the multi-group setting using the the harder version
of attention allocation environment (Atwood et al., 2019).

Results: ELBERT-PO reduces the bias and obtains high reward in the multi-group setting. ELBERT-PO achieves the
lowest bias and the highest reward of among all methods. This shows the effectiveness of ELBERT-PO in the multi-group
setting.
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Figure 5. Learning curve for the harder attention allocation environment.


