
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

CAUKER: Classification Time Series Foundation Models
Can Be Pretrained on Synthetic Data only

Anonymous Authors1

Abstract
Time series foundation models (TSFMs) have re-
cently gained significant attention due to their
strong zero-shot capabilities and widespread real-
world applications. Such models typically require
a computationally costly pretraining on large-
scale, carefully curated collections of real-world
sequences. To allow for a sample-efficient pre-
training of TSFMs, we propose CAUKER, a novel
algorithm designed to generate diverse, causally
coherent synthetic time series with realistic trends,
seasonality, and nonlinear interactions. CAUKER
combines Gaussian Process (GP) kernel compo-
sition with Structural Causal Models (SCM) to
produce data for sample-efficient pretraining of
state-of-the-art classification TSFMs having dif-
ferent architectures and following different pre-
training approaches.

1. Introduction
Time series data are ubiquitous in applications ranging
from healthcare (Gnassounou et al., 2025) and human ac-
tivity recognition (Chen et al., 2025) to industrial monitor-
ing (Susto et al., 2018). Recently, the time series community
has devoted significant effort to developing large-scale pre-
trained time series foundation models (TSFMs). Inspired
by advances in natural language processing and computer
vision, these models aim to achieve strong zero-shot per-
formance in out-of-distribution (OOD) settings. TSFMs
have been proposed for both forecasting (Ansari et al., 2024;
Woo et al., 2024; Bhethanabhotla et al., 2024) and classifica-
tion tasks (Goswami et al., 2024; Lin et al., 2024; Feofanov
et al., 2025), showing promising results. TSFMs are usu-
ally trained on large-scale pretraining dataset collections
gathered from different application domains. Recent works
used as many as 1.13 billion timepoints of 13M unique time

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

series for model pretraining (Goswami et al., 2024).

Despite the prevalence of large-scale pretraining in the de-
velopment of TSFMs, several works (Hoo et al., 2024; Doo-
ley et al., 2023; Taga et al., 2025) showed that comparable
performance can be achieved by training them purely on
synthetic data. The latter approach has several important
advantages. First, it removes the need for time-consuming
data collection and curation. This is especially important
in time series classification that lacks diverse and rich pre-
training corpora. Second, it allows for generating arbitrarily
large datasets for model scaling. Finally, it makes the OOD
evaluation more meaningful, mitigating the risk of data leak-
age. Inspired by the recent success of foundation models
in tabular classification (Hollmann et al., 2023), our paper
proposes a novel sample-efficient pretraining framework
for TSFMs in classification based purely on synthetic data.
Contrary to tabular and forecasting synthetic data generation
pipelines, our proposal seeks to generate sequences with
meaningful correlations between samples and realistic tem-
poral dependencies within them. We provide an in-depth,
large-scale study of its benefits compared to pretraining on
commonly used time series classification corpora. 1.

Findings Overall, our findings can be summarized as fol-
lows:

1. A carefully designed synthetic data generation pipeline
can be efficiently used in training classification TSFMs.
We propose such a pipeline and show that it requires re-
thinking synthetic data generators proposed previously
for tabular data and time series forecasting.

2. Pretraining on synthetic data reveals clear scaling laws
both in terms of dataset size and model size. We illus-
trate this finding by showing that such scaling laws are
broken when using common classification benchmarks
for pretraining, likely due to the lack of diversity in
existing classification datasets.

3. Distinct from forecasting (Yao et al., 2025), where the
leaderboard (with the exception of (Hollmann et al.,

1A complete review of the related work can be found in Ap-
pendix A.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Classification TSFM Can Be Pretrained on Synthetic Data only

2023)) is still dominated by models pretrained on large-
scale real-world datasets, we show that pretraining
on solely synthetic data can lead to state-of-the-art
performance in classification.

2. Our contributions
2.1. Problem setup

Zero-shot classification As done in prior work on unsu-
pervised representation learning (Franceschi et al., 2019;
Yue et al., 2022), we see a TSFM as an encoder F : Rt→Rq

that is kept frozen during the evaluation. For a down-
stream classification dataset D = {(xi, yi)}ni=1 with la-
bels yi ∈ {1, . . . , C}, we use a TSFM to obtain em-
beddings zi = F (xi) and train a lightweight classifier
h : Rq → {1, . . . , C} solely on {(zi, yi)}. At test time,
an unseen series x∗ is classified by ŷ = h

(
F (x∗)

)
. As F is

kept frozen, the resulting accuracy measures the quality of
its learned representations.

To quantify OOD generalization ability, we follow (Yao
et al., 2025) and evaluate the studied TSFMs only on sam-
ples not seen during their pretraining. In practice, if we
evaluate a given TSFM on a test set from a UCR (Dau et al.,
2019) dataset, we ensure that the TSFM was not pretrained
on it, but we allow for the train set of this same dataset to
be used for pretraining. We note that (Feofanov et al., 2025;
Goswami et al., 2024; Lin et al., 2024) all used train sets
from the datasets on which they’ve reported the zero-shot
OOD generalization. Next, a lightweight classifier h is fit-
ted on the UCR train set embeddings and evaluated on the
disjoint UCR test set embeddings as explained above.

2.2. CAUKER: synthetic data generation for time series
classification

We now present our proposed synthetic data generation
pipeline, termed CAUKER for Causal-Kernel generation.
To develop our intuition about it, we note that the synthetic
data for the time series classification task needs to combine
two key ingredients. On the one hand, the generated se-
quences should exhibit common time series patterns such
as seasonality, periodicity, and trend. On the other hand,
successful classification assumes that individual time se-
ries have a meaningful clustering structure that allows the
trained model to successfully learn how to disentangle the
underlying clusters during training. Below, we present a
generation pipeline that satisfies these desiderata.

Proposed approach To proceed, we now define three
banks of functions, namely: kernel, mean and activation
banks denoted as K = {κi(t, t′)}nK

i=1, M = {µi(t)}nM
i=1

and A = {σ(t)i}nA
i=1, respectively. For the kernel bank,

we use the same kernel functions as (Ansari et al., 2024).

For mean functions, we consider a linear function ax+ b,
exponential function aebx, and anomaly mean function that
inserts random values from U(−5, 5) at random indexes.
Finally, the activation functions we use for A are a linear
function ax+ b with a ∼ U(0.5, 2), b ∼ U(−1, 1)], ReLU
activation, sigmoid, sine function, element-wise modulo
operation x mod c for c ∼ U [1, 5], and Leaky ReLU with a
random negative slope from U(0.01, 0.3). For simplicity, in
what follows we let {si}ni=1 ∼ S denote an i.i.d. sampling
(without replacement) of n elements from a set S.

Our generative pipeline, illustrated in Figure 1, then pro-
ceeds in five steps as follows:

Step 1. Kernel bank sampling We start by sampling
candidate kernels from the kernel bank, ie,
{κi(t, t′)}Ki=1

i.i.d.∼ K for some random number
of candidate kernels K ∼ U(1, nK).

Step 2. Kernel composition We define a composite kernel
based on K − 1 randomly sampled binary operations
(+ and ×). More formally, for a random sequence
{⋆i}K−1

i=1 ∼ {+,×}, we let κ∗ = κ1(t, t
′) ⋆i · · · ⋆K−1

κK(t, t′).

Step 3. Root nodes generation We draw M mean func-
tions {µi(t)}Mi=1

i.i.d.∼ M, M ∼ U(1, nM) and repeat
Step 1 and Step 2 M times to obtain composite kernels
{κ∗i }Mi=1. We further define M GP priors to sample
from {GP(µi, κ

∗
i)}Mi=1.

Step 4. Activation bank sampling We sample a set of E
activation functions from the activation bank, ie,
{σi}Ei=1 ∼ A, E ∼ U(1, nA).

Step 5. Causal graph propagation We randomly generate
a directed acyclic graph (DAG) (V, E) with |E| = E,
|V| = V , and M < V root nodes, i.e., nodes with
in-degree zero. We then define a bijection ϕ : E →
{σ1, σ2, . . . , σE} such that each directed edge eij =
(ui, vj) is uniquely associated with a function σl, i.e.,
ϕ(eij) = σl. We then associate a time series ti ∈
RL sampled from GP(µi, κ

∗
i)} to each of the M root

nodes. The value tvj associated with a given non-root
vertex vj is then calculated as follows. First, for each
incoming edge eij , we apply an activation function
ϕ(eij) to tui

. Then, we aggregate all ϕ(e.j)(tu.) using
a randomly initialized linear layer with weights and
biasesW, b ∼ N (0, 1), ie, tvj =W×[ϕ(e.j)(tu.)]+b,
with [·] denoting the concatenation operation.

The composition of the kernel, mean, and activation banks,
are provided in Appendix D.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Classification TSFM Can Be Pretrained on Synthetic Data only

Generated
�me series

Combined
kernels

Selected
kernels

Generate with
selected mean

SCM with selected
ac�va�on func�ons

Ac�va�on
func�on

Figure 1: An illustration of the proposed CAUKER pipeline. Kernels sampled from the kernel bank K are randomly
combined and used together with sampled mean functions to form GP priors. Time series sampled from these GP priors act
as root nodes in a directed acyclic graph that encodes causal dependencies between nodes. Each edge of this graph applies
an activation function from a predefined activation function bank and aggregates over incoming edges using a random linear
transformation to propagate transformed time series through the graph. Intermediate node outputs are optionally interpolated
to fixed length, forming the final synthetic dataset. This procedure yields rich, diverse, and causally consistent time series
for self-supervised pretraining.

3. Experimental results
In all our experiments, we consider two recent TSFMs,
namely Mantis and MOMENT. Mantis is an 8M encoder-
only model pretrained using contrastive learning. We use
the 77M version of the MOMENT model. The latter is
an encoder-decoder model pretrained based on masked re-
construction. Considering these two models allows us to
compare two different pretraining paradigms as previously
done in (Yao et al., 2025) for forecasting. Finally, we follow
(Feofanov et al., 2025) and evaluate Mantis in a zero-shot
regime by learning a Random Forest classifier on the em-
beddings of training examples of a given dataset. For MO-
MENT, (Goswami et al., 2024) evaluated their model using
an Support Vector Machine classifier. For both models, we
report the test accuracy averaged over 128 UCR datasets,
where each dataset has train and test sets following (Dau
et al., 2019). Detailed formulations of the loss functions and
architecture specifics for these models are provided in the
Appendix C.

3.1. CAUKER against alternative synthetic generators

Experimental setup To better understand the exact con-
tribution of the proposed CAUKER, we first start by estab-
lishing the virtues of our synthetic data generation pipeline
compared to prior work. For this, we generate four different
synthetic corpora, namely: 1) FPFN (Taga et al., 2025) that
uses a linear model of coregionalization to sample multivari-
ate time series, 2) Kernel (Ansari et al., 2024) that randomly
composes covariance kernels to define a Gaussian process
with zero mean; 3) Mean+Kernel: our re-implementation
of the Kernel baseline in which we additionally add non-
zero mean functions in the GP; 4) SCM, a reconstruction
of the structural-causal model proposed by Hollmann et al.

(2023) for tabular classification 2. We generate univariate
time series with length T = 512 as both Mantis and MO-
MENT were trained on time series of this length. For a
fair comparison, we fix the number of synthetic samples to
100K.

Table 1: Average zero-shot accuracy (%) on the UCR bench-
mark after pretraining on synthetic corpora generated by
different methods.

Model SCM FPFN Kernel Mean-Kernel CAUKER

Mantis 73.49 77.52 77.70 78.20 78.31
MOMENT 59.23 70.85 69.31 72.56 74.24

Results Table 1 shows a relative comparison of our pro-
posal compared to other methods. Our first observation is
that classification-tailored tabular data generation pipeline
SCM underperforms significantly compared to all other
methods. This suggests that temporal dependencies are
important for time series classification, differently from
the forecasting setup, where TabPFN trained using SCM-
generated data is among the strongest foundation models.
We further note that forecasting-tailored FPFN and Kernel-
Synth also provide suboptimal results, even more so for
MOMENT. In the case of Mantis, the results of pretraining
on these two datasets are closer to the reported performance
of the Mantis model. This can be likely explained by the
architecture of Mantis that incorporates strong time series
classification priors into it (mean, standard deviation, and
difference encoding in the token generator unit). On the
contrary, MOMENT is a generic encoder-decoder model.

2As the original generator of (Hollmann et al., 2023) is not
open–sourced, we followed the algorithmic description in the pa-
per and validated the implementation on the illustrative examples
provided therein.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Classification TSFM Can Be Pretrained on Synthetic Data only

We further note a distinct positive effect of including non-
mean functions in the GP used to generate time series in
our pipeline. Finally, CAUKER improves upon this stronger
baseline in both cases, highlighting the additional benefit of
causal structure. The last two observations are particularly
valid for MOMENT, indicating that they compensate for the
lack of useful inductive biases for the task of time series
classification.

3.2. Sample-efficient pretraining of TSFMs using
CAUKER synthetic data

Experimental setup We want to study the performance
and the sample efficiency of pretraining Mantis and MO-
MENT foundation models on different datasets. Our main
goal is to show that the performance of both models pre-
trained on a total of 1.89M (Mantis) and 13M (MOMENT)
unique time series can be almost matched by a pretraining
on a smaller synthetic dataset generated using CAUKER.
For the latter, we generate as few as 100k samples for Man-
tis and 10M for MOMENT to account for the model size
difference (8M vs. 77M). As before, we include in our study
a baseline given by pretraining Mantis and MOMENT on
100k samples of the real-world UEA time series classifi-
cation collection. Additionally, we also experiment with
a subset of 100k time series randomly drawn from stan-
dard forecasting datasets (ETTh1, ETTh2, ETTm1, ETTm2,
Electricity, ExchangeRate, Illness, Traffic, Weather) (Zhou
et al., 2021; Li et al., 2020; Lai et al., 2018; Matsubara et al.,
2014; Li et al., 2018; Rasp et al., 2020). Although no prior
work trained a classification model on such data, we include
it to verify whether the forecasting benchmarks can be a
good alternative for classification TSFM pretraining.

Results From the results presented in Table 5, we note
that the performances of Mantis and MOMENT can be al-
most matched by pretraining them on synthetic datasets
that are ∼ 20× and ∼ 1.3× smaller than the original pre-
training datasets used by each of the papers. The accuracy
drop in the case of Mantis is less than 0.1%, while for
MOMENT it barely exceeds 1%. This suggests that the syn-
thetic data generated by CAUKER makes model pretraining
more sample-efficient. We also note that the training loss
and test accuracy of Mantis pretrained on 100k and 1.89M
time series exhibit a very different behavior. For the syn-
thetic dataset the training loss (shown in E.3) remains higher
indicating that it is harder to learn, likely due to the high
diversity of the generated time series. Yet, the test accuracy
in this case steadily improves and surpasses the accuracy
of the original model which quickly learns the real-world
pretraining dataset. This is reminiscent of the MOMENT
pretraining which only required 2 epochs (Goswami et al.,
2024) (even for the largest 783M) to converge.

In addition to this, the reported UCR classification accura-

cies of the original Mantis and MOMENT models represent
in-distribution performance, since their respective training
corpora include UCR train samples. In this sense, these
scores may serve as a practical upper bound for zero-shot
accuracy, beyond which out-of-distribution generalization
is unlikely without direct exposure to test distributions. Fi-
nally, we note that the comparison with two other pretrain-
ing dataset candidates leads to strictly worse results, despite
their comparable size.

Additionally, our experiments reveal that CAUKER-
generated datasets exhibit clear scaling laws for both dataset
size (10K to 10M samples) and model capacity (1M to
783M parameters), unlike real-world datasets, which dis-
play irregular scaling behavior. A thorough discussion of
the observed data–, model– and compute–scaling laws is
deferred to Appendix E.

Table 2: Performance comparison of Mantis and MOMENT
models on different pretraining datasets.

Model Pretrain. set Size UCR Included? UCR acc. (%)

Mantis

CAUKER 100K No 78.55
Mantis dataset 1.89M Yes 78.66

UEA 100K No 76.73
Forecasting 100K No 75.81

MOMENT

CAUKER 10M No 77.49
Time Series Pile 13M Yes 78.85

CAUKER 100K No 74.24
UEA 100K No 73.55
Forecasting 100K No 73.93

4. Conclusion
In this work, we introduced CAUKER, a novel synthetic
data generation framework tailored for time series classifi-
cation. By integrating Gaussian Process kernel composition
with Structural Causal Models, CAUKER generates syn-
thetic datasets that are both temporally realistic and causally
coherent. We demonstrated that TSFMs pretrained solely
on CAUKER-generated data can match the performance of
models trained on larger real-world datasets.

Our findings underscore a key insight already known in
vision and natural language processing: the quality and
structure of pretraining data have a profound impact on the
generalization performance of TSFMs. While much recent
progress in time series community has focused on architec-
tural innovations, our results suggest that equivalent gains
can be achieved through principled design of synthetic train-
ing data. We hope this work encourages the community to
direct greater attention to the design, analysis, and bench-
marking of time series training datasets, as a complementary
path toward building scalable, general-purpose time series
foundation models.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Classification TSFM Can Be Pretrained on Synthetic Data only

References
Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado,

P., Shen, H., Shchur, O., Rangapuram, S. S., Arango,
S. P., Kapoor, S., Zschiegner, J., Maddix, D. C., Wang, H.,
Mahoney, M. W., Torkkola, K., Wilson, A. G., Bohlke-
Schneider, M., and Wang, Y. Chronos: Learning the
language of time series, 2024. URL https://arxiv.
org/abs/2403.07815.

Bagnall, A., Dau, H. A., Lines, J., Flynn, M., Large, J.,
Bostrom, A., Southam, P., and Keogh, E. The uea mul-
tivariate time series classification archive, 2018, 2018.
URL https://arxiv.org/abs/1811.00075.

Bhethanabhotla, S. K., Swelam, O., Siems, J., Salinas, D.,
and Hutter, F. Mamba4cast: Efficient zero-shot time
series forecasting with state space models. arXiv preprint
arXiv:2410.09385, 2024.

Cao, D., Jia, F., Arik, S. O., Pfister, T., Zheng, Y., Ye, W.,
and Liu, Y. Tempo: Prompt-based generative pre-trained
transformer for time series forecasting. arXiv preprint
arXiv:2310.04948, 2023.

Chang, C., Peng, W.-C., and Chen, T.-F. Llm4ts: Two-stage
fine-tuning for time-series forecasting with pre-trained
llms. arXiv preprint arXiv:2308.08469, 2023.

Chang, C., Wang, W.-Y., Peng, W.-C., and Chen, T.-F.
Llm4ts: Aligning pre-trained llms as data-efficient time-
series forecasters. ACM Trans. Intell. Syst. Technol., 16
(3), April 2025. ISSN 2157-6904. doi: 10.1145/3719207.
URL https://doi.org/10.1145/3719207.

Chen, B., Wongso, W., Li, Z., Khaokaew, Y., Xue, H., and
Salim, F. Comodo: Cross-modal video-to-imu distillation
for efficient egocentric human activity recognition. arXiv
preprint arXiv:2503.07259, 2025.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, E., Wang, X., Dehghani, M., Brahma, S.,
Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X.,
Chowdhery, A., Narang, S., Mishra, G., Yu, A., Zhao, V.,
Huang, Y., Dai, A., Yu, H., Petrov, S., Chi, E. H., Dean,
J., Devlin, J., Roberts, A., Zhou, D., Le, Q. V., and Wei,
J. Scaling instruction-finetuned language models, 2022.
URL https://arxiv.org/abs/2210.11416.

Das, A., Kong, W., Sen, R., and Zhou, Y. A decoder-only
foundation model for time-series forecasting, 2024. URL
https://arxiv.org/abs/2310.10688.

Dau, H. A., Bagnall, A., Kamgar, K., Yeh, C.-C. M., Zhu,
Y., Gharghabi, S., Ratanamahatana, C. A., and Keogh,
E. The ucr time series archive, 2019. URL https:
//arxiv.org/abs/1810.07758.

Dooley, S., Khurana, G. S., Mohapatra, C., Naidu, S., and
White, C. Forecastpfn: Synthetically-trained zero-shot
forecasting, 2023. URL https://arxiv.org/abs/
2311.01933.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers
for image recognition at scale, 2021. URL https:
//arxiv.org/abs/2010.11929.

Edwards, T. D. P., Alvey, J., Alsing, J., Nguyen, N. H., and
Wandelt, B. D. Scaling-laws for large time-series mod-
els, 2025. URL https://arxiv.org/abs/2405.
13867.

Feofanov, V., Wen, S., Alonso, M., Ilbert, R., Guo,
H., Tiomoko, M., Pan, L., Zhang, J., and Redko, I.
Mantis: Lightweight calibrated foundation model for
user-friendly time series classification. arXiv preprint
arXiv:2502.15637, 2025. URL https://arxiv.
org/abs/2502.15637.

Franceschi, J.-Y., Dieuleveut, A., and Jaggi, M. Unsuper-
vised scalable representation learning for multivariate
time series. Advances in neural information processing
systems, 32, 2019.

Gao, S., Koker, T., Queen, O., Hartvigsen, T., Tsiligkaridis,
T., and Zitnik, M. Units: A unified multi-task time se-
ries model, 2024. URL https://arxiv.org/abs/
2403.00131.

Gnassounou, T., Collas, A., Flamary, R., and Gramfort,
A. Psdnorm: Test-time temporal normalization for deep
learning on eeg signals. arXiv preprint arXiv:2503.04582,
2025.

Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li,
S., and Dubrawski, A. Moment: A family of open
time-series foundation models, 2024. URL https:
//arxiv.org/abs/2402.03885.

Gruver, N., Finzi, M., Qiu, S., and Wilson, A. G. Large
language models are zero-shot time series forecasters.
Advances in Neural Information Processing Systems, 36,
2024.

Hollmann, N., Müller, S., Eggensperger, K., and Hut-
ter, F. Tabpfn: A transformer that solves small tab-
ular classification problems in a second, 2023. URL
https://arxiv.org/abs/2207.01848.

Hoo, S. B., Müller, S., Salinas, D., and Hutter, F. The
tabular foundation model tabPFN outperforms special-
ized time series forecasting models based on simple fea-
tures. In NeurIPS 2024 Third Table Representation Learn-

5

https://arxiv.org/abs/2403.07815
https://arxiv.org/abs/2403.07815
https://arxiv.org/abs/1811.00075
https://doi.org/10.1145/3719207
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2310.10688
https://arxiv.org/abs/1810.07758
https://arxiv.org/abs/1810.07758
https://arxiv.org/abs/2311.01933
https://arxiv.org/abs/2311.01933
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2405.13867
https://arxiv.org/abs/2405.13867
https://arxiv.org/abs/2502.15637
https://arxiv.org/abs/2502.15637
https://arxiv.org/abs/2403.00131
https://arxiv.org/abs/2403.00131
https://arxiv.org/abs/2402.03885
https://arxiv.org/abs/2402.03885
https://arxiv.org/abs/2207.01848

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Classification TSFM Can Be Pretrained on Synthetic Data only

ing Workshop, 2024. URL https://openreview.
net/forum?id=H02X7RO3OC.

Jaiswal, A., Babu, A. R., Zadeh, M. Z., Banerjee, D., and
Makedon, F. A survey on contrastive self-supervised
learning. Technologies, 9(1):2, 2020.

Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J. Y., Shi, X.,
Chen, P.-Y., Liang, Y., Li, Y.-F., Pan, S., et al. Time-llm:
Time series forecasting by reprogramming large language
models. arXiv preprint arXiv:2310.01728, 2023.

Lai, G., Chang, W.-C., Yang, Y., and Liu, H. Modeling
long- and short-term temporal patterns with deep neural
networks, 2018. URL https://arxiv.org/abs/
1703.07015.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-
X., and Yan, X. Enhancing the locality and breaking the
memory bottleneck of transformer on time series forecast-
ing, 2020. URL https://arxiv.org/abs/1907.
00235.

Li, Y., Yu, R., Shahabi, C., and Liu, Y. Diffusion con-
volutional recurrent neural network: Data-driven traffic
forecasting, 2018. URL https://arxiv.org/abs/
1707.01926.

Lin, C., Wen, X., Cao, W., Huang, C., Bian, J., Lin, S., and
Wu, Z. Nutime: Numerically multi-scaled embedding for
large-scale time-series pretraining, 2024. URL https:
//arxiv.org/abs/2310.07402.

Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang,
J., and Tang, J. Self-supervised learning: Generative or
contrastive. IEEE Transactions on Knowledge and Data
Engineering, 35(1):857–876, 2023. doi: 10.1109/TKDE.
2021.3090866.

Liu, Y., Zhang, H., Li, C., Huang, X., Wang, J., and Long, M.
Timer: Generative pre-trained transformers are large time
series models, 2024. URL https://arxiv.org/
abs/2402.02368.

Matsubara, Y., Sakurai, Y., Van Panhuis, W. G., and Falout-
sos, C. Funnel: automatic mining of spatially coevolving
epidemics. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 105–114, 2014.

Quan, P., Mulayim, O. B., Han, L., Hong, D., Berges, M.,
and Srivastava, M. Reimagining time series foundation
models: Metadata and state-space model perspectives. In

NeurIPS Workshop on Time Series in the Age of Large
Models, 2024.

Rasp, S., Dueben, P. D., Scher, S., Weyn, J. A., Mouata-
did, S., and Thuerey, N. Weatherbench: A bench-
mark data set for data-driven weather forecasting. Jour-
nal of Advances in Modeling Earth Systems, 12(11),
November 2020. ISSN 1942-2466. doi: 10.1029/
2020ms002203. URL http://dx.doi.org/10.
1029/2020MS002203.

Rasul, K., Ashok, A., Williams, A. R., Ghonia, H., Bhag-
watkar, R., Khorasani, A., Bayazi, M. J. D., Adamopou-
los, G., Riachi, R., Hassen, N., Biloš, M., Garg, S.,
Schneider, A., Chapados, N., Drouin, A., Zantedeschi, V.,
Nevmyvaka, Y., and Rish, I. Lag-llama: Towards foun-
dation models for probabilistic time series forecasting,
2024.

Shi, J., Ma, Q., Ma, H., and Li, L. Scaling law for time series
forecasting, 2024. URL https://arxiv.org/abs/
2405.15124.

Susto, G. A., Cenedese, A., and Terzi, M. Time-series
classification methods: Review and applications to power
systems data. Big data application in power systems, pp.
179–220, 2018.

Taga, E. O., Ildiz, M. E., and Oymak, S. Timepfn: Ef-
fective multivariate time series forecasting with synthetic
data, 2025. URL https://arxiv.org/abs/2502.
16294.

Wang, Y., Qiu, Y., Chen, P., Zhao, K., Shu, Y., Rao, Z., Pan,
L., Yang, B., and Guo, C. Rose: Register assisted gen-
eral time series forecasting with decomposed frequency
learning. arXiv preprint arXiv:2405.17478, 2024.

Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., and
Sahoo, D. Unified training of universal time series fore-
casting transformers, 2024. URL https://arxiv.
org/abs/2402.02592.

Xue, H. and Salim, F. D. Promptcast: A new prompt-
based learning paradigm for time series forecasting. IEEE
Transactions on Knowledge and Data Engineering, 2023.

Yao, Q., Yang, C.-H. H., Jiang, R., Liang, Y., Jin, M., and
Pan, S. Towards neural scaling laws for time series foun-
dation models. In The Thirteenth International Confer-
ence on Learning Representations, 2025.

Yue, Z., Wang, Y., Duan, J., Yang, T., Huang, C., Tong, Y.,
and Xu, B. Ts2vec: Towards universal representation of
time series. Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 36(8):8980–8987, Jun. 2022. doi: 10.
1609/aaai.v36i8.20881. URL https://ojs.aaai.
org/index.php/AAAI/article/view/20881.

6

https://openreview.net/forum?id=H02X7RO3OC
https://openreview.net/forum?id=H02X7RO3OC
https://arxiv.org/abs/1703.07015
https://arxiv.org/abs/1703.07015
https://arxiv.org/abs/1907.00235
https://arxiv.org/abs/1907.00235
https://arxiv.org/abs/1707.01926
https://arxiv.org/abs/1707.01926
https://arxiv.org/abs/2310.07402
https://arxiv.org/abs/2310.07402
https://arxiv.org/abs/2402.02368
https://arxiv.org/abs/2402.02368
http://dx.doi.org/10.1029/2020MS002203
http://dx.doi.org/10.1029/2020MS002203
https://arxiv.org/abs/2405.15124
https://arxiv.org/abs/2405.15124
https://arxiv.org/abs/2502.16294
https://arxiv.org/abs/2502.16294
https://arxiv.org/abs/2402.02592
https://arxiv.org/abs/2402.02592
https://ojs.aaai.org/index.php/AAAI/article/view/20881
https://ojs.aaai.org/index.php/AAAI/article/view/20881

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Classification TSFM Can Be Pretrained on Synthetic Data only

Zhang, C., Zhang, C., Song, J., Yi, J. S. K., Zhang, K., and
Kweon, I. S. A survey on masked autoencoder for self-
supervised learning in vision and beyond. arXiv preprint
arXiv:2208.00173, 2022.

Zhang, H., Liu, Y., Qiu, Y., Liu, H., Pei, Z., Wang, J., and
Long, M. Timesbert: A bert-style foundation model
for time series understanding, 2025. URL https://
arxiv.org/abs/2502.21245.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer
for long sequence time-series forecasting, 2021. URL
https://arxiv.org/abs/2012.07436.

Zhou, T., Niu, P., Sun, L., Jin, R., et al. One fits all:
Power general time series analysis by pretrained llm.
Advances in neural information processing systems, 36:
43322–43355, 2023.

7

https://arxiv.org/abs/2502.21245
https://arxiv.org/abs/2502.21245
https://arxiv.org/abs/2012.07436

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Classification TSFM Can Be Pretrained on Synthetic Data only

A. Related work
Time series foundation models Recent advances in TSFM have followed two primary directions: (1) training models
from scratch on large-scale, diverse time series datasets (Ansari et al., 2024; Goswami et al., 2024; Das et al., 2024; Gao
et al., 2024; Rasul et al., 2024; Wang et al., 2024; Woo et al., 2024; Bhethanabhotla et al., 2024; Feofanov et al., 2025;
Gao et al., 2024; Lin et al., 2024; Liu et al., 2024), and (2) leveraging large language models (LLMs) as backbones for
time series tasks (Chang et al., 2023; Gruver et al., 2024; Zhou et al., 2023; Xue & Salim, 2023; Cao et al., 2023; Jin et al.,
2023). The first approach focuses on developing architectures specifically tailored for time series, while the second approach
explores encoding time series data into textual formats or extending the model’s input mechanisms to natively handle
sequential numeric data. Among the TSFMs mentioned above, a vast majority were proposed for time series forecasting,
with only (Feofanov et al., 2025; Gao et al., 2024; Goswami et al., 2024; Chang et al., 2025; Lin et al., 2024; Zhang et al.,
2025) natively supporting time series classification. In particular, (Feofanov et al., 2025; Lin et al., 2024) specifically
target classification by contrastively pretraining encoder-only models over time series gathered from popular classification
benchmarks. They achieve state-of-the-art results in this task. (Goswami et al., 2024) is an encoder-decoder model used for
classification and other popular time series tasks, such as forecasting, imputation, and anomaly detection. (Gao et al., 2024)
relies on a custom architecture and is used in generative and prediction tasks by leveraging task-specific tokens. Finally,
(Chang et al., 2025) fine-tunes an LLM by adding an appropriate encoder for input data and a classification head to generate
predictions.

Pretraining datasets The training data for TSFM generally fall into three categories: real-world, synthetic, or hybrid
datasets combining the two. Models trained (or fine-tuned in case of LLM-based TSFMs) exclusively on real data (Das
et al., 2024; Gao et al., 2024; Rasul et al., 2024; Wang et al., 2024; Feofanov et al., 2025; Gao et al., 2024; Lin et al., 2024;
Chang et al., 2023; Gruver et al., 2024; Zhou et al., 2023; Xue & Salim, 2023; Cao et al., 2023; Jin et al., 2023) typically
leverage extensive collections (ranging from 300k to 50M distinct time series) drawn from diverse domains such as traffic,
finance and environmental monitoring. Training on these datasets, however, may be suboptimal scaling-wise as (Quan et al.,
2024) obtained comparable performance using < 1% of the original 27B pretraining dataset from (Woo et al., 2024), while
(Yao et al., 2025) showed that famous forecasting TSFMs have very flat scaling laws in the multivariate setting. Meanwhile,
forecasting models such as Chronos (Ansari et al., 2024) and TimesFM (Das et al., 2024) enhance their training corpus by
incorporating synthetic time series data alongside real-world data. Finally, such methods as TimePFN (Taga et al., 2025)
and ForecastPFN (Dooley et al., 2023) are pre-trained solely on synthetic data. In all these forecasting models, synthetic
data is commonly generated through structured statistical procedures, including Gaussian process (kernel-based) methods or
piecewise linear and seasonal pattern constructions with additive noise (for more details, we refer the interested reader to
Appendix B.) To the best of our knowledge, no prior work has proposed classification-oriented synthetic data generation
methods for training time series foundation models.

B. Overview of pretraining datasets for time series foundation models
Table 3 summarizes the pretraining datasets used by representative Time Series Foundation Models. For each model, we
report whether synthetic data was used, the total number of time points and time series samples, whether the datasets are
publicly available. The table is organized alphabetically by model name.

Model Synthetic Real Time Points Series Count Open
Chronos (Ansari et al., 2024) Yes Yes 84B 890K Yes
ForecastPFN (Dooley et al., 2023) Yes No 60M 300K Yes
Mantis (Feofanov et al., 2025) No Yes N/A ∼1.89M 1 Yes
MOMENT(Goswami et al., 2024) No Yes 1.23B 13M Yes
NuTime (Lin et al., 2024) No Yes 60M 1.89M Yes
TabPFN (Hollmann et al., 2023) Yes No N/A 9.216M No
TimePFN (Taga et al., 2025) Yes No ∼ 200M ∼3M Yes
UniTS (Gao et al., 2024) No Yes 35M 6K Yes

Table 3: Overview of pretraining datasets for Time Series Foundation Models (TSFMs).

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Classification TSFM Can Be Pretrained on Synthetic Data only

C. Loss and architecture of Mantis and MOMENT
Self-supervised pretraining Self-supervised learning (SSL) has emerged as a powerful training paradigm for foundation
models, allowing them to effectively learn discriminative representations from large-scale unlabeled datasets, significantly
reducing dependency on costly data labeling (Jaiswal et al., 2020). SSL methods are categorized into two principal types:
contrastive learning and masked (reconstruction) learning (Liu et al., 2023). Contrastive learning focuses on distinguishing
between similar (positive) and dissimilar (negative) data pairs to learn meaningful representations. Conversely, masked
learning leverages reconstruction objectives by training models to predict masked parts of the input, thereby gaining robust
contextual understanding (Zhang et al., 2022).

In our work, we cover both pretraining regimes. To this end, we consider Mantis (Feofanov et al., 2025), an open-source FM
pretrained contrastively, and MOMENT (Goswami et al., 2024), which is a masked-based pretrained model.

Contrastive learning loss of Mantis. Given an encoder F : Rt → Rq , we consider random augmentations ϕ, ψ ∼ U(T).
The similarity between two augmented samples is measured after projecting their embeddings to a new dimension q′ via
g : Rq → Rq′ . Specifically, the cosine similarity is defined as:

scos(a,b) =
a⊤b

∥a∥∥b∥
, ∀(a,b) ∈ R2q′ .

Given a batch B = {xi}bi=1, we compute pairwise similarities:

si(ϕ, ψ) = [scos (g ◦ F ◦ ϕ(xi), g ◦ F ◦ ψ(xj))]
b
j=1 ∈ Rb.

The Mantis encoder F and projector g are optimized by minimizing the contrastive loss:

Lcontrastive =

b∑
i=1

lce

(
si(ϕ, ψ)

T
, i

)
,

where lce is the cross-entropy loss and T is a temperature parameter set to 0.1.

Masked learning loss of MOMENT. Given a univariate time series T ∈ R1×T , it is segmented into N disjoint
patches of length P . Each patch is mapped into a D-dimensional embedding, replaced with a learnable mask embedding
[MASK] ∈ R1×D for masked patches. The resulting embeddings are fed into a transformer encoder, producing transformed
embeddings that are then decoded by a lightweight reconstruction head hrec. The masked loss for reconstruction is defined
as the mean squared error (MSE):

Lmasked =
1

|Ω|
∑
n∈Ω

∥Tn − hrec(F ([MASK]))n∥2 ,

where Ω denotes the set of indices corresponding to masked patches.

Model architectures. For the masked learning approach, MOMENTs leverages a Transformer-based architecture derived
from the T5 family (Chung et al., 2022)model. Specifically, MOMENT employs a 8, 12, 24-layer Transformer encoder
with hidden dimensions D = 512, 768, 1024, and 8, 12, 16 attention heads for ”Small”, ”Base”, ”Large” model. The model
processes input time series by segmenting them into N = 64 patches of length P = 8, applying positional embeddings, and
then reconstructing masked patches.

Conversely, Mantis utilizes a Vision Transformer (ViT)(Dosovitskiy et al., 2021) architecture. Initially, the input time series
is divided into tokens, to which a learnable class token is appended. Positional embeddings are added to encode temporal
information explicitly. The ViT unit consists of 6 transformer layers, each comprising multi-head attention with 8 heads.
The final output is derived from the class token’s embedding after aggregation by the transformer layers. It is worth noting
that Mantis employs a customized tokenizer. For detailed information, please refer to the original Paper3.

1The updated number of training samples (∼1.38M) is confirmed in the official repository: https://github.com/vfeofanov/
mantis/issues/2. The arXiv version initially reported ∼7M.

3https://github.com/vfeofanov/Mantis

9

https://github.com/vfeofanov/mantis/issues/2
https://github.com/vfeofanov/mantis/issues/2
https://github.com/vfeofanov/Mantis

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Classification TSFM Can Be Pretrained on Synthetic Data only

D. Details of CAUKER

D.1. Details of banks

Specifically, the kernel banks include:

• ExpSineSquared — captures periodic patterns with a fixed wavelength; produces strongly oscillatory samples with
global smoothness.

• DotProduct — induces linear trend behavior; sample paths grow or decay steadily over time.

• RBF (Radial Basis Function) — generates smooth, localized fluctuations around zero with short-range correlations.

• RationalQuadratic — a scale mixture of RBF kernels, allowing for multiscale smooth variations in the signal.

• WhiteKernel — models uncorrelated noise; sample paths resemble pure Gaussian noise with no temporal structure.

• ConstantKernel — generates flat constant signals; serves as a component for additive models with nonzero mean.

These six kernels represent only a small subset of our full kernel bank. In practice, we construct a much larger kernel
bank comprising 36 distinct kernels. This is achieved by varying the hyperparameters of each kernel (e.g., length-scale,
periodicity, noise level, amplitude) across a range of scales to capture diverse temporal dynamics. For instance, we use
multiple versions of the ExpSineSquared kernel with different periodicities to simulate both high- and low-frequency
periodic patterns. Similarly, we vary the length-scale of RBF and RationalQuadratic kernels to control smoothness and
correlation range.

During synthetic data generation, kernels are sampled from the full kernel bank, which offers significantly richer diversity
than what is shown here. These base kernels are subsequently composed using random additive and multiplicative operations
to define flexible Gaussian process priors for root node generation in the CAUKER pipeline.

Figure 2 presents the four representative mean functions used in our synthetic data generation pipeline. Each subplot illus-
trates a randomly sampled instance from the corresponding function class. These functions can be combined multiplicatively
or additively during Gaussian process sampling to enrich the diversity of generated signals.

• Zero Mean: A baseline function returning a constant zero across the time axis, corresponding to the standard GP
assumption with zero-centered priors.

• Linear Mean: A simple affine transformation a · t+ b, enabling trends such as monotonic increases or decreases over
time.

• Exponential Mean: A parametric form a · exp(bt) that introduces strong, nonlinear growth or decay patterns into the
signal.

• Sparse Anomalies: A piecewise-constant mean vector with a few randomly placed spikes, simulating rare disruptive
events (e.g., faults, attacks, regime shifts).

These mean functions serve as building blocks for composing realistic non-stationary temporal structures in synthetic time
series. In the generation process, two functions are randomly selected and combined (either by summation or elementwise
multiplication), forming the final mean vector used in GP sampling. The images shown in Figure 2 are illustrative samples;
in practice, stochastic variation over parameters (slopes, amplitudes, etc.) ensures that each generated series presents unique
mean behavior.

Activation function bank. In addition to kernel and mean banks, CAUKER employs a diverse activation function bank A
to propagate nonlinear transformations through the structural causal graph. Each edge in the DAG is randomly assigned an
activation from this bank, which governs how parent node values influence their children. The activation bank comprises
both classical and domain-specific transformations:

• Linear: Identity or affine mappings ax+ b, preserving proportional signal propagation.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Classification TSFM Can Be Pretrained on Synthetic Data only

Figure 2: Examples of four mean function types used in the synthetic data pipeline. Each function introduces distinct
temporal structure, contributing to the diversity and realism of generated sequences.

• ReLU: Rectified linear units max(0, x), introducing sparsity and piecewise linearity.

• Sigmoid: Smooth squashing function σ(x) = 1/(1 + e−x), modeling saturation effects.

• Sinusoidal: Periodic modulations sin(x), inducing wave-like behaviors.

• Modulo: Modular transformations x mod c, yielding abrupt nonlinearities or periodic clipping.

• Leaky ReLU: Slope-preserving variant of ReLU, ensuring non-zero gradients for negative inputs.

These nonlinearities enhance the diversity of functional relationships within the generated synthetic time series and allow
the resulting signals to exhibit complex, structured dependencies. As illustrated in the SCM pipeline, these functions are
applied edge-wise to linear combinations of parent signals before assigning values to child nodes.

Design choices The synthetic datasets generated using our CAUKER approach effectively encode diverse, realistic patterns
and causal dynamics characteristic of real-world classification problems. Unlike the kernel-only generator of Ansari et al.
(2024) (Steps 1,2), which was designed for forecasting and therefore draws zero-mean Gaussian-process samples that
emphasize smooth trend extrapolation, our task calls for retaining the mean level itself (Step 3) as a discriminative cue
– a choice that is empirically confirmed in Section 3.2. Conversely, the structural causal model (SCM) generator (Steps
4,5) originally proposed for tabular classification (Hollmann et al., 2023) produces rich non-linear dependencies but lacks
hallmark time series motifs such as seasonality or linear trends. By unifying kernel composition with an SCM backbone,
CAUKER inherits the local smoothness and periodic structure of Gaussian processes while simultaneously injecting causal
semantics through directed edges, yielding synthetic series that are explicitly classification-oriented and more faithful to
real-world temporal dynamics.

E. Scaling laws for zero-shot classification with TSFMs
Scaling laws are fundamental to improving foundation models, underpinning their ability to generalize and demonstrate
emergent capabilities with increased data and model scale. While scaling laws are widely studied in language and vision,
their systematic exploration in the context of zero-shot time series classification remains is currently absent. To the best of
our knowledge, our work is the first to thoroughly investigate scaling laws specifically in the setup of zero-shot time series
classification which is of independent interest.

E.1. Data scaling laws

Experimental setup To investigate data scaling laws, we systematically vary the pretraining dataset sizes from two distinct
sources: (1) randomly selected subsets of the real-world UEA benchmark (Bagnall et al., 2018) at increments of 0.1%, 1% ...
100%, and (2) synthetic data generated by our proposed CAUKER method, at varying scales from 10K up to 10M samples.
We recall that both Mantis and MOMENT take as input univariate time series. This means that each channel of multivariate
UEA datasets becomes a training sample, with a total of 12M channels (train set and test set combined) from 30 different
datasets. Additional details are provided in Appendix F.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Classification TSFM Can Be Pretrained on Synthetic Data only

Figure 3: Scaling law of MOMENT and Mantis depending on the dataset size (left, middle left, respectively) model trained
on different subsets of UEA and CauK datasets. Scaling law for the same models depending on the model size (middle
right, right, respectively)

Results As illustrated in Figures 3, our experiments indicate that the classification accuracy on the UCR datasets does not
monotonically increase with the size of training data when trained on subsets of the UEA dataset (left for Mantis, middle left
for MOMENT). We hypothesize that this behavior may be a result of a domain mismatch between UEA and UCR, further
exacerbated by the lack of diversity within the real-world time series of UEA.

In contrast, CAUKER-generated datasets exhibit clear and consistent scaling laws. The accuracy steadily improves with
increasing data size, demonstrating the CAUKER-generated data’s effectiveness in capturing diverse patterns essential for
generalizing to the UCR target set. Additionally, these results also suggest an interesting contrast between model capacities:
the lightweight Mantis model achieves competitive performance even with smaller training sets, likely due to the strong time
series classification priors incorporated in its architecture that we have mentioned above. In contrast, the larger and more
generic MOMENT model exhibits more significant accuracy gains as the training data increases, highlighting its greater
capacity to leverage large-scale data for improved representation learning. This distinction underscores the importance of
jointly considering model capacity and data availability when designing scalable TSFMs.

E.2. Model scaling laws

Experimental setup We further assessed model scaling laws by varying the size of the MOMENT model (Small, Base,
Large versions of sizes 77M, 248M, and 783M, respectively), and Mantis model (with number of parameters 0.75M, 2.59M,
8.10M) using both UEA and CAUKER-generated datasets. More details on the experiments can be found in Appendix G.

Results Results, as shown in Figure 3 (middle right for Mantis, right for MOMENT), indicate that models trained on
real-world UEA data do not exhibit consistent performance gains with increasing model size, reinforcing the notion of limited
data diversity or domain mismatch. Conversely, models trained on CAUKER-generated datasets consistently demonstrate
increased accuracy as model size grows, clearly validating the presence of model scaling laws enabled by the synthetic
CAUKER-generated pretraining data. We further notice that, apart from the single outlier of MOMENT trained on the 10M
samples CAUKER corpus, every model pretrained on CAUKER exhibits a strictly increasing UCR accuracy as its capacity
grows. The small increase for MOMENT at 10M indicates that this particular encoder has reached (or is close to) saturation;
a similar saturation point can be observed for Mantis once the parameter count exceeds approximately 28M (see Appendix G
for a more large-scale experiment). Conversely, the unstable – or even degrading – trend on models pretrained with larger
UEA subsets is most plausibly explained by two factors: (i) the UEA collection lacks a clean, easily learnable generative
structure, and (ii) its underlying distribution is mismatched with that of UCR, making additional capacity harder to exploit.

E.3. Training time scaling laws

We now study the training time scaling law that aims at identifying the gains in terms of test accuracy that more compute
given by longer optimization of the model can bring.

Experimental setup We track the evolution of zero-shot accuracy with training epochs for Mantis and MOMENT
pretrained on two corpora, namely a 10% subset of the real-world UEA benchmark and a synthetic set of 1M series generated
by CAUKER.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Classification TSFM Can Be Pretrained on Synthetic Data only

1 20 40 60 80 100

 0.2

 0.8

 1.4

Tr
ai

ni
ng

 L
o

ss

CauKer Real

1 20 40 60 80 100
Epoch Number

0.72

0.75

0.78
Te

st
 A

cc
ur

ac
y

Figure 5: The figure show that synthetic data is harder to train on, but leads to a smoother increase of the test accuracy
across epochs.

Figure 4: Test accuracy across epochs for MOMENT
(left) and Mantis (right).

Results As illustrated in Figure 4, accuracy rises steadily
when the models are trained on CAUKER; additional epochs
translate into consistent gains for both architectures. When
pretrained on UEA, however, accuracy curves remain flat or
fluctuate, especially for MOMENT, indicating that prolonged
optimisation yields little benefit on this dataset. These findings
echo the data- and model-scaling observations reported earlier:
causally structured, diverse CAUKER data sustains learning over
long horizons.

E.4. Comparison with forecasting scaling laws

We conclude this section by relating our obtained results to those provided for the time series forecasting task. To this end,
we note that our empirical insights differ from prior work (Edwards et al., 2025; Yao et al., 2025; Shi et al., 2024) in several
ways. First, while we observed clear data- and model-scaling trends when pretraining on CAUKER data, we also found signs
of saturation at high data volumes or model capacities. Although (Edwards et al., 2025; Yao et al., 2025) reported a rather
flat scaling law for real-world multivariate TSFMs, they were still monotonically decreasing. Second, our observed accuracy
improvements follow sub-exponential rather than clean exponential growth. This suggests that the scaling dynamics in time
series classification may follow different patterns compared to other modalities like language or vision, and that a more
systematic, theory-driven study of such behavior is needed to fully understand its implications.

F. Experimental details of Section E.1
In our scaling law experiments, we systematically evaluated the performance of two distinct models, Mantis and MOMENT,
across varying dataset sizes from both real-world and synthetic sources. We adopted the official 8M parameters configuration
of Mantis as released in its open-source repository, which includes a 6-layer ViT encoder with 8 attention heads and a hidden
dimension of 256. The classification head used was a Random Forest classifier trained on frozen embeddings.

For MOMENT, we used the officially supported “google/flan-t5-small” variant containing 77M parameters as the encoder
backbone. This model structure is one of the pretrained configurations endorsed in the original MOMENT framework.
During training, we froze the encoder and trained only the classification head, which was implemented as a Support Vector

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Classification TSFM Can Be Pretrained on Synthetic Data only

Machine (SVM). This setup mirrors the zero-shot classification evaluation protocol used in prior TSFM literature.

For both models, we varied the training data sizes as follows: for the real-world UEA dataset, subsets ranging from 0.1% to
100% (12.7K to 12.67M samples) were randomly sampled. For synthetic data, we generated samples using our CAUKER
method at 10K, 50K, 100K, 500K, 1M, 5M, and 10M scales. All series were univariate with length 512. The full list of data
sizes and corresponding classification accuracy values on the UCR benchmark are reported in Table 4.

Model Train Set Data Size UCR Accuracy (%)

MOMENT (77M)

UEA 127K 72.42
UEA 1.27M 70.49
UEA 633K 71.09
UEA 6.33M 72.09
UEA 12.67M 72.10

CAUKER 100K 74.24
CAUKER 500K 74.35
CAUKER 1M 75.21
CAUKER 5M 77.01
CAUKER 10M 77.49

Mantis (8M)

UEA 12.7K 75.67
UEA 127K 76.21
UEA 633K 75.83
UEA 1.27M 75.39
UEA 3.68M 76.33
UEA 12.67M 71.93

CAUKER 10K 76.91
CAUKER 50K 78.08
CAUKER 100K 78.55
CAUKER 1M 78.91
CAUKER 10M 79.09

Table 4: Exact accuracy values used in the scaling law plots (Figure 3).

G. Experimental details of Section E.2
To investigate model scaling laws, we evaluated a range of model capacities for both MOMENT and Mantis using synthetic
datasets generated by CAUKER. For MOMENT, we adopted the official series of models given by:

• flan-t5-small (77M parameters),

• flan-t5-base (248M parameters),

• flan-t5-large (783M parameters).

For the Mantis encoder, we varied the transformer depth and width while keeping the sequence length fixed at 512 and using
the same patching configuration. The model variants are as follows:

• 0.75M: hidden dim=256, transf depth=1, transf num heads=2, transf mlp dim=512,
transf dim head=128.

• 2.59M: same as above, with transf depth=3, transf num heads=4.

• 8.10M: same as above, with transf depth=6, transf num heads=8.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Classification TSFM Can Be Pretrained on Synthetic Data only

Figure 6: Accuracy on UCR dataset with varying model sizes for the Mantis model trained on UEA subsets and synthetic
CAUKER data.

• 28.56M: same as above, with transf depth=12, transf num heads=16.

• 114.14M: hidden dim=512, transf depth=12, transf num heads=16, transf mlp dim=1024,
transf dim head=256.

All Mantis variants used the following fixed parameters: seq len=512, num patches=32, scalar scales=None,
hidden dim scalar enc=32, and epsilon scalar enc=1.1. The model output embeddings were classified
using a Random Forest classifier trained on frozen features.

This design allows us to jointly assess the impact of model depth, width, and hidden dimensionality on zero-shot classification
performance under a consistent synthetic data regime.

Table 5 reports the exact accuracy values corresponding to the model scaling plots shown in Figure 6. For both MOMENT
and Mantis, we list results under varying model sizes and dataset configurations.

Model Size UEA 1% UEA 10% UEA 100% CAUKER 100K CAUKER 1M CAUKER 10M
77M (MOMENT) 72.42 70.49 72.10 74.24 75.21 77.49

248M (MOMENT) 68.62 66.91 69.01 75.16 76.16 77.51
783M (MOMENT) 64.85 64.18 66.07 77.28 77.20 77.85

0.75M (Mantis) 73.25 72.81 72.77 75.10 75.67 76.44
2.59M (Mantis) 75.87 75.12 75.73 77.74 78.22 78.30
8.10M (Mantis) 76.36 75.44 72.03 78.06 78.91 79.09

28.56M (Mantis) 76.66 77.15 77.05 78.70 78.83 78.19
114.14M (Mantis) 76.60 77.29 76.97 78.42 78.86 78.81

Table 5: Exact zero-shot accuracy (%) on the UCR benchmark under different model sizes and pretraining dataset
configurations.

H. Experimental details of Section 3.2
For all compared models, we adopted the best training loss epoch as the checkpoint for final evaluation. Specifically, the
official setting for Mantis involves training for 100 epochs, while MOMENT is typically trained for 2 epochs. However, for
our experiments, we trained Mantis for 100 epochs and MOMENT for 10 epochs to allow sufficient convergence, consistent
with our goal of achieving the best performance on the CAUKER and UEA datasets. For the MOMENT model, we utilized

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Classification TSFM Can Be Pretrained on Synthetic Data only

the base model ”google/flan-t5-small” with 77M parameters, trained on both the CAUKER and UEA datasets. The official
MOMENT checkpoint used in our experiments (Time Series Pile), ”google-t5/t5-small,” has 60M parameters.

16

