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Abstract
Large language models (LLMs) have demonstrated unprecedented
emergent capabilities, including content generation, translation,
and simulation of human behavior. Field experiments, on the other
hand, are widely employed in social studies to examine real-world
human behavior through carefully designed manipulations and
treatments. However, field experiments are known to be expensive
and time consuming. Therefore, an interesting question is whether
and how LLMs can be utilized for field experiments. In this paper,
we propose and evaluate an automated LLM-based framework to
predict the outcomes of a field experiment. Applying this framework
to 276 experiments about a wide range of human behaviors drawn
from renowned economics literature yields a prediction accuracy
of 78%. Moreover, we find that the distributions of the results are
either bimodal or highly skewed. By investigating this abnormality
further, we identify that field experiments related to complex social
issues such as ethnicity, social norms, and ethical dilemmas can
pose significant challenges to the prediction performance.

CCS Concepts
• Information systems→Collaborative and social computing
systems and tools.

Keywords
Large Language Models, Field Experiments

1 Introduction
Field experiments allow researchers to manipulate variables of inter-
est in a real-world setting, such as human behaviors like ad clicking
or donation giving, establishing causal relationships between in-
terventions and outcomes. They typically begin by designing an
intervention aligned with a specific research question, randomly
assigning participants to treatment or control groups, and then
measuring outcomes under natural conditions. The resulting data
are collected and analyzed to evaluate the causal impact of the
intervention [27]. It is adopted by a wide range of disciplines across
academia and industry, such as finance [5, 14], marketing [17, 28],
and organizational studies [23, 31]. In recent years, online field
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SLW, Toronto
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

experiments, also known as A/B testing, have revolutionized nu-
merous online platform designs, advertising strategies, etc. While
effective, field experiments are also known to be expensive and
time consuming. For example, some experiments may take months
or years to conduct [35]. Moreover, recruiting high-quality partici-
pants for the experiments is challenging and costly [3], potentially
affecting the experiment’s outcomes.

In recent years, Large language models (LLMs) have demon-
strated unprecedented emergent capabilities, including content
generation, translation, and simulation of human behavior. For
example, existing studies have explored the alignments between
simulated data generated by LLMs and real data collected from
human participants across various aspects, including human re-
sponses, traits [16], moral standards [13], preferences [36], and emo-
tions [18]. Therefore, it is becoming increasingly popular to lever-
age LLMs for simulating human behaviors [19, 48]. For example,
there are a handful of studies in which scholars have successfully
instructed LLMs to replicate existing lab experiments across several
disciplines, including psychology [2, 11], sociology [22, 26, 34], and
economics [2, 24]. Their aim is to replicate existing lab experiments
by treating LLMs as participants in lab experiments.

However, directly applying these works to field experiment sim-
ulations in our context has several challenges. First, they mainly
focused on lab experiment settings. But field experiments are in-
herently more challenging to conduct than laboratory experiments,
due to diverse participant backgrounds, complex workflows, and
multifaceted treatment designs. Second, most of the previous stud-
ies mainly relied on manual processes, and because of that, tested
a handful of experiments with a limited scope of topics. While
some recent studies tested on relatively large data, the selected
experiments were limited to Likert-based psychological or social
surveys [11, 22]. In order to explore LLMs’ capabilities, robustness,
and generalizability in field experiment simulation, we need to test
them on a much larger scale and broader range of experiments on
different topics.

In this paper, we fill the literature gap by proposing an auto-
mated LLM framework to predict the outcome of a wide range of
field experiments. Our framework has several major components,
such as an information extraction module, a variant generation
module, and a prediction module. Specifically, the information ex-
traction module extracts key experiment settings, while the variant
generation module generates false variants as distractors to con-
fuse LLMs. Finally, the prediction modules leverage two prompt
templates with a Chain-of-Thought design, prompting the LLM to
predict the outcomes of a field experiment.

We test this framework on 276 field experiments reported in
premier academic journals from 2000 to 2024. Those experiments
contain a total of 1261 conclusions with a wide range of topics
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such as labor-market discrimination, educational incentives, house-
hold finance behavior, and the impact of healthcare enrollment.
Without any alignment techniques or fine-tuning, our framework
achieves an average prediction accuracy of 78%. We also test for
data memorization effects by examining prediction results on re-
cent experiments that appeared in 2024, which would be less likely
to be included in the training data of LLMs. More interestingly, we
also find that the prediction results are either bimodal or highly
skewed. For example, our framework achieves nearly 100% predic-
tion accuracy on 71% of conclusions while it completely fails to
predict 18% of the conclusions with close to 0% accuracy. Further
analyses reveal that our LLM-based framework has limitations in
predicting experiments related to complex social issues such as
ethnicity, social norms, and ethical dilemmas.

Our research makes several contributions:

1 We extend the current literature on LLMs’ emergent ca-
pabilities by demonstrating that LLMs can simulate field
experiments by predicting conclusions. While using LLMs
to simulate human behavior is well studied in recent years,
to the best of our knowledge, this is the first work in the
literature to replicate large-scale field experiments that re-
quire a more complex environment setting and workflow
design.

2 Our proposed framework enables the prediction of field
experiment conclusions in a fully automated, large-scale
fashion. As a result, our framework is robust and can be
generalized to a wider range of downstream applications
in field experiments.

3 This paper examines the prediction performance and re-
veals the limitations of LLMs in field experiment simula-
tions.

2 Literature Review
Our study is related to the LLM literature on simulating human
behavior, with a particular focus on experimental simulations by
LLMs. Here, we highlight our contributions by comparing and
contrasting our work with existing studies.

While past literature mainly focused on agent-based social sim-
ulation [9, 45, 49], there is an increasing trend to adopt LLMs as
simulation tools. Existing studies have found that LLMs’ ability to
simulate human behavior stems from their possession of human-
like reasoning skills and their adaptivity to personas of diverse
characters [40, 43]. Upon those features of LLMs, Aher et al. [2]
proposed the concept of "Turing Experiment", in which LLMs are
profiled as synthetic participants of experiments with integrated
prompt of experimental settings and demographic information.
Similarly, Horton [24] demonstrated LLMs’ ability to simulate lab
experiments and promoted it as a method of experimental pilot test-
ing. The usage of LLMs in Horton [24]’s work is similar to Aher et
al. [2], consisting of two stages: prompting LLMs as synthetic exper-
imental participants and collecting responses from conversations,
reporting a few successful simulation cases of lab experiments. Leng
& Yuan [26] harnessed a three-phase procedure to complete the lab
experimental simulation, which includes the initialization phase,
interaction phase, and decision analysis phase. In the initialization
phase, separate conversations of GPT-4 are prompted as vanilla

experimental participants without specifying demographic infor-
mation. Then, in the interaction stage, synthetic participants are
prompted with the actions of other participants and asked to take
actions and rationales according to the experiment design. Last,
agents’ actions and rationales are collected for analysis to conclude.
Leveraging this procedure, the study simulates five existing lab ex-
periments. Manning et al. [34] proposed an automated framework
for various lab experimental simulations. Although the entire work-
flow is divided into seven steps, it is essentially similar to themanual
procedures of the three papers above. However, the sole input is
the backstory of the experiment. Based on the input information
and powered by an LLM, the framework continues with subsequent
steps: identifying dependent and independent variables, generating
treatment values, profiling agents, organizing the interaction of
agents, collecting data, and establishing causal relationships and
conclusions. The paper reports the results of four social scenarios.
Besides the aforementioned studies, which were tested only on
a small scale of cases, there are extant papers that implemented
large-scale testing on LLM-based experimental replication. Cui et
al. [11] replicated 154 psychological experiments. Specifically, they
profiled LLMs as either students or adults, retrieving Likert-like
responses from LLMs, which is oversimplified compared to most
lab and field experiments. By comparison, Ashokkumar et al. [22]
extended such a massive replication to 70 more complex survey
experiments, though their selected experiments were limited exclu-
sively to US social surveys and did not include any field experiments
in the primary tests.

In summary, while existing studies discussed above pioneered the
application of Large Language Models (LLMs) to laboratory experi-
ment simulations, several research gaps remain unaddressed. For
instance, existing methods are not tested on field experiments that
are inherently more complex than laboratory experiments, encom-
passing diverse participant backgrounds, more intricate workflows,
and multifaceted treatment designs. Besides, despite extensive dis-
cussions on LLM bias [8, 15, 46] and the fact that recognized biases
in LLMs—such as gender [25] and social norm bias [39]—can com-
promise performance on downstream tasks [21], only one of these
studies mentioned the impact of certain topics on the replication
successful rate of psychological surveys [11]. It is still unclear how
the joint effect of topics and sentiments would undermine the fi-
delity of field experiment prediction. Another limitation is that these
studies tested their simulation strategies on only a small number of
experiments, restricting generalizability. To address these gaps, we
evaluated our proposed framework at scale on field experiments
from published papers, demonstrating not only that LLMs can ac-
curately predict the outcomes of established experiments, but also
clarifying boundary conditions under which they cannot provide
reliable experimental predictions. Furthermore, current automated
simulation framework [11, 22, 34] are incompatible with scenarios
involving complex treatments involving human-object interactions
and limit only to lab experiments with Likert response or survey.
By contrast, our framework offers a broadly adaptable approach
that supports experiments across a wide range of contexts.
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3 Data Collection and Filtering
To explore LLMs’ ability to predict field experiments in a large-
scale fashion, we first need to collect existing field experiments.
Inspired by prior studies that focus on using LLMs to simulate
human behaviors in lab experiments from existing psychology
literature, we also consider field experiments studied in premier
journals in economics, such as The Review of Economic Studies,
American Economic Review, Journal of Political Economy, and The
Quarterly Journal of Economics. It is worth noting that we focus on
field experiments in economics because they are generally a larger
scale in terms of participant size and robust in terms of careful
design.

Figure 1: The Data Collection Workflow.

Figure 1 shows the data collection and filtering workflow. Ini-
tially, 6544 papers containing keywords related to field experiments
published between 2000 and 2024 of these top journals were se-
lected. Then, we applied a two-layer verification process powered
by Claude (Claude-3-opus-20240229). First, we prompted the title
and abstract of each paper to Claude and asked it to judge if the
paper designs and implements a field experiment. Upon this, the
second verification prompted the entire paper to Claude, asking the
same question. This strategy balances the accuracy of verification
and the cost of calling Claude, as prompting the entire paper ex-
ponentially increases the cost. A final rule-based manual check to
ensure the fidelity of the automated selection and filter out 276 pa-
pers for testing. More details about the manual check are available
in Section 4.4. It is also worth mentioning that using Claude as the
verification tool, instead of GPT, prevents potential data leakage
as GPTs are leveraged as the prediction tool in our framework.
The distribution of the selected papers is shown in Figure 7 (In
Appendix A).

4 Framework
We present the details of our automated framework for predicting
field experiments in this section. Figure 2 shows the workflow.
Overall, our framework is divided into three stages: Extraction
from Papers, Variant Generation, and Prediction. Notably, Claude
(Claude-3-opus-20240229) powers all preprocess tasks in the first
two stages, whereas GPT completes the prediction at the last stage.
We use two different LLMs in different stages to prevent potential
data leakage from one another.

4.1 Extraction
Specifically, the framework uses Claude to extract information
related to a field experiment from the selected paper. To realize

Figure 2: Prediction Framework.

this, the framework leverages a manually crafted prefixed prompt,
which has proven to be efficient for various downstream tasks [7].
As shown in Figure 8 (In Appendix B.1), the prompt template con-
tains a placeholder "𝑃𝑎𝑝𝑒𝑟 ", an information form consisting of bullet
points from "A" to "G", and clear instructions that ask the LLM to
extract information according to the form from the paper. As un-
derscored in the prompt, the first six bullet points "A" to "F" are key
experimental settings that shape the experiment context, whereas
the last point "G" is about conclusions that are true outcomes in
the prediction task.

Based on the response from Claude, the framework formulates
"Experiment Settings" directly from bullet points "A" to "F", while it
polishes point "G" to generate "Experiment Conclusions". Specif-
ically, the raw response regarding point "G" is a paragraph con-
taining multiple conclusions of the field experiment. To separate
that paragraph into standalone conclusions, the framework calls a
new Claude session, prompting the raw paragraph and related in-
structions to it, finally getting "Experiment Conclusions" in return.
Breaking complex tasks into subtasks improves the performance of
LLM-driven workflows [50], which is the main reason for complet-
ing the extraction and separation of conclusions in different Claude
sessions.
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4.2 Variant Generation
After the experiment settings and conclusions are extracted, the
next step is to generate variants based on the true conclusion, since
the goal is to see if the LLM could select the true one under distrac-
tion. Inspired by Luo et al. [33]’s prediction of neuroscience results
by LLMs, for each conclusion from an experiment, our framework
prompts the original conclusion and its two variants to GPT: a re-
versed variant and an unrelated variant. As a result, the framework
will make the prediction by choosing one of three options.

Specifically, as shown in Figure 9 (In Appendix B.2), the frame-
work initially prompts the original conclusion to Claude, which
follows the instructions to generate the reversed variant of the
original conclusion. The reversed variant means that the direction
of the conclusion is inverted. For example, if one conclusion is
"receiving housing vouchers reduces quarterly employment rates,"
its reversed variant will be "receiving housing vouchers increases
quarterly employment rates." Next, the framework prompts both
the original and reversed conclusions to Claude to generate the
unrelated variant, which typically indicates that there is no correla-
tion between entities of interest. Following the same example, the
unrelated variant will be "There is no relationship between receiving
housing vouchers and quarterly employment rates."

4.3 Prediction
In the final stage, our framework takes a field experiment’s ex-
periment settings, conclusion, and its two variants as input and
generates two parallel prediction prompts: basic prediction prompt
and Chain-of-Thought (CoT) prompt, which are then prompted to
GPT to get predictions by asking GPT to select one conclusion from
three conclusions. We also rely on CoT as it has proven to be capa-
ble of improving the general performance of LLMs on downstream
tasks [47].

Specifically, the basic prediction prompt is shown in Figure 10
(In Appendix B.3). It consists of a background information section,
a question section, and necessary instructions. Specifically, the
background information section contains the general goal of the ex-
periment (such as exploring the impact of job training on income),
treatments (such as receiving job training or not), experiment dura-
tion (such as seven weeks), outcomes (such as income), participant
information (such as people seeking jobs in New England), and
experiment workflow (such as when and how training was given
and outcomes were recorded). All of these were extracted from
a target paper, which is the same as bullet points "A" to "F" from
Figure 8 (In Appendix B.1).

Following the background information, a question section is au-
tomatically generated and entered into the templates. Specifically,
the original conclusion, its reversed variant, and its unrelated vari-
ant are shuffled and substitute the placeholders "option 1", "option
2", and "option 3". Meanwhile, instructions tell GPT that the predic-
tion of conclusions is under the context of the field experimental
settings, asking GPT to choose one option from the three options
as it deems correct.

As we are also interested in how CoT would improve such pre-
diction, Figure 11 (In Appendix B.3) shows the CoT Prediction
Prompt, which follows a similar logic as the basic prediction but
integrates CoT strategies to boost the performance [47]. Initially,

the framework prompts the experiment settings and three options
for a conclusion to GPT, instructing it to think about decisive el-
ements that help choose the correct option. Upon receiving the
decisive elements from GPT, the framework prompts GPT to make
a selection among three options to get a predicted conclusion. It is
worth noting that the entire process is within the same GPT session
for a conclusion.

Although either prompt strategy generates a prediction for a
given input, LLMs are stochastic models, meaning that their re-
sponses may vary to the same prompt. To handle such randomness
in experiment simulations, Leng & Yuan [26] set the temperature
to 0 and always get fixed responses from synthetic participants of
lab experiments, which is a strategy to eliminate the stochasticity
of LLMs totally. By contrast, Brand et al. [6] repeated the same
prompt 300 times and used the averaged number as the result of
Willingness-to-Pay from customers role-played by LLMs. Here, we
take the latter approach by incorporating the stochasticity of LLM
outputs since this stochasticity of LLMs is similar to how the same
human participant might respond differently when presented with
the same instruction [12]. Specifically, we repeat the same predic-
tion prompt several times and calculate an average accuracy as
the final result. For example, if the framework is running the basic
prediction, a filled-out prompt based on Figure 10 (In Appendix B.3)
will be repeated a given number of times to get a stable result. The
determination of a proper repeat number will be further discussed
in the Results section.

Parameter-wise, no fine-tuning is involved in any stage of the
proposed framework, and all parameters of OpenAI API and An-
thropic API are set to default. Whereas Horton [24] harnessed
fine-tuned LLMs in lab experimental simulation to better follow
instructions, Coda-Forno et al. [10] simulated several human be-
haviors by LLMs without fine-tuning. The use of fine-tuned LLMs
complicates the reproduction attempts since other researchers don’t
have access to the same model in the existing papers [4]. Addition-
ally, avoiding fine-tuning LLMs saves computing resources and
mitigates environmental impacts [38], especially when the pre-
training of LLMs is enough to make them capable of downstream
tasks [30].

4.4 Robustness Checks
Given that most steps in the proposed framework are automated,
concerns naturally arise regarding the validity of these automated
processes. To address these concerns, we conduct three manual
screenings to verify the results from extraction (Section 4.1) and
variant generation (Section 4.2). First, we examine whether the ex-
tracted experiment settings (Figure 8, Appendix B.1) inadvertently
include genuine conclusions. Second, we check whether the ex-
tracted conclusions align with those reported in the original papers.
Finally, we assess whether the generated variants of the conclusions
(Figure 9, Appendix B.2) match our expectations.

The first and third screenings revealed no issues. However, the
second screening, which examined the alignment of extracted con-
clusions, identified 377 conclusions as either incomprehensible or
nonexistent in the original texts. Consequently, after the three
screenings, 1261 conclusions and 276 papers remained and were
deemed valid for our purposes.
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Additionally, 86 out of 1261 conclusions were dequantified, as
existing studies suggest that predicting the magnitude of exper-
imental outcomes remains challenging at this stage [34]. Given
our focus on predicting the direction of experimental conclusions
rather than the magnitude, conclusions specifying precise numeri-
cal treatment effects were reformulated in a dequantified manner.
For instance, a conclusion such as "Job training increases income
by 30%" was revised to "Job training increases income."

5 Results
In this section, we test our framework on 276 field experiments that
contain a total of 1261 conclusions and discuss the performance.

We use Conclusion Accuracy and Paper Accuracy to evaluate
the prediction performance under different settings. As shown in
Figure 2, the framework generates a prompt for each conclusion.
The generated prompt either follows the template in Figure 10 or 11
(In Appendix B.3), depending on which prompt strategy (basic or
CoT) the framework applies. Each prompt instructs GPT to output
a predicted conclusion. If the predicted conclusion matches the true
conclusion, that attempt is counted as correct. As aforementioned,
the framework repeats such an attempt for a set number of times
for each conclusion to get a stable result. Therefore, we define
Conclusion Accuracy as the percentage of correct predictions among
a set number of attempts (Equation 1). Given that a field experiment
may contain multiple conclusions, Paper Accuracy is the average of
all Conclusion Accuracy within a paper (Equation 2).

Conclusion Accuracy =
Num of Correct Predictions

Num of Predictions
× 100% (1)

Paper Accuracy =
1
𝑁

𝑁∑︁
𝑖=1

Conclusion Accuracy𝑖 (2)

5.1 Prediction Performance Overview

Table 1: Prediction Accuracy under Different Repeats

GPT-4 Turbo Basic CoT

Conclusion Acc. Paper Acc. Conclusion Acc. Paper Acc.

Repeat = 10 66% 66% 76% 76%
Repeat = 20 66% 66% 76% 76%
Repeat = 30 65% 66% 76% 76%

ANOVA (Basic) F = 0.035, 𝑝 = 0.9994 –
ANOVA (CoT) – F = 0.016, 𝑝 = 0.9999

Sample size: 1,261 conclusions from 276 papers. Models: gpt-3.5-turbo-0125,
gpt-4-turbo-2024-04-09, and gpt-4o-2024-11-20.

Table 1 reports two types of accuracy for both strategies un-
der different repeats by GPT4-turbo. The best results for the basic
strategy are obtained under 10 repeats, which are 66% for both
conclusion accuracy and for paper accuracy. By comparison, the
CoT results are the same 76% for both strategies and different re-
peats, which are generally 10% points higher than basic results
and aligns with prior literature on boosting LLM performance by
CoT [47]. Meanwhile, another key observation is that the results
show a significant invariability to repeat numbers. Specifically, the
results across different numbers of attempts are significantly static

Table 2: PredictionAccuracy under 20Repeats byGPTModels
(point estimate with 95% CI)

Model
Basic CoT

Conclusion Acc. Paper Acc. Conclusion Acc. Paper Acc.

GPT-3.5 Turbo 61%
[58%–63%]

61%
[58%–64%]

68%
[66%–69%]

67%
[65%–70%]

GPT-4 Turbo 66%
[63%–68%]

66%
[63%–69%]

76%
[74%–78%]

76%
[73%–79%]

GPT-4o 75%
[73%–77%]

75%
[72%–78%]

78%
[76%–80%]

78%
[76%–81%]

Sample size: 1,261 conclusions from 276 papers. Models: gpt-3.5-turbo-0125,
gpt-4-turbo-2024-04-09, and gpt-4o-2024-11-20. Values are whole-number
percentages with 95% confidence intervals.

Table 3: Pairwise t -tests of Model Accuracy

Metric Model A (Accuracy%) Model B (Accuracy%) 𝑝

Conclusion GPT-4o CoT (78%) GPT-4 Turbo Basic (66%) < 0.001∗∗∗
Conclusion GPT-4o CoT (78%) GPT-4 Turbo CoT (76%) 0.212
Conclusion GPT-4o Basic (75%) GPT-4o CoT (78%) 0.068
Conclusion GPT-4o Basic (75%) GPT-4 Turbo Basic (66%) < 0.001∗∗∗
Conclusion GPT-4o Basic (75%) GPT-4 Turbo CoT (76%) 0.611
Conclusion GPT-4 Turbo Basic (66%) GPT-4 Turbo CoT (76%) < 0.001∗∗∗

Paper GPT-4o CoT (78%) GPT-4 Turbo Basic (66%) < 0.001∗∗∗
Paper GPT-4o CoT (78%) GPT-4 Turbo CoT (76%) 0.235
Paper GPT-4o Basic (75%) GPT-4o CoT (78%) 0.077
Paper GPT-4o Basic (75%) GPT-4 Turbo Basic (66%) < 0.001∗∗∗
Paper GPT-4o Basic (75%) GPT-4 Turbo CoT (76%) 0.546
Paper GPT-4 Turbo Basic (66%) GPT-4 Turbo CoT (76%) < 0.001∗∗∗

Significance levels: ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001.

under either the basic or CoT strategy. Given that more repeats
result in higher time and monetary cost, we chose 20 repeats for
further evaluation.

Table 2 reports results by different GPT models with 20 attempts
and Table 3 reports corresponding pairwise t-tests for top models.
One key observation from Table 2 is that prediction performance
steadily improves as LLMs iterate, though the rate of improvement
decreases over time. According to Table 2, the best result under 20
repeats is achieved by GPT4o under CoT prompt strategy, which is a
conclusion accuracy of 78% and a paper accuracy of 78%. Specifically,
on average, GPT4o is able to predict a conclusion in 78% of the
20 repeated prediction attempts, and it also predicts 78% of the
outcomes correctly for each paper. While the conclusion accuracy
of GPT4o under CoT strategy is 10 percentage points significantly
higher than the CoT result of GPT3-turbo, it is only two percentage
points and insignificantly higher than the CoT result of GPT4-turbo,
indicating the improvement from model iteration becomes harder
for this task.

Another interesting finding from Table 2 is the boosting effect
of CoT on performance varies on models for the experiment con-
clusion prediction task. Specifically, the largest improvement is 10
percentage points on GPT4-turbo, while the least improvement is
three percentage points on GPT4o, which is not significant. How-
ever, it’s unsafe to conclude that CoT boosting is weaker on newer
models since CoT improves the accuracy by seven percentage points
on the oldest model tested, GPT3-turbo.
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In summary, our findings indicate that incorporating a CoT strat-
egy significantly enhances predictive performance in GPT3-turbo
and GPT4-turbo, whereas increasing the number of repetitions
does not produce a significant change. Furthermore, iterative re-
finements to LLMs consistently improve performance, although the
rate of improvement diminishes over time. Finally, the performance
gains attributable to CoT appear to be model-sensitive.

5.2 Data Memorization

Figure 3: Paper Accuracy by Year.

Data memorization is a common concern in simulating exper-
iments with LLMs. If the results given by the LLM are from its
memory of training data instead of reasoning, the proposed idea
has no instructional value as pilot testing for field experiments [24].
As revealed in its documents, the training data cutoff of gpt-4o-
2024-11-20 is October 2023. Therefore, it is reasonable to assume
that the model would not have seen the field experiments papers
appeared in 2024. In other words, field experiments published after
2024 would be less likely to be included in the training data.

To text our framework’s robustness in light of data memoriza-
tion, we split the papers by year. Figure 3 shows that the paper
accuracy is actually higher on papers 2024 than any other years.
This is notable because if the prediction results are driven by LLMs’
memorization of its training data, the framework’s performance in
unseen papers in 2024 would be poorer, indicating data memoriza-
tion of less concern to our framework.

5.3 Examination of Distributions of Results
To further examine the prediction performance of our proposed
framework, we plot the distributions of accuracy results reported in
Table 2, based on different GPT models and two prompt strategies
under 20 repeats (Figure 4 and 5).

As shown in Figure 4a, the conclusion accuracy of all three mod-
els (gpt-3, gpt4-turbo and gpt-4o) exhibits bimodal patterns, with
peaks concentrated toward both the lower and upper extremes (a
U-shaped distribution). Specifically, there are significant concen-
trations of samples in the 90%-100% accuracy range and another
notable cluster in the 0%-10% accuracy range. This indicates that

(a) Basic Conclusion Prediction Accuracy

(b) CoT Conclusion Prediction Accuracy

Figure 4: Conclusion Prediction Accuracy Distribution

the model’s performance is highly polarized, where certain con-
clusions are predicted with near-perfect accuracy, while others
are almost wrongly predicted entirely. Interestingly, by applying
CoT strategy (Figure 4b), the concentration in the 0%-10% accuracy
range is mitigated, while the concentration in the 90%-100% accu-
racy range deepens, resulting from the performance boosting by
CoT. Model-wise, the U-shaped distributions for the earlier model
(gpt-3-turbo) are milder compared to recent models (gpt-4-turbo
and gpt-4o), probably resulting from the performance limitation of
earlier models.

Similar patterns also exist in Figure 5 to show the paper’s ac-
curacy. Distributions for all models are skewed. Such a skewness
is more pronounced in gpt-4-turbo and gpt-4o, with samples con-
centrating in the upper extreme. This indicates that the frame-
work correctly predicts all conclusions from certain tested experi-
ments. Additionally, CoT generally increases the degree of skew-
ness(Figure 5b), aligning with its boosting effect on LLMs’ perfor-
mance.

Inspired by the bimodal and skewed results (Section 5.3), we
closely examined the topics of each conclusion based on its exper-
imental context. Leveraging LLMs’ ability in annotating [42], we
prompted Claude to label topic components of each conclusion
under the context of the experiment, as shown in Figure 12. To en-
sure selected topics could grasp the reason behind the abnomalities
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found previously (Figure 4 and Figure 5), we included topics where
LLMs’ responses are biased [1, 20, 29, 32, 44], including gender, eth-
nicity, social norms, ethical dilemmas, age, socioeconomic status,
and other topics. As a result, each conclusion was represented by
a vector of percentages summing to 100%, where each percentage
indicated the degree to which the context was associated with a
particular topic. Furthermore, as the sentiment bias also affects
the generated content of LLMs on top of topics bias [37], we used
Claude as the sentiment analysis tool to label each conclusion, de-
ciding the sentiment of each conclusion, either positive, negative,
or neutral (Figure 13, Appendix B.4). In addition to regular senti-
ments, for gender-related conclusions, Claude also labeled each of

them with a gender favorability tag, as LLMs may favor and tend
to generate pro-female content [41]. Specifically, if the context of a
conclusion relates to gender, Claude would further judge if the con-
text is favorable to females or detrimental to males, the opposite, or
neutral, as shown in Figure 14. Finally, all variables acquired from
the labeling process are summarized in Table 5 (In Appendix C).

To study the impact of topic components and sentiments on
LLMs’ performance in experimental prediction, we constructed a
regression model (Equation 3). Table 4 reports six regression results
by three GPT models and two prompt strategies under 20 repeats
on 1261 samples, which corresponds with the conclusion accuracy
results in Table 2.

Conclusion Accuracy = 𝛽0 + 𝛽1 (Gender) + 𝛽2 (Ethnicity) + 𝛽3 (Social norms)
+ 𝛽4 (Ethical dilemmas) + 𝛽5 (Age) + 𝛽6 (Socioeconomic status)
+ 𝛽7 (Other topics) + 𝛽8 (Gender × Favorability)
+ 𝛽9 (Ethnicity × Sentiment) + 𝛽10 (Social norms × Sentiment)
+ 𝛽11 (Ethical dilemmas × Sentiment) + 𝛽12 (Age × Sentiment)
+ 𝛽13 (Socioeconomic status × Sentiment) + 𝛽14 (Other topics × Sentiment)
+ 𝜖

(3)

Figure 6: Full specification of the regression model used to examine the effect of topic–sentiment interactions on
prediction accuracy.

(a) Basic Paper Prediction Accuracy

(b) CoT Paper Prediction Accuracy

Figure 5: Paper Prediction Accuracy Distribution

There are several key findings from regression results (Table 4).
First, the interaction effects between certain topics and sentiments
significantly affect the performance, though there is no significant
evidence that topic components alone may affect LLMs’ ability in
predicting experimental conclusions. Specifically, sentiment inter-
actions with complex social issues such as ethnicity, social norms,
age, and other topics are significantly positive, while sentiment
interactions with ethical dilemmas is significantly negative. For
example, the regression of gpt4o and basic prompt (Table 4 (1))
shows that sentiment interactions with ethnicity and other topics
are significantly positive, suggesting if the context of a conclusions
is positive and relates to ethnicity, LLMs tend to predict it correctly,
while sentiment interaction with ethical dilemmas is significantly
negative, suggesting that if the context of a conclusion is negative
and relates to ethical dilemmas, LLMs tend to avoid it, resulting in a
wrong prediction. Surprisingly, gender, which is a topic component
widely perceived to be biased in LLMs [32, 41], seems not to be a
biased topic in LLM-based experiment prediction. Favorability inter-
action with gender is only significantly positive in gpt4o prediction
under CoT, suggesting that gpt4o inclines to predict pro-female
conclusions and avoid pro-male conclusions under CoT strategy
only in one out of six scenarios. This is also the case for age and so-
cioeconomic status, as the coefficients of their interaction terms are
significant only in one regression, suggesting that LLM prediction
is relatively unaffected for conclusions related to those topics.

Second, though the directions of estimated coefficients are sta-
ble, the significant levels of the same interaction term vary across
regressions due to the refinement from model iteration and prompt
strategies. Specifically, the estimated coefficients of the ethnicity’s

interaction term are significant across most gpt models, suggesting
that the iteration LLMs didn’t fix this bias. By comparison, the coef-
ficients of the interaction of social norms are no longer significant
for more recent models, suggesting that this bias might have been
fixed.

Third, applying CoT strategy might mitigate the impact of senti-
ment interaction with certain topics. According to the regression
results in Table 4 (1) and Table 4 (2), implementing CoT turns some
significant estimated coefficients of interaction terms into non-
significant. However, this is not the case for gpt3-turbo model, as
CoT brings more significant coefficients.

6 Conclusion
In this paper, we propose an LLM-powered framework that auto-
matically extracts information from existing papers and predicts
field experimental conclusions. To the best of our knowledge, this
is the first paper to provide an automated framework for predicting
such conclusions for field experiments. Rather than merely intro-
ducing the framework, our work also examines its fidelity on a
large scale of samples and achieves a considerable accuracy of 78%.
Furthermore, the paper discovers that incorporating a CoT strat-
egy generally enhances predictive performance in this scenario,
whereas the performance gains attributable to CoT appear to be
model-dependent. Furthermore, iterative refinements to LLMs con-
sistently improve performance, although the rate of improvement
diminishes over time.

Interestingly, the paper also finds that the distributions of pre-
diction accuracy are either bimodal or negatively skewed, with a
large number of samples concentrating on the two extremes. To
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explore this phenomenon, the paper regresses conclusion predic-
tion accuracy on topic components and sentiments, revealing that
interaction effects between certain topics and sentiments could
affect the LLMs’ prediction performance in this task.

Taken together, these findings underscore the potential of the
LLM-driven frameworks in advancing automated predictions for
field experiments while also clarifying the practical constraints that
guide their effective use.

Table 4: OLS Regression Results

(1) (2) (3) (4) (5) (6)
Variable GPT-4o Basic GPT-4o CoT GPT-4 Turbo Basic GPT-4 Turbo CoT GPT-3.5 Turbo Basic GPT-3.5 Turbo CoT

Constant 0.812 (0.731) -1.614 (0.516) 3.729 (0.166) -0.931 (0.710) -0.060 (0.983) -0.624 (0.767)
Gender gap -0.080 (0.973) 2.336 (0.347) -3.261 (0.225) 1.701 (0.497) 0.438 (0.874) 1.195 (0.570)
Ethnicity -0.078 (0.974) 2.459 (0.321) -3.210 (0.231) 1.561 (0.532) 0.635 (0.818) 1.250 (0.551)
Social norms -0.091 (0.969) 2.502 (0.316) -2.995 (0.268) 1.520 (0.546) 0.666 (0.810) 1.230 (0.561)
Ethical dilemma -0.654 (0.783) 2.045 (0.413) -3.069 (0.256) 2.046 (0.416) 0.810 (0.770) 1.427 (0.500)
Age 0.032 (0.989) 2.365 (0.343) -3.184 (0.239) 1.528 (0.544) 0.664 (0.811) 1.193 (0.572)
Socioeconomic status 0.094 (0.968) 2.512 (0.312) -3.021 (0.261) 1.723 (0.492) 0.554 (0.841) 1.345 (0.522)
Other topics -0.094 (0.968) 2.328 (0.349) -3.186 (0.237) 1.557 (0.535) 0.671 (0.808) 1.195 (0.570)
Gender × Favorability 0.167 (0.326) 0.343* (0.055) 0.094 (0.628) 0.072 (0.690) -0.071 (0.720) 0.202 (0.184)
Ethnicity × Sentiment 0.270* (0.053) 0.118 (0.422) 0.431*** (0.007) 0.270* (0.068) 0.149 (0.360) 0.296** (0.017)
Social norms × Sentiment 0.092 (0.636) 0.066 (0.747) 0.148 (0.502) 0.324 (0.115) 0.387* (0.088) 0.297* (0.086)
Ethical dilemma × Sentiment -0.457* (0.068) -0.283 (0.282) -0.379 (0.184) -0.731*** (0.006) -0.426 (0.146) -0.309 (0.167)
Age × Sentiment 0.185 (0.314) -0.089 (0.644) 0.542*** (0.010) 0.279 (0.153) 0.076 (0.724) 0.156 (0.341)
Socioeconomic status × Sentiment -0.021 (0.772) -0.124 (0.106) 0.085 (0.307) 0.110 (0.156) 0.179** (0.037) 0.022 (0.737)
Other topics × Sentiment 0.119** (0.047) 0.133** (0.034) 0.092 (0.176) 0.208*** (0.001) 0.023 (0.744) 0.144*** (0.007)

𝑅2 0.034 0.016 0.061 0.063 0.030 0.068
Adj. 𝑅2 0.023 0.004 0.050 0.052 0.019 0.057
F-statistic 3.141 1.404 5.777 5.961 2.759 6.452
Prob. (F-statistic) 0.00007 0.143 0.000 0.000 0.00048 0.000
Observations 1261 1261 1261 1261 1261 1261

Note: Coefficients with p-values in parentheses. *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1.
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A Data

Figure 7: A Summary of Qualified Papers.

B Prompt Templates
B.1 The Prompt for Extractions

Figure 8: The Prompt for Extractions.

B.2 The Prompt for Variant Generation
Figure 9 shows the extraction prompt used to retrieve experiment
settings and conclusions from academic papers using Claude.
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Figure 9: The Variant Generation Process.

B.3 Prompts for Prediction

Figure 10: The Basic Prediction Prompt.

Figure 11: The Chain-of-Thought (CoT) Prediction Prompt.

B.4 Prompts for Topics and Sentiments Labeling

Figure 12: Topics Labeling Prompt.
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Figure 13: Sentiment Labeling Prompt.

Figure 14: Gender Favorability Labeling Prompt.

C Regression Variables

Table 5: Regression Variables

Variable Description

Conclusion Accuracy
(DV)

Conclusion accuracy defined in Equation 1.

Gender Percentage indicating how strongly the context is asso-
ciated with gender, obtained via labeling in Figure 12.

Ethnicity Same as above, for ethnicity.
Social Norms Same as above, for social norms.
Ethical Dilemmas Same as above, for ethical dilemmas.
Age Same as above, for age-related context.
Socioeconomic Status Same as above, for socioeconomic status.
Other Topics Same as above, for all remaining topics.
Sentiment Sentiment score: 1 (positive), 0 (neutral), -1 (negative),

labeled via Figure 13.
Gender Favorability Gender-specific score: 1 (pro-female or anti-male), 0

(neutral), -1 (pro-male or anti-female), from Figure 14.
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