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Abstract

Neural operators are a type of deep architecture that learns to solve (i.e. learns the nonlinear
solution operator of) partial differential equations (PDEs). The current state of the art for
these models does not provide explicit uncertainty quantification. This is arguably even
more of a problem for this kind of tasks than elsewhere in machine learning, because the
dynamical systems typically described by PDEs often exhibit subtle, multiscale structure
that makes errors hard to spot by humans. In this work, we first provide a mathematically
detailed Bayesian formulation of the “shallow” (linear) version of neural operators in the
formalism of Gaussian processes. We then extend this analytic treatment to general deep
neural operators using approximate methods from Bayesian deep learning, enabling them to
incorporate uncertainty quantification. As a result, our approach is able to identify cases,
and provide structured uncertainty estimates, where the neural operator fails to predict well.

1 Introduction

Neural operators (Kovachki et al., 2023; Li et al., 2020b; 2021a; 2020a; 2021b) are a deep learning architecture
designed for reconstruction problems related to partial differential equations (PDEs). They approximate
mappings between infinite-dimensional vector spaces of functions, such that – once trained – solutions of
entire families of parametric PDEs can be represented by a single neural network. However, the learning
process is subject to several sources of uncertainty, which can result in a potentially significant prediction
error because of the nonlinear – and nonintuitive – interactions of different stages of the approximation. The
goal of this paper is to develop methods for estimating this error at a practically acceptable computational
cost. This kind of functionality is urgently needed in this domain: Due to the intricate and often not intuitive
nature of the dynamical systems described by PDEs, it can be hard for the human eye to detect prediction
errors, even when they are large.

In this paper, we address this gap by developing an approximate Bayesian framework for neural operators
– from a theoretical, and a computational point of view. We begin with a brief review of neural operators.
Then, using linear, parametric PDEs as guiding examples, we show how their “shallow” (single-layer) base
case allows for an analytic Bayesian treatment using the formalism of Gaussian processes (Rasmussen &
Williams (2006)). This linear case, while primarily of theoretical interest, provides valuable insights and
aims to make this model class more accessible to the Bayesian machine learning community. We then extend
the theoretical analysis to the nonlinear deep case. Here, analytic treatments are no longer possible, so
we fall back on approximations developed for Bayesian deep learning. Specifically, we focus on Laplace
approximations (MacKay, 1992) which are easy to add post-hoc even to pretrained networks, and add only
moderate computational cost relative to deep training without uncertainty quantification (Daxberger et al.,
2021). Our experiments in Section 5 demonstrate that the resulting method effectively captures structure in
the predictive error of graph neural operators, both in the over- and under-sampled regime. In Section 2 we
discuss some theoretical background and develop a probabilistic framework for neural operators. We discuss
related work in Section 4.
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Figure 1: Green’s functions in Equation (6) for different values of λ0 = {3, 4.5, 7.5}. On the left, right-
hand-side functions f , g for the PDE in Equation (5) and respective solutions uf , ug for the correspondent
λ0-value, computed through Equation (4).

2 Background

In this section, we examine how neural operators approximate solution operators for parametric PDEs
through functional observations. If we fix one input of the solution operator, neural operators can be
understood as effectively inverting the differential operator associated with the PDE. In this framework, the
process of learning the operator becomes equivalent to reconstructing the Green’s function, reducing the
problem to a task of function approximation. This perspective, developed in Section 2.1, forms the basis
for the Bayesian approach developed in Section 3.1. Subsequently, in Section 2.2, we outline the iterative
structure of neural operators, their training methodology, and their relationship to Green’s functions.

2.1 PDEs And Green’s Function

One of the main fields of applications of neural operators are PDEs. In this work we consider the family of
parametric PDEs (

Lλu
)
(x) = f(x), x ∈ D

u(x) = 0, x ∈ ∂D
(1)

for some sufficiently well-behaved, bounded domain D ⊂ Rd with boundary ∂D (e.g. open, bounded D with
Lipschitz boundary ∂D), where U ∋ u : D → R, F ∋ f : D → R, λ ∈ Λ, with U , F and Λ appropriate
function spaces. The precise nature of those function spaces is not important for the remainder of this work.
The function λ parametrises the differential operator Lλ.

Equation (1) defines a solution operator

H : Λ × F → U, (λ, f) 7→ uλ,f (2)

in the sense that H(λ, f)(x) = uλ,f (x) solves the PDE for the given functions λ and f . Even though the
PDE is linear, H is (possibly highly) nonlinear. In particular, in this section we consider the case where λ
is fixed, so the solution operator can be written as

G : f 7→ u. (3)

The operator G, like H, is a map between function spaces. The idea behind neural operators is to approximate
the operator G (or H) with a single neural network trained on function observations {fi, ui}N

i=1. Thus, instead
of approximating the solution of the PDE for only a fixed f , neural operators directly infer the operator G.
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Numerically, the functions f and u are observed on a discretisation grid of the function domains. Considering
the operator in Equation (3) is a key step to understand the learning process of neural operators. In fact,
observe how G is the inverse of the operator Lλ. The neural operator is therefore learning an operator, G,
through function observations {fi, ui}N

i=1 that derive from the action of its inverse. In other words, during
training, the neural operator is implicitly learning to invert the differential operator Lλ. In particular, in the
case where the differential operator is linear and admits a Green’s function G, the solution of Equation (1)
can be expressed through integration with the kernel G

uλ(x) =
∫

D

Gλ(x, y)f(y) dy. (4)

Hence, learning the operator G is here equivalent to learn the function G which means that an operator-
learning task can be reduced to that of function-reconstruction. The structure of neural operators in its
one-layer case is inspired by the Green’s solution formula for linear PDEs in Equation (4). We will examine
their architecture, in the more general case, in the next section.

In the general analysis of linear PDEs (we refer to e.g. Evans (2010) for background on PDEs), the Green’s
function G(x, y) represents the impulse response of the linear operator Lλ, that is Lλ(G)(·, y) = δ(· − y)
for y ∈ D, where δ denotes the Dirac delta distribution. Note how Lλ is a linear operator, whereas the
Green’s function is usually nonlinear in either arguments. To visualize the presented concepts, we consider
the boundary value problem (

− ∆ − λ2
0 Id

)
u(x) = f(x), x ∈ [0, 1],

u(0) = u(1) = 0,
(5)

that admits a Green’s function in closed form,

Gλ0(x, y) := A+B

λ0 sin(λ0) (6)

where we abbreviated

A := H(y − x) sin(λ0x) sin(λ0(1 − y)) (7)
B := H(x− y) sin(λ0(1 − x)) sin(λ0y), (8)

and H denotes the Heaviside step function. Equation (5) relates to Equation (1) in the sense that the
differential operator Lλ0 = (−∆ −λ2

0 Id) is parametrised by λ0. Green’s functions Gλ0 for different values of
λ0, as well as the solutions computed through the formula in Equation (4), are depicted in Figure 1.

2.2 Neural Operator Essentials

Before formulating a Bayesian framework for neural operators, we recall their structure. A more thorough
explanation of what follows can be found in the work by Kovachki et al. (2023); Li et al. (2020b; 2021a;
2020a; 2021b).

A neural operator is a neural network architecture designed to approximate the general solution operator
H in Equation (2). For particular cases, such as the operator G in Equation (3) where λ is fixed, or for
operators mapping λ 7→ u (where f is fixed), an analogous construction is straight forward.

Let gθ : D ×D × R × R → R be a neural network with parameters θ. Define the neural operator NOΘ as a
composition of L ∈ N layers

NOΘ : Λ × F → U,

(λ, f) 7→ (ψL ◦ ψL−1 ◦ ... ◦ ψ1)(λ, f), (9)

where each layer

ψℓ : Φ → Φ, ℓ = {1, . . . L}, (10)
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f

λ

ψ1(x) ψ2(x) . . . ψL−1(x) uλ,f (x)

(W1, θ)

(W2, θ) (W3, θ) (WL−1, θ) (WL, θ)

ψ1(f, λ) = σ1

(
W1f(x) +

∫
D

gθ(x, y, λ(x), λ(y)), f(y) dy
)

ψL(f, λ) = σL

(
WLψL−1(x) +

∫
D

gθ(x, y, λ(x), λ(y)), ψL−1(y) dy
)

Figure 2: Neural operator architecture NOΘ. Each layer l computes a new function ψl, that contains the
neural network gθ in the integrand. Layer parameters are shown on the corresponding arrows. The input
function f enters as an initialisation only in the first layer, while the function λ enters in gθ at every ψl.

is defined as a composition of (i) integrating the output of the previous layer against gθ, and (ii) combining
the integral with a linear component and an activation function σ,

ψℓ(g)(x) = σ

(
Wℓg(x) +

∫
D

gθ(x, y, λ(x), λ(y))g(y) dy
)
. (11)

The space Φ in Equation (10) is a vector space of functions mapping from D to R. The final layer of the
neural operator maps into U , so ψL : Φ → U . In practice, the integral cannot be computed in closed-form
and a suitable quadrature formula needs to be employed (which turns the integral into a weighted sum of
evaluations of the integrand; see e.g. Davis & Rabinowitz (2007)). The parameters Θ of NOΘ include the
parameters θ of gθ as well as the weights in each layer Wℓ, i.e. Θ = θ ∪ {Wℓ}L

ℓ=1. Loosely speaking, one can
think of this construction as a deep neural network (NOΘ) that iteratively approximates the solution uλ,f

(see Equation (2)) and at every iteration (layer) employs another neural network (gθ). For a visualisation of
NOΘ see Figure 2.

This architecture is inspired by the process of solving linear PDEs with Green’s functions: In the case
where L = 1, λ ≡ λ2

0, σ = Id, and W1 = 0, and we consider the mapping G : f 7→ u, the neural operator
approximating G becomes

NOΘ(f) = NOθ(f) =
∫

D

gθ(x, y)f(y) dy. (12)

If gθ is a sufficiently accurate approximation of the Green’s function Gλ0 in Equation (6), Equation (12) is the
solution formula of the PDE in Equation (5). In the next section we will provide a probabilistic formulation
of the one layer architecture in Equation (12) that is based on the formalism of Gaussian processes.

Note how NOΘ approximates an operator. While, technically speaking, this means that its training and test
set consist of functions, in the numerical computation, these functions need to be observed on some grid.
Let {λ1, ..., λN } × {f1, ..., fM } be a set of training inputs, each of which shall be observed on some mesh
X := {x1, ..., xK}. In total, that makes NK × MK = NMK2 training inputs. Without loss of generality,
and for the sake of simple notation, assume that the solution of the PDE and the respective inputs are
observed on the same mesh X. Thus, we observe NM solutions u11, ..., uNM , i.e. NMK training outputs –
one set of evaluations at X for each solution unm associated with (λn, fm), n = 1, ..., N , m = 1, ...,M . Each
of these outputs is a function that maps from D to R, thus unm(X) ∈ RK . The relation between inputs and
outputs is

unm = H(λn, fm)≈ NOΘ(λn, fm). (13)
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While this equation is between functions, once discretised, it becomes an equation between vectors. To be
able to optimise the parameters, we introduce the loss function

L : RK × RK → [0,∞). (14)

The network parameters Θ are then computed by (approximately) solving the minimisation problem

Θ∗ = arg min
Θ

∑
n,m

L(unm(X),NOΘ(λn, fm)(X)), (15)

where we used the above vectorised notation. This minimisation can be carried out with any of the optimisers
popular in deep learning (see e.g. (Le et al., 2011)). Note that by approximating directly the solution operator
H, NOΘ simultaneously learns the entire family of PDEs parametrised by f, λ without the need of re-training
the network for a new λ or f . Considering that these new inputs samples can be out of distribution cases,
which are notoriously harder to predict (Hendrycks & Gimpel, 2017), it is even more important to introduce
uncertainty quantification for these architectures.

3 Method

Here we develop the Bayesian probabilistic framework for neural operators. Section 3.1 explores the special
case of a one-layer network, allowing an analytic non-parametric Bayesian treatment through a Gaussian
process model. This setting provides not just a useable algorithm, but also an important conceptual base-
case that is not prominently discussed in previous works on neural operators (including non-Bayesian ones).
In Section 3.2, this “shallow” treatment is extended to the deep setting using a linearisation in form of the
Laplace approximation, which again provides a Gaussian posterior distribution, albeit an approximate one.

3.1 Bayesian Neural Operators and Gaussian processes

Consider the solution operator G : f 7→ u of the linear PDE in Equation (5). In this case G can be ap-
proximated with a one-layer neural operator, that in its single iteration computes the PDE solution as the
integral

NOθ = uf (x) =
∫

D

gθ(x, y)f(y) dy. (16)

As observed in Section 2.1, this “shallow” form of the neural operator is based on Green’s solution formulas
for linear PDEs. Since the considered linear PDE admits an analytic Green’s function G (see Equation (6)),
and since the only parameters of NOΘ are the ones of the neural network gθ, i.e. Θ = θ, learning the
operator G is here equivalent to learning the function G. Therefore, for this setting, one can reformulate the
task of inferring the solution operator G : f 7→ u (which maps between infinite-dimensional vector spaces of
functions) as the inference problem of learning the function G : R2 → R.

In contrast to conventional GP regression, instead of direct observations of G, we only have access to G
through the integrals un =

∫
D
G(x, y)fn(y) dy for every data point fn, n = 1, . . . , N . We define the integral

operator Af = A acting on G as AG =
∫

D
G(·, y)f(y) dy = u(·). Since A is a linear operator, a Gaussian

likelihood involving these observations (including the limit case of noise-free observations) remains conjugate
to a GP prior and a Gaussian posterior can be computed in closed-form (Tanskanen et al., 2020; Longi et al.,
2020).

Assume a Gaussian prior G ∼ GP(µ, kθ) with mean function µ : R2 → R and a parametrised kernel function
kθ : R2 × R2 → R. Assuming u | G ∼ N (AG, σ2), the posterior distribution over G is a Gaussian process
with mean and covariance

E[G] = µ+ A∗kθ(AA∗kθ + σ2)−1(u− Aµ)

Cov(G) = kθ − A∗kθ(AA∗kθ + σ2)−1Akθ.
(17)

where A∗ is the adjoint of A. With the posterior distribution over G at hand we can compute uncertainty
estimates on the prediction, draw posterior samples, and exploit all the other properties of GP regression.
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Moreover, the versatility of GPs allows to include prior information about G in the kernel kθ. For example,
the fact that Green’s functions are symmetric, i.e. G(x, y) = G(y, x), can be encoded in kθ (Duvenaud
(2014)). Since the solution u is a linear function of G, the Gaussian posterior over G induces a GP over the
solution u. That is, we obtain a probabilistic estimate over the PDE solution. Moreover, since we learned
the solution operator G : f 7→ u, we directly obtain an estimate of all the PDE solutions for new right hand
side functions f∗. In Section 5.1 we use this GP regression framework to learn the solution operator of
Equation (5).

3.2 From GP To NN: Last-Layer Laplace Approximation On Neural Operators

While we can directly use GP regression to obtain uncertainty estimates on PDE solutions for the one-layer
neural operator, this approach cannot be directly applied to deep neural operators, which contain non-
linearities. However, we can use approximate inference techniques from Bayesian deep learning to obtain
an approximation to the posterior distribution over the weights p(Θ | D) with D = {λn, fm, unm}, for
n = 1, . . . , N and m = 1, . . . ,M . Since the computation of the true posterior is intractable, it is common
to use a Gaussian approximation (MacKay, 1992; Blundell et al., 2015). To make predictions with the
approximate posterior q(Θ), we need the predictive distribution

p(u∗ | NOΘ(λ∗, f∗),D) ≈
∫
p(u∗ | NOΘ(λ∗, f∗))q(Θ) dΘ (18)

for test functions (λ∗, f∗). In general, computing this predictive distribution requires further approximation,
such as the local linearisation of the neural network (Immer et al., 2020) which results in a Gaussian predictive
distribution for a Gaussian likelihood. Alternatively, we can use a Laplace approximation, a relatively simple
and early form of Bayesian deep learning (MacKay, 1992), on only the last layer of the network. This allows
us to apply Laplace approximations to the intricate architecture of neural operators for efficient uncertainty
quantification.

The Laplace approximation for neural networks requires a maximum a-posteriori (MAP) estimate which is
obtained by minimizing the loss L(D; Θ)

ΘMAP = arg min
Θ

L(D; Θ) = arg min
Θ

(
r(Θ) +

∑
n,m

ℓ(λn, fm, unm,Θ)
)
. (19)

The empirical risk ℓ(λn, fm, unm,Θ) corresponds to the negative log likelihood − log p(unm | NOΘ(λn, fm))
and the regularizer r(Θ) to the negative log prior distribution − log p(Θ). The general idea of the Laplace
approximation is to construct a local Gaussian approximation to the posterior p(Θ | D) by using a second
order expansion of the loss L(D; Θ) around ΘMAP

L(D; Θ) ≈ L(D; ΘMAP) + 1
2(Θ − ΘMAP)T(

∇2
ΘL(D; Θ)|ΘMAP

)
(Θ − ΘMAP), (20)

where the first order term disappears at ΘMAP. Then the posterior approximation q(Θ) can be identified as
a Gaussian centered at ΘMAP, with a covariance corresponding to the local curvature:

q(Θ) := N (Θ | ΘMAP, (∇2
ΘL(D; Θ)|ΘMAP

)−1). (21)

That is, the covariance is given by the inverse Hessian of the regularized training loss (which is interpreted
as an unnormalized negative log posterior) at the trained weights ΘMAP.

A key practical advantage of this approach is that, since standard training of neural networks already
identifies the local optimum ΘMAP, the only additional cost is to compute the Hessian ∇2

ΘL(D; Θ) at that
point, once. This also means the approximation can be computed post-hoc, for pre-trained networks, which
implies that uncertainty quantification in the form of a Laplace approximation comes only at a very small
computational overhead while also preserving the predictive power of the maximum a posteriori estimate.

As mentioned before, we can use the decomposition of the neural operator into a fixed feature map corre-
sponding to the first L− 1 layers and a last linear layer (Snoek et al., 2015). This is particularly convenient
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in the case of the architecture considered by Li et al. (2020b), since the last layer is indeed linear. Due to
the linearity in the weights of the last layer, the distribution over the function outputs will also be Gaussian.
Hence, for a Gaussian likelihood the predictive distribution in Equation (18) can be computed in closed form
by using the approximate posterior q(Θ). Note that this predictive distribution is equivalent to the one of a
GP regression problem (Khan et al., 2019). This directly connects the GP approach for the shallow to the
deep case, although we are now not approximating the posterior over the parameters of the Green function,
but over the weights of the last layer.

Kristiadi et al. (2020); Daxberger et al. (2021) showed that this approach achieves competitive performance
on many common uncertainty quantification benchmarks compared to more recent alternatives – despite the
low computational overhead. In Section 5, we empirically demonstrate that last-layer Laplace approximations
effectively quantify uncertainty also in graph neural operator architectures.

4 Related work

The interplay of (parametric) partial differential equation models (see Cohen & DeVore (2015) for a review)
and deep learning has rapidly gained momentum in recent years. Broadly speaking, there are two approaches:
learning the solution of a given PDE on the one hand, and learning the parameter-to-solution operator of a
family of parametric PDEs on the other hand.

Conventional numerical PDE solvers (e.g. Ames (2014)) and physics-informed neural networks (PINNs)
(Raissi et al., 2019; Sirignano & Spiliopoulos, 2018; Zhu et al., 2019) fall into the first category. In PINNs, the
PDE solution is modelled as a neural network. The differential equation is then translated into an appropriate
loss function, and an approximate PDE solution emerges from automatic differentiation and numerical
optimisation. While the physics-informed neural network formulation extends naturally to PDE inverse
problems (Raissi et al., 2019; Zhu et al., 2019), it brings with it some practical issues like hyperparameter-
sensitivity and complicated loss landscapes (Wang et al., 2021; Sun et al., 2020). PINNs also need to be
retrained once the parametrisation of the PDE (λ of f) changes.

As described in Section 2.2, neural operators do not face this issue because they learn the parameter-
to-solution operator of a family of parametric PDEs (recall Equation (2)). Conceptualised by Lu et al.
(2021), brought to the limelight by Bhattacharya et al. (2021); Nelsen & Stuart (2021); Li et al. (2020b;a;
2021a;b); Patel et al. (2021); Duvall et al. (2021); Kovachki et al. (2023), neural operators have since been
extended into a range of architectures. These include graph neural operators (Li et al., 2020a), Fourier
neural operators (FNOs) (Li et al., 2021a), multi-wavelet neural operators (Gupta et al., 2021), and physics-
informed neural operators (Li et al., 2024), which integrate data and PDE constraints to simultaneously
leverage observed data and governing equations in operator learning. For a comprehensive overview of
neural operator architectures, we refer to Azizzadenesheli et al. (2024). Work on universal approximation
results for neural operator architectures include Kovachki et al. (2023; 2021); Lanthaler et al. (2023).

Despite these advances, uncertainty quantification remains underexplored in the context of neural operators.
Efforts in this direction include Kumar et al. (2024), which incorporate a Gaussian process prior with a mean
function derived from a Wavelet Neural Operator, optimizing hyperparameters through negative log-marginal
likelihood minimization. Other Bayesian operator frameworks include Zou et al. (2024), which integrates
Bayesian uncertainty into DeepONets, and Garg & Chakraborty (2022), which employs variational inference
for uncertainty quantification. Kernel and Gaussian process frameworks for learning operators between
function spaces have also been investigated by Batlle et al. (2024a) and Magnani et al. (2024). Regarding
non-neural network approaches for learning operators/PDEs, Gaussian process-based methods have been
explored by Chen et al. (2021); Batlle et al. (2024b); Chen et al. (2024), whereas Boullé & Townsend (2022)
focus on learning the Green’s function associated with PDEs. Uncertainty quantification is particularly
critical in low-data regimes, where generating training data is computationally expensive due to the reliance
on numerical PDE solutions. Bayesian methods offer a principled framework to address this challenge,
providing insights into the reliability of predictions even when data is sparse. In the experiments below,
we present an initial demonstration of the potential of uncertainty quantification for neural operators and
discuss its potential implications for future developments in this field.
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Figure 3: Posterior distribution on Gλ0 for λ0 = 4.5 (and ground truth) after N = 3, 8 observations {fi}N
i=1

with fi shifted Legendre polynomials. The samples show the approximation’s variance, which decreases
when N increases.

A principled approach to uncertainty quantification is generally provided by Bayesian deep learning. Besides
the Laplace approximation, which has been discussed in Section 3.2, there are many more approximate
Bayesian methods for inferring the neural networks’ weights. These include variational inference (Graves,
2011; Blundell et al., 2015; Khan et al., 2018; Zhang et al., 2018), Markov Chain Monte Carlo (Neal, 1996;
Welling & Teh, 2011; Zhang et al., 2020), and heuristic methods (Gal & Ghahramani, 2016; Maddox et al.,
2019). Typically, they employ a Gaussian posterior approximation. One crucial advantage of the Laplace
approximation over many of these methods is that it can be applied post-hoc, i.e. it is not only cheap but
also preserves the estimate returned by the preceding non-Bayesian computation. In contrast, other methods
require retraining the network, which can be expensive and may degrade predictive performance. Retraining
often alters the optimization process, necessitating additional tuning and further increasing computational
costs.

5 Experiments

In this section we exploit the theoretical analysis developed in Section 2 to construct Bayesian neural op-
erators delivering uncertainty estimates. We use the analytic GP framework of Section 3.1 to build a
non-parametric Bayesian neural operator in the "shallow" case, then extend our method to the deep case.
We reproduce the experiments on neural operators as carried out by Li et al. (2020b) to show that we can
effectively detect wrong predictions.

5.1 Uncertainty Quantification in the Shallow Case with GP regression

Consider the boundary value problem in Equation (5) for a fixed λ0 ∈ R. As discussed in Section 3.1, since
the PDE is linear and admits the Green’s function G : R2 → R in Equation (6), inferring the solution operator
G : f 7→ u is equivalent to learning the function G given integral observations {fi, ui =

∫
D
G(·, y)fi(y) dy}N

i=1.
Note that every observation point is a function, numerically observed on a grid X = {x1, . . . xK}. As training
points {fi}N

i=1 (right hand functions of the PDE in Equation (5)) we use the first N Legendre polynomials
shifted on the interval [0, 1] and observed on an evenly spaced grid X = {x1 = 0, . . . x9 = 1}. We assume
a Gaussian prior G ∼ GP(µ, k) with a zero mean function µ and a kernel function k : R2 × R2 → R that
factorizes into the product k((x0, x1), (y0, y1)) = k1(x0, y0)k2(x1, y1) where k1 and k2 are Matérn kernels
with parameter ν = 2.5. To compute the integral operator A in Equation (17) we use numerical integration.

The posterior distribution over G, as inferred in Equation (17), is illustrated in Figure 3. The figure shows
the posterior distribution for G after N = 3 and N = 8 function observations. Samples from the posterior
are used to visualize the posterior variance. For N = 3, the samples exhibit high variability, corresponding
to a high posterior variance and indicating that the approximation remains imprecise. In contrast, with
N = 8 observations, the posterior variance is significantly reduced, leading to a more accurate estimate of G.
Since learning G corresponds to learning the inverse of the differential operator in Equation (5), the posterior
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Figure 4: The Bayesian neural operator applied to the 2D Darcy flow problem in a low-data regime. The
approximation is poor, and the predictive standard deviation highlights the areas of high error.

distribution over G can be leveraged to obtain both an approximation of the solution and an associated error
estimate for a new PDE with right-hand side function f∗.

5.2 Uncertainty Quantification in the Deep Case

In this section, we highlight the importance of uncertainty quantification in the context of neural operators,
using a second-order elliptic PDE as a representative example. Our results demonstrate that Bayesian neural
operators can effectively identify regions of uncertainty in solution estimates and mitigate prediction errors
in low-sampling regimes. Although our experiments are limited to the linear case, these findings suggest that
uncertainty quantification may play a critical role in extending neural operators to more complex, nonlinear
settings.

To recreate the results in Li et al. (2020b) we use their original code.1 As discussed in Section 3.2, our
Bayesian framework computes Gaussian approximations of the posterior p(Θ | D) through Laplace approxi-
mations. For an efficient implementation of the last-layer Laplace approximation, we use the software library
introduced by Daxberger et al. (2021). We use a last-layer Laplace approximation with a full generalized
Gauss-Newton approximation (Schraudolph, 2002) of the Hessian. There are two scalar hyperparameters,
the prior precision and the observation noise. Both are tuned post hoc via optimizing the log marginal
likelihood (Immer et al., 2021; Daxberger et al., 2021).

We consider the second-order elliptic PDE examined in Li et al. (2020b), given by

−∇ · (λ(x)∇u(x)) = f(x), x ∈ D

u(x) = 0 x ∈ ∂D
(22)

where D = [0, 1]2 is the unit square and f ≡ 1. The PDE in Equation (22) represents the steady state of a
two dimensional Darcy flow and arises in several physical applications. Note that even though the PDE is
linear, the parameter-to-solution operator is not. The nonlinear solution operator

F : Λ → U, λ 7→ u (23)

is approximated with a type of neural operator architecture based on graph neural network structures (Kipf
& Welling (2016)). In particular, for the computation of the integral in Equation (11), the domain D is
discretised into a graph-structured data on which the message passing algorithm of Gilmer et al. (2017) is
applied. In Section 5.3 we examine the case where only few data are available, while Section 5.4 addresses
a high data regime.

5.3 Low-data Regime

We begin by examining the case of sparse observation points on the unit square D = [0, 1]2 , a common
scenario in multi-scale dynamics described by PDEs, where data is often expensive to obtain. In such cases,

1https://github.com/zongyi-li/graph-pde/graph-neural-operator
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Figure 5: The Bayesian neural operator on the 2d Darcy flow problem in the high-data regime. The
approximation is close to the ground truth. The regions of relatively high error, as well as their magnitude,
are captured by the predictive standard deviation.

the limited data can lead to inaccurate approximations, making it essential to quantify the uncertainty
associated with predictions.

In particular, since the problem is relatively simple, we consider an extreme setting where we train on only
two training functions and subsample only two points from a 16 × 16 grid for each. Figure 4 shows on a
61 × 61 grid that in this setting the NO fails to predict the solution well. As a consequence, our method
exhibits low confidence (high predictive standard deviation) in the prediction, particularly in the areas of
higher error. For readability, the plots use different color scales. This is due to the slight underconfidence of
the Laplace approximation (in the scalar global parameter, not the local structure). Having measures such
as the predictive standard deviation to determine whether the prediction should be trusted is of big practical
benefit for many applications.

5.4 High-data Regime

The previous section examined a heavily under-sampled scenario, characterized by a limited amount of
training data. While this setup may appear simplified, under-sampling is a common challenge in practical
applications involving high-dimensional problems, where it is often infeasible to densely sample the domain
with pre-computed PDE solutions. In this section, for completeness, we explore the opposite end of the
spectrum—a highly over-sampled regime—and find that good and structured uncertainty quantification is
nevertheless useful here.

Figure 5 shows results on a dense 61 × 61 grid, analogous to the previous one, trained on 100 densely
evaluated 16 × 16 grid solutions. Note, that the model generalizes well from the smaller 16 × 16 grid used
during training to the larger 61 × 61 grid for testing, as previously shown by Li et al. (2020b). Although the
prediction error is generally of good quality (i.e. relative prediction errors are mostly below 10%), the trained
network exhibits an artifact in one, sharply delineated region of the training domain. This is a common
problem with the ReLU features in this architecture, which create piecewise linear predictive regions (Hein
et al., 2019).

As the figure shows, the Laplace approximation is in fact able to identify and delineate this region well,
and produce an effective, well-calibrated warning about its presence. It is important to note that this kind
of functionality is only possible with the structured uncertainty produced by a Bayesian technique like the
Laplace approximation – i.e. by an approximate posterior measure, rather than a global worst-case error
bound.

6 Conclusions

We provided a theoretical Bayesian framework for neural operators. While these recently introduced ar-
chitectures have demonstrated competitive performance compared to other numerical methods and shown
promise in outperforming neural network-based approaches on large grids for certain tasks, they do not
come with explicit uncertainty quantification. We developed an explicit analytic Bayesian treatment for
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the linear base-case, and illustrated how we can learn (the distribution over) solution operators through
non-parametric GP regression. We provided an effective and efficient approximate Bayesian treatment for
the full, deep case through the use of Laplace approximations. In experiments, our approach is able to
quantify predictive uncertainty both in the sparsely and densely sampled regime. In the former, it produces
structured uncertainty across the predictive domain. In the latter, it is able to precisely detect and delineate
regions where the predictive estimate fails to approximate the true solution well. The code used to produce
the results herein will be released with the final version of this paper.

If deep learning approaches to the simulation of dynamical systems are to fulfill their potential and be applied
to serious, large-scale partial differential equations (including safety-critical and scientific applications), then
uncertainty quantification as presented here has a crucial role to play in the prevention of accidental and
potentially dangerous prediction errors.
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