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Abstract

Constraint-based methods and noise-based methods are two distinct families of methods pro-
posed for uncovering causal graphs from observational data. However, both operate under
strong assumptions that may be challenging to validate or could be violated in real-world sce-
narios. In response to these challenges, there is a growing interest in hybrid methods that
amalgamate principles from both methods, showing robustness to assumption violations.
This paper introduces a novel comprehensive framework for hybridizing constraint-based
and noise-based methods designed to uncover causal graphs from observational time series.
The framework is structured into two classes. The first class employs a noise-based strategy
to identify a super graph, containing the true graph, followed by a constraint-based strategy
to eliminate unnecessary edges. In the second class, a constraint-based strategy is applied to
identify a skeleton, which is then oriented using a noise-based strategy. The paper provides
theoretical guarantees for each class under the condition that all assumptions are satisfied,
and it outlines some properties when assumptions are violated. To validate the efficacy
of the framework, two algorithms from each class are experimentally tested on simulated
data, realistic ecological data, and real datasets sourced from diverse applications. Notably,
two novel datasets related to Information Technology monitoring are introduced within the
set of considered real datasets. The experimental results underscore the robustness and
effectiveness of the hybrid approaches across a broad spectrum of datasets.

1 Introduction

Recent technological advances allow collecting observational time series on complex dynamical systems in
various fields, such as biodiversity monitoring in ecology (Dornelas et al., 2018), epidemiology (Meci et al.,
2022, Arlegui et al., 2023, Bales et al., 2023, Moreau et al., 2023), healthcare (Morid et al., 2023) and
Information Technology (IT) monitoring systems (Tamburri et al., 2020, Assaad et al., 2023). One of the
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key objectives in studying such dynamical systems is to understand the causal relationships between the
system’s components. To find these causal relations, experts can employ causal discovery methods for time
series, which aim to build a causal graph from observational data. These methods can be categorized into
several families, including Granger-based (Granger, 1969), constraint-based (Spirtes et al., 2000, Runge,
2020, Assaad et al., 2022c), score-based (Chickering, 2002b), continuous optimization-based (Zheng et al.,
2018) and noise-based families (Hyvärinen et al., 2008, Peters et al., 2013) —for more details see Assaad
et al. (2022a), Hasan et al. (2023), Gong et al. (2023). Each family has its own set of assumptions, which
may or may not be suitable for a specific dataset. Therefore, no single method stands out in all situations
(Assaad et al., 2022a).

Hybrid frameworks combine several methods from different families to enhance graph inference (Hasan
et al., 2023). For non-temporal data, several authors propose to combine ideas from constraint-based and
score-based methods to improve scalability (Tsamardinos et al., 2006) or robustness to small sample size
(Ogarrio et al., 2016). For temporal data, SVAR-GFCI, proposed by Malinsky & Spirtes (2018), is a time-
series generalization of the hybrid method GFCI which is based on the score-based and constraint-based
algorithms.

Another type of hybrid framework, which is our main focus in this work, is based on the combination
of constraint-based and noise-based families. The advantage of constraint-based methods is that they are
non-parametric (i.e., no assumption is made on the form of the underlying causal relationships), while the
limitation is that they require strong non-testable assumptions and can only recover the causal graph up
to its Markov equivalence class, i.e., orientation of some edges could be unknown in the inferred graph as
several graphs represent the same conditional dependence structure. On the other hand, noise-based methods
are capable of recovering true graphs. So, by combining methods from both families, although we require
assumptions of both families of methods, some assumptions can be weakened and we can recover the true
causal graph. There exist several methods of this type for non-temporal data, such as PClingam (Hoyer
et al., 2008) or FRITL (Chen et al., 2021). Assaad et al. (2021) introduced NBCBacyclic 1 for temporal data
assuming that there are no cyclic causal relations between different time series.

This paper presents a hybrid framework for temporal data using noise-based and constraint-based algorithms.
In this framework, we consider two different classes of methods, which we denote NBCB and CBNB. Both
classes can infer different types of causal graphs that differentiate between instantaneous relations and lagged
relations. To construct these types of causal graphs, NBCB and CBNB orient edges using a noise-based
strategy and prune edges using a constraint-based strategy. The main difference between NBCB and CBNB
is that the former starts by orienting the graph and then proceeds to pruning, while the latter starts by
pruning and then proceeds to orientation. Most, importantly, NBCB and CBNB combine the parts from
corresponding methods in an efficient way, such that information in the first part improves the efficiency of
the second part. At the core of CBNB lies the notion of an undirected cycle group, which we introduce to
optimize the search for orientation. The advantage of the proposed hybrid framework is that, in practice, it
has a trade-off performance between the constraint-based and noise-based algorithms. In comparison to the
constrained-based family, the proposed methods do not require the so-called faithfulness assumption (but
require a weaker assumption named adjacency faithfulness) and can recover the true causal graph instead
of restricting only to the markov equivalence class. In comparison to noise-based methods, the proposed
methods provide a better pruning of edges when the sample size is small (Malinsky & Danks, 2018). In
this paper, we also show the distinct responses of NBCB and CBNB when assumptions are violated. This
demonstration highlights the expected results across various scenarios and aids in determining the most
suitable methodological approach for a given problem.

In summary, our main contributions are the following:

• We propose a hybrid framework for the causal discovery of time series that combines parts of noise-
based and constraint-based algorithms. Within this framework, we derive two classes of algorithms,
NBCB and CBNB, which we optimize to infer the causal graph from time series.

1In Assaad et al. (2021), this method was called NBCB but in this work, we denote it as NBCBacyclic to explicitly point
out that it assumes that the summary causal graph is acyclic. For more details about summary causal graphs see Section 2.
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Xt := axXt−1 + ayxY t + azxZt + ξx
t

Zt := azZt−1 + axzXt−1 + ayzY t + awzW t−1 + ξz
t

Y t := ayY t−1 + axyXt−1 + awyW t−2 + ξy
t (1)

W t := awW t−1 + aywY t + azwZt + ξw
t

U t := auU t−1 + awuW t + ξu
t .

Xt−3

Zt−3

Yt−3

Wt−3

Xt−2 Xt−1 Xt

Zt−2 Zt−1 Zt

Yt−2 Yt−1 Yt

Wt−2 Wt−1 Wt

Ut−3 Ut−2 Ut−1 Ut

Figure 1: Running example. Left: Dynamic structural causal model (dynamic SCM). Right: Associated
full-time causal graph Gf (FTCG).

• We study theoretically to which extent each class of algorithms is robust against assumption viola-
tion.

• We provide extensive simulation studies and real data applications to illustrate the applicability
of our approach and their enhanced capabilities against assumption violation compared to original
methods.

• We introduce two novel datasets about IT monitoring within the set of considered real datasets.

The remainder of the paper is organized as follows: Section 2 describes the different types of causal graphs
that can be used to represent causal relations between time series and the different assumptions related to
those graphs. Section 3 discusses related work and particularly details the steps that compose noise-based
and constraint-based algorithms. Section 4 introduces our main contribution, the hybrid framework, which
consists of two classes NBCB and CBNB, each of which is detailed in dedicated subsections. In Section 5,
NBCB and CBNB are compared to different causal discovery algorithms on simulated, realistic, and real
datasets. Finally, Sections 6 and 7 discuss and conclude the paper.

2 Background

In this section, we first introduce some terminology, tools, and assumptions which are standard for the
major part. We use upper case letters to denote observed random variables, lower case letters to represent
deterministic constants, blackboard bold for sets, and Greek letter ξ to denote noise. A directed graph is
denoted as G and parents and descendants of X in G are respectively denoted as PaG(X) and DescG(X).
We denote ⟨X, . . . , Y ⟩ a path in a graph which starts at node X and ends at node Y and we denote
⟨X −Z, . . . , W −Y ⟩ a walk in a graph which starts at node X and ends at node Y (nodes are used for paths
and edges are used for walks). The skeleton of a directed graph, is a graph that consists only of undirected
edges that represent the same adjacencies as in the directed graph (Hasan et al., 2023).

Causal relations in a dynamical system can be represented by a dynamic structural causal model, an extension
of structural causal model (SCM, Pearl, 2000) to time series. In such dynamic SCM, each point in a time
series is defined by the function of its parents and some unobserved noise. Without loss of generality, we
will use the linear dynamic SCM represented in Equation (1) as a running example.

Such a dynamic SCM can be represented graphically using a full-time causal graph (FTCG, Assaad et al.
(2022a)), as represented in Figure 1 and denoted as Gf = (Ef ,Vf). The FTCG represents an infinite graph
of the dynamical system through infinite nodes Vf , representing observational random variables, and infinite
edges Ef , representing causal relationships. In this paper, we only consider FTCGs that are directed acyclic
graphs (DAGs), i.e., all edges are directed and there exists no directed path in Gf that starts and ends at
the same node.
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2.1 Assumptions

We assume that there are no hidden common causes, an assumption known as causal sufficiency.
Assumption 1 (Causal sufficiency, Spirtes et al., 2000). Let Gf = (Ef ,Vf) be an FTCG. There exist no
hidden common causes of any two observed nodes in the Vf , i.e., the noise terms in the underlying dynamic
SCM are jointly independent.

One of the most common assumptions is the causal Markov condition, which is assumed by most of the
methods, and connects the causal graphs that correspond to the given SCM with the compatible probability
distribution.
Assumption 2 (Causal Markov condition, Spirtes et al., 2000). Let Gf = (Ef ,Vf) be an FTCG and P be
a probability distribution over the nodes in Vf generated by the causal structure represented by Gf . Every
X ∈ Vf is independent of Vf\{DescGf (X) ∪ PaGf (X)} conditional on PaGf (X).

In general, inferring causal graphs from data is possible under additional assumptions on the data-generating
process. For the constraint-based family of methods, the necessary assumption for the correspondence
between the graph and the distribution is the faithfulness assumption (Spirtes et al., 2000), which states
that all the conditional independence relations that are true in the probability distribution are entailed by
the causal Markov condition applied to Gf . However, we consider in this work the following weaker version
of the faithfulness assumption, called adjacency faithfulness.
Assumption 3 (Adjacency Faithfulness, Ramsey et al., 2006). Let Gf = (Ef ,Vf) be an FTCG. If two nodes
X and Y in Vf are adjacent in Gf , then they are dependent conditionally on any subset of Vf\{X, Y }.

We provide an example of the violation of the adjacency faithfulness and faithfulness assumptions in Figure 2.
Let us consider variables Wt and Ut and their past (Wt−1, Ut−1, . . .) in the causal graph in Figure 2a. Let
us assume that the corresponding linear SCM is composed of two equations:

W t = awW t−1 + ξw
t

U t = auU t−1 + awuW t + ξu
t ,

which leads to
U t = a2

uU t−2 + (auawu + awwwu)W t−1 + awuξw
t + auξu

t−1 + ξu
t .

If the coefficients are such that au = −aw, then the coefficient before W t−1 is 0 and thus W t−1 |= U t | U t−2
(the noise terms are jointly independent and independent of U t−2 and W t−1). If there exists such combination
of coefficients, we say that the path ⟨W t−1, W t, U t⟩ is canceled by the path ⟨W t−1, U t−1, U t⟩ (or vice versa).
The independence W t−1 |= U t | U t−2 is not entailed by the the causal Markov condition, so the faithfulness
assumption is violated, while adjacency faithfulness is not violated as W t−1 and U t are not adjacent. Let us
now consider the graph with an extra edge as designed in Figure 2b. If the path ⟨W t−1, U t⟩ is canceled out
by the two paths ⟨W t−1, W t, U t⟩ and ⟨W t−1, U t−1, U t⟩ then W t−1 |= U t | {U t−2, W t−2} and the adjacency
faithfulness assumption is violated. Notice that W t−1 |= U t | {U t−2, W t−2} is not entailed by the the causal
Markov condition, which means that the faithfulness assumption is also violated.

Note that adjacency faithfulness is proven to be equivalent to the minimality condition (Peters et al., 2017)
introduced in Spirtes et al. (2000), which states that every proper subgraph of Gf does not satisfy causal
Markov condition.

In addition, the following assumption is required by the noise-based family to guarantee identifiability.
Assumption 4 (Identifiable Functional Model, Peters et al., 2011). The SCM belongs to an identifiable
functional model class, as defined in Peters et al. (2011).

For example, the linear dynamic SCM in Equation (1) satisfies Assumption 4 if the noise terms are non-
Gaussian.

2.2 Causal graphs for time series

Using time series data has a particular advantage for discovering causal relationships between temporal vari-
ables since we can employ temporal priority, which states that the causal relationship between two variables
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Figure 2: Illustration of the violation of the faithfulness and the adjacency faithfulness assumption. (a)
violates the faithfulness assumption but satisfies the adjacency faithfulness assumption and (b) violates the
adjacency faithfulness which implies that it violates the faithfulness assumption.

Xt−2 Xt−1 Xt
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Figure 3: Different causal graphs to represent the dynamic SCM in Equation (1): (a) window causal graph
(WCG) with a maximal temporal lag equal to 2, (b) extended summary causal graph (ECG), and (c)
summary causal graph (SCG).

is oriented such that the effect cannot happen before its cause. However, despite this advantage, working
with full-time causal graphs (which was introduced before) is impractical due to their infinite dimension,
which has led to the adoption of simpler causal graphs, assuming that causal relations between time series
hold throughout time. This is formalized in the following assumption, in which Vf = (V−∞, . . . ,Vt, . . . ,V∞)
where V denotes a vector of d time series.
Assumption 5 (Consistency Throughout Time). Let Gf = (Ef ,Vf) be a full-time causal graph. There exists
γ in N \ {0} such that the causal structure of the graph consisting of the nodes {Vt−γ , . . . ,Vt} is the same
for every t.

We call the minimum value of γ for which consistency throughout time holds the maximal temporal lag of
the graph. For example, the maximal temporal lag of the graph of Figure 1 is γ = 2.

Under Assumption 5, the full-time causal graph is equivalent to the so-called window causal graph (Hyvärinen
et al., 2008, Runge, 2020, Figure 3a).
Definition 1 (Window Causal Graph, WCG). Let Gf = (Ef ,Vf) be a full-time causal graph satisfying
Assumption 5 with γ the maximal temporal lag in Gf . A window causal graph (WCG) Gw = (Ew,Vw) is the
subgraph of Gf consisting of the nodes Vw = (Vt−γ , . . . ,Vt) and Ew contains all related edges.

Unfortunately, causal discovery methods still suffer in practice of the strong assumptions they rely on which
are not always satisfied. Thus, in many applications, experts have to validate those graphs before using them.
However, validating WCGs is challenging: if experts can usually identify causes and related effects, they do
not know, in general, the exact temporal lags between them. Moreover, in some applications, experts are not
interested in understanding exact causal relations with the temporal lags between them but rather opt for an
abstract representation of the causal relationships between variables. An extended summary causal graph
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(Assaad et al., 2022c, Figure 3b) is one type of abstraction that can differentiate between instantaneous
relations and lagged relations without giving precise information about the lag.
Definition 2 (Extended Summary Causal Graph, ECG). Let Gw = (Ew,Vw) be a WCG with maximal
temporal lag γ and nodes (Vt−γ , . . . ,Vt). The underlying extended summary causal graph (ECG) Ge =
(Ee,Ve) consists of the nodes Ve = (Vt−,Vt) and the set of directed edges Ee is defined as follows: for all
Xt, Yt ∈ Vt, Xt ̸= Yt, there exists a directed edge from Xt to Yt (denoted as Xt → Yt) if and only if the same
directed edge exists in Gw; for all Xt− ∈ Vt−, Yt ∈ Vt, there exists a directed edge from Xt− to Yt (denoted
as Xt− → Yt) if and only if there exists at least one temporal lag ℓ > 0 such that there exists a directed edge
between Xt−ℓ and Yt in Gw.

The ECG presents several interesting characteristics: similarly to the WCG, it inherits the acyclicity of the
FTCG; it is possible to infer it from data without passing a WCG without any additional assumption (it
only needs the assumptions that are needed to infer a WCG); the ECG and the WCG are equivalent when
the maximal temporal lag γ is 1.

Another more abstract graphical representation is the summary causal graph (Arnold et al., 2007, Peters
et al., 2013, Assaad et al., 2022a, Figure 3c), which provides an overview of the causal relationships between
time series without any information about the temporal lag (it does not differentiate between instantaneous
relations and lagged relations).
Definition 3 (Summary Causal Graph, SCG). Let Gw = (Ew,Vw) be a WCG with maximal temporal lag γ.
The underlying summary causal graph (SCG) of Gw is Gs = (Es,Vs) where Vs contains one node for each
time series and the set of directed edges Es are defined as follows: for all X, Y ∈ Vs, X ̸= Y , there exists a
directed edge from X to Y (denoted as X → Y ) if and only if there exists at least one temporal lag ℓ ≥ 0
such that there exists a directed edge between Xt−ℓ and Yt in Gw.

Note that, unlike the FTCG, the WCG and the ECG, the SCG may contain cycles and in particular self-
loops, and two edges in opposite directions, as illustrated in the running example in Figure 3. Unlike the
ECG, it is not possible to infer the SCG directly from data without additional assumptions. For example,
NBCBacyclic (Assaad et al., 2021) can discover the summary causal graph assuming it is acyclic, which limits
the range of potential WCGs and ECGs.

In this paper, we focus on methods that infer the WCG or the ECG from observational data.

We use throughout for clarity the notation G⋆ = (V⋆,E⋆) to refer to either Ge = (Ee,Ve) or Gw = (Ew,Vw).
Moreover, we use the notation t⋆ as a wildcard that represents time step t − i, where i ∈ {0, . . . , γ} in the
context of WCG, and that represents either t− or t in the context of ECG.

Another important notion that we will use in this paper is the notion of a causal order (Peters et al., 2017)
which we define, in the following, only for instantaneous nodes.
Definition 4 (Causal Order of Instantaneous Nodes). Given a causal graph G⋆, we call a bijective mapping
π : Vt 7→ {1, . . . , d}, a causal order of instantaneous nodes if it satisfies

π(Xt) < π(Yt) if Yt ∈ DescG⋆(Xt),∀Xt, Yt ∈ Vt.

Because of the acyclicity assumption of the WCG (resp. ECG), there is always a causal order between
instantaneous nodes (and a fortiori between all nodes) but it is not necessarily unique (Peters et al., 2017).
For example, in Figure 3a, there exists a causal order π1 such that π1(Xt) = 3 and π1(W t) = 4 and
there exists another causal order π2 such that π2(W t) = 3 and π2(Xt) = 4, while π1(Y t) = π2(Y t) = 1,
π1(Zt) = π2(Zt) = 2 and π1(U t) = π2(U t) = 5. Note that the number of possible causal orders is not limited
to two, for example, we can obtain a new causal order from π2, by inverting the positions of U t and Xt.

3 Related works

In this section, we start by giving a general literature review and then we give additional details on the steps
that compose noise-based and constraint-based algorithms.
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3.1 Literature review

In this section, we describe several methods from the main causal discovery families related to our work.
More details can be found in thorough reviews such as Assaad et al. (2022a), Hasan et al. (2023), Gong
et al. (2023). All those methods rely on consistency throughout time (Assumption 5) to reduce the infinite
dimension of the full-time causal graph. Moreover, to consider meaningful graphs, causal sufficiency and
causal Markov condition (Assumptions 1 and 2 ) are assumed.

Granger Causality, introduced by Granger in 1969 and improved in subsequent works (Granger, 2004, Arnold
et al., 2007), stands as one of the earliest methods designed for identifying causal relationships among time
series. This approach primarily considers linear relationships and temporal priorities, operating under the
assumption that the past of a cause is both necessary and sufficient for optimally forecasting its effect.
It is important to note that Granger causality, by relying on temporal priority, is limited in its ability to
infer instantaneous causal relations. Furthermore, Granger causality methods typically utilize the past of
one time series, up to a defined maximal temporal lag, to predict the present value of another time series
without explicitly distinguishing between the importance of different lags. Consequently, these methods can
be employed in constructing an ECG if we assume that there are no instantaneous relations.

Constraint-based approaches (Spirtes et al., 2000) are certainly the most popular approaches for discovering
causal graphs. These methods are based on conditional independence tests, do not depend on any specific
distribution form, and require the faithfulness assumption. In the case of causal sufficiency (Assumption 1),
they are usually based on the PC-algorithm (Spirtes et al., 2000), initially introduced for non-temporal data.
In theory, a constraint-based algorithm can only infer a representative (known as a CPDAG, Chickering,
2002a) of the Markov equivalence class (Verma & Pearl, 1990). Fast Causal Inference (FCI) algorithm
can be used when Assumption 1 is not satisfied and infers a Partially Ancestral Graph (PAG), which is a
representative of a class of equivalent Maximal ancestral graphs (MAG) and allows representing the existence
of hidden confounders in the causal graph. For time series, several algorithms infer WCGs, such as PCMCI
(Runge et al., 2019) and PCMCI+ (Runge, 2020), extensions of the PC-algorithm, and tsFCI (Entner &
Hoyer, 2010) or SVAR-FCI (Malinsky & Spirtes, 2018), extensions of the FCI algorithm. PCGCE proposed
by Assaad et al. (2022c), is based on the adaptation of the PC-algorithm and infers directly an ECG.

Score-based approaches (Chickering, 2002a) search over the space of possible graphs, trying to maximize a
score that reflects how well the graph fits the data. Greedy Equivalence Search (GES, Chickering, 2002a)
is one of the first score-based methods that, under the faithfulness assumption, finds the CPDAG similarly
to the PC-algorithm. There have been several recent modifications of GES, such as the more efficient Fast
Greedy Search (FGS, Ramsey, 2015) and Selective Greedy Equivalence Search (Chickering & Meek, 2015).

Continuous optimization-based approches Unlike score-based methods, this category of algorithms avoids the
combinatorial greedy search over DAGs by employing gradient-based optimization. Notears (Zheng et al.,
2018) is considered as the first approach to reformulate the greedy search as a continuous optimization
problem within this category. This method assumes linearity and considers only DAGs whose topological
order follows increasing marginal variance (rescaling data can change or reverse their inferences) (Kaiser &
Sipos, 2021). Recently, a new extension of Notears called Dynotears (Pamfil et al., 2020) was presented to
infer a WCG from time series.

Noise-based approaches discover causal relations using footprints produced by the causal asymmetry in the
data, namely the noise. They assume an identifiable functional model, as introduced in Assumption 4. For
time series, one of the most popular algorithms in this family is VarLiNGAM (Hyvärinen et al., 2008), which
can discover the WCG assuming linear autoregressive models with non-Gaussian noise. TiMINo (Peters
et al., 2013) discovers the SCG assuming a nonlinear additive noise model. Note that TiMINo only assumes
non-Gaussian noise when causal relations are linear. These approaches also require the minimality condition
(Assumption 3).

Hybrid frameworks integrate methods from different families to improve the inference of the graph by mitigat-
ing the limitations of one algorithm through its combination with another algorithm. For nontemporal data,
one group of methods combines constraint-based and score-based methods. Greedy Fast Causal inference
(GFCI, Ogarrio et al., 2016) is a combination of the constraint-based FCI algorithm and the GES algorithm,
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which allows addressing FCI limited applicability on small sample size data and correcting the graph inferred
by GES in the presence of latent confounders (removing causal sufficiency, stated in Assumption 1). HCM
hybrid (Li et al., 2022) aims to discover the causal structure from mixed nontemporal data and combines
part of the constraint-based method and greedy search adapted for mixed data. SVAR-GFCI introduced
by Malinsky & Spirtes (2018) extends GFCI for temporal data. Another type of hybrid method is a com-
bination of constraint-based and noise-based methods. Hoyer et al. (2008) presented a hybrid approach for
nontemporal called PClingam that starts with a constraint-based procedure to find the pattern of the graph
and then uses a noise-based procedure to orient some of the non-oriented edges (depending on the noise
distribution), which allows obtaining a more informative causal graph. Another algorithm called FRITL
(Chen et al., 2021) aims to infer more informative causal graphs with the presence of hidden confounders
using the noise-based LiNGAM methods to refine the output of the FCI algorithm. For time series, a combi-
nation of noise-based and constraint-based methods was proposed by Assaad et al. (2021)—to infer an SCG
assuming there are no cycles between different time series—which starts with inferring causal order using an
additive noise model and pruning unnecessary edges using conditional independence tests. The combination
of methods from different families generally relies on the assumptions required by employed methods (as
for example in the case of GFCI or FRTIL), while sometimes hybridization allows for relaxation of some
assumptions, e.g., faithfulness in the case of NBCBacyclic or non-Gaussian noise in the case of PClingam.

3.2 Details on noise-based and constraint-based methods

Let us first describe the basic steps of noise-based methods. A noise-based algorithm that infers a causal
graph relies on the fact that, under an identifiable functional model (Assumption 4), a prediction model of a
target node Y where the predictors are the true causes of Y should yield residuals (that represent the noise)
that are independent of the causes. The procedure of such an algorithm can be divided into two main steps:

NB1. Find the causal order between instantaneous nodes Vt by recursively performing regression and
independence tests between the predictors and residuals (noise). But note that even if only instan-
taneous nodes Vt are accounted for, lagged nodes are used in the regression as a means to account for
confounder bias. For example, assuming linearity, we use the following regression model to compute
the residuals of each Y t ∈ Vt:

Y t =
∑

Xt∈Vt\{Y t}

axyXt +
∑

Zt−ℓ∈V⋆\Vt

azyℓZt−ℓ + ξy
t . (2)

NB2. Find which set of predictors is not needed to keep the independence between other predictors and
residuals. The former set of predictors is considered as not causally related to the node that is
predicted and the latter set of predictors is considered as the causes of this node.

In general, step NB1 requires only Assumptions 1, 2, 4 and 5. Note that it has been shown that the causal
order can be identified even if Assumption 3 is violated (Peters et al., 2014)2. However, Peters et al. (2014)
only considered the identifiability of the causal order in case of violation of Assumption 3 up to the additive
noise model case. However, Assumption 3 is required for step NB2. The output of step NB1 is a causal
order π̂. For step NB1 one can use, for example, TiMINo (Peters et al., 2013) or VarLiNGAM (Hyvärinen
et al., 2008) algorithms.

Turning to constraint-based methods, we focus in this paper on the methods that are based on the PC-
algorithm, which requires causal sufficiency (Assumption 1). It follows that most constraint-based algorithms
for WCGs or ECGs can be divided into two main steps:

CB1. Initialize a fully connected graph such that lagged relations are oriented using temporal priority (if
Xt⋆ is adjacent to Yt and t⋆ < t then Xt⋆ → Yt) and instantaneous relations are unoriented, and
then prune unnecessary edges using the following procedure:

2Note that Peters et al. (2014) considered the case where the minimality assumption is violated which is equivalent to the
case where Assumption 3 is violated (Peters et al., 2017).
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(a) Eliminate edges between nodes (Xt⋆ , Yt) if Xt⋆ |= Yt.
(b) For each pair of nodes (Xt⋆ , Yt) having an edge between them, and for each subset of nodes

S ⊆ V⋆\{Xt⋆ , Yt} of size n = 1 such that ∀Zt′ ∈ S, Zt′ is adjacent to Yt, eliminate the edge
between Xt⋆ and Yt if Xt⋆ |= Yt | S.

(c) Iteratively repeat step (b) while increasing the size of the conditioning set n by 1 until there
are no more adjacent pairs (Xt⋆ , Yt), such that there is a subset S ⊆ V⋆\{Xt⋆ , Yt} of size n that
was not tested.

CB2. Orient instantaneous relations using some rules (in case of causal sufficiency, see Spirtes et al., 2000,
Meek, 1995).

Note that for step CB1, we only need Assumptions 1, 2, 3 and 5, while steps CB1 and CB2 together require
the faithfulness assumption, which is stronger than Assumptions 3 (Ramsey et al., 2006). The output of the
CB1 step is a partially oriented graph Ĝ⋆ that shares the same skeleton as the true graph G⋆ and where all
lagged relations are oriented and all instantaneous relations are non-oriented.

In our work, we consider two algorithms from this family. The first one, PCMCI+ (Runge, 2020), is an
adaptation of the PC-algorithm to time series that can discover WCGs, and the second one, PCGCE (Assaad
et al., 2022c), is an adaptation of the PC-algorithm that can discover ECGs.

4 Hybrids of constraint-based and noise-based algorithms

Here, we present a hybrid framework for discovering causal graphs from observational temporal data, which
contains two classes of methods: noise-based-then-constraint-based (NBCB) and constraint-based-then-
noise-based (CBNB). Both classes of methods operate under identical assumptions. They both necessitate
the standard Assumptions 1 and 2 in addition to Assumption 5 for stationary time series. Moreover, both
classes require Assumption 4 which is essential for noise-based methods. As both classes use only part of the
algorithms from the constraint-based family, they do not require the faithfulness assumption but only the
weaker adjacency faithfulness, stated in Assumption 3. In the rest of the paper, we assume that methods
from CBNB or NBCB classes are built using the algorithms from constraint-based and noise-based families
that are correct under the given assumptions.

Note that we do not need an acyclicity assumption of the true SCG, as in NBCBacyclic, since we primarily
focus on inferring a WCG or an ECG. If needed, we can then deduce the SCG from the inferred WCG or
the inferred ECG.

In the following sections, we provide a detailed description of the NBCB and CBNB classes of methods.

4.1 NBCB class of algorithms

Each of the methods in the NBCB class has two major steps. The first part of NBCB constructs a fully
connected graph such that lagged relations are oriented using temporal priority, on which the NB1 step is
applied in order to find the causal order between all instantaneous nodes.

In the second part, we aim to use CB1 to prune the edges. This step can be optimized by using additional
information on the causal order. We modify CB1 step to CB1′, by taking into account the causal order of
the nodes in the following way:

CB1′. Start with the initialization of the fully connected oriented graph as instantaneous relations can be
oriented using the causal order π.
(a) Eliminate edges between nodes3 (Xt⋆ , Yt) if Xt⋆ |= Yt.
(b) For each pair of nodes (Xt⋆ , Yt) having an edge between them, and for each subset of nodes

S ⊆ V⋆\{Xt⋆ , Yt} of size n = 1 such that ∀Zt′ ∈ S, Zt′ is parent of Yt, eliminate the edge
between Xt⋆ and Yt if Xt⋆ |= Yt | S.

3We recall that t⋆ is a wildcard that represent time step t − i, where i ∈ {0, . . . , γ} in the context of WCG and represent
either t− or t in context of ECG.
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(c) Step CB1′

Figure 4: Illustration of the NBCB algorithm for the running example. (a) Output of the NB1 step (b)
Output of the CB1′.

(c) Iteratively repeat step (b) while increasing the size of the conditioning set n by 1 until there
are no more adjacent pairs (Xt⋆ , Yt), such that there is a subset S ⊆ V⋆\{Xt⋆ , Yt} of size n that
was not tested.

Note that in CB1′ step (a) and (c) are the same as in step CB1. The NBCB class of methods can be
presented as a combination of the NB1 and CB1′, for which we provide a schematic illustration in Figure 4.
Theorem 1. Let Gf = (Vf ,Ef ) be an FTCG. Under Assumptions 1, 2, 3, 4, 5 and given perfect conditional
independence information about all pairs of variables in Vf , any algorithm in the NBCB class returns the
correct WCG or the correct ECG compatible with Gf .

The proof of Theorem 1 is available in Appendix A. It is important to note that after having obtained the
WCG or the ECG, we can deduce the correct SCG using Definition 3.

The NBCB class is robust to the violation of Assumption 3. This means that even if Assumption 3 is
violated, NBCB is still capable of providing valuable information on causal relationships, as demonstrated
in the following proposition. We restrict ourselves to a class of functional identifiable models known as
restrictive additive noise models class (Peters et al., 2014), which is stronger than Assumption 4.
Proposition 1 (Violation of Assumption 3). Under Assumptions 1, 2, 5, given that the SCM is a restrictive
additive noise model (Peters et al., 2014), and given a correct causal order between instantaneous nodes, the
NBCB class would give a WCG or an ECG such that, for each pair of nodes Xt⋆ and Yt, one of the following
possibilities holds true:

(1) The causal relationship between Xt⋆ and Yt is correctly identified.

(2) Xt⋆ and Yt are not adjacent in the inferred graph, but they are adjacent in the true graph.

(3) Xt⋆ and Yt are adjacent in the inferred graph, but they are not adjacent in the true graph.

The proof of Proposition 1 is presented in Appendix A. Proposition 1 states that if there is an oriented
edge in a graph Ĝ⋆ inferred by NBCB, then it can not have an opposite orientation in the true graph.
In the following, we illustrate cases (2) and (3) of the Proposition 1. Let us consider that there exists
linear dynamic SCM with the corresponding true WCG Gw presented in Figure 5a. As long as adjacency
faithfulness is violated, we can assume that there exists a path ⟨Zt−2, Zt−1, Zt, Xt⟩ which is canceled by
the path ⟨Zt−2, Xt⟩ (see example of faithfulness violation in Section 2.1), such that in the observed data
Zt−2 |= Xt | Xt−1. Thus, the edge Zt−2 −Xt would be removed, so we obtain case (2) in Proposition 1. A
similar argument works for the edge Zt−2 − Y t. Further, these two errors would propagate in the next step
for the pair of nodes Y t and Xt. As in the inferred graph Ĝw, edges Zt−2 −Xt and Zt−2 − Y t are absent
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(a) WCG of an SCM violating adjacency faithfulness
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(b) Output of NBCB

Figure 5: Illustration of items (2) and (3) in Proposition 1.

(see Figure 5b), then Xt ⊥̸⊥ Y t | PaĜw (Xt)∪PaĜw (Y t), as Zt−2 is the common confounder in the true graph,
thus the edge Xt − Y t would not be removed and we obtain the case (3) in Proposition 1.

We want to highlight that Proposition 1 holds when the CB1′ step of NBCB is implemented using a PC-
style algorithm. Other constraint-based algorithms could be envisioned, such as a greedy approach where
the iterative process of finding conditional independence while progressively expanding the conditioning set
(steps (b) and (c) of CB1′) is replaced by a single step of conditioning on all parents. With such a greedy
algorithm, the concerns outlined in case (3) of the proposition could be alleviated.

Note that NBCB would perform poorly when the SCM is not an identifiable functional model (Assumption 4
is violated). In this case, NB1 would give an incorrect causal order, and the errors would propagate in the
second step.

Algorithm 1: Noise-Based-then-Constraint-Based (NBCB)
Input: A multivariate time series, a maximal temporal lag γ and a significance threshold α, NB1,

CB1′, an independence measure I(), and a conditional independence test CI()
Result: Ĝ⋆ (WCG or ECG) and Ĝs (SCG)
Find the causal order π̂ between all instantaneous nodes using NB1 which takes γ and I() as
hyper-parameters;

Discover Ĝ⋆ using CB1′ which takes γ, α, CI(), and π̂ as hyper-parameters;
Deduce the SCG Ĝs from Ĝ⋆ using Definition 3.

The pseudo-code of NBCB is given in Algorithm 1, which involves the abstract steps NB1 and CB1′. Step
NB1 can be directly obtained from any existing noise-based algorithm. In the experimental section of this
paper, step NB1 is directly based on the VarLiNGAM algorithm, while step CB1′ is either based on the
modification of the PCTMI+ algorithm or on the modification of the PCGCE algorithm. More details on
specific versions of NB1 and CB1′ is given in Appendix B.

4.2 CBNB class of algorithms

As far as we know, there exists no previous work that investigated the case where the constraint-based
part of a hybrid method is executed before the noise-based part in causal discovery from time series (for
non-temporal data, see PClingam, Hoyer et al., 2008). In theory, there is no clear argument as to why one
part should be executed before the other. So here, we present a new class of methods called CBNB, where
the constraint-based part is before the noise-based part.

In the first step of CBNB, CB1 is used to infer Ĝ⋆. Then, we are going to orient edges between instantaneous
nodes Vt by finding the causal order between them.

A vanilla approach would be to apply NB1 over all instantaneous nodes (while taking into account lagged
common confounders), as it was done in NBCB, to get the causal order and then orient the instantaneous
relations accordingly. However, we argue that this vanilla approach, despite being correct, is not optimal
since it does not take into account the knowledge that has already been acquired through the construction
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Figure 6: Illustration of the CBNB algorithm for the running example. (a) Output of the CB1 step (b)
Detection of the undirected cycle group, where red and blue colours denote two different cycle groups of
instantaneous nodes (c) Output of the NB1′ on each of the cycle groups.

of the output graph in step CB1. Therefore, we modify the NB1 step to NB1′ by finding the causal order
within different groups of instantaneous nodes separately in the following way:

NB1′. Find the causal order within instantaneous groups of nodes It ⊆ Vt by recursively performing
regression and independence tests between the predictors and residuals (noise). But note that even
if only the instantaneous group of nodes It are accounted for, the lagged parents PaĜ⋆(It)\Vt are
used in the regression as a means to account for confounder bias.

Not any groups of instantaneous nodes It would yield a correct causal order since, in general, for any
Xt, Yt ∈ It, It ∪ PaĜ⋆(It) does not necessarily contain any subset that remove confounding bias between Xt

and Yt. Therefore, these groups should be selected carefully. To find these groups, we first need to define an
undirected cycle walk.
Definition 5 (Undirected Cycle Walk). Let Ĝ⋆ be the output of the CB1 step. A sequence of edges u =
⟨e1, . . . , en⟩, for n ≥ 2, is an undirected cycle walk iff

• ∀ei ∈ u, ei is an undirected edge in Ĝ⋆;

• ∀ei, ej ∈ u, such that i < j, no node in ei coincides with any node in ej, except if j = i+1 where the
right-hand side node in ei always coincide with the left-hand side node in ei+1, or if i = 1, j = n,
where the left-hand side node in e1 and the right-hand side node in en always coincide.

Note that in our definition an undirected edge can form an undirected cycle walk. We provide a schematic
illustration in Figure 6 for the running example. In Figure 6b, ⟨Xt−Y t, Y t−Zt, Zt−Xt⟩ and ⟨Zt−Y t, Y t−
W t, W t − Zt⟩ are two undirected cycle walks. Notice that Zt − Y t is in both undirected cycle walks and
would be considered twice, which is not only a computational problem but might also induce bias in practice.
Thus, defining a undirected cycle walk alone is not sufficient. So, we combine all undirected cycle walks that
share at least one edge in a undirected cycle group4 which is defined as follows:
Definition 6 (Undirected Cycle Group). Let Ĝ⋆ be the output of the CB1 step. C is an undirected cycle
group of Ĝ⋆ iff C is a set of undirected cycle walks and ∀u1, u2 ∈ C, u1 ∩ u2 ̸= ∅.

We assume that two undirected cycle walks u1 and u2 do not intersect (i.e., u1 ∩ u2 = ∅) if there is no
common edge between these two walks. For simplicity, we consider two undirected cycle walks that are
reversed versions of one another as equivalent and so only one of these two undirected cycle walks will be

4Note that our definition of cycle group is different than the one introduced in Spirtes (1995).
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accounted for. In Figure 6b, for the WCG, there are two undirected cycle groups, C1 = {⟨Xt − Y t, Y t −
Zt, Zt−Xt⟩, ⟨Zt−Y t, Y t−W t, W t−Zt⟩, · · · } and C2 = {⟨U t−W t, W t−U t⟩}. The same example applies
to the corresponding ECG. Given an undirected cycle group C, we are interested in the set of its nodes,
meaning the set of nodes that belong to undirected cycle walks described by the undirected cycle group.
Similarly, we say that an edge Xt − Yt′ belongs to C iff ∃u ∈ C such that ⟨Xt, Yt′⟩ ∈ u.

Having brought out the concept of undirected cycle group, we can now describe the second (noise-based) part
of CBNB. Given the output of the CB1 step, CBNB searches for all undirected cycle groups. Note that each
edge is a member of exactly one undirected cycle group. Then for each undirected cycle group C, CBNB
uses NB1′ to find the causal order π between all the nodes belonging to undirected cycle group C. Finally,
using this causal order, CBNB orient all edges belonging to C.

Note that the CBNB step where NB1′ is applied for different undirected cycle groups can be parallelized,
which can significantly improve the computational time for high dimensional problems.
Theorem 2. Let Gf = (Vf ,Ef ) be an FTCG. Under Assumptions 1, 2, 3, 4, 5 and given perfect conditional
independence information about all pairs of variables in Vf , any algorithm in the CBNB class returns the
correct WCG or the correct ECG compatible with Gf .

The proof of Theorem 2 is available in Appendix A. It is also important to note that as in the case of NBCB,
after having obtained the WCG or the ECG, we can deduce the correct SCG using Definition 3.

The CBNB class is robust to the violation of Assumption 4. This means that even if Assumption 4 is
violated, CBNB is still capable of providing valuable information on causal relationships, as demonstrated
in the following proposition.
Proposition 2 (Violation of Assumption 4). Under Assumptions 1, 2, 3, 5 and given perfect conditional
independence information about all pairs of variables, CBNB is guaranteed to find the correct skeleton of the
WCG or the ECG.

The proof of Proposition 2 is available in Appendix A. Note that since CBNB gives the correct skeleton of
WCGs and ECGs, the correct skeleton of SCG can also be deduced. If Assumption 3 is violated, then the
skeleton obtained in the CB1 step of CBNB is not reliable, thereby affecting the reliability of the CBNB
algorithm’s results.

The pseudo-code of CBNB is given in Algorithm 2, which involves the abstract steps CB1 and NB1′. In
the experimental section of this paper, step CB1 is directly based either on the PCMCI+ algorithm or on
the PCGCE algorithm, while step NB1′ is based on the modification of the VarLiNGAM algorithm. More
details on specific versions of CB1 and NB1′ is given in Appendix B.

Algorithm 2: Constraint-Based-then-Noise-Based (CBNB)
Input: A multivariate time series, a maximal temporal lag γ and a significance threshold α, CB1,

NB1′, an independence measure I(), and a conditional independence test CI()
Result: Ĝ⋆ (WCG or ECG) and Ĝs (SCG)
Initialize Ĝ⋆ as the output of CB1 which takes γ, α, and CI() as hyper-parameters;
for each undirected cycle group C in Ĝ⋆ do

It: set of nodes that belong to C;
Find the causal order π̂ between nodes in It using NB1′ which takes γ, I(), and Ĝ⋆ as
hyper-parameters;

Orient instantaneous edges between It in Ĝ⋆ using the order π̂;
Deduce the SCG Ĝs from Ĝ⋆ using Definition 3

4.3 Complexity analysis for NBCB and CBNB classes of methods

When considering d time series, finding the causal order is of complexity d2f(n, d) where f(n, d) is the
complexity of the user-specific regression method with time series length n. Then, pruning the graph by
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Figure 7: Summary causal graphs corresponding to the data simulated in Section 5.2. The last two models
correspond to an unfaithful distribution.

conditional independence tests is of complexity (dq)2(dq−1)k−1

(k−1)! , where k represents the maximal degree of any
node, q is equal to τ when considering a WCG and q is equal to 2 when considering an ECG, and each
operation consists in conducting significance test to a conditional independence measure. Both CBNB and
NBCB have the same complexity in the worst case, d2f(n, d) + (dq)2(dq−1)k−1

(k−1)! which corresponds for CBNB
to the case where there is only one undirected cycle group.

5 Experiments

In this section, we propose first an extensive analysis5 both on simulated data, generated from basic causal
structures, and on simulated but realistic benchmarks. We then perform an analysis on different real datasets.

5.1 Experimental setup

Baselines and hyper-parameters. We compare NBCB and CBNB with five state-of-the-art methods:

• the multivariate version of Granger Causality denoted GCMVL (Arnold et al., 2007);

• the constraint-based methods PCMCI+ (Runge, 2020) for which we use the Python code available
at https://github.com/jakobrunge/tigramite and PCGCE (Assaad et al., 2022c) for which the
main Python code available at https://github.com/ckassad/PCGCE. For PCGCE, as the authors
suggested, we reduce the dimensionality of Vt− in the ECG to 1 using PCA;

• the continuous optimization-based method Dynotears (Pamfil et al., 2020), for which the Python
code is available at https://github.com/quantumblacklabs/causalnex. For this method, we set
the hyperparameters to their recommended values (λW = λA = 0.05 and αW = αA = 0.01);

• the noise-based method VarLiNGAM (Hyvärinen et al., 2008) for which we use the Python code
available at https://github.com/cdt15/lingam where the regularization parameter in the adaptive
Lasso is selected using BIC.

For all the methods, the maximal temporal lag is set to γ = 5 and the significant threshold for hypothesis
testing to α = 0.05. We test two versions of each of our classes which we denote NBCB-w, NBCB-e, CBNB-
w, and CBNB-e. Methods with "-w" suffix are based on the algorithms that infer a WCG, while methods

5A Python code of all our methods and of every experimentation is available in https://github.com/ckassaad/Hybrids_
of_CB_and_NB_for_Time_Series.
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with "-e" are based on the algorithms that infer an ECG. In NBCB-w and NBCB-e, the NB1 step is based
on the VarLiNGAM algorithm and the CB1′ step is respectively based on the PCMCI+ algorithm and the
PCGCE algorithm. In CBNB-w and CBNB-e, the CB1 step is respectively based on the PCMCI+ algorithm
and the PCGCE algorithm and the NB1′ step is based on the VarLiNGAM algorithm. The pseudo-code of
each version of the NB1, CB1, NB1′, CB1′ steps are given in Appendix B. To find undirected cycle walks in
CBNB-w and CBNB-e, we use an adapted version of Paton’s algorithm (Paton, 1969). For all methods that
require a conditional independence test, we use a test based on partial correlation, which assumes Gaussian
distributions but which has been successfully used on non-iid data (Peters et al., 2013).

For real data, we also use nonlinear versions of our hybrid algorithms as well of the PCMCI and the PCGCE
algorithms. We use kernel-based conditional independence test which combines Gaussian process regression
with a distance correlation test on the residuals (Runge et al., 2019), and a Gaussian process regression in
the noise-based part. All nonlinear versions are denoted by the suffix "-nl".

Evaluation. In the different experimental settings, we compared the results concerning the F1 score of
the orientations in the SCG obtained without considering self causes, as it is treated differently depending
on the methods. When there are three datasets or more, we report the mean and the variance for the F1
score.

5.2 Simulated data with Gaussian and non-Gaussian noise

The simulated datasets correspond to four causally sufficient SCGs presented in Figure 7, extracted from
WCGs Gw, among which three are acyclic, two correspond to an unfaithful distribution, and one is cyclic.
The generating process of all datasets is the following: for all Y , for all t > 0,

Yt = ayYt−1 +
∑

Xt−ℓ∈PaGw (Yt,Gw)

axyXt−ℓ + 0.1ξy
t ,

where ay, axy ∈ U([−1,−0.1] ∪ [0.1, 1]) and for each parent X we randomly choose if X causes Y instanta-
neously or with a lag of 1, i.e., ℓ ∈ {0, 1}. Regarding the noise, we consider two different settings, in the first
the noise is drawn from a uniform distribution, i.e., ξy ∼ U([−1, 1]), and in the second the noise is drawn
from a Gaussian distribution, i.e., ξy ∼ N(0, 1). For each setting and each structure in Figure 7 we generate
100 datasets of 1000 timestamps.

For the unfaithful diamond structure in Figure 7, following Zhalama et al. (2016), we set ax, ay, az, aw

to zero, and azw = −axyayw/axz. All relationships are considered instantaneous. Consequently, in the
distribution consistent with this model, we observe X |= W , which violates the faithfulness assumption as
this independence is not entailed by the causal Markov condition. However, it does not violate the adjacency
faithfulness assumption since X is not adjacent to W in the graph. Similarly, for the adjacency unfaithful
diamond structure, we set axw = −axyayw − axzazw, which violates the adjacency faithfulness assumption
since in addition to X being adjacent to W in the graph, in the distribution, we observe X |= W , and this
independence is not entailed by the causal Markov condition.

In Table 1, we report the results for the setting with non-Gaussian noise (top panel), and with Gaussian
noise (bottom panel).

Let us start with the case of non-Gaussian noise, which is easier to handle for most methods. For the first two
structures, diamond and cyclic diamond, all assumptions required by both families of methods are satisfied,
as well as by competitors. In this case, VarLiNGAM has the best performance for diamond, followed by
CBNB-w and NBCB-w, while CBNB-w and NBCB-w have the best performance for cyclic diamond, followed
by VarLiNGAM. PCMCI+ comes closest to these methods. As expected from these results, we can see that
CBNB-w and NBCB-w perform better than both original noise-based and constraint-based methods or as
a trade-off between them. We can note that the same conclusion can be made for NBCB-e and CBNB-e.
For the unfaithful structures, constraint-based methods PCMCI+ and PCGCE have a drop in performance
due to faithfulness violation. VarLiNGAM has the best results, which makes sense as it does not rely
on faithfulness, followed by CBNB-e, with close results by NBCB-e. We can also note that our methods
experience a noticeable drop in performance only for adjacency unfaithful structures, confirming that they
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Table 1: Results obtained on the simulated data of Section 5.2 for the different structures with 1000 obser-
vations with non-Gaussian noise (top panel) and with Gaussian noise (bottom panel). We report the mean
and the variance of the F1 score of the orientations in the SCG. The best results are in blue bold and the
second best results are in green bold.

Diamond Cyclic Diamond Unf. Diamond Adj. unf. Diamond
Non-Gaussian noise

NBCB-w 0.94± 0.01 0.81± 0.01 0.86± 0.01 0.8± 0.01
CBNB-w 0.94± 0.01 0.8± 0.01 0.9± 0.01 0.84± 0.01
NBCB-e 0.74± 0.02 0.72± 0.01 0.95± 0.01 0.86± 0.01
CBNB-e 0.74± 0.02 0.7± 0.02 0.96± 0.01 0.86± 0.01
GCMVL 0.86± 0.01 0.68± 0.01 0.04± 0.01 0.04± 0.01
PCMCI+ 0.92± 0.01 0.75± 0.01 0.47± 0.04 0.44± 0.03
PCGCE 0.69± 0.02 0.66± 0.01 0.5± 0.01 0.45± 0.01

Dynotears 0.03± 0.01 0.0± 0.0 0.0± 0.0 0.0± 0.0
VarLiNGAM 0.99± 0.01 0.79± 0.01 0.98± 0.01 0.87± 0.01

Gaussian noise
NBCB-w 0.78± 0.03 0.77± 0.01 0.52± 0.05 0.48± 0.01
CBNB-w 0.8± 0.04 0.75± 0.01 0.52± 0.05 0.48± 0.06
NBCB-e 0.64± 0.02 0.67± 0.02 0.52± 0.07 0.44± 0.06
CBNB-e 0.72± 0.03 0.65± 0.02 0.53± 0.07 0.44± 0.05
GCMVL 0.87± 0.01 0.7± 0.01 0.03± 0.01 0.01± 0.01
PCMCI+ 0.93± 0.01 0.75± 0.01 0.42± 0.05 0.4± 0.04
PCGCE 0.69± 0.02 0.65± 0.01 0.5± 0.02 0.44± 0.01

Dynotears 0.06± 0.02 0.0± 0.0 0.0± 0.0 0.0± 0.0
VarLiNGAM 0.78± 0.03 0.74± 0.01 0.5± 0.07 0.42± 0.06

do not require a full faithfulness assumption but are surprisingly still competitive for adjacency unfaithful
structure, illustrating some robustness.

Considering Gaussian noise is more challenging, as the SCM is not an identifiable functional model (As-
sumption 4 is violated), which is needed for VarLiNGAM (and its use within the proposed methods). For
the first diamond structure, as expected, PCMCI+ performs best, closely followed by GCMVL and CBNB-
w, NBCB-w, and VarLiNGAM. NBCB-e and CBNB-e demonstrate lower performance than VarLiNGAM,
due to lower results of PCCGE. For the cyclic diamond structure, NBCB-w has the best results, followed
by CBNB-w and PCMCI+. For unfaithful structures with Gaussian noise, the constraint-based methods
PCMCI+ and PCGCE again experience a drop in performance due to faithfulness violation. Our methods
yield the best results. Specifically, CBNB-e performs best for the unfaithful diamond, with the rest of our
methods being the second-best. NBCB-w and CBNB-w work best for the adjacency unfaithful diamond,
followed by NBCB-e, CBNB-e algorithms, and PCGCE.

We highlight the consistently poor performance of Dynotears in Table 1, where this method has the lowest
result in all scenarios. This can be attributed to the fact that in our simulated data, the variances do not
increase in accordance with the topological order of the WCG.

Comparing PCMCI+ and PCGCE, we can see that PCGCE has lower performance in general, except for
the unfaithful cases for both types of noise distribution. This empirical observation suggests that PCGCE
is more robust to assumption violation. This behavior is also inherited by CBNB-e and NBCB-e methods.

We can conclude that when necessary assumptions are satisfied, CBNB-w and NBCB-w are either trade-offs
between the PCMCI+ and VarLiNGAM or perform better, and NBCB-e and CBNB-e, are trade-offs between
PCGCE and VarLiNGAM. For the unfaithful structures under assumption violation, all our methods are
more robust compared to constraint and noise-based families.
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Table 2: Results for realistic datasets of Section 5.3 generated using the Lotka–Volterra model with five
species (left column) and ten species (right column). We report the mean and the variance of the F1 score of
the orientations in the SCG. The best results are in blue bold and the second best results are in bold green.

Lotka–Volterra(5) Lotka–Volterra(10)
NBCB-w 0.41± 0.03 0.28± 0.01
CBNB-w 0.38± 0.03 0.24± 0.01
NBCB-e 0.47± 0.02 0.24± 0.01
CBNB-e 0.44± 0.02 0.23± 0.01
GCMVL 0.19± 0.03 0.11± 0.01
PCMCI+ 0.36± 0.03 0.22± 0.01
PCGCE 0.44± 0.02 0.22± 0.01

Dynotears 0.18± 0.05 0.15± 0.01
VarLiNGAM 0.43± 0.06 0.23± 0.02

Table 1 presents the F1 score of the orientations in the SCG, which is not suitable to illustrate the Propo-
sition 2. Thus, in Table 6 in Appendix E we present the F1 score on the adjacencies, which illustrate the
robustness of CBNB class to Assumption 4. More precisely, CBNB-w has the same performance as PCMCI+

and better than the results of NBCB-w, in the case of Gaussian noise, for all structures, except the adjacency
unfaithful diamond. We also see similar results for CBNB-e. Proposition 1 is difficult to see from Table 1,
as we do not evaluate separately orientations and adjacencies, due to the specific structure of the inferred
graph.

5.3 Realistic ecological data from the Lotka–Volterra model

We consider the simulation with multi-species generalization of the Ricker model introduced by Poggiato
et al. (2022), which is analogous to the generalized Lotka–Volterra model with abiotic control presented in
the same paper and is commonly used in ecological studies. Ricker model with abiotic control in discrete
time for abundance of species Y at time step t has the following form:

Yt =

Yt−1 exp
(

∆t
( ∑

Xt−1∈PaGw (Yt,Gw) axyXt−1 + Y (−ay) exp
(
− (oy−x)2

2σ2
y

))
+ ξy

t

)
, (preys)

Yt−1 exp
(

∆t
( ∑

Xt−1∈PaGw (Yt,Gw) axyXt−1 − µ
)

+ ξy
t

)
, (predators)

where Yt is the abundance of species Y at time t, the upper equation is related to preys and the lower to
predator species, Y is the abundance of species Y in the stationary state, axy is the strength of the effect
of species X on species Y and ay is strength of the effect of species Y on itself, ξy

t is an i.i.d Gaussian
random variable with variance σr, oy is a niche optimum for species Y , x is the environmental variable, µ is
the extinction rate of the predator. We run this simulation for the number of species S = {5, 10} with the
following fixed parameters: fixed environment x = 0.5, number of time steps T = 1000, µ =0.05, σr = 0.2,
for each species oy randomly sampled from U([0.05, 0, 95]), the interaction matrix related to coefficients axy

and ay is obtained through a randomly generated WCG Gw which is compatible with an SCG Gs. The SCG
is constrained to contain only bi-directed edges and to encompass precisely 3 trophic levels, representing
the hierarchical positions of species in the food chain. Specifically, these levels include basal species or prey
(L1), their predators (L2), and the predators of predators (L3). The second constraint ensures that ∀X ∈ Li

and ∀Y ∈ Lj , if X ⇆ Y in Gs then |i − j| = 1 (for more details see Poggiato et al., 2022). The interaction
strength is randomly sampled for all interactions. We generate 100 graphs and thus we obtain 100 datasets.

For the Lotka-Volterra(5) datasets, NBCB-e performs better than the other methods followed by CBNB-e
and PCGCE as shown in Table 2. Close to them perform VarLiNGAM, NBCB-w and CBNB-w. Dynotears
and GCMVL have the lowest results. For the Lotka-Volterra(10) datasets, all results saw a significant
decrease, with NBCB-w performing the best, followed by CBNB-w and NBCB-e. It is worth noting that for
all datasets, NBCB-e and CBNB-e perform either better or equally as well as PCGCE and VarLiNGAM,
while NBCB-w and CBNB-w outperform PCMCI.

17



Published in Transactions on Machine Learning Research (05/2024)

Table 3: Results for real datasets of Section 5.4 using linear methods. We report the mean and the variance
(when meaningful, see data description) of the F1 score of the orientations in the SCG. The best results are
in blue bold and the second best results are in green bold.

Temp. Veil1 Veil2 Dairy Ingest. Web1 Web2 Antivirus1 Antivirus2
NBCB-w 1 1 0 0.4 0.47± 0.03 0.2 0.23 0.13 0.3
CBNB-w 1 1 0 0.4 0.46± 0.11 0.24 0.29 0.18 0.18
NBCB-e 1 1 1 0.4 0.5± 0.05 0.24 0.42 0.29 0.38
CBNB-e 1 1 1 0.4 0.52± 0.06 0.15 0.38 0.33 0.27
GCMVL 0.67 1 1 0.33 0.5± 0.03 0.19 0.0 0.08 0.0
PCMCI+ 1 1 0 0.4 0.3± 0.08 0.17 0.32 0.04 0.11
PCGCE 1 1 1 0.4 0.55± 0.03 0.21 0.34 0.29 0.36

Dynotears 0.67 1 1 0.33 0.25± 0.06 0.22 0.3 0.18 0.17
VarLiNGAM 1 1 1 0.5 0.49± 0.05 0.23 0.2 0.18 0.18

5.4 Real data

Nine different real datasets are considered in this study. Taking into account the limitations of certain meth-
ods in handling nonlinearity, we start by evaluating our algorithms using linear tests and linear regressions,
alongside linear tests for constraint-based methods. Then, we proceed to compare the nonlinear counterparts
of our methods with those of the constraint-based methods while providing a computational time analysis.

5.4.1 The linear case

We detail the performance of each method in the following paragraphs, while the results are summarized in
Table 3. See Appendix D for URL links to the considered datasets.

Temperature. This is a bivariate time series of length 168 about indoor I and outdoor O measurements.
As noted by Assaad et al. (2021), it is expected that O causes I.

NBCB-w, CBNB-w, NBCB-e, CBNB-e, PCMCI+, PCGCE, and VarLiNGAM correctly infer O → I.
GCMVL and Dynotears infer a bidirected causal relation.

Veilleux. We considered two datasets for Figure 11(a) and 12(a) (Jost & Ellner, 2000) from Veilleux (1979)
which study interactions between predatory ciliate Dinidum nasutum and its prey Paramecium aurelia with
different values of Cerophyl concentrations (CC): 0.375 and 0.5. The lengths of the time series are 71 and 65.
These data were previously analyzed with causal discovery algorithms (Barraquand et al., 2021, Sugihara
et al., 2012), which showed bidirectional relationships in both cases.

Here, NBCB-e, CBNB-e, GCMVL, PCGCE, Dynotears and VarLiNGAM discover bidirected relationships
Paramecium ⇆ Didinium in both datasets, which is consistent with Sugihara et al. (2012), Barraquand
et al. (2021). CBNB-w, NBCB-w, PCMCI+ have detected bidirected relationships between Paramecium
and Didinium only in the first dataset.

Diary. This dataset provides ten years (from 09/2008 to 12/2018) of monthly prices for milk M , butter
B, and cheddar cheese C, so the three time series are of length 124. We expect that the price of milk is a
common cause of the price of butter and the price of cheddar cheese: B ←M → C.

NBCB-w, CBNB-w, NBCB-e, CBNB-e, PCMCI+, PCGCE and VarLiNGAM correctly inferred that M → B.
But NBCB-w and CBNB-w wrongly inferred that M ← C → B, NBCB-e, CBNB-e, wrongly inferred that
M ← B ← C, PCMCI+ and PCGCE wrongly inferred that M ← C ← B and VarLiNGAM wrongly inferred
that C → B. GCMVL wrongly infers B ⇆ M ← C → B and Dynotears wrongly infers M ⇆ B ⇆ C.

Ingestion mini. This benchmark provided by EasyVista consists of 24 datasets each containing three time
series with 1000 timestamps collected from an IT monitoring system with a one-minute sampling rate. Half
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the datasets are compatible with the graph C.M.I ← M.E → G.H.I (Assaad et al., 2022b) where M.E is
the metric extraction which represents the activity of the extraction of the metrics from the messages; G.H.I
is the group history insertion, which represents the activity of the insertion of the historical status in the
database; and C.M.I is the collector monitoring information, which represents the activity of the updates
in a given database. The second half of the datasets are compatible with the graph M.D → M.E → M.I
where M.D is the metric dispatcher which represents the activity of a process that orients messages to other
processes with respect to different types of messages; and M.I is the metric insertion which represents the
activity of insertion of data in a database. Lags between time series are unknown, as well as the existence
of self-causes.

From Table 3, we can see that PCGCE has the best results followed by CBNB-e then by NBCB-e and
GCMVL. After that comes VarLiNGAM and NBCB-w and CBNB-w and PCMCI+.

Finally, Dynotears has the worst result. This might suggest that the lags between causes and effects are not
consistent over time, in the sense that if the lags between two-time series vary (while respecting the maximal
temporal lag), the extended summary causal graph might remain the same however this is not true for the
window causal graph. In this case, we might expect that methods inferring window causal graphs (such as
PCMCI+) would perform worse than methods inferring extended summary causal graphs (such as PCGCE).

Web. We consider a dataset that reflects the activity in a web server which is provided by EasyVista.
This dataset contains ten time series collected with a one-minute sampling rate. The raw data of this case
study were initially misaligned. In order to align them, we use the two pre-processing strategies described in
Appendix C. We denote the dataset pre-processed using Strategy 1 as Web 1 and the dataset pre-processed
using Strategy 2 as Web 2. The two processed datasets contain 3000 timestamps. The corresponding
summary causal graph for Web dataset is presented in Figure 8a where NetIn represents the data received
by the network interface card in Kbytes/second; NetOut represents the data transmitted out by the network
interface card in Kbytes/second; NPH represents the number of HTTP processes; NPP represents the
number of PHP processes; NCM represents the number of open MySql connections which are started by
PHP processes; CpuH represents the percentage of CPU used by all HTTP processes; RamH represents the
percentage of RAM used by all HTTP processes; CpuP represents the percentage of CPU used by all PHP
processes; DiskW represents the Disk write in Kbytes/second; CpuG represents the percentage of global
CPU usage.

From Table 3, for the Web1 dataset, we can see that NBCB-e and CBNB-w demonstrate the highest perfor-
mance, followed by VarLiNGAM. Next are Dynotears and PCGCE. CBNB-e exhibits the lowest score. For
the Web2 dataset, NBCB-e attains the highest F1 score, with CBNB-e closely following. The subsequent
competitive results are observed with PCGCE and PCMCI+. This could imply that the data is noisy and
the time lags are inconsistent throughout time, making the inference of the extended summary graph more
robust.

Antivirus. Lastly, we consider a dataset which depicts the impacts of antivirus activity in servers which
is again provided by EasyVista. This dataset contains 13 time series such that 3 of them are collected with
a one-minute sampling rate and the rest with a five-minute sampling rate. The raw data of this case study
were initially misaligned. To align them, we use the two pre-processing strategies described in Appendix C,
leading to the dataset Antivirus 1 for Strategy 1 and Antivirus 2 for Strategy 2. The two processed datasets
consist of 1321 timestamps. The corresponding summary causal graph for Antivirus dataset is presented in
Figure 8b where CUV represents the percentage of CPU usage of antivirus processes in server V; CUGV
represents the percentage of CPU usage of the global server V; MUV represents the percentage of memory
usage of antivirus process; MUGV represents the percentage of global memory usage of the server; RV
represents the Disk IO read in Kbytes/second; ChIE refers to the required duration in seconds to open an
IE browser on server V; CUP represents the percentage of CPU usage of antivirus processes in server P;
CUGP represents the percentage of CPU usage of the global server P; MUP represents the percentage of
memory usage of antivirus process; MUGP represents the percentage of global memory usage of the server;
RP represents the Disk IO read in Kbytes/second; ChP represents refers to the required duration in seconds
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Figure 8: Summary causal graphs for (a) the Web activity datasets and (b) the Antivirus activity datasets.
Those summary causal graphs are constructed by an IT monitoring system’s experts.

Table 4: Results for real datasets of Section 5.4 using nonlinear methods. We report the mean and the
variance (when meaningful, see data description) of the F1 score of the orientations in the SCG. The best
results are in blue bold and the second best results are in green bold.

Temp. Veil1 Veil2 Dairy Ingest.
NBCB-w-nl 1 1 0 0.4 0.52± 0.02
CBNB-w-nl 1 1 0 0.4 0.54± 0.06
NBCB-e-nl 1 1 1 0.4 0.43± 0.04
CBNB-e-nl 1 1 1 0.4 0.49± 0.07
PCMCI+-nl 1 1 0 0.0 0.38± 0.09
PCGCE-nl 0.67 1 1 0.4 0.43± 0.03

to open a CITRIX Portal on server P; T represents the global time in seconds required to open a CITRIX
portal and open the IE browser.

From Table 3 for Antivirus 1, we can see that CBNB-e achieves the best result followed by PCGCE and
NBCB-e and then by CBNB-w, VarLiNGAM and Dynotears. GCMVL and PCMCI+ have low performance,
with PCMCI+ being the worst. For Antivirus 2, we can see that NBCB-e performs best followed by PCGCE
and then by CBNB-e. The remaining methods have a substantial drop in performance. As in the case of
Web datasets, improved performance of the PCGCE over PCMCI+ suggests that inference of the extended
summary graph is more robust in this case. We can also note that NBCB-e and NBCB-w perform well,
while VarLiNGAM does not, which could suggest that VarLiNGAM infers a more dense graph.

5.4.2 The nonlinear case

The results of the nonlinear counterparts of our hybrid methods and of PCMCI+ and PCGCE on real data
are presented in Table 4. In this scenario, we excluded the Web and Antivirus datasets due to computational
constraints (running the nonlinear counterparts of the algorithms on these datasets is prohibitively expensive
due to their size).

In the temperature dataset, the Veilleux datasets and the Dairy dataset, all considered methods produced
consistent results compared to their linear counterparts, except for PCGCE, which exhibited a decrease in
performance in the temperature dataset. In the Ingestion mini datasets, we can clearly see that all methods
that infer a WCG has a slight increase in performance and all methods that infer an ECG has a slight
decrease in performance. In terms of ranking, in the nonlinear case, NBCB-w-nl demonstrates the best
performance, followed by CBNB-w-nl, while PCMCI+ performs the worst despite its performance increase.
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Figure 9: Time computation (in second) for NBCB-w, CBNB-w, NBCB-e, CBNB-e, PCMCI+, and PCGCE
for real datasets of Section 5.4. We report the mean and the standard deviation.

The performance improvement observed in methods inferring a WCG can suggest that the dataset Ingestion
mini contains nonlinear causal relations. Conversely, the decline seen in methods inferring an ECG could be
attributed to the combination of the complexity of nonlinear tests and the necessity for these methods to
conduct conditional independence tests with larger conditional sets compared to those considered by other
methods.

We also conduct a computation time analysis of the nonlinear counterparts of the methods, as shown in
Figure 9. Notably, the computation times for all methods are comparable across the temperature dataset,
the Veilleux datasets, and the Dairy dataset, which are relatively small in size. However, in the Ingestion
mini datasets, variations in computation time are evident: PCMCI+ exhibits the longest computation time,
followed by CBNB-w then by PCGCE and NBCB-w. Our hybrid methods for inferring an ECG (NBCB-e and
CBNB-e) exhibit the shortest computation time, with NBCB-e showing a lower computation time compared
to CBNB-e. The NBCB methods achieve better time computation because the nonlinear conditional tests
they employ are significantly more computationally expensive than learning Gaussian process regression.
This implies that the constraint-based step is more costly than the noise-based step. Hence, providing
additional knowledge to the constraint-based step, in the form of a causal order, results in a much greater
reduction in computation time compared to when the additional knowledge is given to the noise-based step,
in the form of the skeleton.

6 Discussion

Experiments on simulated data, realistic ecological data, and real data from various applications, show
that our hybrid approaches are robust and yield overall good results over all datasets. Notice that for all
results on real data, NBCB-w and CBNB-w (which are based on PCMCI+ and VarLiNGAM) never perform
simultaneously worse than PCMCI+ and VarLiNGAM. Similarly, NBCB-e and CBNB-e (which are based
on PCGCE and VarLiNGAM) never perform simultaneously worse than PCGCE and VarLiNGAM, except
for the Web 1 dataset where CBNB-e has the lowest F1-score (but NBCB-e has the best F1-score). In
general, NBCB-e and CBCB-e seem to be more reliable than NBCB-w and CBCB-w for the real data we
considered, especially when assuming linearity. As mentioned before, the possible explanation is noisy data
and inconsistent time lags. In summary, results on simulated data, realistic ecological data, and real data are
coherent with the theoretical findings, showing that algorithms from CBNB and NBCB classes are trade-
offs between the original methods, potentially exhibiting enhanced performance compared to the original
methods when certain assumptions are violated.

In Table 5, we provide various theoretical and experimental criteria to distinguish between the algorithms
within the NBCB and CBNB classes. In the second and third rows of Table 5, we present which algorithms
infer a WCG and which ones infer an ECG. In the forth and fifth rows, we detail the steps of the NBCB
and CBNB classes of methods. The sixth row indicates that NBCB-w and NBCB-e can still be applied even
when Assumption 3 is violated. In such cases, the true graph may not be fully retrieved, but it is guaranteed
that if the algorithms infer X → Y , then in the true graph, we can be certain that Y does not cause X
(see Proposition 1). Similarly, the seventh row shows that CBNB-w and CBNB-e can be utilized even when
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Class NBCB CBNB
Version NBCB-e NBCB-w CBNB-e CBNB-w
Output ECG WCG ECG WCG
Step 1 NB1 (VLiNGAM) CB1 (PCGCE - PCMCI+)
Step 2 CB1′ (PCGCE - PCMCI+) NB1′ (VLiNGAM)

Violation of Assump. 3 (Xt → Yt ∈ Ĝ⋆ =⇒ (Yt ̸→ Xt ∈ G⋆) ✗ ✗

Violation of Assump. 4 ✗ ✗ (Xt⋆ − Yt ∈ Ĝ⋆) =⇒ (Xt⋆ − Yt ∈ G⋆)
Simulated data (Sec. 5.2) ✗ ✓ ✗ ✓
Realistic sim. data (Sec. 5.3) ✓ ✓ ✓ ✓
Real data (Sec. 5.4) ✓ ✗ ✓ ✗

Table 5: Summary of the two proposed classes of methods, NBCB and CBNB. Rows respectively indicate:
their versions NBCB-e, NBCB-w, CBNB-e, CBNB-w; outputs; the algorithms used in each step; their
theoretical guarantees, or lack thereof (✗), under violation of some assumption; and their advantageous (✓)
or limited (✗) performances on the different data scenarios considered in Section 5. Ĝ⋆ represents the inferred
WCG or ECG and G⋆ representes the true WCG or ECG.

Assumption 4 is violated. In this scenario, algorithms are capable of inferring accurate skeleton of the graph,
but not the orientations. The last three rows highlight the scenarios where each algorithm outperformed
others. Interestingly, in the experimental section, we observed that methods inferring a WCG perform better
with simulated data, while methods inferring an ECG excel with real data, assuming linearity.

One of the key limitations of the CBNB and NBCB classes for real-world applications is their reliance on the
restrictive assumption that there are no hidden confounders (Assumption 1), which could be often violated.
For CBNB, we could consider an extension of the FRITL algorithm (Chen et al., 2021) for time-series, which
is based on building the skeleton using FCI extension and refining after using noise-based methods. However,
it is not clear how to adapt the necessary conditions for undirected cycle groups. For NBCB it could be
more complicated to relax the no hidden confounders assumption.

Additionally, it would be interesting to adapt the CBNB and NBCB classes to the cases when there is a
violation of consistency over time or stationarity. One potential direction could be to integrate our methods
in the strategy proposed by Saggioro et al. (2020) which combines a causal discovery with a regime learning
optimisation approach. However, this direction might require additional assumptions and while it appears
promising for CBNB, it is less obvious for NBCB. Another direction could be to assume the presence of an
observed contextual variable that explains the non-stationarity (Mooij et al., 2020, Günther et al., 2023).

Finally, adapting these methods for mixed data can be important in many applications. This can be straight-
forward for the constraint-based part of our algorithms, given the availability of conditional independence
tests for mixed data (Zan et al., 2022). However, the adaptation is more challenging for the noise-based part.

7 Conclusion

In this paper, we introduced a framework for hybrids of noise-based and constraint-based methods that
can discover causal graphs from temporal data. Algorithms in the first class, denoted NBCB, start with
ordering instantaneous relations, and then prune edges of the fully oriented graph. On the other hand,
the algorithms from the second class, denoted CBNB, start by finding the skeleton and the orientation of
lagged relations using a constraint-based method and temporal priority, then orient instantaneous relations
by ordering nodes in each cycle group of instantaneous relations. Overall, the performance of our algorithms
is a trade-off between the performance of constraint-based and noise-based algorithms when all assumptions
are satisfied, and they outperform other methods in the cases where some of the assumptions are violated.

For future works, it would be interesting to extend these approaches to cases involving hidden confounders,
non-stationarity, and mixed data.
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A Proofs

We recall the definition of blocked paths, backdoor paths, and the backdoor criterion.
Definition 7 (Blocked path, Pearl, 2000). A path is said to be blocked by a set of nodes S ⊂ V if it contains
an intermediate cause or a common cause X such that X ∈ S and if it contains a collider X such that X ̸∈ S
and no descendant of X is in S.

Note that a path that is not blocked is said to be active.
Definition 8 (Backdoor path, Pearl, 2000). A path between an ordered pair (X, Y ) is said to be a backdoor
path between X and Y if it contains an arrow into X.

Note that blocking all backdoor paths between two nodes eliminates confounding bias (Pearl, 2000).
Theorem 1. Let Gf = (Vf ,Ef ) be an FTCG. Under Assumptions 1, 2, 3, 4, 5 and given perfect conditional
independence information about all pairs of variables in Vf , any algorithm in the NBCB class returns the
correct WCG or the correct ECG compatible with Gf .

Proof. This proof is similar to the proof of Theorem 4 in Assaad et al. (2021) for NBCBacyclic. Given the
Assumption 4 and causal sufficiency and assuming NB1 is consistent with Assumption 4, NB1 would infer
the correct causal order π̂. Given the causal order π̂ and temporal priority, we can orient all edges in a fully
connected graph, which represents a super graph that contains the true graph. Given Assumptions 1, 2, 3, 5
and assuming that the constraint-based algorithm on which CB1′ is based on is sound and complete, if we
do not consider the causal order, CB1 would prune all unnecessary edges by removing edges between two
nodes that are conditionally independent given a subset S adjacent to one of these two nodes and yield the
correct skeleton. Given the causal order π̂, the subset S can be reduced by containing only parents (instead of
adjacencies). Thus, again by Assumptions 1,2, 3, removing all edges between the conditionally independent
nodes, the only edges that will be left with are causal, and so the graph would be correct.

Proposition 1 (Violation of Assumption 3). Under Assumptions 1, 2, 5, given that the SCM is a restrictive
additive noise model (Peters et al., 2014), and given a correct causal order between instantaneous nodes, the
NBCB class would give a WCG or an ECG such that, for each pair of nodes Xt⋆ and Yt, one of the following
possibilities holds true:

(1) The causal relationship between Xt⋆ and Yt is correctly identified.

(2) Xt⋆ and Yt are not adjacent in the inferred graph, but they are adjacent in the true graph.

(3) Xt⋆ and Yt are adjacent in the inferred graph, but they are not adjacent in the true graph.

Proof. Given that the noise-based algorithm on which the NB1 step is based on is correct, the NB1 step
would give the correct causal order. Thus, having correct causal order for the instantaneous nodes and using
orientation by time, the NB1 step would give the fully connected oriented graph, such that each edge that
is present in the true graph is correctly oriented. The second step involves the CB1′ step for pruning the
edges. Since we consider that adjacency faithfulness is violated, we can have one of the following cases:

• If a pair of nodes Xt⋆ and Yt is adjacent in the true graph there are two possible cases:

(a) there exist set S such that Xt⋆ |= Yt | S. In this case, CB1′ would erroneously remove the edge
between Xt⋆ and Yt in the inferred graph and we obtain case (2) in the proposition

(b) there exists no set S such that Xt⋆ |= Yt | S, in this case, the CB1′ would keep this edge and
orientation of this edge is correct (given step NB1), this edge corresponds to correctly inferred
causal relationship case (1)

• If a pair of nodes Xt⋆ and Yt is not adjacent in the true graph but they are connected by an
active path u = ⟨Xt⋆ , V 2

t⋆
2
, · · · , V n−1

t⋆
n−1

, Yt⟩ of size n > 2. Suppose that due to violation of adjacency
faithfulness, the step CB1′ removes the edge Xt⋆ − V 2

t⋆
2

and the edge V n−1
t⋆

n−1
− Yt. If n = 3, then
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CB1′ will never test if Xt⋆ |= Yt | S, such that V 2
t⋆

2
∈ S therefore it will not remove the edge between

Xt⋆ and Yt in the inferred graph. If n > 3 and if CB1′ removes all possible edges between Xt⋆ and
each node in {V 3

t⋆
3
, · · · , V n−1

t⋆
n−1
} and all possible edges between Yt and each node in {V 2

t⋆
2
, · · · , V n−2

t⋆
n−2
} in

the inferred graph (due to a some specific configuration of the parameters that violates faithfulness
but not adjacency faithfulness). Then, in this case, CB1′ will never test if Xt⋆ |= Yt | S, such that
{V 2

t⋆
2
, · · · , V n−1

t⋆
n−1
} ∩ S = ∅ therefore it will not remove the edge between Xt⋆ and Yt in the inferred

graph.

Theorem 2. Let Gf = (Vf ,Ef ) be an FTCG. Under Assumptions 1, 2, 3, 4, 5 and given perfect conditional
independence information about all pairs of variables in Vf , any algorithm in the CBNB class returns the
correct WCG or the correct ECG compatible with Gf .

Proof. Without any given causal order, CB1 uses the first two steps of the constraint-based algorithm
(omitting the orientation step). Using the full constraint-based algorithm under Assumptions 1, 2 and 3, we
obtain correct partially complete partially oriented WCG or ECG Ĝ⋆, i.e., correct skeleton, all instantaneous
relations are not oriented and all lagged relations are oriented. So, having Ĝ⋆, what is left to prove is that
applying NB1′ on the nodes It that belong to each of undirected cycle group C given the past parents
PaĜ⋆(It)\Vt is free of confounding bias.

To obtain the correct causal order π̂ between nodes It, we need to verify that in the subgraph of Ĝ⋆ containing
the nodes It ∪PaĜ⋆(It) (which is by definition acyclic) for every two adjacent nodes Xt, Yt ∈ It, there exists
a set S ⊆ It\{Xt, Yt} ∪ PaĜ⋆(It), such that S blocks all backdoor paths between Xt and Yt (if there is no
edge between nodes Xt and Yt, then there is no orientation to be determined by NB1′). Suppose Xt → Yt

in the true graph (but in the output of CB1 this edge is unoriented) and there exists some active backdoor
path u between Xt and Yt, we consider two cases:

(a) Suppose all nodes in path u belong to Vt. By definition of an undirected cycle group C, all nodes
in u are also in It, which means that the common cause (common ancestor) on the path is also in
It, i.e., causal sufficiency is satisfied. This means, that u can be blocked by a node in It. Thus there
exists S ⊆ It\{Xt, Yt} such that all backdoor paths between Xt and Yt are blocked.

(b) Suppose that some nodes in u belong to V⋆\Vt. In this case, conditioning on PaĜ⋆(It) blocks u since
PaĜ⋆(It) are the parents of It and none of the nodes in PaĜ⋆(It) are colliders of any two nodes in
It. Thus all backdoor paths between Xt and Yt passing by V⋆\Vt can be blocked by PaĜ⋆(It) and
all the backdoor paths that are left are the ones discussed in (a).

Proposition 2 (Violation of Assumption 4). Under Assumptions 1, 2, 3, 5 and given perfect conditional
independence information about all pairs of variables, CBNB is guaranteed to find the correct skeleton of the
WCG or the ECG.

Proof. Given that the CB algorithm used for the CBNB method is correct under Assumptions 1 and 2, the
result of the first step CB1 would give the correct skeleton under the Assumption 3.

For example, if the PCMCI+ method is used for the CBNB method, then the correctness of the skeleton
comes from Theorem 1 in Runge (2020). In case when CB1 is based on PCGCE algorithm, the correctness
of the skeleton is shown in Theorem 1 in Assaad et al. (2022c).
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B Pseudo-code algorithms

In our experimental section, we used an NB1 and an NB1′ steps based on the VarLiNGAM algorithm (NB1 in
NBCB-w and NBCB-e and NB1′ in CBNB-w and CBNB-e) and we used respectively a CB1 and a CB1′ steps
based on the PCMCI+ algorithm (CB1 in CBNB-w and CB1′ in NBCB-w) and on the PCGCE algorithm
(CB1 in CBNB-e and CB1′ in NBCB-e). Since NB1′ and CB′ steps require more modifications compared
to NB1 and CB1 steps starting from the initial methods, in the following, we provide the pseudo-codes of
each NB′ and CB′ steps that we used. But first, we start by briefly recalling VarLiNGAM, PCMCI+, and
PCGCE algorithms which all assume causal sufficiency (Assumption 1) while pointing out either their NB1
or CB1 step.

VarLiNGAM (Hyvärinen et al., 2008) is a noise-based causal discovery algorithm for time series data that
constructs a WCG. First, it estimates a classic autoregressive model for the data using any conventional
implementation of a least-squares method. It then computes the residuals and then performs the LiNGAM
analysis (Shimizu et al., 2006; 2011) on the residuals. Note that the LiNGAM analysis can be either done
using the ICALiNGAM (Shimizu et al., 2006) or DirectLiNGAM (Shimizu et al., 2011), in this work, we
use DirectLiNGAM. This step, which we refer to as NB1, gives the causal order and the estimate of the
instantaneous causal effects. After that, it computes the estimates of lagged causal effects. Finally, it
estimates redundant directed edges to find the underlying WCG.

PCMCI+ (Runge, 2020) is a constraint-based causal discovery algorithm for time series data that constructs
a WCG. First, the PC1 lagged phase infers a superset of the lagged parents together with the parents of
instantaneous ancestors. Next, the MCI instantaneous phase starts with links found in the previous step
and all possible instantaneous links, then it conducts momentary conditional independence (MCI) with a
modified conditioning set learned in the previous step to increase detection power. This step, which we refer
to as CB1, gives a partially oriented graph where lagged relations are oriented and where instantaneous are
non-oriented. Finally, it orients edges using the same rules used in the PC-algorithm (Spirtes et al., 2000,
Meek, 1995).

Similarly, PCGCE (Assaad et al., 2022c) is also a constraint-based causal discovery algorithm for time series
data, but that constructs an ECG without passing by a WCG. It also consists of two steps. First, it searches
for the skeleton of the ECG using a procedure similar to the PC-algorithm that is order-independent by using
a conditional independence test between either two nodes in the present slice or one node in the present slice
and one node in the past slice, which can be multidimensional. Similarly to the case of PCMCI+, this step,
which we refer to as CB1, gives a partially oriented graph where lagged relations are oriented and where
instantaneous are non-oriented. Then it orients edges using the same rules used in the PC-algorithm (Spirtes
et al., 2000, Meek, 1995).

In the following, we present the pseudo-codes of NB1′ based on VarLiNGAM, CB1′ based on PCMCI+ and
CB1′ based on PCGCE. We colour in orange the parts that are different from the initial algorithms. Remark
that the orange colour indicates that the corresponding parts are added or modified compared to the initial
algorithms, but they do not indicate parts of the initial algorithms that were deleted.

B.1 NB1′ based on VarLiNGAM (Algorithm 3)

The NB1′ step based on VarLiNGAM is almost identical to the NB1 step based on VarLiNGAM. As NB1,
NB1′ starts by computing the residuals of all instantaneous nodes by regressing them on their past. However,
unlike NB1, NB1′ focuses only on a subset of instantaneous nodes It ⊆ Vt. Note that also unlike NB1, NB1′

takes as input a partially oriented graph Ĝ⋆ (the output of CB1 step which has the correct skeleton) and
that It ∪ PaĜ⋆(It) should satisfy causal sufficiency. By construction, causal sufficiency is satisfied when It is
an undirected cycle group as defined in Definition 6. The pseudo-code of NB1′ is provided in Algorithm 3.

B.2 CB1′ based on PCMCI+ (Algorithm 4)

CB1 and CB1′ based on the PCMCI+ algorithm use conditional independence test CI() that returns at the
same time the p-value and the statistic of the test. The main differences between the CB1′ and the CB1 step

29



Published in Transactions on Machine Learning Research (05/2024)

Algorithm 3: NB1′ based on VarLiNGAM (parts in orange are different from the initial algorithms)
Input: A multivariate time series, a maximal temporal lag γ, a significance threshold α, an

independence measure I(), the output of the CB1 step Ĝ⋆ (partially oriented), and
instantaneous nodes of interest It ⊆ Vt

Result: Ĝ⋆ (fully oriented)
if Ĝ⋆ is an ECG then

Construct a WCG Gw = (Ew,Vw = {Vt−γ , · · · ,Vt}) s.t. ∀Xt− ∈ Vt−, Yt ∈ Vt, if Xt− → Yt ∈ Ee

then ∀ℓ ∈ {1, · · · , γ}, Xt−ℓ → Yt ∈ Ew and ∀Xt, Yt ∈ Vt if Xt ̸= Yt, Xt → Yt ∈ Ee then Xt ̸= Yt,
Xt → Yt ∈ Ew;

else
Ĝw = Ĝ⋆;

for Yt ∈ It do
Estimate a classic autoregressive model for the data

Yt =
∑

Xt−ℓ∈P aĜw (It)

axyℓXt−ℓ + ξy
t

using any conventional implementation of a least-squares method. Note that here ℓ > 0, so it is
really a classic AR model;

Compute the residuals, that is, estimates of ξy
t ;

ξ̂y
t = Yt −

∑
Xt−ℓ∈P aĜw (It)

âxyℓXt−ℓ

Initialize a bijective mapping function π;
i = 1;
Initialize a list S containing all nodes in It;
while size(S) > 1 do

Initialize an empty list H;
for Xt ∈ S do

for Yt ∈ S\{Xt} do
Perform least squares regressions of ξ̂x

t on ξ̂y
t and compute the residuals:

ϵ̂Yt = ξ̂y
t −

cov(ξ̂x
t , ξ̂y

t )
var(ξ̂x

t )

Estimate the dependence between the total residuals and Xt:

h =
∑

Yt∈S\{Xt}

I(ξ̂x
t , ϵ̂Yt)

Append h to the end of H;
Find the node Xt corresponding to ξ̂x

t that is most independent of its residuals in H;
π(Xt) = i;
i = i + 1;
Remove Xt from S;

π(Xt) = i where Xt is the remaining instantaneous node in S;
Orient Ĝ⋆ s.t. ∀Xt − Yt ∈ E⋆, Xt → Yt ∈ E⋆ if π(Xt) < π(Yt);
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based on PCMCI+ is that CB1′ takes a causal order as input, and therefore, it starts with a fully-oriented
graph, in addition in the MCI instantaneous phase, it conditions only using parents (PCMCI+ condition
also on instantaneous adjacencies).

Algorithm 4: CB1′ based on PCMCI+ (parts in orange are different from the initial algorithms)
Input: A multivariate time series, a maximal temporal lag γ and a significance threshold α, a

conditional independence test CI(), and a causal order π
Result: Gw (WCG)
Construct an fully-connected WCG Gw = (Ew,Vw = {Vt−γ , · · · ,Vt}) s.t.
∀Xt−ℓ ∈ {Vt−γ , · · · ,Vt−1}, Yt ∈ Vt, Xt−ℓ → Yt ∈ Ew and ∀Xt, Yt ∈ Vt s.t. Xt ̸= Yt, Xt → Yt ∈ Ew if
π(Xt) < π(Yt);

for Yt ∈ Vt do
Initialize B̂t(Yt) = Vw\Vt;
Initialize Imin(Xt−ℓ, Yy) =∞ ∀Xt−ℓ ∈ B̂t(Yt);
n = 0;
while ∃Xt−ℓ ∈ B̂t(Yt) s.t. size(B̂t(Yt)) ≥ n do

for Xt−ℓ ∈ Vw\Vt s.t. size(B̂t(Yt)) ≥ n do
S = first n nodes in B̂t(Yt);
p, h = CI(Xt−ℓ, Yt | S);
Imin(Xt−ℓ, Yt) = min(|h|, Imin(Xt−ℓ, Yt));
if p > α then

mark Xt−ℓ for removal

∀Xt−ℓ marked for removal, remove Xt−ℓ → Yt from Ew;
Sort B̂t(Yt) by Imin(Xt−ℓ, Yy) from largest to smallest;
n = n + 1;

Initialize Imin(Xt−ℓ, Yy) =∞ ∀Xt−ℓ ∈ B̂t(Yt);
n = 0;
while ∃Xt−ℓ − Yt ∈ Ew ∀ℓ ≥ 0 s.t. size(PaĜw (Yt) ∩ Vt\{Xt−ℓ}) ≥ n do

for Xt−ℓ − Yt ∈ Ew ∀ℓ ≥ 0 s.t. size(PaĜw (Yt) ∩ Vt\{Xt−ℓ}) ≥ n do
while ∃Xt−ℓ − Yt ∈ Ew and not all S ∈ PaĜw (Yt) ∩ Vt\{Xt−ℓ} with size(S) = n have been
considered do

for S ∈ PaĜw (Yt) ∩ Vt\{Xt−ℓ} s.t. size(S) = n do
p, h = CI(Yt, Xt−ℓ | S, B̂t(Yt)\{Xt−ℓ}, B̂t−ℓ(Xt−ℓ));
Imin(Xt−ℓ, Yt) = min(|h|, Imin(Xt−ℓ, Yt));
if p > α then

Remove Xt−ℓ → Yt from Ew or Xt−ℓ − Yt from Ew;

n = n + 1;
Sort PaĜw (Yt) ∩ Vt by Imin(Xt−ℓ, Yy) from largest to smallest;

B.3 CB1′ based on PCGCE (Algorithm 5)

CB1 and CB1′ based on the PCGCE algorithm use conditional independence test CI() that returns either
the p-value of the test or the statistic without computing the p-value. The main difference between the CB1′

and the CB1 step based on the PCGCE algorithim is that CB1′ takes a causal order as input, and therefore,
it starts with a fully-oriented graph and in addition, it conditions only using parents (PCGCE condition on
adjacencies).
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Algorithm 5: CB1′ based on PCGCE (parts in orange are different from the initial algorithms)
Input: A multivariate time series, a maximal temporal lag γ and a significance threshold α, a

conditional independence test CI(), and a causal order π
Result: Ge (ECG)
Construct an fully-connected ECG Ge = (Ee,Ve = {Vt−,Vt}) s.t. ∀Xt− ∈ Vt−, Yt ∈ Vt, Xt− → Yt ∈ Ee

and ∀Xt, Yt ∈ Vt s.t. Xt ̸= Yt, Xt → Yt ∈ Ee if π(Xt) < π(Yt) ;
n = 0;
while ∃Xt∗ − Yt ∈ Ee ∀t∗ ∈ {t, t−} s.t. size(PaĜe(Yt)\{Xt∗}) ≥ n do

Initialize D and H as empty lists;
for Xt∗ − Yt ∈ Ee ∀t∗ ∈ {t, t−} s.t. size(PaĜe(Yt)\{Xt∗}) = n do

while ∃Xt∗ − Yt ∈ Ee and not all S ∈ PaĜe(Yt)\{Xt∗} with size(S) = n have been considered do
for S ⊂ PaĜe(Yt) \ {Xt∗} s.t. size(S) = n do
−, h = CI(Xt∗, Yt | S);
Save (Xt∗, Yt,S) in D and h in H

Sort D and H by H from smallest to largest;
for Xt∗, Yt,S ∈ D s.t. S ⊆ PaĜe(Yt) do

p,− = CI(Xt∗, Yt | S);
if p > α then

Remove Xt∗ → Yt from Ee or Xt∗ − Yt from Ee;

n = n + 1;

C Experimental setup

Time series in monitoring systems are not always exactly aligned together and come in different sampling
rates as the timestamps depend on when the data was collected. In the following, we present two pre-
processing strategies that we considered for aligning time series:

• Strategy 1: Time series are analyzed in terms of sampling rates and the lowest one is chosen.
Afterwards, all the time series are re-sampled according to this lowest sampling rate with the closest
value to the timestamp taken as the new value. Upon re-sampling, missing values can be clearly
observed. If missing values are detected, they are filled using simple linear interpolation of Pandas
data frames6.

• Strategy 2: Each raw value xi is converted into integral value si at each point i as follows: si =
xi(ti− ti−1) + si−1. Then all time series are re-sampled such that each re-sampled value xj at every
n (the lowest sampling rate) steps is calculated as follows: xj = si−si−n

ti−ti−n
. The time ti (of value si)

is the time that is after the corresponding time to xj .

D Links to datasets

Temperature. Available at https://webdav.tuebingen.mpg.de/cause-effect/.

Veilleux. Available at http://robjhyndman.com/tsdldata/data/veilleux.dat.

Diary. Available at http://future.aae.wisc.edu.

Ingestion mini. Available at https://easyvista2015-my.sharepoint.com/personal/aait-bachir_
easyvista_com/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Faait%2Dbachir%5Feasyvista%5Fcom%
2FDocuments%2FLab%2FPublicData&ga=1.

6https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html
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Web. Available at https://easyvista2015-my.sharepoint.com/personal/aait-bachir_
easyvista_com/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Faait%2Dbachir%5Feasyvista%5Fcom%
2FDocuments%2FLab%2FPublicData&ga=1.

Antivirus. Available at https://easyvista2015-my.sharepoint.com/personal/aait-bachir_
easyvista_com/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Faait%2Dbachir%5Feasyvista%5Fcom%
2FDocuments%2FLab%2FPublicData&ga=1.

E Additional experiments

In Table 6 we provide F1 score on the adjacencies. In contrast to Table 1 in the main text, this Table shows
the performance of the algorithms on skeleton recovery which allows to illustrate the robustness of CBNB
class to Assumption 4.

Table 6: Results obtained on the simulated data of Section 5.2 for the different structures with 1000 obser-
vations with non-Gaussian noise (top panel) and with Gaussian noise (bottom panel). We report the mean
and the standard deviation of the F1 score on adjacencies. The best results are in blue bold and the second
best results are in green bold.

Diamond Cyclic Diamond Unf. Diamond Adj. Unf. Diamond
Non-Gaussian noise

NBCB-w 0.95± 0.01 0.95± 0.01 0.94± 0.01 0.88± 0.01
CBNB-w 0.95± 0.01 0.96± 0.01 0.95± 0.01 0.88± 0.01
NBCB-e 0.86± 0.01 0.85± 0.01 0.97± 0.01 0.87± 0.01
CBNB-e 0.85± 0.01 0.86± 0.01 0.97± 0.01 0.87± 0.01
GCMVL 0.87± 0.01 0.92± 0.01 0.07± 0.01 0.06± 0.02
PCMCI+ 0.95± 0.01 0.96± 0.01 0.95± 0.04 0.88± 0.01
PCGCE 0.85± 0.01 0.86± 0.01 0.97± 0.01 0.87± 0.01

Dynotears 0.09± 0.03 0.0± 0.0 0.0± 0.0 0.0± 0.0
VarLiNGAM 0.99± 0.01 0.97± 0.01 0.98± 0.01 0.87± 0.01

Gaussian noise
NBCB-w 0.93± 0.01 0.93± 0.01 0.90± 0.01 0.87± 0.01
CBNB-w 0.96± 0.01 0.96± 0.01 0.94± 0.01 0.87± 0.01
NBCB-e 0.83± 0.01 0.83± 0.01 0.93± 0.01 0.85± 0.01
CBNB-e 0.85± 0.01 0.84± 0.01 0.97± 0.01 0.87± 0.01
GCMVL 0.88± 0.01 0.91± 0.01 0.02± 0.01 0.03± 0.01
PCMCI+ 0.96± 0.01 0.96± 0.01 0.94± 0.01 0.87± 0.01
PCGCE 0.85± 0.01 0.84± 0.01 0.97± 0.01 0.87± 0.01

Dynotears 0.13± 0.05 0.0± 0.0 0.0± 0.0 0.0± 0.0
VarLiNGAM 0.91± 0.01 0.92± 0.01 0.93± 0.01 0.84± 0.01
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