
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LORA VS FULL FINE-TUNING:
AN ILLUSION OF EQUIVALENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning is a crucial paradigm for adapting pre-trained large language mod-
els to downstream tasks. Recently, methods like Low-Rank Adaptation (LoRA)
have been shown to match the performance of fully fine-tuned models on various
tasks with an extreme reduction in the number of trainable parameters. Even in
settings where both methods learn similarly accurate models, are their learned
solutions really equivalent? We study how different fine-tuning methods change
pre-trained models by analyzing the model’s weight matrices through the lens of
their spectral properties. We find that full fine-tuning and LoRA yield weight
matrices whose singular value decompositions exhibit very different structure;
moreover, the fine-tuned models themselves show distinct generalization behav-
iors when tested outside the adaptation task’s distribution. More specifically, we
first show that the weight matrices trained with LoRA have new, high-ranking
singular vectors, which we call intruder dimensions. Intruder dimensions do not
appear during full fine-tuning. Second, we show that LoRA models with intruder
dimensions, despite achieving similar performance to full fine-tuning on the target
task, become worse models of the pre-training distribution and adapt less robustly
to multiple tasks sequentially. Higher-rank, rank-stabilized LoRA models closely
mirror full fine-tuning, even when performing on par with lower-rank LoRA mod-
els on the same tasks. These results suggest that models updated with LoRA and
full fine-tuning access different parts of parameter space, even when they perform
equally on the fine-tuned distribution. We conclude by examining why intruder di-
mensions appear in LoRA fine-tuned models, why they are undesirable, and how
their effects can be minimized.

1 INTRODUCTION

Figure 1: Spectral dissimilarities between full fine-
tuning and LoRA. Similarity matrix of pre- and
post-fine-tuning singular vectors of the weight ma-
trices to characterize spectral differences introduced
upon fine-tuning, in a representative example for
LLaMA-2 fine-tuned on Magicoder. Full fine-tuning
retains most of the pre-training structure; the diago-
nal shift in LoRA corresponds to the introduction of
intruder dimensions. Color shows cosine similarity.

Adapting large, pre-trained models to
downstream tasks via fine-tuning is a
computation- and data-efficient way to cre-
ate domain-specific models for a variety of
tasks. The simplest approach is to fine-tune
all parameters of the pre-trained model on
downstream task data (Devlin et al., 2019;
Ouyang et al., 2022). However, as pre-
trained models grow larger, full fine-tuning
becomes increasingly challenging and ex-
pensive. Recently, parameter-efficient fine-
tuning (PEFT) methods, especially low-
rank adaptation (LoRA; Hu et al., 2021),
have been shown to enable fine-tuning with
only a fraction of the trainable parame-
ters. But even when fine-tuning with
LoRA matches the performance of full
fine-tuning, are the solutions learned by
the two methods really equivalent?



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 2: Characterizing structural differences between solutions learnt by LoRA Vs full Fine-
tuning. a) We measure the changes to the SVD of the pre-trained weights made during fine-tuning.
We observe intruder dimensions introduced by LoRA in top ranking singular vectors but by full fine-
tuning. b) Comparing a matrix fine-tuned with full fine-tuning or LoRA. c) Comparing a normal
singular vs an intruder dimension to all pre-trained singular vectors.

While full fine-tuning treats every parameter as trainable, LoRA treats the learned update to a weight
matrix as the product of two low-rank matrices (Hu et al., 2021; Dettmers et al., 2023). While this
parameterization is empirically effective, a principled explanation of the mechanism by which it
matches the full fine-tuning performance has remained elusive. One explanation is offered by the
intrinsic dimension hypothesis (Li et al., 2018; Aghajanyan et al., 2021), which posits that the update
learned via fine-tuning has an intrinsically low intrinsic rank, suggesting that LoRA might recover an
approximately equivalent solution to full fine-tuning. However, prior work has observed differences
in the ability of LoRA and full fine-tuning to independently change the angle and magnitude with
which a neuron transforms its input (Liu et al., 2024). Moreover, other work has also observed
that LoRA has difficulty matching the performance of full fine-tuning on harder tasks, like code
generation (Biderman et al., 2024; Zhuo et al., 2024) and long-form text generation (Ivison et al.,
2023). Therefore, it is unclear if these findings indicate a limit in LoRA’s ability to fit to a specific
downstream task, or if these methods learn inherently different solutions.

In this paper, we show that full fine-tuning and LoRA learn different solutions with characteristic
differences in their spectral properties (as shown in Fig. 1) and different generalization behaviors
outside the target task distribution. We observe:

1. LoRA and full fine-tuning produce structurally different parameter updates, characterized
by the existence of intruder dimensions. These are singular vectors, with large associated singular
values, that are approximately orthogonal to the singular vectors in a pre-trained weight matrix.
In contrast, fully fine-tuned models remain spectrally similar to the pre-trained model and do not
contain intruder dimensions.

2. Behaviorally, LoRA fine-tuned models with intruder dimensions forget more of the pre-
training distribution and exhibit less robust continual learning compared to full fine-tuning:
LoRA fine-tuned models with intruder dimensions are inferior to fully fine-tuned models outside
the adaptation task’s distribution, despite matching accuracy in distribution. However, higher-rank
LoRA fine-tuned models, with identical adaptation task performance, more closely resemble fully
fine-tuned models on these measures. Very high rank LoRA models, for e.g., full-rank LoRA, too
forget more of their pre-training distribution—highlighting the fact that LoRA is not exempt from
the general tradeoff between expressive power and generalization.

3. Even when a low-rank LoRA performs well on a target task, a higher-rank parameterization
may still be preferable. While we observe that our low-rank LoRAs (r ≤ 8) fit our downstream
task distribution as well as full fine-tuning and high-rank LoRAs, using a high-rank (r = 64) leads



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 3: Cosine similarities between sorted singular vectors in the fine-tuned models to pre-
trained models. (Right) Matrices fine-tuned with LoRA have a shift in singular vectors, as shown by
blank columns, due to intruder dimensions (which are dissimilar to the pre-trained singular vectors).
(Left) However, no such shift is found in the case of models trained via full fine-tuning.

to models that both exhibit better generalization and robust adaptability. However, in order to take
advantage of higher ranks, the LoRA updated models must be rank-stabilized (Kalajdzievski, 2023).

2 BACKGROUND & RELATED WORK

Methods for fine-tuning. Pre-trained language models offer a foundation for downstream appli-
cations, eliminating the need to train from scratch (Ouyang et al., 2022; Devlin et al., 2019). Full
fine-tuning, in which every parameter of a pre-trained model is updated, has been used for adapta-
tion (Devlin et al., 2019; Liu et al., 2019). Low Rank Adaptation (LoRA; Hu et al., 2021), which
represents the update to the weights as a product of two low-rank matrices, reduces computation
and memory requirements relative to full fine-tuning. Past work has shown that LoRA matches full
fine-tuning performance for tasks like sequence classification (Hu et al., 2021), instruction tuning
(Dettmers et al., 2023; Ghosh et al., 2024), and chat (Dettmers et al., 2023). Other work has shown a
gap in the performance of full fine-tuning and LoRA on harder tasks like code generation (Biderman
et al., 2024; Zhuo et al., 2024). While we focus on models trained to similar accuracy, our observa-
tions of structural differences apply even to cases where LoRA does not fit to the adaptation task as
well as full fine-tuning.

LoRA, formally. Given a pre-trained weight matrix W0 ∈ Rm×n, full fine-tuning treats the learned
matrix update as ∆W ∈ Rm×n. Instead, LoRA decomposes ∆W into a product of two matrices
such that ∆W = BA, where B ∈ Rm×r, A ∈ Rr×n, and where the rank r is generally r ≪
min(m,n). During prediction,

Y = WtunedX = (W0 +
α

r
BA)X .

B is initialized to zero, and A sampled from an isotropic Gaussian. All parameters in B and A are
trained. From this we can see that while full fine-tuning mas mn trainable parameters per weight
matrix, LoRA only has mr + rn trainable parameters. See Appendix D for derivation of gradients.

LoRA Variants. Many variations of LoRA exist. Methods improve LoRA’s performance or
memory-efficiency by initializing with the principal components of the underlying weight matrix
(Meng et al., 2024), training with quantization (Dettmers et al., 2023), adaptively allocating differ-
ent ranks (Zhang et al., 2023), or sequentially training multiple LoRAs (Xia et al., 2024). Other
methods propose similar but alternative architectures (Liu et al., 2024; Kopiczko et al., 2024; Kooh-
payegani et al., 2024). Here, we focus on the original LoRA setup, as described in Hu et al. (2021).
We leave a rigorous analysis of these variations and their impacts on our findings to future work.

Empirically, setting α = 2r has been shown to improve results for higher ranks (Biderman et al.,
2024) and is theoretically well motivated. (Kalajdzievski, 2023). We adopt this parameterization for
most experiments in our paper.

Analysis of Solutions. Introduced by Li et al. (2018), the intrinsic dimension measure was used by
Aghajanyan et al. (2021) to argue that the fine-tuning update for a pre-trained LLM has low intrinsic
rank, explaining why only a small number of trainable parameters are necessary to reach 90% of full



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

fine-tuning performance. This finding motivated Hu et al. (2021) to hypothesize that LoRA works
because solutions of low intrinsic rank exist. But to our knowledge, no past work has compared
the rank (or other properties of weight matrices) between LoRA and full-fine tuning on tasks where
they are matched in performance. While Liu et al. (2024) showed that LoRA has difficulty changing
directional and magnitude components of a neuron independently, while full fine-tuning does not,
it is unclear if this difference is due to an inability of LoRA to fit as well as full fine-tuning to the
adaptation task.

Recent work comparing LoRA to full fine-tuning has found that LoRA forgets less on previously
learned information (Biderman et al., 2024) and more closely resembles the pre-trained model
(Ghosh et al., 2024). Surprisingly, some experiments in the current study show opposite trends.
However, there are significant differences in the datasets used for evaluation—(Biderman et al.,
2024) investigated instruction tuning for language generation, while we mainly study sequence la-
beling tasks. Importantly, Biderman et al. (2024) study conditions when LoRA fine-tuned models
fail to fit the adaptation task as well as full-finetuned models, and as a result also forget less of the
pre-training distribution. However, we study models where the LoRA achieves the same perfor-
mance as full fine-tuning, comparing generalization behavior at a fixed target task accuracy.

Singular Value Decomposition. The SVD decomposes a matrix M ∈ Rm×n such that M =
UΣV T , where U ∈ Rm×m and V ∈ Rn×n have orthonormal columns representing the singular
vectors of M and Σ ∈ Rm×n is a diagonal matrix containing the singular values of M . U and V T

represent rotations that matrix M performs, while Σ represents scaling along those axes. Impor-
tantly, singular vectors ranked in order by their associated singular value capture the order of most
important axes of transformation that the matrix performs.

3 MODEL DIFFERENCES BETWEEN LORA AND FULL FINE-TUNING

Inspired by Sharma et al. (2024)’s findings that the Singular Value Decomposition (SVD, Klema &
Laub, 1980) can be used to selectively prune singular vectors to improve model performance, this
paper adopts the SVD of neural network parameters as a lens for understanding the changes that
fine-tuning makes to pre-trained weights. Understanding how these dimensions change can give
us insight into how a particular fine-tuning method changes the pre-trained model. In particular,
we measure how well singular vectors in weight matrices fine-tuned with LoRA or full fine-tuning
map to singular vectors in the pre-trained weights using their cosine similarity. These relationships
are shown in Fig. 1 and Fig. 3, with color representing cosine similarity between pre-trained and
fine-tuned singular vectors.

Visually, we observe in Fig. 2(b) that LoRA and full fine-tuning’s singular vectors have very differ-
ent similarities to the pre-trained singular vectors: singular vectors of models fine-tuned with LoRA
appear to have, on average, much lower cosine similarity to pre-trained singular vectors in compar-
ison to full fine-tuning. Interestingly, in LoRA fine-tuned models, we also observe the presence of
high ranking singular vectors with very low cosine similarity to any pre-trained singular vector.1 In
Fig. 2(c), we show the difference between these vectors with low cosine similarity to the pre-trained
singular vectors and normal singular vectors from the fine-tuned weights. This “new” dimension can
be seen in Fig. 2(b) as the lone red dot in the bottom left corner. We name these “new” dimensions
intruder dimensions, which we define formally as follows:

Definition 1 A singular vector yj from the fine-tuned weight matrix Wtuned is an intruder dimen-
sion if and only if maxi(cos(yj , xi)) < ϵ, where ϵ is a similarity threshold and xi is a singular
vector in W0.

Examples of intruder dimensions may be seen in Fig. 3. Here, we plot the similarity matrix between
the top 10 singular vectors (ranked by singular value) in the pre-trained and fine-tuned matrices.
While full fine-tuning appears to have a clear one-to-one mapping, LoRA appears to have its map-
ping shifted by “blank” columns: these are intruder dimensions, with low cosine similarity to every
pre-trained singular vector.

1Recall that in high dimensions, a vector can have low cosine similarity to a set of orthogonal vectors that
span a space; see Appendix C for discussion.



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

It is important to note that in the case of full fine-tuning, the singular vectors that map to a pre-
trained singular vector with high cosine similarity also have similar singular values. From these
initial measurements, it appears that LoRA and full fine-tuning have structural differences in the
changes they make to the pre-trained weights: while full fine-tuning appears to make small changes
to the existing singular vectors and singular values, LoRA introduces new singular vectors that have
a large contribution to the norm of the updated parameter matrix.

Setup. We study RoBERTa-base (Liu et al., 2019), a pre-trained encoder-only language model, fine-
tuned on six different sequence classification tasks. We train these models to similar performance
on their respective downstream tasks to study how, at a similar level of performance, fully fine-tuned
and LoRA fine-tuned models differ. See Appendix A for more fine-tuning details. We compute the
total number of intruder dimensions across these models.

Algorithm: Finding Intruder Dimensions.
Input: Pre-trained weights W0, fine-tuned weights

Wtuned, cosine similarity threshold ϵ, and number of
fine-tuned singular vectors to examine k.

[U0,Σ0, V
T
0 ]← SVD(W0)

[Utuned,Σtuned, V
T

tuned]← SVD(Wtuned)
num intruders← 0
for j ← 1 to k do

n← # of pre-trained singular vectors
if ∀i ∈ {1, . . . , n}, cos(U0[i], Utuned[j]) < ϵ then

num intruders← num intruders +1
end if

end for
return num intruders

Figure 4: Outline of the procedure used to compute the total
number of intruder dimensions introduced in a model.

LoRA fine-tuned models contain
high-ranking intruder dimensions
while fully fine-tuned models do
not. To quantify the size of the set
of intruder dimensions for a specific
weight matrix, we use the algorithm
described in Fig. 4. Concretely, we
first compute the SVD of both the
pre-trained and resulting LoRA and
full fine-tuned weights. Following
that, for each of the top k highest-
ranking singular vectors, we mea-
sure its maximum cosine similarity
with all of the pre-trained singular
vectors. If this maximum cosine
similarity is less than some thresh-
old ϵ, we classify this singular vector
as an intruder dimension. Note that
both k, the number of fine-tuned sin-
gular vectors to examine, and ϵ, the
cosine similarity threshold, are hyperparameters; we verify the robustness of our findings for a wide
range of ϵ and k values in Fig. 5 and Fig. 11 respectively. To determine the number of intruder
dimensions in a specific model, we run this algorithm for each weight matrix in the model and sum
the total.

To characterize the differences in fine-tuning methods, we first evaluate the differences in the total
number of intruder dimensions in the top 10 highest-ranking singular vectors (k = 10). We repeat
this procedure for a the range of ϵ values, our cosine similarity threshold. The results are presented
in Fig. 5a. We find that models trained with LoRA consistently contain intruder dimensions when
their rank r ≤ 16, particularly for low values of ϵ. Interestingly, we observe that fully fine-tuned
models almost never contain intruder dimensions in their top 10 singular vectors for epsilon values
of about 0.6 to 0.9 across different settings. This means that full fine-tuning makes smaller changes
to the same set of high contribution pre-trained singular vectors. Importantly, the number of intruder
dimensions appears to drop as rank increases past a certain threshold, suggesting that the low-rank
nature, as well as the update rule of LoRA, induces them to occur.

Intruder dimensions exist even in tasks where LoRA fine-tuned models learn less than full fine-
tuning. To test the validity of our findings for larger models and harder tasks, we study LLaMA-
7B (Touvron et al., 2023a) and LLaMA2-7B (Touvron et al., 2023b) models fine-tuned on various
instruction following datasets. These span math, code, and chat, and are considerably harder than
our sequence classification tasks. See Appendix H for more details about these models.

Looking at Figs. 5b, 5c, and 5d, we can clearly see intruder dimensions in the set of high ranking
singular vectors for LoRA, even with a rank as high as r = 256. Importantly, the r = 2048 case
of MetaMath does not have intruder dimensions and instead has a very similar curve to full fine-
tuning. This supports the earlier finding that, as rank increases past a threshold, intruder dimensions
disappear and LoRA begin to resemble full fine-tuning.



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Number of intruder dimensions in RoBERTa models fine-tuned on 6 different tasks.

(b) LLaMA-7B fine-tuned
on Alpaca.

(c) LLaMA2-7B fine-tuned on
MetaMathQA.

(d) LLaMA2-7B fine-tuned on
Magicoder-Evol-Instruct.

Figure 5: Impact of cosine similarity threshold ϵ on the number of intruder dimensions. Here,
we set k = 10 and measure the impact of ϵ on the number of intruder dimensions measured. LoRA
introduces many intruder dimensions in the top 10 ranking singular vectors, while full fine-tuning
does not. Top row is for RoBERTa-base. Numbers are reported for the entire model, so upper bound
is k ∗ l ∗ n, where l is the number of layers and n is the number of weight matrices per layer. For
RoBERTa-base, this upper bound is 10 ∗ 6 ∗ 12 = 720.

Interestingly, the full fine-tuned Magicoder model also has intruder dimensions for higher values
of ϵ. This is likely because, as mentioned by Biderman et al. (2024), there is a larger domain shift
between coding tasks and the pre-training data in comparison to other natural language tasks. This
difference likely causes full fine-tuning to make more aggressive changes to the model. But even in
this case, LoRA models have many more intruder dimensions in their top 10 singular vectors than
full fine-tuning (see Fig. 1).

Figure 6: Very high rank LoRA updates
still have lower effective rank than full-
finetuning. This holds across all matrix
types and layers. (Left) Effective rank LoRA
and Full. (Right) Zoomed in on only LoRA.

Full fine-tuning updates have a higher effective
rank than LoRA updates, even when LoRA is
performed with a full-rank matrix. Another way
we can examine differences between LoRA and full
fine-tuning is to calculate the effective rank (Roy &
Vetterli, 2007) of the change made to the weights
during fine-tuning. As shown in Fig. 6, when we
calculate this we observe that the effective rank of
full fine-tuning solutions have a significantly higher
effective rank than solutions learned by LoRA, even
when LoRA has high rank. Even at high adapter
ranks and with rank stabilization, we find across lay-
ers that the effective rank of LoRA updates is less
than half that of full fine-tuning and a quarter of the
adapter rank. For example, with the high rank of
r = 768 for RoBERTa, LoRA updates have an average effective rank of 300. This suggests that
LoRA is under utilizing its full capacity r, and may help explain observed gaps between LoRA and
full fine-tuning on challenging tasks like coding (Biderman et al., 2024; Zhuo et al., 2024).

Intruder dimensions are distributed across both high and low singular values. We examine
the extent to which intruder dimensions exist throughout the entire weight matrix and how they
are distributed. To do this, we hold ϵ fixed and measure the number of intruder dimensions while
varying the proportion of the fine-tuned singular vectors that we examine. We report these results
in Fig. 11a. Here, we can see that LoRA consistently has more intruder dimensions than full fine-
tuning, regardless of what fraction of the singular values we examine. The only caveat to this is



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 7: Evolution of the intruder dimension with training iterations. (Left) Intruder dimen-
sions, and their rank, in a LoRA fine-tuned weight matrix during fine-tuning. (Middle) Their as-
sociated singular values. This clearly shows that across training steps, the impact of the intruder
dimension, as determined by its singular value, increases. (Right) Test accuracy of the model across
training steps.

that, for some datasets, full fine-tuning passes LoRA with rank 1 when examining the last 20% of
the fine-tuned singular vectors. This is likely due to the limited expressivity of rank 1 updates and
is interesting because it suggests that in these cases, full fine-tuning may be changing lower-ranking
singular vectors more than LoRA.

Intruder dimensions increase in magnitude and change in direction as fine-tuning progresses.
To further understand how a particular intruder dimension is introduced during fine-tuning with
LoRA, we measure the maximum cosine similarity between the top individual fine-tuned singular
vectors and all the pre-trained singular vectors across many intermediate steps in the fine-tuning
process, as seen in Fig. 7 (left). In parallel, we track changes in their associated singular values as
seen in Fig. 7 (right). As is evident from the graphs, intruder dimensions appear to gradually increase
their “rank” (on the left) as their singular value is increased (on the right) while simultaneously
changing in direction too as training progresses.

Scaling α with the rank of the LoRA update reduces the number of intruder dimensions along-
side increasing the effective ranks of the matrices. Following (Biderman et al., 2024), we set
α = 2r. However, we ran additional experiments with a fixed α = 8, as in most early work on
LoRA. This has the effect of scaling down the LoRA contribution as rank increases. We report
these results in Appendix 18. For both settings of α, models obtained equivalent performance on
the target task (see Table 1). With fixed α, however, all ranks of LoRA—even very large ones—
exhibit intruder dimensions. Furthermore, when we measure the effective rank of these models, they
have a much smaller effective rank than when α = 2r. This suggests that with constant α, LoRA
converges to a low rank solution. This provides additional evidence that α = 2r improves the solu-
tion of high ranks of LoRA(Kalajdzievski, 2023; Biderman et al., 2024): it leads to a reduction in
intruder dimensions and an increase in the effective rank of solutions when LoRA’s rank is higher.

The total number of intruder dimensions increases proportionally to the size of the fine-tuning
dataset. Using the training described in Appendix A, we fine-tuned models on data subsets of
varying sizes. We trained RoBERTa-base on MNLI using LoRA with rank 1 and 8 (cases where we
originally saw intruder dimensions). We then again measure number of intruder dimensions along
with the impact of ϵ and k, and report our results in Appendix 12. For r = 8, as we train on more
data, more intruder dimensions are introduced. Interestingly, however, LoRA with rank 1 appears
to converge to similar amounts of intruder dimensions, regardless of the dataset size. This may be
because of the limited expressivity of models with r = 1.

Conjecture: Intruder dimensions, as high-ranking singular vectors, contribute significantly to
the norm and stability of the parameter matrix. In contrast to pre-trained singular vectors that
are learned from large pre-training corpora, LoRA introduces intruder dimensions learned solely
from the smaller dataset of the fine-tuning task, which overpower the pre-trained vectors, as seen in
the experiments so far. On the other hand, full fine-tuning, while adapting just as effectively to the
fine-tuning task, retains the spectral properties of the pre-trained model effectively. From this, we
conjecture that the presence of intruder dimensions in LoRA models has a detrimental effect on the
model’s performance outside the fine-tuning task distribution and this effect is less pronounced in
full fine-tuned models. We investigate this conjecture in the next section.



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 8: Continual Learning performance of RoBERTa for full fine-tuning and LoRA. We se-
quentially train on six tasks, in order from left to right. Horizontal dotted line indicates baseline
pre-trained performance. Vertical solid line indicates when a specific dataset is fine-tuned on. Gray
region represents performance before the model has been trained on that task. We are interested in
the differences in accuracies of these methods both right after training (at the vertical black line) and
later (in the white region). We see that low ranks of LoRA forget previously learned tasks more.

4 BEHAVIORAL DIFFERENCES BETWEEN LORA AND FULL FINE-TUNING

We have identified structural differences in the solutions of LoRA and full fine-tuning. Here, we
investigate whether LoRA and full fine-tuning produce measurable differences in fine-tuned model
behavior. While we have already seen that they perform nearly identically on their in-distribution
test set, we evaluate whether these behavioral similarities hold under other distributions.

At lower ranks, LoRA adapts less robustly during continual learning by forgetting more of
the previous tasks. We train RoBERTa sequentially on multiple tasks and measure how much
performance changes as new tasks are learned. We use the same training recipe and datasets as
before, but now instead fine-tuning in a continual learning environment with the following dataset
order: MNLI, QQP, SST-2, SIQA, Winogrande, FEVER. After training on a certain dataset in the
sequence, we merge the LoRA weights into the model and reinitialize them before training on the
next task so that they are unimpacted by the previous tasks. After training on a specific task, we test
on all tasks by, for each task, separately retraining its classification head before testing on its test set.
This enables us to examine how well the model performs on these tasks while not actually changing
the model itself.

Results are shown in Fig. 8. While LoRA matches the performance of full fine-tuning initially,
smaller ranks of LoRA consistently show greater degradation of performance during continual learn-
ing. In particular, we note that for the first three datasets trained on, performance of LoRA when
r = 1 drops below the pre-trained baseline. As we increase the rank of LoRA, we can see that this
forgetting behavior decreases and more closely resembles full fine-tuning and even forgets less on
MNLI after the completion of continual learning. Biderman et al. (2024) describe a family of tasks
and training procedures under which LoRA forgets less than full fine-tuning, these results show
that the complete picture is nuanced: while in some cases LoRA appears to forget less, for some
tasks—and some ranks—LoRA may in fact forget more.

For LoRA models fine-tuned to equivalent test accuracy, we see a U-shaped curve that iden-
tifies the optimal rank for fitting to the downstream task while forgetting the pre-training
distribution the least. We measure the shift in performance that our fine-tuned models, trained to
equivalent test accuracy, have on their pre-training data distribution. While we cannot directly mea-
sure a true perplexity on encoder-only style models because they are not auto-regressive language



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 9: RoBERTa’s performance on its pre-training data distribution after fine-tuning on a particu-
lar task. We measure pseudo loss as described by Salazar et al. (2020). All the models for a specific
task were trained to equivalent performance. We see a U-shaped curve that identifies the best rank
for learning the downstream task while forgetting the pre-training distribution the least.

models, we can still measure their pseudolikelihood on pre-training data as described in Salazar
et al. (2020). We measure “pseudo-loss” for all our fine-tuned RoBERTa models across the four
datasets that RoBERTa used during pre-training (openwebtext (Gokaslan & Cohen, 2019), cc news
(Hamborg et al., 2017), stories (Trinh & Le, 2019), and bookcorpus (Zhu et al., 2015)), and weigh
them proportionally to their contribution as described by Liu et al. (2019). We report our measured
pseudo-loss scores in Fig. 9. In it, we can see a U-shaped trend between full fine-tuning and LoRA
with r = 768. Since all models achieve equivalent test accuracy, this U-shaped trend across a spe-
cific dataset identifies the optimal ranks for fitting to a down stream task distribution, and seems to
point to r = 64 as the choice that minimizes forgetting of the pre-training distribution. We can see
that both a rank very low rank (r = 1) and a very high rank (r = 768) lead to greater forgetting
on the pre-training distribution relative to full fine-tuning, while for r = 64 we see less. That is:
models fine-tuned with LoRA when r = 1 suffer from intruder dimensions and appear to have more
forgetting than r = 64 which had no intruder dimensions. However, models fine-tuned with LoRA
when r = 768 also exhibit worse forgetting, suggesting that due to their overparameterization they
are overfitting to the adaptation task. With r = 8 and r = 64, which are more frequently used,
forget less than full fine-tuning, while ranks on either extreme forget more than full fine-tuning.

Setting α properly significantly impacts model performance. We continue our case study of
setting α = 8 instead of α = 2r as described in earlier sections. We repeat continual learning
and pre-training forgetting experiments with fixed (rather than rank-scaled) α, and report them in
Appendix 16 & 17. LoRA models, regardless of rank, forget much more of both the pre-training
distribution (MNLI, QQP, FEVER) and previously learned tasks during continual learning, high-
lighted by the fact that all LoRA ranks drop below baseline performance for the first two datasets.
These results resemble earlier findings for r = 1, and further suggests that when α = 8 instead of
α = 2r, solutions converge to a solution with more intruder dimensions structurally and one that is
behaviorally similar to the low-rank LoRA setting.

5 WHY DO INTRUDER DIMENSIONS EXIST?

Adding an random vector to a pre-trained matrix introduces an intruder dimension: To help
provide intuition about how new singular vectors in the SVD can be added by LoRA, we examine
mathematical conditions that lead to their creation. Certainly, when comparing SV D(W + λvvT )
and SV D(W ), where W are the pre-trained weights in Rn×n, v is a randomly sampled vector in
Rn, and λ is a scalar value greater than the largest singular value of W , we expect this update to
create an intruder dimension (as v is nearly orthogonal to the existing singular vectors w.h.p.).

Differences in the update rule: As described in Appendix D, LoRA and full fine-tuning have
characteristically different update rules, even for the same training examples. We highlight that
LoRA uses a larger learning rate and has gradients projected into a low-rank space (Hao et al.,
2024), leading to conditions similar to the toy example above.

Product parameterization of LoRA: Multiplying matrices together amplifies their spectral differ-
ences (their singular values) and in most cases leads to a lower effective rank. To test the impact of



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 10: Impact of only tuning B on the number of intruder dimensions. We randomly initial-
ize A such that it has singular values of 1, freeze it, and only train B. When we do this, we see a sharp
reduction in high ranking intruder dimensions in comparison to those in normal LoRA (reported in
Fig. 5a). Graphs for a specific dataset have the same range as Fig. 5a for easy comparison.

the product BA on the introduction of intruder dimensions, we randomly initialize A such that all
its singular values are 1 and freeze it. We only tune B and keep the rest of our fine-tuning recipe
the same. Comparing this with vanilla LoRA is fair because Zhu et al. (2024) found that tuning B is
more impactful and important for generalization in comparison to A and Hao et al. (2024) showed
that only tuning B effectively approximates LoRA. As we can see in Fig. 10, we see a sharp drop
in the number of high ranking intruder dimensions when only tuning B in comparison to the vanilla
LoRA case where we train A and B separately, as reported in Fig. 5. This suggests that the matrix
product of LoRA is an important component in the introduction of intruder dimensions because of
how it amplifies the spectral differences of B and A.

6 CONCLUSION

The paper describes the finding that LoRA and full fine-tuning, with equal performance on the fine-
tuning task, can have solutions with very different generalization behaviors outside the fine-tuning
task distribution. We found that LoRA and full fine-tuning yield models with significant differences
spectral properties of their weight matrices: LoRA models often containing “intruder dimensions”,
high-ranking singular vectors approximately orthogonal to the singular vectors of pre-trained weight
matrices. The existence of intruder dimensions correlates with the fine-tuned model forgetting more
of the pre-training distribution as well as forgetting more when trained on tasks sequentially in a
continual learning setup.

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic Dimensionality Explains the Ef-
fectiveness of Language Model Fine-Tuning. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers). Association for Computational Linguistics,
August 2021. URL https://aclanthology.org/2021.acl-long.568.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor Jen-
nings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and John P.
Cunningham. LoRA Learns Less and Forgets Less. Transactions on Machine Learning Research,
2024. URL https://arxiv.org/abs/2405.09673.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient
Finetuning of Quantized LLMs. In Advances in Neural Information Processing Systems,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics. Association for
Computational Linguistics, June 2019. URL https://aclanthology.org/N19-1423.

Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Kumar, Ramaneswaran S, Deepali Aneja, Zeyu
Jin, Ramani Duraiswami, and Dinesh Manocha. A Closer Look at the Limitations of Instruction

https://aclanthology.org/2021.acl-long.568
https://arxiv.org/abs/2405.09673
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://aclanthology.org/N19-1423


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tuning. In Proceedings of the 41st International Conference on Machine Learning. International
Conference on Machine Learning, 2024. URL https://arxiv.org/abs/2402.05119.

Aaron Gokaslan and Vanya Cohen. OpenWebText Corpus. http://Skylion007.github.
io/OpenWebTextCorpus, 2019.

Felix Hamborg, Norman Meuschke, Corinna Breitinger, and Bela Gipp. news-please: A Generic
News Crawler and Extractor. In Proceedings of the 15th International Symposium of Information
Science, pp. 218–223, March 2017. doi: 10.5281/zenodo.4120316.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-Rank Adapters Are Secretly Gradient
Compressors. In Proceedings of the 41st International Conference on Machine Learning. Inter-
national Conference on Machine Learning, 2024. URL https://arxiv.org/abs/2402.
03293.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. International Con-
ference on Learning Representations, 2021.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep
Dasigi, Joel Jang, David Wadden, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi. Camels
in a Changing Climate: Enhancing LM Adaptation with Tulu 2, 2023. URL https://arxiv.
org/abs/2311.10702.

Damjan Kalajdzievski. A Rank Stabilization Scaling Factor for Fine-Tuning with LoRA, 2023. URL
https://arxiv.org/abs/2312.03732.

V. Klema and A. Laub. The singular value decomposition: Its computation and some applica-
tions. IEEE Transactions on Automatic Control, 25(2):164–176, 1980. doi: 10.1109/TAC.1980.
1102314.

Soroush Abbasi Koohpayegani, KL Navaneet, Parsa Nooralinejad, Soheil Kolouri, and Hamed Pir-
siavash. NOLA: Compressing LoRA using Linear Combination of Random Basis. International
Conference on Learning Representations, 2024. URL https://arxiv.org/abs/2310.
02556.

Dawid J. Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. VeRA: Vector-based Random Matrix
Adaptation. International Conference on Learning Representations, 2024. URL https://
arxiv.org/abs/2310.11454.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the Intrinsic Dimen-
sion of Objective Landscapes. International Conference on Learning Representations, 2018. URL
https://arxiv.org/abs/1804.08838.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. DoRA: Weight-Decomposed Low-Rank Adaptation. In Pro-
ceedings of the 41st International Conference on Machine Learning. International Conference on
Machine Learning, 2024. URL https://arxiv.org/abs/2402.09353.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Optimized BERT Pre-
training Approach, 2019. URL https://arxiv.org/abs/1907.11692.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. PiSSA: Principal Singular Values and Singular
Vectors Adaptation of Large Language Models, 2024. URL https://arxiv.org/abs/
2404.02948.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Chris-
tiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with
human feedback. In Advances in Neural Information Processing Systems, volume 35,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

https://arxiv.org/abs/2402.05119
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2312.03732
https://arxiv.org/abs/2310.02556
https://arxiv.org/abs/2310.02556
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/1804.08838
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2404.02948
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 2007
15th European Signal Processing Conference, pp. 606–610, 2007.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: an adver-
sarial winograd schema challenge at scale. Commun. ACM, 64(9):99–106, August 2021. ISSN
0001-0782. doi: 10.1145/3474381. URL https://doi.org/10.1145/3474381.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Katrin Kirchhoff. Masked Language Model Scor-
ing. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.240. URL
http://dx.doi.org/10.18653/v1/2020.acl-main.240.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Com-
monsense Reasoning about Social Interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and
Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 4463–4473, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1454. URL https://aclanthology.org/
D19-1454.

Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The Truth is in There: Improving Reasoning
in Language Models with Layer-Selective Rank Reduction. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
ozX92bu8VA.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive Deep Models for Semantic Compositionality Over a Sentiment
Treebank. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven
Bethard (eds.), Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computa-
tional Linguistics. URL https://aclanthology.org/D13-1170.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford Alpaca: An Instruction-following LLaMA model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER: a Large-
scale Dataset for Fact Extraction and VERification. In Marilyn Walker, Heng Ji, and Amanda
Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.
809–819, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1074. URL https://aclanthology.org/N18-1074.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation
Language Models, 2023a. URL https://arxiv.org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models,
2023b. URL https://arxiv.org/abs/2307.09288.

https://doi.org/10.1145/3474381
http://dx.doi.org/10.18653/v1/2020.acl-main.240
https://aclanthology.org/D19-1454
https://aclanthology.org/D19-1454
https://openreview.net/forum?id=ozX92bu8VA
https://openreview.net/forum?id=ozX92bu8VA
https://aclanthology.org/D13-1170
https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/N18-1074
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Trieu H. Trinh and Quoc V. Le. A Simple Method for Commonsense Reasoning, 2019. URL
https://arxiv.org/abs/1806.02847.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJ4km2R5t7.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Em-
powering Code Generation with OSS-Instruct. In Proceedings of the 41st International Con-
ference on Machine Learning. International Conference on Machine Learning, 2024. URL
https://arxiv.org/abs/2312.02120.

Adina Williams, Nikita Nangia, and Samuel Bowman. A Broad-Coverage Challenge Corpus for
Sentence Understanding through Inference. In Marilyn Walker, Heng Ji, and Amanda Stent
(eds.), Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.
1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1101. URL https://aclanthology.org/N18-1101.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of LoRA: Efficient Fine-tuning of Language
Models via Residual Learning. In Proceedings of the 41st International Conference on Machine
Learning. International Conference on Machine Learning, 2024. URL https://arxiv.org/
abs/2401.04151.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. MetaMath: Bootstrap Your Own Mathematical Ques-
tions for Large Language Models. In The Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/forum?id=N8N0hgNDRt.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=lq62uWRJjiY.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez de Ocáriz Borde, Rickard Brüel
Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
Asymmetry in Low-Rank Adapters of Foundation Models. In ICLR 2024 Workshop on
Mathematical and Empirical Understanding of Foundation Models, 2024. URL https://
openreview.net/forum?id=PHrrbfrMEl.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching
Movies and Reading Books. In The IEEE International Conference on Computer Vision (ICCV),
December 2015.

Terry Yue Zhuo, Armel Zebaze, Nitchakarn Suppattarachai, Leandro von Werra, Harm de Vries,
Qian Liu, and Niklas Muennighoff. Astraios: Parameter-Efficient Instruction Tuning Code Large
Language Models, 2024. URL https://arxiv.org/abs/2401.00788.

A ROBERTA FINE-TUNING DETAILS

We generally follow the procedure used by Hu et al. (2021). For all models, we use a linear learning
rate schedule with 0.06 linear warmup ratio and train for a maximum of 5 epochs with batch size
16. We use the Adam optimizer with no weight decay and a maximum sequence length of 512. We
fine-tune all linear layers besides the embedding matrix as well as all bias and LayerNorm layers
to ensure fair comparison between methods. For full fine-tuning, we use a learning rate of 1e-5.
For LoRA, we set α = 2r, and train for all ranks in {1, 2, 4, 8, 16, 64, 768}. We hold the “total
learning rate of LoRA”, which is α ∗ η, fixed as we sweep rank such that this product always equals
2.4e-3. We train these models to equivalent accuracy on their downstream task. We fine-tune on
six sequence classification tasks: sentiment analysis (Socher et al., 2013), entailment (Williams

https://arxiv.org/abs/1806.02847
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://arxiv.org/abs/2312.02120
https://aclanthology.org/N18-1101
https://arxiv.org/abs/2401.04151
https://arxiv.org/abs/2401.04151
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=PHrrbfrMEl
https://openreview.net/forum?id=PHrrbfrMEl
https://arxiv.org/abs/2401.00788


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

et al., 2018), duplicate identification (Wang et al., 2019), fact verification (Thorne et al., 2018), and
common sense reasoning (Sap et al., 2019; Sakaguchi et al., 2021).

B MODEL ACCURACIES

We provide the accuracies that our RoBERTa models achieve in Table 1 and Table 2.

Model Type MNLI SST-2 QQP WinoGrande SIQA FEVER

RoBbase

Full 0.8617 0.9461 0.9146 0.6251 0.6551 0.6687
r=1 0.8647 0.9358 0.9045 0.6251 0.672 0.6712
r=2 0.8604 0.9415 0.9058 0.6172 0.6581 0.6673
r=4 0.8607 0.9369 0.9079 0.6472 0.6505 0.6694
r=8 0.8648 0.9438 0.9108 0.6417 0.6586 0.6582

r=16 0.8604 0.9427 0.9095 0.6235 0.6853 0.663
r=64 0.8671 0.9484 0.9117 0.6614 0.6638 0.6601
r=768 0.8694 0.9369 0.9118 0.6361 0.6607 0.6641

Table 1: Model accuracies on their given downstream task after fine-tuning for α = 8.

Model Type MNLI SST-2 QQP WinoGrande SIQA FEVER

RoBbase

Full 0.8617 0.9461 0.9146 0.6251 0.6551 0.6687
r=1 0.8615 0.9427 0.9033 0.6212 0.6305 0.6794
r=2 0.8639 0.9392 0.9053 0.6369 0.6530 0.6663
r=4 0.8615 0.9438 0.9083 0.6440 0.6633 0.6667
r=8 0.8707 0.9415 0.9079 0.6322 0.6571 0.6739

r=16 0.8666 0.9495 0.9088 0.6338 0.6679 0.6730
r=64 0.8710 0.9473 0.9073 0.6283 0.6274 0.6780
r=768 0.8690 0.9381 0.9024 0.6133 0.6274 0.6729

Table 2: Model accuracies on their given downstream task after fine-tuning for α = 2r.



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C COSINE SIMILARITY WITH ORTHOGONAL VECTORS THAT SPAN A SPACE

Here we demonstrate why it is possible for a vector to have low cosine similarity with every orthog-
onal vector that collectively span a space if the dimensionality of the vectors is high.

Minimizing the Maximum Cosine Similarity. Lets take Z = min
v∈Rn

max
i

cos(v, xi), where v is an

arbitrary vector and each vector xi, which we collectively call X , make up an orthonormal basis that
span the space. Z can be small in a high dimensional space.

2-D case. Assume X = I without loss of generality. It is trivial to see that Z = 1√
2

, and is when

v =
[

1√
2

1√
2

]
.

3-D case. Assume X = I without loss of generality. Z = 1√
3

when v =
[

1√
3

1√
3

1√
3

]
.

N-D case. In the N-D case, we can see, via induction, that Z = 1√
n

.

As we can see here, if n is large, the value of Z will be low, even though we are doing the cosine
similarity of a vector with respect to a set of orthonormal vectors that span a space.



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D DERIVATION OF GRADIENTS

Our calculations follow a similar line to that of Hao et al. (2024).

Derivation for Full Fine-tuning. Full fine-tuning is structured such that

Y = WtunedX = (W0 +∆W )X,

where X ∈ Rn×b are the inputs, Y ∈ Rm×b are the outputs, W0 ∈ Rm×n are the pre-trained
weights, and ∆W ∈ Rm×n is the fine-tuning update. Accordingly, ∂L

∂∆W = ∂L
∂Y XT , and the update

is
∆Wn = ∆Wn−1 − η

∂L

∂Y n
XT

n ,

where η is the learning rate.

Derivation for LoRA. LoRA is structured such that

Y = WtunedX = (W0 +
α

r
BA)X,

where X ∈ Rn×b are the inputs, Y ∈ Rm×b are the outputs, W0 ∈ Rm×n are the pre-trained
weights, B ∈ Rm×r is initialized to zero, A ∈ Rr×n is randomly initialized, and α is a hyperparam-
eter. Accordingly, ∂L

∂B = α
r

∂L
∂Y XTAT and ∂L

∂A = α
rB

T ∂L
∂Y XT . Therefore, their respective updates

are
Bn = Bn−1 − η

α

r

∂L

∂Y
XTAT

and
An = An−1 − η

α

r
BT ∂L

∂Y
XT ,

where η is the learning rate.

Differences in First Step. During the very first step of training, given identical examples both full
fine-tuning and LoRA have the same X and Y for each layer since B is initialized to zero. After the
first step, full fine-tuning has a update matrix equal to

∆Wfull = −η
∂L

∂Y
XT .

In contrast, LoRA has an update matrix equal to

∆Wlora = (
α

r
)(B0 − η

α

r

∂L

∂Y
XTAT

0 )(A0 − η
α

r
BT

0

∂L

∂Y
XT ).

Since B0 = 0,

∆Wlora = (
α

r
)(−η

α

r

∂L

∂Y
XTAT

0 )(A0).

From this, we can see that the gradient steps are clearly different, even with the same training
examples.



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E IMPACT OF MATRIX PERCENTAGE ON NUMBER OF INTRUDER
DIMENSIONS

(a) Impact of the number of singular vectors in the fine-tuned matrix we examine, k, on the number of intruder
dimensions for RoBERTa models fine-tuned on 6 different tasks. Here, we set ϵ = 0.5.

(b) LLaMA-7B fine-tuned
on Alpaca.

(c) LLaMA2-7B fine-tuned on
MetaMathQA.

(d) LLaMA2-7B fine-tuned on
Magicoder-Evol-Instruct.

Figure 11: Impact of k, the number of fine-tuned singular vectors we examine, on the number
of intruder dimensions. We see that models fine-tuned with LoRA tend to have more intruder
dimensions than full fine-tuning, regardless of the value of k used.

F PLOTS OF IMPACT OF DATASET SIZE

Figure 12: (Top) Impact of cosine similarity threshold, ϵ, on the number of intruder dimensions
for LoRA models trained on different proportions of the MNLI dataset. (Bottom) Impact of the
number of fine-tuned singular vectors we examine, k, on the number of intruder dimensions for
LoRA models trained on different proportions of the MNLI dataset. We see that training on a larger
proportion of the dataset increases the number of intruder dimensions in the model.



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

G EFFECTIVE RANK WHEN ALPHA=2R

Figure 13: Effective Rank of the update to RoBERTa on MNLI when α = 2r. We measure for all
weight types. For a specific weight type, the graph on the left shows the effective rank of all models,
and the right shows the effective rank of the LoRA models only.

H LLAMA/LLAMA-2 INSTRUCTION TUNED MODELS

Our LLaMA-7B checkpoints were fine-tuned on the Alpaca (Taori et al., 2023) and consist of two
fully fine-tuned models, one LoRA model with rank 16, and one QLoRA (Dettmers et al., 2023)
model with rank 64. Our LLaMA2-7B checkpoints were fine-tuned on either Magicoder-Evol-
Instruct-110K (Wei et al., 2024) or MetaMathQA (Yu et al., 2024) and consist of one fully fine-
tuned model and 3-4 LoRA’ed models of different ranks for each dataset and generously provided
by Biderman et al. (2024).

Hugging Face Path Base Model IT Dataset
timdettmers/qlora-alpaca-7b LLaMA-7b Alpaca

tloen/alpaca-lora-7b LLaMA-7b Alpaca
PKU-Alignment/alpaca-7b-reproduced LLaMA-7b Alpaca

chavinlo/alpaca-native LLaMA-7b Alpaca
LoRA-TMLR-2024/magicoder-lora-rank-16-alpha-32 LLaMA2-7b Magicoder

LoRA-TMLR-2024/magicoder-lora-rank-64-alpha-128 LLaMA2-7b Magicoder
LoRA-TMLR-2024/magicoder-lora-rank-256-alpha-512 LLaMA2-7b Magicoder

LoRA-TMLR-2024/magicoder-lora-rank-2048-alpha-4096 LLaMA2-7b Magicoder
LoRA-TMLR-2024/magicoder-full-finetuning-lr-5e-05 LLaMA2-7b Magicoder
LoRA-TMLR-2024/magicoder-lora-rank-16-alpha-32 LLaMA2-7b MetaMath

LoRA-TMLR-2024/magicoder-lora-rank-64-alpha-128 LLaMA2-7b MetaMath
LoRA-TMLR-2024/magicoder-lora-rank-256-alpha-512 LLaMA2-7b MetaMath
LoRA-TMLR-2024/magicoder-full-finetuning-lr-1e-05 LLaMA2-7b MetaMath

Table 3: Hugging Face model paths for LLaMA-7b/LLaMA2-7b IT models.



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

I CASE STUDY: SETTING ALPHA=8 INSTEAD OF ALPHA=2R

Our main experiments were conducted with α = 2r. However, Hu et al. (2021) instead set α = 8 for
RoBERTa-base. While not the recommended practice now, we explore what impact this selection
has on our findings. We report our key plots in Fig. 14, 15, 16, 17, & 18.

In Fig. 14 & 15 we see that LoRA’d models with high rank have significantly more intruder dimen-
sions in comparison to when α = 2r. Interestingly, whereas when α = 2r LoRA models with
ranks like 64 had no or very few intruder dimensions (see Fig. 5), they now have numerous intruder
dimensions.

These differences are corroborated by Fig. 18, where we see that the learned solutions of LoRA
have significantly lower effective rank in comparison to when α = 2r. For example, we see in
Fig. 18 that when LoRA has a rank of 768, the effective rank is never above 100. In contrast, we
see in Fig. 13 that with the same rank of 768, LoRA always has an effective rank above 768. This
suggests that when α = 8, LoRA is converging to lower rank solutions than when α = 2r. This
supports the finding that setting α = 2r improves LoRA’s performance when a high rank is used
(Biderman et al., 2024; Kalajdzievski, 2023).

Behaviorally, we see in Fig. 17 that LoRA models with high rank have much more forgetting on
previously learned tasks in comparison to full fine-tuning and LoRA when α = 2r is used (α = 2r
results are in Fig. 8). Likewise, in Fig. 18 we see that when LoRA has high rank, it has much more
forgetting on the pre-trained distribution in comparison to LoRA when α = 2r.

Figure 14: Number of intruder dimensions in RoBERTa models fine-tuned on 6 different tasks.
Here, we set k = 10. We use the same conditions as in Fig. 5a but instead now set α = 8 instead of
α = 2r.

Figure 15: Impact of the number of singular vectors in the fine-tuned matrix we examine, k, on the
number of intruder dimensions for RoBERTa models fine-tuned on 6 different tasks. Here, we set
ϵ = 0.5. We use the same conditions as in Fig. 11a but instead now set α = 8 instead of α = 2r.



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 16: For α = 8. RoBERTa’s performance on its pre-training data distribution after fine-tuning
on a particular task. We measure pseudo loss as described by Salazar et al. (2020). We compare
these results to when α = 2r (Fig. 9).

Figure 17: For α = 8. RoBERTa’s performance on six datasets during continual learning. We
sequentially train on six tasks, in order from left to right. Horizontal dotted line indicates baseline
pre-trained performance. Vertical solid line indicates when a specific dataset is fine-tuned on. We
compare these results to when α = 2r (Fig. 8).

J LORA VARIANTS

K IMPACT OF HYPERPARAMETERS

L IMPACT OF RANDOM SEEDS

M INTRUDER DIMENSIONS CAUSE WORSE OOD PERFORMANCE



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 18: Effective rank of the update to RoBERTa on MNLI when α = 8. We compare these
results to when α = 2r (Fig. 13). We show for all weight types. For a specific weight type, the
graph on the left shows the effective rank of all models, and the right shows the effective rank of the
LoRA models only.

Figure 19: Intruder Dimension Measurements of LoRA Variants. We use the same methodology
as in Fig. 5, but in addition study AdaLoRA, LoRA+, PiSSA, and VeRA. We find several things from
this analysis of the intruder dimensions of various methods. We still find that using a higher rank
is effective for reducing the number of intruder dimensions after fine-tuning. Importantly, using a
low rank still appears to be a very strong indicator of the presence of intruder dimensions. However,
certain methods appear to have fewer in comparison to others: AdaLoRA, which reparametrizes the
LoRA update as an SVD-like module, appears to have fewer intruder dimensions, suggesting that
this methodology of separating the rotational and scaling components may be beneficial for reducing
intruder dimensions.



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 20: Impact of Learning Rate and Number of Epochs on Intruder Dimensions and Per-
formance. We use the same setup as as Fig. 5a with k = 10 and ϵ = 0.5 and measure the number
of intruder dimensions in the entire model, the model’s test accuracy, and the model’s pre-training
pseudo loss across training epochs for different learning rates. Here, we see that learning rate plays
an important role in the introduction of intruder dimensions, with larger learning rates introducing
many more intruder dimensions. We also see a clear correlation(ρ = 0.944, p-value ≤ 0.001) be-
tween number of intruder dimensions and pre-training pseudo loss: more intruder dimensions imply
worse OOD performance.

Figure 21: Impact of Random Seeds on Intruder Dimensions. We fine-tune RoBERTa-base
across 5 random seeds and use our same methodology as in Fig. 5a. We find that the initialization
has a negligible role on the number of intruder dimensions.



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 22: Intruder Dimensions are responsible for worse OOD performance. To test the impact
of intruder dimensions, we search for the top 1 intruder dimension in every weight matrix in the
model and scale it by a multiplicative constant. For example, if the top 1 intruder dimension is
at index i, we have W = W0 + (∆W − ui ∗ σi ∗ vTi ) + λ(ui ∗ σi ∗ vTi ). λ = 1 is no change.
We find that reducing the scale of the top intruder dimension, while only slightly impacting the
test accuracy, leads to a large drop in pre-training loss. For example, in the rank 8 case, simply
deleting the top intruder dimension in each matrix leads to a 26.1% drop (lower is better) in loss
with only a 5.9% drop in test performance. Note that test accuracy doesn’t drop to baseline with
λ = 0 because we haven’t removed the entire update but instead only the top intruder dimension (if
it exists) in the weight matrix. This suggests that intruder dimensions are responsible for most of the
drop in OOD performance and only a small portion of the total learning the model undergoes. Our
baseline, which instead removes a neighboring singular vector to the intruder dimension, degrades
immediately, suggesting that singular vectors that are not intruder dimensions are essential to model
performance.



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 23: Scaling LLaMA2 Intruder Dimensions. To confirm our findings from Fig. 22, we
repeat our methodology but now on a LLaMA2 model fine-tuned on code with a rank 16 LoRA. We
find that scaling down the top intruder dimension in each matrix leads to lower pre-training loss,
while scaling up the top intruder dimension leads to higher loss pre-training loss.


	Introduction
	Background & Related Work
	Model Differences Between LoRA and Full Fine-Tuning
	Behavioral Differences Between LoRA and Full Fine-Tuning
	Why Do Intruder Dimensions Exist?
	Conclusion
	RoBERTa fine-tuning details
	Model Accuracies
	Cosine Similarity with Orthogonal Vectors that Span a Space
	Derivation of Gradients
	Impact of Matrix Percentage on Number of Intruder Dimensions
	Plots of Impact of Dataset Size
	Effective Rank when alpha=2r
	LLaMA/LLaMA-2 Instruction Tuned Models
	Case Study: Setting alpha=8 instead of alpha=2r
	LoRA Variants
	Impact of Hyperparameters
	Impact of Random Seeds
	Intruder Dimensions Cause Worse OOD Performance

