
EncryptedLLM: Privacy-Preserving Large Language Model Inference via
GPU-Accelerated Fully Homomorphic Encryption

Leo de Castro 1 Daniel Escudero 2 Adya Agrawal 2 Antigoni Polychroniadou 2 Manuela Veloso 2

Abstract

As large language models (LLMs) become more
powerful, the computation required to run these
models is increasingly outsourced to a third-
party cloud. While this saves clients’ compu-
tation, it risks leaking the clients’ LLM queries
to the cloud provider. Fully homomorphic en-
cryption (FHE) presents a natural solution to this
problem: simply encrypt the query and evalu-
ate the LLM homomorphically on the cloud ma-
chine. The result remains encrypted and can only
be learned by the client who holds the secret
key. In this work, we propose a GPU-accelerated
FHE scheme and leverage it to benchmark an
encrypted GPT-2 forward pass. Our approach
achieves runtimes that are over 200× faster than
the CPU baseline. We also present novel and ex-
tensive experimental analysis of approximations
of LLM activation functions to maintain accu-
racy while achieving this performance.

1. Introduction
Large language models (LLMs) have proven to be ground-
breaking artificial intelligence tools that are set to change
the way humans interact with software. By training on mas-
sive amounts of data and using an incredibly large amount
of trainable parameters, LLMs are able to provide unprece-
dented inference results. The tasks that LLMs excel at
include natural language generation, question-answering,
summarization, translation, code generation, among sev-
eral others. Models like GPT-31 can produce coherent
and contextually appropriate text on a wide range of top-
ics. However, these models require massive amounts of

1J.P. Morgan Chase Cybersecurity & Technology Controls,
New York, New York, USA 2J.P. Morgan AI Research & Algo-
CRYPT CoE, New York, New York, USA. Correspondence to:
Leo de Castro <leo.decastro@jpmchase.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1https://openai.com/index/gpt-3-apps/

resources to be trained, and are often not publicly available
as this constitutes the provider’s intellectual property. This
leads to a “inference-as-a-service” scenario, where clients
send their queries to external providers who locally run an
LLM to return a result to the client. Furthermore, even
open source LLMs such as Llama 22 are very expensive to
run in commodity hardware and still require in most cases
delegating inference to a third party provider.

Unfortunately, delegating inference is undesirable in many
settings where the client wants to preserve the privacy of
their input. Furthermore, as mentioned above, there are
multiple contexts in which the model owner also wants to
retain privacy of the model itself, for example when the
model involves massive monetary resources to be trained,
or when it incorporates sensitive data (e.g. a bank servic-
ing a credit score model trained on internal data). This is
particularly relevant as LLMs become more pervasive and
find more use-cases that permeate all areas of society. This
tension between privacy and utility heavily limits the appli-
cability of LLMs, rendering them useless in contexts where
data cannot be outsourced due to privacy constraints.

Towards resolving this tension, fully homomorphic encryp-
tion (FHE) is a promising tool that enables computing on
data without revealing it, only outputting the final result (cf
(Marcolla et al., 2022) for a survey). Using FHE, a client
can encrypt their query to the server, who can locally apply
their model to this encrypted data, making use of the ho-
momorphic properties of the scheme to obtain an encrypted
result, which is sent back to the client for decryption. See
Fig. 1a for a pictorial representation of this interaction pat-
tern. Advances in the last decade on all fronts including
algorithms, software, and hardware, have made FHE prac-
tical for several tasks that were not within reach before.
However, LLMs are in an entirely different regime: their
computation is already very expensive in the clear, up to
the point in which specialized software such as high-end
GPUs, coupled with several architectural optimizations, are
needed in order to provide a reasonable inference latency.
Any computation that is ran under FHE becomes much
slower, which is going to be a major blocker when porting
LLMs to FHE. However, the question remains:

2https://llama.meta.com/llama2/

1

https://openai.com/index/gpt-3-apps/
https://llama.meta.com/llama2/

EncryptedLLM: Privacy-Preserving LLM Inference via GPU-Accelerated FHE

How practical is FHE-based privacy-preserving LLM
evaluation?

Approximating LLM Activation Functions. Fully ho-
momorphic encryption can, in principle, evaluate any func-
tion over encrypted data. One approach to implementing
an LLM in FHE is to simply evaluate the exact Boolean
circuit the describes the LLM over the encrypted input.
However, the vast majority of operations in an LLM are
the additions and multiplications the comprise the linear
layers. Converting arithmetic operations to Boolean oper-
ations results in a significant overhead. This is particularly
true in modern FHE schemes, which naturally support the
arithmetic operations of addition and multiplication over
encrypted vectors. Despite comprising the majority of the
work in plaintext LLM evaluation, the linear operations in
encrypted LLM evaluation are quite cheap. Instead, the
majority of our runtime comes from evaluating the LLM
activation functions. As is the case when representing arith-
metic operations with Boolean gates, representing the com-
plete activation functions with arithmetic gates would re-
sult in substantial overhead. Instead, we opt for evaluating
only approximations of the LLM activation functions. In-
tuitively, this works because modern LLMs perform well
even with low precision, which has been demonstrated in
the success of quantized LLM models. We provide exten-
sive accuracy benchmarks of our LLM with approximate
activation functions in section 4.

To address this question, a good starting point is the CKKS
scheme by (Cheon et al., 2017), which enables approximate
additions and multiplications over real (in fact, complex)
numbers. We provide a general introduction to FHE in sec-
tion 2.2. The literature in improving the efficiency of this
scheme is vast and fruitful (Han & Ki, 2020; Bossuat et al.,
2021; Jung et al., 2021), and this has enabled several appli-
cations in contexts such as logistic regression (Chen et al.,
2018a) and secure password search (Chen et al., 2018b).

Only the recent work of (Zhang et al., 2024) has explored
large language model inference via CKKS, reporting an im-
plementation of the transformer architecture in C++, using
the SEAL library for FHE (https://github.com/M
icrosoft/SEAL). Their experiments report minor accu-
racy degradation due to polynomial approximations needed
in FHE, and performance in Intel CPUs seems promising,
as it is accelerated via HEXL (Boemer et al., 2021). We
discuss this work further in section 1.2. Although promis-
ing given the massive overheads involved in both LLMs
and FHE, this is still far from practical for real-world us-
age, even for applications that are not latency sensitive such
as text summarization or content generation (in contrast to
chatbots or Q/A tasks, which are more demanding in terms
of responsiveness).

1.1. Our contributions

We approach the problem of improving the efficiency of
FHE-based privacy-preserving LLM inference, by provid-
ing a GPU-based implementation of the transformer ar-
chitecture using CKKS. Prior work (Jung et al., 2021)
has shown GPUs to help in improving the efficiency of
CKKS. However, to the best of our knowledge, there is cur-
rently no available implementation of such works to deploy
and test these ideas. In contrast, there are popular open-
source CPU-based frameworks that aim at making FHE
techniques more accessible by providing high level pro-
gramming interfaces, and access to multiple FHE schemes,
like CKKS. One such framework is OpenFHE (Al Badawi
et al., 2022), which has gained traction as one of the
most comprehensive and widely used FHE implementa-
tions available. Unfortunately, OpenFHE is limited to
CPUs, and hence its performance in tasks such as LLM
inference would be rather poor.

In this work we extend the capabilities of OpenFHE by en-
abling a GPU-based workflow, which leads to direct effi-
ciency improvements across many FHE applications that
build on this framework—not only LLMs. This involves
combining several optimizations (de Castro et al., 2021;
Kim et al., 2022) to simultaneously achieve high perfor-
mance and high accuracy in this implementation. We have
open-sourced the code of our OpenFHE+GPU extension 3,
which we believe will be of independent interest. To our
knowledge, this is the fastest open-sourced implementation
of CKKS when running on a GPU.

With our GPU-based implementation in place, we set out to
benchmark the performance of large language models un-
der FHE. We focus specifically on the GPT-2 architecture
by OpenAI, which is fully open-source and shares com-
mon features with many of the more powerful industry-
grade models. One first obstacle we face is that FHE tech-
niques do not support all operations available to a common
CPU/GPU and instead only supports additions and mul-
tiplications. As usual in the FHE literature, we use off-
the-shelf polynomial approximations to replicate as faith-
fully as possible the transformer architecture, while adapt-
ing for FHE use. Notably, we incorporate the recent Soft-
Max optimization suggestion of (Cho et al., 2024), which
substantially improves the runtime of the approximation
by removing the expensive computation of the max cir-
cuit and replacing this circuit with just a table lookup.
This required computing the table of max lookup values,
which we based on the extensive tests of the approximate
model. Our approximations are discussed in Section 3.
Note that these modifications have the potential of nega-
tively affecting the accuracy of the model, which is far from

3https://github.com/leodec/openfhe-gpu-p
ublic

2

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/leodec/openfhe-gpu-public
https://github.com/leodec/openfhe-gpu-public

EncryptedLLM: Privacy-Preserving LLM Inference via GPU-Accelerated FHE

(a) Interaction pattern in outsourced privacy-
preserving LLM evaluation. Here, a client (right
side) encrypts (say) financial reports to the server
(left side), who receives an unintelligible cipher-
text. The server evaluates the adapted model—
incorporating approximations and working with ci-
phertexts instead of cleartext values—and sends back
an encryption to the client. Finally, the client, who is
the only party who knows the secret-key, can decrypt
this message and learn the result.

hello

how

are

you

today

Softmax(×12)
dim = 1

Softmax(×12)
dim = 2

Softmax(×12)
dim = 3

Softmax(×12)
dim = 4

LayerNorm
dim = 768

LayerNorm
dim = 768

LayerNorm
dim = 768

LayerNorm
dim = 768

GeLU
dim =
768

GeLU
dim =
768

GeLU
dim =
768

GeLU
dim =
768

LayerNorm
dim = 768

LayerNorm
dim = 768

LayerNorm
dim = 768

LayerNorm
dim = 768

Softmax(×1)
dim = 50257

Softmax(×1)
dim = 50257

Argmax
dim = 50257

Argmax
dim = 50257

repeat 12 times

(b) Overview of the GPT-2 inference flow. The diagram only shows the blocks
that are expensive to run in FHE, ignoring simpler operations such as linear or
affine layers. The input is the sentence “hello how are”, and the completion
is “you”. To get the next token, only the path associated to the lastest token
“you” needs to be computed, which in this example leads to the token “today”.
The vertical lines between the leftmost softmax boxes illustrates that each new
softmax is somehow dependent on the inputs of previous ones. Every block is
labeled with the dimension of the input it takes. For softmax, the number in
parentheses represents how many such calls are made.

Figure 1. On the left: communication pattern between the two parties. On the right: GPT-2 architecture, which corresponds to the local
computation by the server.

ideal. To address this, we modify the GPT-2 implemen-
tation from HuggingFace’s transformers library (https:
//github.com/huggingface/transformers)
so that it includes these FHE-friendly modifications, and
thoroughly benchmark the resulting accuracy using the LM
evaluation harness library (https://github.com/E
leutherAI/lm-evaluation-harness) on a selec-
tion of tasks. This allows us to select optimal parameters
for the approximations that strike the right balance between
efficient FHE runtimes and model accuracy. Furthermore,
for reproducibility we also open source our modified Hug-
gingFace GPT-2 implementation.

Our results given in section 4 show that a GPU-accelerated
FHE implementation provides a roughly 200× speedup in
the GPT-2 forward pass, reducing the time from several
hours to just a few minutes. This brings the forward pass
time down to a range where non-real-time applications be-
come more practical, such as document summarization and
fine-tuning models on private data.

1.2. Related Work

There is a long line of works studying secure inference for
protecting the privacy of both a client owning a query, and
a server holding a trained model. At a high level, we can
divide these techniques into two groups: highly interac-
tive approaches based on MPC, and less communication-
demanding but more computationally-heavy paradigms
based on FHE.

FHE-based LLM inference. FHE-based secure infer-
ence has the notable advantage that it preserves the same
communication pattern of non-private inference: the client
sends the query to the server, who performs certain (pre-
sumably heavy) computation and sends back the result.
This is applicable to real-world settings where client and
servers may not be well connected, and the server is con-
siderably more powerful than the client. In this context,
the most relevant work in secure LLM inference with FHE
is (Zhang et al., 2024). This work makes use of several
polynomial approximations from the literature, some of
which we borrow as well (see Section 3). Importantly,
their implementation is limited to CPU, which caps their
performance substantially. Rather than comparing to this
work, we instead compare directly to the out-of-the-box
OpenFHE CPU implementations of the FHE functions.
This allows us to account for variations in the approxima-
tions and the placement of the bootstrapping functions.

The work of (Zimerman et al., 2023) studies HE-friendly
approximation of the transformer architecture, but it is
not applicable to our case since this require re-training.
Primer (Zheng et al., 2023) and THE-X (Chen et al., 2022)
also employ FHE for LLM evaluation (Primer in fact mixes
FHE and MPC), but these works also make substantial
modifications to the underlying model. THE-X even re-
veals intermediate values of the computation.

Privacy-preserving ML for other models. Finally, we
mention that there are several other works that have stud-
ied FHE-based inference of other machine learning models,

3

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

EncryptedLLM: Privacy-Preserving LLM Inference via GPU-Accelerated FHE

such as convolutional neural networks (cf. (Ao & Boddeti,
2024; Juvekar et al., 2018; Gilad-Bachrach et al., 2016;
Boemer et al., 2019)). These are not applicable to trans-
formers directly as they do not support all of the operations
involved in this architecture, and additionally the scale of
the models they consider is much more reduced.

LLMs and privacy. The works of (Mireshghallah et al.,
2024; Shao et al., 2024) expose critical privacy risk in
LLMs, showing they often disclose sensitive informa-
tion in inappropriate contexts. In particular, the authors
of (Mireshghallah et al., 2024) introduce CONFAIDE, a
benchmark assessing LLMs’ privacy reasoning, revealing
that even GPT-4 and ChatGPT fail to uphold contextual pri-
vacy 39% and 57% of the time. This highlights the urgent
need for stronger privacy-preserving approaches, such as
performing LLM computations on encrypted data without
decryption and ensuring that only authorized parties can
decrypt and access the final outputs.

1.3. Setting and Threat Model

We consider a client who holds as input a text sequence,
and a server who holds a large language model. The goal
is for the client to learn the evaluation of their query on the
model without leaking the input to the server, and while
protecting the privacy of the model towards the client. See
Fig. 1a for a pictorial representation of the task and the
communication flow. The server does not learn any infor-
mation about the client’s input, but we provide no correct-
ness guarantees regarding the result the server returns to the
client—a corrupt server can return an incorrect answer, or
no answer at all. This is consistent with prior works, and
it is strictly better than the guarantees provided by MPC-
based solutions, which may leak information towards a cor-
rupt server that deviates from the protocol specification.

We assume the client has access to the tokenizer of the
model so that the client can locally transform their text
into a sequence of real-valued vectors, which are then en-
crypted towards the server. We do not provide any guar-
antees on the plaintexts underlying the ciphertexts that the
client sends. In particular, a corrupt client may send a se-
quence of vectors that does not correspond to valid token
embeddings, and will be able to learn the LLM evalua-
tion on this input. This is in par with previous privacy-
preserving ML works based on FHE.

2. Preliminaries
In what follows we provide background on large language
models and fully homomorphic encryption.

Some general notation we will use throghout the paper is
the following. Vectors are denoted by bold letters, like x,

and indexing the i-th entry is denoted by x[i]. Given a
positive integer n, we let [n] denote the set {1, . . . , n}.

2.1. Large Language Models

A large language model (LLM) is a type of machine learn-
ing (ML) model that is characterized by its ability to predict
language, with the “large” term emphasizing their com-
paratively gigantic sizes and computational demands. The
work of (Vaswani et al., 2017) introduced the transformer
architecture, which is the basis for several LLMs that came
right after. Among LLMs, an interesting and relevant fam-
ily are generative pretrained transformers (GPTs), which
are used in natural language processing contexts. This fam-
ily, developed by OpenAI, has been widely influential and
has spawned a series of follow-ups. In this work we focus
specifically on the GPT-2 model, which is trained on Web-
Text: 40 GB of text, 8 million documents, from 45 million
webpages upvoted on Reddit. We chose this model as (1) it
is fully open source, (2) it follows the transformer architec-
ture shared by other more powerful LLMs, and (3) this is
already challenging in terms of efficiency for current FHE
approaches. We note however that our findings carry out to
several other LLMs that follow this paradigm, such as the
larger models like GPT-3 or GPT-4 or other transformer-
based LLMs like Llama and Llama 2. In what follows, we
describe the GPT-2 architecture in detail. There are four
variants of GPT-2 which vary in size and performance: S,
M, L and XL, and we discuss below the points where these
differ.

LLMs use deep learning to analyze and generate human-
like text. The transformer architecture by (Vaswani et al.,
2017) receives as input a piece of text, which is split into
numerical representations referred to as tokens. Transform-
ers are comprised of an enconder and a decoder section,
which are very similar in structure. However, generative
LLMs such as GPT are decoder-only, and so for the sake
of this work we will focus on the decoder component of
the transformer architecture; we note that encoders follow a
similar structure and our findings apply to encoder-decoder
or encoder-only architectures as well.

The model is trained to predict the best next word given a
sequence of words. For example, it may receive as an input
“Today is a good”, and then predict “day” as the next word.
The resulting concatenated sentence “today is a good day”
can be fed into the model again to obtain as the next word,
perhaps, “for”. This way a sequence like “today is a good
day for running outside” can be generated.

An overview of the GPT-2 architecture, highlighting the
blocks that are most relevant for FHE, is given in fig. 1b./

4

EncryptedLLM: Privacy-Preserving LLM Inference via GPU-Accelerated FHE

2.2. Fully Homomorphic Encryption

A fully homomorphic encryption (FHE) scheme (Rivest
et al., 1978), (Gentry, 2009) is an encryption scheme
that allows computations to be performed over the data
while the data remains encrypted. More formally, an FHE
scheme is defined by the following tuple of algorithms.

• (sk, pk, evk) ← KeyGen(1λ). This is the key generation
algorithm. The input is the security parameter λ and the
output is three keys. The secret key sk is used for decryp-
tion, the public key pk is used for encryption, and the eval-
uation key evk is used to homomorphically compute over
encrypted data.

• ct ← Encrypt(pk,m). This is the encryption algorithm.
It takes in a message m and a public key pk and outputs a
ciphertext ct.

• m′ ← Decrypt(sk, ct′). This is the decryption algorithm.
It takes in a ciphertext ct′ and a secret key sk and outputs a
message m′.

• ctf ← Eval(evk, ct, f). This is the homomorphic evalu-
ation algorithm. It takes in as input an evaluation key evk,
a ciphertext ct, and a function f . Let m be the message
encrypted by ct (i.e. m← Decrypt(sk, ct)). The output of
Eval is the ciphertext ctf that encrypts f(m).

FHE must satisfy the same security level as a regular en-
cryption scheme, which dictates that a party without access
to the secret key cannot distinguish between encryptions of
any two messages, even if the messages are adversarially
chosen.

3. Approximate Activation Functions
Since the CKKS scheme is designed to handle arithmetic
operations, polynomial evaluation is easily supported. In
contrast, functions like exp(·) or tanh(·) cannot be sup-
ported in a straightforward way. Following prior work
on integer-only evaluation of deep learning models (Dong
et al., 2023; Zhang et al., 2024), we approximate all func-
tions required in the LLM evaluation with low-degree poly-
nomials. Keeping the degree low is important as this mini-
mizes the levels consumed in the polynomial evaluation, re-
sulting in fewer bootstrapping calls. However, if the degree
is too low then the approximation may not provide good
accuracy. Below we discuss the approximations of differ-
ent functions we use all throughout our work. These ap-
proximations are typically parameterized by different val-
ues that determine the degree and hence the respective ac-
curacy. We discuss in Section 4 how we instantiate these
parameters concretely.

Below we point out the depth of the resulting computa-
tion, which is what dictates the bottleneck when instanti-
ated with FHE. Note that a degree-D polynomial can be
evaluated with depth log2(D).

3.1. Approximation of Comparison

We approximate the output of the sign function

sign(x) =

−1 x < 0

0 x = 0

1 x > 0

.

Arbitrary comparisons between x and y can be constructed
by computing sign(x− y).

We use the techniques from (Cheon et al., 2020). There,
the approximation is given by h(x) = f

(df)
n ◦ g(dg)

n (x),
where fn(x) and gm(x) are carefully chosen polynomials
of degree 2n + 1 and 2m + 1 respectively. Note that the
composition requires depth df log(2n+1)+ dg log(2m+
1). We will make use of the f and g polynomials with
degree 9 (so n = m = 4), and we will typically set df =
dg = 2.

3.2. Approximation of GeLU

We use the GeLU function (Hendrycks & Gimpel, 2016)
defined as

GeLU(x) = 0.5x
(
1 + tanh

(√
2/π

(
x+ 0.044715x3

)))
.

As in (Zhang et al., 2024), we make use of the GeLU ap-
proximation from (Dong et al., 2023), which consists of the
following:

GeLU(x) =

0, x < −4
F0(x), −4 ≤ x < −1.95
F1(x), −1.95 ≤ x ≤ 3

x, x > 3

(1)

where we use the sign(x) approximation from above to per-
form the comparison. The polynomial F0 has degree 3 and
the F1 polynomial has degree 6.

3.3. Approximation of Layer Normalization

Recall that the LayerNorm operation, for x ∈ Rd, is de-
fined as

LayerNorm(y) := γ · x− µ√
σ2 + ε

+ β.

Here γ, β, ε ∈ R are constants, µ = 1
d ·

∑d
j=1 x[j] and

σ2 = 1
d ·

∑d
j=1(x[j] − µ)2. The value ε is a fixed small

constant to avoid division by zero. where µ = 1
n

∑n−1
i=0 ai

5

EncryptedLLM: Privacy-Preserving LLM Inference via GPU-Accelerated FHE

and σ =
√

1
n

∑n−1
i=0 (ai − µ)2 + ε, where γ and β are

learned parameters and ε is a small constant. The core non-
polynomial operation is given by z 7→ 1/

√
z, for which

we can use the inverse square root uses the techniques
from (Qu & Xu, 2023). We discuss these velow.

Division by Square Root. The authors make use of New-
ton’s iterative method. Once a starting approximation y0 of
1/
√
z is chosen, iterate the following for i = 1, . . . , n:

yi =
yi−1(3− zy2i−1)

2
,

with the final approximation being yn. This has depth 3n.

For choosing the initial point y0, the authors first run a less
accurate yet more efficient method. For this they propose
two options: Taylor expansion, which is suitable for x > 1,
and using Remez rational approximation, which is better
for values that are close to 0. The work of (Zimerman et al.,
2023) has found empirically that the variance (which is es-
sentially the input to the square root) is large, so we use the
Taylor expansion for the initial value.

For an approximation in the interval [a, b], we choose an
odd order Taylor expansion around z0 = (a + b)/2 + 1 as
the approximate initial value of 1/

√
z. As suggested in (Qu

& Xu, 2023), we take degree 3 (which requires depth 2), so
concretely this Taylor approximation looks like:

z 7→ 1
√
z0
− z − z0

2
√
z30

+
3(z − z0)

2

8
√
z50

− 5(z − z0)
3

16
√
z70

3.4. Approximation of SoftMax

For x ∈ Rd, SoftMax is defined as

y =
exp(x[i]− xmax)∑m−1

j=0 exp(x[j]− xmax)
,

where xmax = max(x). The division by exmax is done in
order to avoid large numerators and denominators.

Exponentiation. The approximation of exp is done via
Taylor series, as in (Lu et al., 2023):

exp(x) ≈ (1 +
x

2r
)2

r

, x ≤ 0,

where r, which corresponds to the resulting depth, is a pa-
rameter of choice.

Max. Although we could compute max using an
arithmetic-friendly circuit as in (Cheon et al., 2020), we
proceed instead as in (Cho et al., 2024) by empirically
approximating this max value—per layer—using different
datasets. While the authors (Cho et al., 2024) claimed

that this optimization does not affect accuracy without any
experimental evidence, in our work we verify this is the
case indeed for GPT-2 small (see Table 1). This allows us
to avoid the circuit for computing max while maintaining
comparable accuracy to the cleartext model.

Division. Division uses Goldschmidt algorithm, which
works as follows. To divide A/B, start with an approxima-
tion F0 of 1/B, and set N0 = A and D0 = B. Then iterate
Fi ← 2 − Di−1, Ni ← Ni−1 · Fi and Di ← Di−1 · Fi,
for i = 1, . . . , d. The output of the division is Nd ≈ A/B.
The depth of this approximation is d, since each iteration
consumes one level.

In (Even et al., 2005), it is shown that, if 0 < F0 < 2/B,
then the algorithm converges. We set F0 = 10 as the initial
estimate, which works well in our experiments.

4. Experimental Results
In this section, we present the full LLM runtimes under
FHE. These evaluations are run entirely on the server, and
at no point can the server view the underlying query or any
intermediate value. Furthermore, the output of the LLM
forward pass can be fed directly back into the model to
compute the next token without any interaction with the
client. This powerful technique allows an arbitrary number
of forward passes to be executed on the client’s encrypted
query. This method extends to other operations that require
the forward-pass as a subroutine, such as fine-tuning on pri-
vate data.

As we mentioned in the introduction, we focus on GPT-2
due to its accessibility as well as the similarity in the ar-
chitecture of larger GPT models. We consider the small
variant of GPT-2. Our runtimes can be extended to models
with many more parameters by linearly scaling the trans-
former architecture.

4.1. Accuracy of the Approximate Model

In order to make our LLM compatible with FHE, we re-
place each non-linear function with the corresponding ap-
proximation described in section 2. We evaluate the three
variants of GPT-2 on standard accuracy benchmarks to
ensure that these approximations do not compromise the
model’s performance. We achieve this by forking the GPT-
2 implementation in the HuggingFace transformers li-
brary (https://github.com/huggingface/tra
nsformers), and making the following modifications in
order to reflect the changes that FHE imposes:

• The GeLU activation is replaced by the approximation
from Section 3.2. We use degree 2 for the f and g polyno-
mials in the comparison from Section 3.1, and we compose

6

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

EncryptedLLM: Privacy-Preserving LLM Inference via GPU-Accelerated FHE

them 2 times each.

• LayerNorm is approximated as in Section 3.3. We use 16
or 18 Newton iterations depending on model size as shown
in table 2.

• SoftMax is approximated as in Section 3.4. For the ap-
proximation of exp we use r = 7, and for Goldschmidt
algorithm—used for the division—we use 14/18/22 itera-
tions based on model size as shown in table 2.

Performing these modifications is intricate as the
transformers library is not intended to support
changes such as replacing the SoftMax, for instance,
which is rather uncommon in machine learning contexts.
Once our modified model is loaded in HuggingFace’s
“format”, we are able to leverage the Language Model
Evaluation Harness library (https://github.c
om/EleutherAI/lm-evaluation-harness),
which includes multiple benchmarks to evaluate LLM
performance.

Our accuracy benchmarks appear in table 1, where we mea-
sure the performance of our modifications with respect to
the baseline GPT2 - Small, GPT2 - Medium and GPT2
- Large models. We run eight diverse tasks: HellaSwag,
ARC (Easy), PIQA, Social IQa, MNLI, SST-2, ANLI, and
WiC.

HellaSwag tests an LLM’s ability to perform commonsense
reasoning about situations described in natural language.
ARC (AI2 Reasoning Challenge) is a dataset created by
the Allen Institute for Artificial Intelligence (AI2) to evalu-
ate question answering systems’ ability to perform multi-
step reasoning. PIQA is the Physical Interaction Ques-
tion Answering tasks to test physical commonsense rea-
soning. Social IQA measures social and emotional intel-
ligence through questions about social interactions. MNLI
(Multi-Genre Natural Language Inference) and ANLI (Ad-
versarial Natural Language Inference) benchmark a models
understanding of entailment, contradiction, and neutrality
across genres and adversarially selected examples. SST-2
(Stanford Sentiment Treebank) evaluates binary sentiment
classification of movie reviews. WiC (Word-in-Context)
challenges models on contextual word sense disambigua-
tion.

We also provide the different parameters we used in table 2.
Together, these benchmarks provide a well-rounded evalu-
ation of language understanding, covering reasoning, sen-
timent, social context, and word meaning. We refer the
reader to the evaluation harness library for details on these
tasks.

Overall, we observe that our modifications incur in little ac-
curacy degradation with respect to the baseline model. This
reflects the robustness of large language model to slight

deviations, highly exploited in the quantization literature
(cf (Zhu et al., 2023)), and is crucial for enabling privacy-
preserving inference. Note that these approximations are
also useful for MPC-based approaches.

4.2. Runtimes of LLM Inference in FHE

We now present the end-to-end runtime of a GPT-2 forward
pass using our GPU-accelerated FHE. Note that, as illus-
trated in Fig. 1b, the complexity of a GPT forward pass is
dependent on the position of the token being generated in
the output, given that the dimension for the softmax in each
decoder block depends on the token position. Furthermore,
all tokens of the input sequence have to be processed once
by the decoder blocks before any new token can be gener-
ated. Throughout this section, we benchmark generating a
token at position 128, assuming that the previous input to-
kens have been processed. The cost of processing the input
is amortized away as more tokens are produced, which is
also consistent with prior works.

We note a few important optimizations that are incorpo-
rated into this benchmark:

Input & Output Sizes. We give the depth of each approx-
imation in table 3. Recall from the high-level GPT archi-
tecture that SoftMax and GeLU are run once per block and
LayerNorm is run twice per block. The GPT-2 model con-
sists of 12 blocks, and the final ArgMax function is run
at the end of the forward pass. The dimension of one to-
ken embedding is 768, and the inputs and outputs of both
LayerNorm operations is 128× 768. The GeLU input con-
sists of 24 channels of the typical 128 × 768, resulting in
a total input of 3072 × 768. By contrast, the SoftMax in-
put is the result of many inner-product operations with the
context embeddings, resulting in an input and output size
of 128 × 128. With 216 slots in each ciphertext, this gives
the values in the second row of Table 3.

Batched Evaluation. When a function is evaluated over
an input that does not use all available slots in a cipher-
text, additional performance can be gained by evaluating
another input to that function and using the additional un-
used slots. This batched evaluation maximizes the avail-
able parallelism in the CKKS scheme. For example, the
LayerNorm function only requires 1.5 ciphertexts to store
the input and output. If only one LayerNorm function is
being evaluated, then we must perform the operation over
two ciphertexts even though the second is half empty. How-
ever, if we have the option of running a second LayerNorm
function over an independent input, we can evaluate both
LayerNorm functions using only three ciphertexts, which
doubles our throughput with only a 50% increase in la-
tency. This is an important optimization for tasks such
as training or fine-tuning, where the model is evaluated on
batches of samples from the training set. We also present

7

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

EncryptedLLM: Privacy-Preserving LLM Inference via GPU-Accelerated FHE

Model Benchmark ARC Hella- PIQA Social MNLI SST2 ANLI Wic
(Easy) Swag IQA

GPT-2 small Baseline 0.438 0.289 0.629 0.366 0.337 0.551 0.349 0.492
This Work 0.429 0.281 0.626 0.374 0.332 0.556 0.348 0.511

GPT-2 medium Baseline 0.490 0.333 0.676 0.391 0.351 0.613 0.349 0.5
This Work 0.482 0.319 0.671 0.390 0.353 0.579 0.341 0.491

GPT-2 large Baseline 0.531 0.363 0.703 0.395 0.359 0.501 0.333 0.496
This Work 0.507 0.321 0.708 0.391 0.356 0.5 0.333 0.481

Table 1. Performance of various sizes of GPT-2 with our different approximations vs. the unaltered baseline. While we only benchmark
GPT-2 small in FHE, these plaintext accuracy benchmarks demonstrate the overall scalability of the approximations. The softmax lookup
tables were computed seperately for each model.

Newton exp Goldschmidt

GPT-2 small 16 7 14
GPT-2 medium 18 7 18

GPT-2 large 18 7 22

Table 2. Approximation parameters for three model sizes. We use
polynomials of degree 4—each composed twice—for the com-
parison approximations (see Section 3.1). We present values of
Newton iterations for the inverse square root (see Section 3.3).
For Softmax, we use the Goldschmidt algorithm for division, and
r = 7 for the exp approximation (see Section 3.4).

SoftMax LayerNorm GeLU Argmax

depth 22 13 17 272
of cts 0.25 1.5 6 1

Table 3. Depths of our approximate activation functions in GPT-
2 small and the number of ciphertexts required to hold the input
for the 128th token. The approximations (described in section 3)
have the same parameters as the plaintext circuits benchmarked in
table 1. The number of slots in each ciphertext is n = 216. Non-
integer ciphertexts indicate that not all slots are filled and batched
evaluation is available in this layer.

the “unbatched" single-input evaluation for comparison.

Benchmarks. We present our benchmarks in Figure 2
and Figure 3. Both figures display the forward pass time of
our encrypted GPT-2 small at position 128. All individual
layer benchmarks include the internal bootstrapping time,
which is interleaved within the function as needed. This
machine has an Intel Xeon chip running at 2.4 GHz and 2
TB of RAM as well as an NVIDIA A100 80GB PCIe.

In Figure 2, we demonstrate the speedup of our GPU-
accelerated FHE library when applied to the task of a GPT-
2 small forward pass. This figure measures our GPU imple-
mentation against the out-of-the-box OpenFHE functions
running on a CPU.

In the unbatched forward pass, the SoftMax function is one
of the most expensive operations primarily due to the low
utilization of the ciphertext. When switching to batched
evaluation, the overhead of the SoftMax drops significantly
(4×) as well as the LayerNorm function discussed above.
The GeLU function has full utilization of the ciphertexts, so
the overhead with batching remains the same. The batching
speedups translate into the benchmarks for the full model.
Recall that the full forward pass consists of 12 blocks and
an ArgMax. We do not batch the ArgMax evaluation since
only a small portion of the ciphertext is left unused.

We provide benchmarks at two different security levels de-
pending on the application requirements. Setting the secu-
rity parameter λ = 128 is standard for encryption schemes,
although many applications allow a slightly weaker λ =
80. Concretely, setting λ = 128 gives us a bootstrapping
routine that refreshes 20 ciphertext levels in roughly 550
milliseconds, while relaxing to λ = 80 allows a bootstrap-
ping routine that refreshes 45 levels in under 1 second. This
increase in the bootstrapping throughput is the main source
of speedup.

8

EncryptedLLM: Privacy-Preserving LLM Inference via GPU-Accelerated FHE

Figure 2. This figure presents benchmarks of our GPT-2 small for-
ward pass running under FHE. The polynomial approximations
for the activation functions as well as the high-level bootstrap-
ping algorithm are identical in both benchmarks. The CPU bar
uses the out-of-the-box OpenFHE functions, while the GPU bar
uses our GPU-accelerated implementation. Both benchmarks are
for a single (unbatched) evaluation. The speedup when switching
to the GPU is about 200×.

4.3. Limitations

We briefly discuss the limitations of our results. Our bench-
marks are based on the accuracy of the GPT-2 model with
the activation functions replaced with polynomial approx-
imations. The degree of these polynomials has a major
impact on the performance of the encrypted forward pass,
since a higher degree directly translates into deeper circuits
that require more bootstrapping operations. While many
LLM models seems to remain accurate with low precision,
many other AI models such as image recognition models
require higher precision during evaluation to maintain ac-
curacy. If a model requires a higher precision than GPT-2,
the polynomial approximations would need to be increased.
When the required precision increases beyond roughly 16
bits, the complexity of the bootstrapping itself must be in-
creased, since internal to the bootstrapping is an approxi-
mation of a modular reduction function. The relatively low
precision required by these transformer models is crucial to
our results.

5. Future Work
While real-time chatbots under FHE remains out of reach,
these benchmarks suggest that many applications are now
practical to run in a secure way. This includes tasks that do
not require real-time results, such as document summariz-
ing or drafting (e.g. "Please write a speech for our CEO.").
In addition, this performance improvement can translate to
tasks that require the forward pass as a subroutine, such
as fine-tuning a public model on private data. This train-
ing task is computationally expensive and often requires
outsourcing, which can be safely enabled by this library.
More concretely, a company may wish to train a more spe-

Figure 3. This figure presents the GPU-accelerated encrypted
GPT-2 forward pass runtimes for generating a token at position
128. The hatched bars indicate the batched evaluation times,
where unused ciphertext slots are filled with independent evalu-
ations (also, see description in paragraph “batched evaluation”,
p.7). The savings are maximized with four independent evalua-
tions, allowing the SoftMax to be fully utilized. The full forward
pass consists of 12 blocks followed by an ArgMax.

cialized LLM for a narrow task, such as an assistant for
a technical role. The additional training data for this spe-
cialized task could easily be proprietary, and the resulting
model can then be decrypted by the data owner or remain
encrypted on the cloud for evaluation. These applications
present numerous directions for future work.

Acknowledgments
This paper was prepared in part for information purposes
by the AI Research Group, the AlgoCRYPT Center of Ex-
cellence, and Cybersecurity & Technology Controls group
of JPMorgan Chase & Co and its affiliates (JP Morgan), and
is not a product of the Research Department of JP Morgan.
JP Morgan makes no representation and warranty whatso-
ever and disclaims all liability, for the completeness, ac-
curacy or reliability of the information contained herein.
This document is not intended as investment research or in-
vestment advice, or a recommendation, offer or solicitation
for the purchase or sale of any security, financial instru-
ment, financial product or service, or to be used in any way
for evaluating the merits of participating in any transaction,

9

EncryptedLLM: Privacy-Preserving LLM Inference via GPU-Accelerated FHE

and shall not constitute a solicitation under any jurisdiction
or to any person, if such solicitation under such jurisdiction
or to such person would be unlawful.

Impact Statement
In this work, we present a new implementation of GPU-
accelerated FHE and use this implementation to evaluate an
encrypted GPT-2 forward pass. This work is an important
step towards practical encrypted LLM deployments, which
could have extensive applications in the medical and finan-
cial industries. These industries require strict security for
the sensitive data they handle, ranging from patients’ med-
ical records to corporate financial details. Enabling this
data to be securely processed with state-of-the-art LLMs
would significantly improve the efficiency of these indus-
tries. Furthermore, FHE is a broadly applicable technology,
and accelerating FHE with commodity hardware is an ac-
tive area of research. In addition to the secure LLM appli-
cation discussed in this work, we view our implementation
as a general advancement in the practicality of FHE.

References
Al Badawi, A., Bates, J., Bergamaschi, F., Cousins, D. B.,

Erabelli, S., Genise, N., Halevi, S., Hunt, H., Kim, A.,
Lee, Y., Liu, Z., Micciancio, D., Quah, I., Polyakov, Y.,
R.V., S., Rohloff, K., Saylor, J., Suponitsky, D., Triplett,
M., Vaikuntanathan, V., and Zucca, V. Openfhe: Open-
source fully homomorphic encryption library. In Pro-
ceedings of the 10th Workshop on Encrypted Comput-
ing & Applied Homomorphic Cryptography, WAHC’22,
pp. 5363, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450398770. doi:
10.1145/3560827.3563379. URL https://doi.
org/10.1145/3560827.3563379.

Ao, W. and Boddeti, V. N. Autofhe: Automated adaption
of cnns for efficient evaluation over fhe. USENIX, 2024.

Boemer, F., Costache, A., Cammarota, R., and Wierzynski,
C. ngraph-he2: A high-throughput framework for neural
network inference on encrypted data. In Proceedings of
the 7th ACM workshop on encrypted computing & ap-
plied homomorphic cryptography, pp. 45–56, 2019.

Boemer, F., Kim, S., Seifu, G., DM de Souza, F., and
Gopal, V. Intel hexl: accelerating homomorphic encryp-
tion with intel avx512-ifma52. In Proceedings of the 9th
on Workshop on Encrypted Computing & Applied Ho-
momorphic Cryptography, pp. 57–62, 2021.

Bossuat, J.-P., Mouchet, C., Troncoso-Pastoriza, J. R., and
Hubaux, J.-P. Efficient bootstrapping for approximate
homomorphic encryption with non-sparse keys. pp.
587–617, 2021. doi: 10.1007/978-3-030-77870-5_21.

Chen, H., Gilad-Bachrach, R., Han, K., Huang, Z., Jalali,
A., Laine, K., and Lauter, K. Logistic regression over en-
crypted data from fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2018/462, 2018a. URL
https://eprint.iacr.org/2018/462.

Chen, H., Huang, Z., Laine, K., and Rindal, P. Labeled
psi from fully homomorphic encryption with malicious
security. In ACM SIGSAC Conference on Computer and
Communications Security, pp. 1223–1237. ACM, Octo-
ber 2018b. URL https://www.microsoft.co
m/en-us/research/publication/labeled
-psi-from-fully-homomorphic-encryptio
n-with-malicious-security/.

Chen, T., Bao, H., Huang, S., Dong, L., Jiao, B., Jiang, D.,
Zhou, H., Li, J., and Wei, F. The-x: Privacy-preserving
transformer inference with homomorphic encryption. In
Findings of the Association for Computational Linguis-
tics: ACL 2022, pp. 3510–3520, 2022.

Cheon, J. H., Kim, A., Kim, M., and Song, Y. S. Homomor-
phic encryption for arithmetic of approximate numbers.
pp. 409–437, 2017. doi: 10.1007/978-3-319-70694-8_1
5.

Cheon, J. H., Kim, D., and Kim, D. Efficient homomor-
phic comparison methods with optimal complexity. pp.
221–256, 2020. doi: 10.1007/978-3-030-64834-3_8.

Cho, W., Hanrot, G., Kim, T., Park, M., and Stehlé, D.
Fast and accurate homomorphic softmax evaluation. pp.
4391–4404, 2024. doi: 10.1145/3658644.3670369.

de Castro, L., Agrawal, R., Yazicigil, R., Chandrakasan,
A., Vaikuntanathan, V., Juvekar, C., and Joshi, A. Does
fully homomorphic encryption need compute accelera-
tion? Cryptology ePrint Archive, Paper 2021/1636,
2021. URL https://eprint.iacr.org/2021
/1636.

Dong, Y., Lu, W.-j., Zheng, Y., Wu, H., Zhao, D., Tan, J.,
Huang, Z., Hong, C., Wei, T., and Cheng, W. Puma:
Secure inference of llama-7b in five minutes. arXiv
preprint arXiv:2307.12533, 2023.

Even, G., Seidel, P.-M., and Ferguson, W. E. A parametric
error analysis of goldschmidt’s division algorithm. Jour-
nal of Computer and System Sciences, 70(1):118–139,
2005.

Gentry, C. Fully homomorphic encryption using ideal lat-
tices. pp. 169–178, 2009. doi: 10.1145/1536414.1536
440.

Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.,
Naehrig, M., and Wernsing, J. Cryptonets: Applying
neural networks to encrypted data with high throughput

10

https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1145/3560827.3563379
https://eprint.iacr.org/2018/462
https://www.microsoft.com/en-us/research/publication/labeled-psi-from-fully-homomorphic-encryption-with-malicious-security/
https://www.microsoft.com/en-us/research/publication/labeled-psi-from-fully-homomorphic-encryption-with-malicious-security/
https://www.microsoft.com/en-us/research/publication/labeled-psi-from-fully-homomorphic-encryption-with-malicious-security/
https://www.microsoft.com/en-us/research/publication/labeled-psi-from-fully-homomorphic-encryption-with-malicious-security/
https://eprint.iacr.org/2021/1636
https://eprint.iacr.org/2021/1636

EncryptedLLM: Privacy-Preserving LLM Inference via GPU-Accelerated FHE

and accuracy. In International conference on machine
learning, pp. 201–210. PMLR, 2016.

Han, K. and Ki, D. Better bootstrapping for approximate
homomorphic encryption. pp. 364–390, 2020. doi: 10.1
007/978-3-030-40186-3_16.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv: Learning, 2016. URL https://api.
semanticscholar.org/CorpusID:12561707
3.

Jung, W., Kim, S., Ahn, J. H., Cheon, J. H., and Lee, Y.
Over 100x faster bootstrapping in fully homomorphic
encryption through memory-centric optimization with
GPUs. 2021(4):114–148, 2021. doi: 10.46586/tches
.v2021.i4.114-148. URL https://tches.iacr.o
rg/index.php/TCHES/article/view/9062.

Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A.
{GAZELLE}: A low latency framework for secure neu-
ral network inference. In 27th USENIX security sympo-
sium (USENIX security 18), pp. 1651–1669, 2018.

Kim, A., Papadimitriou, A., and Polyakov, Y. Approxi-
mate homomorphic encryption with reduced approxima-
tion error. In Galbraith, S. D. (ed.), Topics in Cryptology
– CT-RSA 2022, pp. 120–144, Cham, 2022. Springer In-
ternational Publishing. ISBN 978-3-030-95312-6.

Lu, W.-j., Huang, Z., Gu, Z., Li, J., Liu, J., Ren, K., Hong,
C., Wei, T., and Chen, W. Bumblebee: Secure two-party
inference framework for large transformers. Cryptology
ePrint Archive, 2023.

Marcolla, C., Sucasas, V., Manzano, M., Bassoli, R.,
Fitzek, F. H., and Aaraj, N. Survey on fully homomor-
phic encryption, theory, and applications. Proceedings
of the IEEE, 110(10):1572–1609, 2022.

Mireshghallah, N., Kim, H., Zhou, X., Tsvetkov, Y., Sap,
M., Shokri, R., and Choi, Y. Can llms keep a secret? test-
ing privacy implications of language models via contex-
tual integrity theory. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024, Vi-
enna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=
gmg7t8b4s0.

Qu, H. and Xu, G. Improvements of homomorphic secure
evaluation of inverse square root. pp. 110–127, 2023.
doi: 10.1007/978-981-99-7356-9_7.

Rivest, R. L., Adleman, L., Dertouzos, M. L., et al. On
data banks and privacy homomorphisms. Foundations of
secure computation, 4(11):169–180, 1978.

Shao, Y., Li, T., Shi, W., Liu, Y., and Yang, D. Privacylens:
Evaluating privacy norm awareness of language models
in action. CoRR, abs/2409.00138, 2024. doi: 10.48550
/ARXIV.2409.00138. URL https://doi.org/10
.48550/arXiv.2409.00138.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Zhang, J., Liu, J., Yang, X., Wang, Y., Chen, K., Hou,
X., Ren, K., and Yang, X. Secure transformer inference
made non-interactive. Cryptology ePrint Archive, 2024.

Zheng, M., Lou, Q., and Jiang, L. Primer: Fast private
transformer inference on encrypted data. In 2023 60th
ACM/IEEE Design Automation Conference (DAC), pp.
1–6. IEEE, 2023.

Zhu, X., Li, J., Liu, Y., Ma, C., and Wang, W. A survey
on model compression for large language models. arXiv
preprint arXiv:2308.07633, 2023.

Zimerman, I., Baruch, M., Drucker, N., Ezov, G., Soceanu,
O., and Wolf, L. Converting transformers to polynomial
form for secure inference over homomorphic encryption.
arXiv preprint arXiv:2311.08610, 2023.

A. GPU Implementation of the CKKS FHE
Scheme

In this section, we present our implementation of the CKKS
FHE scheme. This implementation extends the popular
and feature-rich OpenFHE library (Al Badawi et al., 2022)
to use a GPU to accelerate the homomorphic operations.
While we use this library to implement an LLM forward
pass, this is the first open-sourced implementation of a
GPU-accelerated CKKS scheme, which is of significant in-
dependent interest. The audience for this section is some-
one more familiar with the CKKS FHE scheme; this sec-
tion can be safely skipped by those who are only interested
in the LLM benchmarks. However, as a brief motivation
for the focus on this function, the bootstrapping operation
is at least 50% of the runtime in all layers and typically
closer to 80-90% of the total time.

Our starting point for this implementation is the work of
Jung et al. (Jung et al., 2021), which focuses on acceler-
ating the bootstrapping implementation. The public por-
tion of this code4 is limited to the individual operations
accelerated in their work, including the expensive number-
theoretic transform (NTT) and RNS basis-change opera-

4https://github.com/scale-snu/ckks-gpu-c
ore

11

https://api.semanticscholar.org/CorpusID:125617073
https://api.semanticscholar.org/CorpusID:125617073
https://api.semanticscholar.org/CorpusID:125617073
https://tches.iacr.org/index.php/TCHES/article/view/9062
https://tches.iacr.org/index.php/TCHES/article/view/9062
https://openreview.net/forum?id=gmg7t8b4s0
https://openreview.net/forum?id=gmg7t8b4s0
https://doi.org/10.48550/arXiv.2409.00138
https://doi.org/10.48550/arXiv.2409.00138
https://github.com/scale-snu/ckks-gpu-core
https://github.com/scale-snu/ckks-gpu-core

EncryptedLLM: Privacy-Preserving LLM Inference via GPU-Accelerated FHE

tions, rather than an end-to-end bootstrapping implemen-
tation. We incorporate these kernels into the OpenFHE
CKKS bootstrapping code and implement further opera-
tions to connect these core functions and avoid any data
movement off of the GPU. Our code includes an end-
to-end bootstrapping implementation integrated into the
OpenFHE API as well as all functions required to imple-
ment the LLM layers described above. This implementa-
tion inherits the improved accuracy from the careful track-
ing of the CKKS scaling factor in OpenFHE.

As prior works demonstrate (de Castro et al., 2021), the
bottleneck of CKKS bootstrapping quickly becomes the
memory transfer if the compute accelerates faster than the
local storage capacity. This is due to the size of the evalu-
ation keys, which for bootstrapping can reach tens of giga-
bytes. For our benchmarks, we use a GPU with 80 GB of
RAM, which allows us to cache all of the evaluation keys
needed for bootstrapping and the subsequent LLM layers.

We present the benchmarks of our bootstrapping imple-
mentation in fig. 4. The CPU benchmarks were run on a
machine with an Intel Xeon chip running at 2.4 GHz and 2
TB of RAM. The GPU benchmarks were run on the same
machine and used an NVIDIA A100 80GB PCIeAll bench-
marks were run within OpenFHE, which runs a depth 13
approximation of the CKKS modular reduction function.
All bootstrapping hyperparameters were the same in all
benchmarks. The level budget for the homomorphic en-
coding and decoding was set to 4 resulting in a total boot-
strapping depth of 21. The number of decomposition dig-
its was set to 3. The security level is at least 128 bits for
the 10 and 20 output levels and 80 bits for 30 and 40 out-
put levels. This is to accommodate the maximum modulus
without growing the ring dimension.

Figure 4. This figure presents a comparison between a CPU im-
plementation of bootstrapping and a GPU implementation of
bootstrapping for n = 216 slots with various output levels. Ob-
serve the log scale on the y-axis. The CPU implementation re-
quires roughly 4-6 seconds per output level while the GPU imple-
mentation only requires 22-27 ms per output level, representing a
speedup of 180-220×. These benchmarks are highly consistent
with less than 5% change over 10 iterations.

12

