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Abstract

We consider Thompson Sampling (TS) for linear combinatorial semi-bandits and
subgaussian rewards. We propose the first known TS whose finite-time regret does
not scale exponentially with the dimension of the problem. We further show the
mismatched sampling paradox: A learner who knows the rewards distributions
and samples from the correct posterior distribution can perform exponentially
worse than a learner who does not know the rewards and simply samples from
a well-chosen Gaussian posterior. The code used to generate the experiments is
available at https://github.com/RaymZhang/CTS-Mismatched-Paradox

1 Introduction and Setting

We consider the linear combinatorial bandit problem with semi-bandit feedback: At time t P rT s :“
t1, ..., T u a learner selects an action Aptq P A where the set of available actions A Ă t0, 1ud is a
known combinatorial set, i.e., a set of binary vectors. Then the environment draws a random vector
Xptq P Rd, and the learner then observes Y ptq “ Aptq d Xptq, where d denotes the Hadamard
(element-wise) product, and the learner obtains a reward of AptqJXptq. We assume that the vectors
pXptqqtě1 are drawn i.i.d. from some distribution with expectation EpXptqq “ µ‹ and that the
entries of Xptq are independent. The vector µ‹ lies in some Θ Ă Rd and is initially unknown to the
learner. The learner wants to minimize the regret:

RpT, µ‹q :“ T max
APA

!

AJµ‹
)

´ E

»

–

ÿ

tPrT s

AptqJµ‹

fi

fl “ E

»

–

ÿ

tPrT s

∆Aptq

fi

fl .

Where A‹ P argmaxAPAtAJµ‹u is the optimal action and ∆A :“ A‹Jµ‹ ´ AJµ‹ is the reward
gap between action A and optimal action A‹. The regret is the expected difference between the sum
of rewards obtained by an oracle who knows µ‹ and always selects the optimal decision and that
obtained by the learner. We assume that the optimal decision is unique. To state regret bounds, we
use the following notation. We denote by ∆min :“ minAPA:∆Aą0 ∆A the minimal reward gap and
∆max :“ maxAPA ∆A the maximal reward gap, ∆ptq :“ ∆Aptq the reward gap of the action selected
at time t, m :“ maxAPA }A}1 the maximal size of an action.
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The regret depends on the distributions of the random vector Xptq, which generates the rewards, and
we will assume throughout the paper that Xptq is σ2-subgaussian so that for all λ P Rd:

ErexppλJXptqqs ď eλ
Jµ‹

`
}λ}22σ2

2 .

This assumption holds in many scenarios of interest, for instance, when Xptq P ra, bsd with σ2 “

pb ´ aq2{4, or when Xptq is normally distributed with a covariance matrix smaller than σ2Id. We
assume that σ is known, or at least upper-bounded.

One of the candidate algorithms for this problem is Thompson Sampling (TS), which is based on
Bayesian inference. We consider a prior distribution π0 over Θ, a likelihood function ` and πt the
posterior distribution of µ‹ at time t knowing the observations and the actions up to time t:

πtpµq “

ś

sPrt´1s

ś

iPrdsrAipsq`pXipsq, µiq ` p1 ´ Aipsqqsπ0pµq
ş

Θ

ś

sPrt´1s

ś

iPrdsrAipsq`pXipsq, µiq ` p1 ´ Aipsqqsπ0pµqdµ

The TS algorithm with prior π0 and likelihood ` consists in sampling θptq from distribution πt, and
select action Aptq P argmaxaPA AJθptq. The random vector θptq, called a Thompson Sample, acts
as a proxy for the unknown µ‹ and guides the exploration.

We will show how TS behaves with either Gaussian likelihood `px, µq “ p2πq´1{2e´px´µq
2

{2 or
Bernoulli likelihood `px, µq “ 1tx “ 1uµ ` p1 ´ µq1tx “ 0u in the next sections. If the likelihood
`pXipsq, µiq is selected as the distribution of Xipsq knowing µi then we say that TS is natural. If the
likelihood `pXipsq, µiq is different from the distribution of Xipsq knowing µi, we will say that TS is
mismatched. An example of mismatched TS would be to select ` as the Gaussian likelihood, although
the actual distribution of Xptq knowing µ‹ is, say, Bernoulli or some other bounded distribution.
Ultimately, the likelihood function is a choice left up to the learner to control how TS explores the
suboptimal actions. Perhaps counterintuitively, mismatched TS can outperform natural TS, as we
will demonstrate. The prior π0 can be chosen in various ways, for instance, Jeffrey’s non-informative
prior. It can even be chosen as an improper prior, where

ş

Θ
π0pµqdµ “ `8, as long as the integral

in the definition of πt is well-defined.

TS is usually computationally simple to implement as it requires a linear maximization over the
action space A at each step, which we assume can be done in polynomial time in m and d. This fact
explains the practical appeal of TS since whenever linear maximization over A can be implemented
efficiently; the algorithm has low computational complexity. Also, for some problem instances, it
tends to perform well numerically.

2 Related Work and Contribution

Combinatorial bandits are a generalization of classical bandits studied in [17]. Several asymptotically
optimal algorithms are known for classical bandits, including the algorithm of [18], KL-UCB [5],
DMED [13] and TS [14, 22]. Other algorithms include the celebrated UCB1 [4]. Numerous
algorithms for combinatorial semi-bandits have been proposed, many of which naturally extend
algorithms for classical bandits to the combinatorial setting. CUCB [6, 16] is a natural extension of
UCB1 to the combinatorial setting. ESCB [8, 10] is an improvement of CUCB, which leverages the
independence of rewards between items. AESCB [9] is an approximate version of ESCB with roughly
the same performance guarantees and reduced computational complexity. TS for combinatorial
semi bandits was considered in [11, 15, 20, 21, 23] while TS for linear bandit was studied in [1,
3]. Also, combinatorial semi-bandits are a particular case of structured bandits, for which there
exist asymptotically optimal algorithms such as OSSB [7]. It was also shown in [15] that TS is
asymptotically and finite time optimal for matroid-like action sets. The Bayesian regret of TS has
been extensively studied, e.g., [21].

Three types of regret bounds exist in the literature: RpT, µ‹q is the problem-dependent regret, i.e.,
the regret of the learner on the particular problem instance defined by µ‹. The minimax regret is
maxµPΘ RpT, µ‹q and the Bayesian regret Eµ‹ rRpT, µ‹qs where µ‹ is drawn according to some
prior distribution. We will state regret bounds as a function of the parameters T , the time horizon; d,
the problem dimension; m, the maximal size of an action; and ∆min, the minimal gap.

The paper [16] showed that the problem-dependent regret of CUCB is upper bounded by O
´

dm lnT
∆min

¯

and its minimax regret is upper bounded by Op
?
σ2dmT lnT ` dmq. [10] showed that the problem-
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dependent regret of ESCB is upper bounded by O
´

σ2dplnmq
2 lnT

∆min
` dm3

∆2
min

¯

and its minimax regret is

upper bounded by Op
a

dplnmq2T lnT ` dmq. [20] showed that the problem-dependent regret of
TS is upper bounded by

O

˜

σ2dplnmq2

∆min
lnT `

dm3

∆2
min

` m

ˆ

σ
m2 ` 1

∆min

˙2`4m
¸

.

While this bound is almost optimal in the asymptotic regime where T Ñ 8, it is exponentially
suboptimal in the finite time regime since the last term of this expression scales exponentially with
m. Unless one assumes a particular type of action set as in [15], all the known generic regret upper
bound for TS in the literature [11], [23], [20] feature an exponential dependency on m. [24] further
showed that the problem-dependent regret of TS for some simple combinatorial set can be lower
bounded by an expression scaling exponentially in m,

RpT, µ‹q ě
∆min

4p∆min

p1´p1´p∆minqT´1q, with p∆min “ exp

#

´
2m

9

ˆ

1

2
´ p

∆min

m
`

1
?
m

q

˙2
+

.

They further showed that Thompson Sampling is not minimax optimal for some combinatorial bandit
problems. Therefore, the exponential term is not an artefact of the analysis of [20]. It is also noted
that the regret upper bounds for ESCB and CUCB do not feature this exponential dependency in m,
suggesting that those algorithms are better in the finite time regime than the versions of TS analyzed
so far in the literature. This is unfortunate because TS usually has very low computational complexity,
and having an algorithm with both low computational complexity and low regret in the finite time
regime would be highly desirable.

Our contribution : (i) We propose a new variant of TS with a regret upper bounded by:

O

ˆ

σ2d lnm

∆min
lnT `

σ2d2m lnm

∆min
ln lnT ` P

ˆ

m, d,
1

∆min
,∆max, σ

˙˙

where P is a polynomial in m, d, 1
∆min

,∆max. This polynomial term is a clear improvement over
the bound of [20] in the finite time, high dimensional regime where T is relatively small and m is
large. Indeed, the last term in this bound P pm, d, 1{∆min,∆max, σq will be much smaller than the
last term in the bound of [20] m

`

σpm2 ` 1q{∆min

˘2`4m
which is exponential in m. To design our

variant, we add a slight exploration boost to TS, which vanishes as T Ñ 8 but significantly impacts
the algorithm behaviour when T is moderate and m is large. Also note that the improvement in the
lnm term comes from a direct application of a result in [19].

(ii) We design new proof strategies to derive this upper bound, which are based on carefully bounding
the sample path behaviour of TS. We believe those strategies are an essential contribution to the
analysis of TS and enable us to show that with high probability, TS will sample the optimal action at
least Ωptαq times with α ą 0. This number serves to control the transient behaviour of TS.

(iii) As a by-product, we show the mismatched sampling paradox of TS: in some cases, mismatched
TS performs exponentially better than natural TS. For instance, in a problem where Xptq has
Bernoulli distribution, a learner using a uniform (improper) prior and a Gaussian likelihood can
perform exponentially better than a learner using a Beta prior (which includes Jeffreys’ prior) and the
Bernoulli likelihood. In essence, trying to exploit the learner’s statistical knowledge about the model
ends up harming them.

(iv) We confirm our theoretical predictions using numerical experiments, which clearly show that
our variant of TS outperforms by several orders of magnitude the Beta-based versions studied in the
literature whose regret scales exponentially in the ambient dimension.

3 Algorithms

In this section, we present three TS algorithms: B-CTS (Beta-Combinatorial Thompson Sampling),
which is TS with a beta prior and a Bernoulli likelihood, G-CTS (Gaussian-Combinatorial Thompson
Sampling) which is TS with a uniform (improper) prior and a Gaussian likelihood, and finally
BG-CTS (Boosted Gaussian-Combinatorial Thompson Sampling), an algorithm we propose by
introducing a carefully chosen exploration boost in G-CTS.
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3.1 Notation

We use the following notation to state algorithms. We define the statistics Nptq :“
ř

sPrt´1s Apsq, the
vector containing the number of times each item has been selected, MAptq :“

ř

sPrt´1s 1 tApsq “ Au

the number of times action A has been selected until t, V ptq :“ D´1
Nptq the diagonal matrix whose

diagonal elements are p1{N1ptq, ..., 1{Ndptqq, pµptq :“ V ptq
ř

sPrt´1s Xipsq d Aipsq the empirical
average estimator for µ‹. We denote by Hptq “ pApsq, Apsq d XpsqqsPrt´1s the history which
contains all the information collected by the learner up to time t, and which includes both the
observations and the selected actions. For two vectors α, β in pR`qd we denote by Betapα, βq “
Âd

i“1 Betapαi, βiq the distribution of a vector with independent entries, and where the i-th entry is
Betapαi, βiq distributed.

3.2 B-CTS

B-CTS (see 1 in the algorithm format) considers the prior π0 “ Betapαp0q, βp0qq where αp0q, βp0q,
are two vectors in Rd chosen by the learner and the Bernoulli likelihood `px, µq “ 1tx “ 1uµ `

p1 ´ µq1tx “ 0u. If αp0q “ βp0q “ p1, ..., 1q, then the prior π0 is uniform over r0, 1sd. If
αp0q “ βp0q “ p1{2, ..., 1{2q, then the prior is Jeffreys’ non-informative prior, which is proportional
to the square root of the determinant of the Fisher information matrix. In B-CTS, the posterior
distribution πt is also a Beta distribution so that the Beta-CTS selects the action:

Aptq P argmax
APA

AJθptq with θptq „ Betapαptq, βptqq

where vectors αptq, βptq are defined as:

αptq :“
ÿ

sPrt´1s

Xpsq d Apsq ` αp0q and βptq :“
ÿ

sPrt´1s

p1 ´ Xpsqq d Apsq ` βp0q.

3.3 G-CTS

G-CTS considers the improper prior π0 which is constant and equal to 1{σ on all Rd and Gaussian
likelihood `px, µq “ p2πσ2q´1{2e´pX´µq

2
{p2σ2

q, where σ2 is the variance. Of course, since π0 is
improper, for πt to be well-defined, we require that enough samples have been collected so that
Nptq ě 1. This is easily achieved by selecting d actions A1, ..., Ad that cover A in the sense that
ř

iPrds A
i ě 1, and initializing the algorithm by sampling each of them once. In G-CTS, the posterior

distribution πt is also a Gaussian distribution so that the G-CTS selects the action:

Aptq P argmax
APA

AJθptq with θptq „ Nppµptq, σ2V ptqq.

3.4 BG-CTS

BG-CTS (see 2 in the algorithm format) is a modification of G-CTS that we propose and that selects
the action

Aptq P argmax
APA

AJθptq with θptq „ Nppµptq, 2gptqσ2V ptqq with

gptq :“
fptq

ln t
and fptq :“ p1 ` λq

´

ln t ` pm ` 2q ln ln t `
m

2
ln
´

1 `
e

λ

¯¯

and λ P R` is an input parameter of the algorithm. BG-CTS behaves like G-CTS with a time-
varying boost in its exploration denoted by gptq. This boost asymptotically behaves like a constant
limtÑ8 gptq “ 1 ` λ. This boost ensures a much better finite-time behaviour, especially in the
moderate T , large m regime, to avoid the exponentially large regret that can occur in TS. The form of
gptq is not arbitrary and is derived from the self-normalized concentration inequalities that control
the large deviations of vector pµptq. To make our analysis clearer, we will assume that there exists an
exogenous process pZptqqtě1 of i.i.d. N p0, Idq vectors that serves as the random generator number
for the Thompson samples with θptq “ pµptq ` σ

a

2gptqV
1
2 ptqZptq.

This decomposition is useful for separating the algorithm’s randomness from the bandit environment’s
randomness. We notice that for all s > t, Zpsq and the history Hptq are independent. Furthermore,
we call Zpsq the random part of the Thompson sample, AJθptq the Thompson sample of action A
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4 Main Result

We now state Theorem 1, our main result.
Theorem 1. For λ “ 1, and σ2 subgaussian rewards, the regret of BG-CTS is upper bounded by:

RpT, µ‹q ď C
σ2d lnm

∆min
lnT ` C 1 σ

2d2m lnm

∆min
ln lnT ` P

ˆ

m, d,
1

∆min
,∆max, σ

˙

(1)

with C,C 1 universal constants and P a polynomial in m, d, 1
∆min

,∆max, σ.

Theorem 1 states that the regret of BG-CTS is upper bounded by an expression with both the correct
behaviour when T is large i.e., both this bound and that of [20] give the same upper bound on
lim supTÑ8

RpT,µ‹
q

lnT , but also a polynomial dependency in m, d, 1
∆min

,∆max, σ. This result predicts
that BG-CTS performs much better than other TS variants in the regime where the time horizon T is
moderate and the decision size m is large.

A consequence of Theorem 1 combined with prior known results of [24] this is the mismatched
sampling paradox for TS: a learner attempting to leverage his knowledge about the statistical model
by using natural TS can perform exponentially worse than a learner willingly ignoring this knowledge
and using mismatched TS by using an algorithm such as BG-CTS. Consider the example of [24]
which features two disjoint actions of size m “ d{2 written p1, ..., 1, 0, ..., 0q and p0, ..., 0, 1, ..., 1q

and Bernoulli rewards. Suppose the learner attempts to leverage that she knows the rewards are
Bernoulli and that the parameter space is r0, 1sd. She will employ a uniform prior over r0, 1sd and
the Bernoulli likelihood. This means using B-CTS and getting a regret that scales exponentially with
d as shown in [24]. Using B-CTS with Jeffrey’s prior does not help either. On the other hand, if the
learner pretends she does not know the parameter space nor the rewards distribution and uses B-CTS,
she gets a regret scaling only polynomially in d. Furthermore, Bernoulli rewards are σ2 subgaussian
with σ2 6 1{4 as stated above, so our regret upper bound for BG-CTS applies to this example.

At first glance, it seems outright absurd to use a prior whose support is the whole of Rd instead of
the actual parameter space r0, 1sd, and using a Gaussian likelihood, which is continuous when the
rewards are binary, but this paradoxically gives exponentially better performance. This paradox leads
us to believe one should be careful when using posterior sampling for regret minimization. While
this is natural for Bayesian inference, things seem to be much more complex when solving bandit
problems, which feature both inference and control/exploration.

5 Regret Analysis

In this section, we describe how to prove our main result. Due to space constraints, some proof
elements are relegated to the appendix. In particular, to make this proof self-contained, we reproduce
(without their proofs) the results from previous work that we use for our analysis. A reader can try to
follow the proof with the help of the diagram in figure 2.

A fundamental idea of our analysis is to consider the event At where both events occur :

@s P rts,@A P A : |AJθptq ´ AJµ‹| ď C1σ
?
m ln tAJV

1
2 psqA,

and |ts P rts : A‹Jθpsq ě A‹Jµ‹u| ě C2t
α

Where C1 “
?
8 `

?
72, C2 “ 1

213{4`C2
3 {2C3

?
2π

, pC3q2 “ 1.238, α “ 3{4 ´ p1{2qpC3q2 « 0.131.

When At occurs, we say that we observe a clean run up to time t. A clean run up to time t implies
that the Thompson sample of any action A at any time s P rts cannot exceed the sum of its expected
value and a bonus proportional to AJV

1
2 ptqA, which can be interpreted as the confidence bonus

used in the CUCB algorithm. A clean run also implies that there exist many instants at which the
Thompson sample of the optimal action is at least as large as its expected reward A‹Jµ‹.

5.1 Probability of observing a clean run

We first now show that most runs are clean, i.e., clean runs occur with high probability. Proposition 2
states that the probability of a non-clean run up to time t is much smaller than 1{t, and therefore
non-clean runs cause little regret.

5



Proposition 2. For all t ě C5, we have PpAtq ě 1´4dt´2 ´ t´1pln tq´2 ´e´C4t
α

with C4 “ C2{8
and C5 “ 23.

Proof : The proof is relatively technical, and involves decomposing At according to the fluctuations
of θptq and pµptq. We decompose the Thompson sample of the optimal action as follows:

A‹Jθpsq “ A‹Jµ‹ ` rU‹psq ` S‹psqs

b

A‹JV psqA‹

with

U‹psq :“
A‹J

ppµpsq ´ µ‹q
b

A‹JV psqA‹

and S‹psq :“ σ
a

2gpsq
A‹JV 1{2psqZpsq
b

A‹JV psqA‹

which represent the deviation between the empirical mean and the expected reward, and the deviation
of the Thompson sample from the expected value of the Thompson sample.

We introduce the following deviation events

Bt :“ tmax
sPrts

}V ´ 1
2 psqpµ‹ ´ pµpsqq}8 > σ

?
8 ln tu Ct :“ tmax

sPrts
}Zpsq}8 ě

?
6 ln tu

Et :“ t|ts P rts : S‹psq ě σ
a

2fptqu| ď C2t
αu Dt :“ tmax

sPrts
U‹psq ě σ

a

2fptqu.

Each of those events can be interpreted as follows. Bt means that the empirical mean of some item
deviates from its expected value at least once, Ct means that the randomization in the Thompson
sample is abnormally large at least once, Dt implies that the empirical mean of the optimal action
deviates from its expected value at least once, and Et means that there exist too few instants at which
S‹ptq is reasonably large.

Assume that none of Bt, Ct, Dt, Et occur. For all A P A and all s P rts:

|AJθpsq ´ AJµ‹| 6 |AJppµpsq ´ µ‹q| ` |AJpθpsq ´ pµpsqq| ď C1σ
?
m ln tAJV 1{2psqA

since if Bt does not occur:

|AJppµpsq ´ µ‹q| ď σ
?
8 ln tAJV 1{2psqA

and if Ct does not occur and because gptq ă 2p2m ` 1q ă 6m see lemma f. 7:

|AJpθpsq ´ pµpsqq| ď σ
?
72m ln tAJV 1{2psqA

Furthermore if Dt and Et do not occur, there exists at least C2t
α instants such that S‹psq ě σ

a

2fptq

and U‹psq ě ´σ
a

2fptq, which implies A‹Jθpsq ě A‹Jµ‹. This means that:

|ts P rts : A‹Jθptq ě A‹Jµ‹u| ě C2t
α

Therefore At occurs, and we have a clean run. Hence PpAtq ě 1´PpBtq ´PpCtq ´PpDtq ´PpEtq.

We now upper bound the probability of each event separately.

5.1.1 Probability of Bt

Using a union bound PpBtq ď
ř

iPrds P
´

maxsPrts

a

Vipsqpµ‹
i psq ´ pµpsqq ě σ

?
8 ln t

¯

ď 2dt´2.

We used the concentration inequality first derived by [16] in their analysis of CUCB and recalled in
lemma 7.

5.1.2 Probability of Ct

Using a union bound and a Chernoff bound for the Gaussian distribution (lemma 10), wheres Q is the
tail function of the standard Gaussian distribution :

PpCtq ď
ÿ

iPrds

ÿ

sPrts

P
´

|Zipsq| ě
?
6 ln t

¯

ď 2tdQp
?
6 ln tq ď 2td expp´3 ln tq “ 2dt´2

6



5.1.3 Probability of Dt

We have for t > 2,PpDtq ď t´1pln tq´2 from the concentration inequality derived by [10] in their
analysis of ESCB and recalled in lemma 5.

5.1.4 Probability of Et

In order to control the probability of Et, consider the following counting process:

W psq “
ÿ

uPrss

1tS‹puq ě σ
a

2fptqu

We wish to show that, with high probability, W psq ě C2t
α. One may readily check that W psq is a

sum of binary variables and that its conditional expected increment verifies:

ppsq “ EpW psq ´ W ps ´ 1q|Hpsqq “ PpS‹psq ě σ
a

2fptq|Hpsqq “ Qp
a

fptq{gpsqq

since, conditional to Hpsq, S‹psq has a gaussian distribution with mean 0 and variance 2gpsq. Let us
lower bound of the sum of p. By considering t ě C5 we have

ÿ

sPrts

ppsq ě pt{2qppt{2q “ pt{2qQp
a

fptq{gpt{2qq ě pt{2qQpC3

a

lnpt{2qq ě 2C2t
α

using the fact that p is increasing in s, and the study of fptq
gpt{2q

done in lemma f. 1 , and lemma 10 on
the asymptotic behaviour of the Q function.

We can now conclude by applying a multiplicative Azuma-Hoeffding style bound to W psq presented
in lemma 6 in the appendix. With C4 “ C2{8 we have :

PpEtq ď P pW ptq ď C2t
αq ď P

¨

˝W ptq ď p1{2q
ÿ

sPrts

ppsq

˛

‚ ď e´ 1
8

ř

sPrts ppsq
ď e´ 1

8C2t
α

“ e´C4t
α

5.1.5 Putting everything together

Adding up the four previous bounds, for all t ě C5,PpAtq ě 1 ´ 4dt´2 ´ t´1pln tq´2 ´ e´C4t
α

.

5.2 Thompson sample for the optimal action on clean run

We have already established that clean runs occur with high probability, and now we concentrate on
how the algorithm behaves on those runs. Proposition 3 further shows that the optimal action will be
selected numerous times when a clean run occurs. In turn, the Thompson sample of the optimal action
will be arbitrarily close to its expected reward. This argument is the cornerstone of our analysis (that
we believe to be missing in the previous analysis of [20]) and will allow us to control the transient
behaviour of the algorithm.
Proposition 3. For t ě P1pm, d, 1

∆min
, σq, if At occurs, then we must have MA‹ ptq ě C6t

α

and A‹Jθptq ě A‹Jµ‹ ´ hptq. With P1 a polynomial in m, d, 1
∆min

, σ, C6 “ C4{2, and hptq “

C1σm
b

m ln t
C6tα

. It is noted that limtÑ8 hptq “ 0

Proof: Let us consider a clean run. We can count the number of times the optimal action was not
chosen and the variance term of the action is greater than ∆min:

ˇ

ˇ

ˇ

!

C1σ
?
m ln tAJpsqV

1
2 psqApsq > ∆min

)
ˇ

ˇ

ˇ
ď

ÿ

iPrds

ˇ

ˇ

ˇ

ˇ

ˇ

#

i P Apsq, C1σ

d

m ln t

Nipsq
>

∆min

m

+
ˇ

ˇ

ˇ

ˇ

ˇ

ď d
C2

1σ
2m3 ln t

∆2
min

And since we have a clean run: |ts P rts : A‹Jθpsq ě A‹Jµ‹u| ě C2t
α. At those times, if the

variance term of the action played is less than ∆min, then it means that the optimal action has been
played due to the first condition of At. So we get :

MA‹ ptq ą C2t
α ´ d

C2
1σ

2m3 ln t

∆2
min

ě C6t
α

7



With C6 “ C2{2 for t ě P1pm, d, 1
∆min

, σq :“
`

1
α

˘1` 2
α
`

1 ´ 1
e

˘´1{α
´

C2
1

C2

¯1`1{α ´
dσ2m3

∆2
min

¯1`1{α

using lemma f. 8. Recall that under At :

|A‹Jθptq ´ A‹Jµ‹| 6 C1σ
?
m ln tAJV 1{2psqA.

Since MA‹ ptq ě C6t
α has been selected at least C6t

α times up to time t, we have A‹JV 1{2A‹ ď
m?
C6tα

so we get the announced result :

|A‹Jθptq ´ A‹Jµ‹| ď C1σm

c

m ln t

C6tα
“ hptq

5.3 Regret upper bound

We can now analyze the regret. Let us define some more events at time t:

Zt :“ t∆ptq ą 0u Ht :“

"

AJptqpθptq ´ pµptqq ą σ

b

8f̃ptqAJptqV ptqAptq

*

Gt :“

"

AJptqpθptq ´ µ‹q ą
3∆ptq

4

*

Ft :“

"

Di P Aptq, pµiptq ´ µ‹
i ą

∆min

4m

*

with f̃ptq :“ 2
´

ln p|A|tq ` pm ` 2qp1 ` d ln 2q lnpln tq `
mp1`d ln 2q

2 ln p1 ` eq

¯

.

The event Zt means a suboptimal play. Ft implies that the empirical mean of one of the items in the
action selected at time t deviates from its expectation. Gt means that the Thompson sample of the
decision played is far from its true value, and finally, Ht is for when the Thompson sample from the
arm played is far from its empirical mean. The complete event system decomposed as follows.

5.3.1 Regret due to sAt

Using proposition 2 we have that PpsAtq ď 4dt´2 ` t´1pln tq´2 ` e´C4t
α

. Then we can use the
fact that

ř

tPN‹
1
t2 “ π2

6 ,
ř

tPN‹
1

tpln tq2 ă 4. And furthermore, with lemma f. 9 we have that
ř

tPN‹ e´C4t
α

ă
C

´1{α
4

α Γp 1
α q. Therefore, the regret caused by sAt is upper bounded by:

ÿ

tPrT s

Er∆ptq1
 

sAt

(

s ă ∆max

ÿ

tPrT s

PpsAtq ă ∆max

«

d
2π2

3
`

C
´1{α
4

α
Γ

ˆ

1

α

˙

` 4

ff

.

5.3.2 Regret due to sGt X At

We use proposition 3 and we get that for t ě P1pm, d, 1{∆min, σq, A‹Jθptq ą A‹Jµ‹ ´ hptq.
Combining with event sGt, we know that when hptq ă ∆min{4, the only action that can be played

is the optimal one. We recall the formula of hptq “ C1σm
b

m ln t
C6tα

And using lemma f. 8, this

happens for t ą P2pm, 1
∆min

, σq :“
`

1
α

˘1`2{α `
1 ´ 1

e

˘´1{α
´

16C2
1

C6

¯1`1{α ´
σ2m3

∆2
min

¯1`1{α

So the
regret caused by this term is upper bounded by :

ÿ

tPrT s

Er∆ptq1
 

sGt X At

(

s ă ∆max max tP1 pm, d, 1{∆min, σq , P2 pm, 1{∆min, σqu .

5.3.3 Regret due to Ft

This result comes from lemma 2 from [6] and is reproduced here in lemma 8. By setting ε “ ∆min

4 ,
we have

ÿ

tPrT s

Er∆ptq1 tFtus ă d∆max

ˆ

32m2σ2

∆2
min

˙

.

5.3.4 Regret due to Ht

We show in lemma 9 in the appendix that PpHtq ă 1
t2 and

ř

tPrT s E r∆ptq1 tHtus ă ∆max
π2

6 .

8



5.3.5 Regret due to sFt X Gt X sHt

We use lemma 4 in this appendix, and we get with C “ 768, C 1 “ 2304 ln 2 that :
ÿ

tPrT s

Er∆ptq1
 

sFt X Gt X sHt

(

s 6
384σ2d lnmf̃pT q

∆min
and

384σ2d lnmf̃pT q

∆min
ă C σ2d lnm

∆min
lnT ` C 1 σ2d2m lnm

∆min
ln lnT ` 1152σ2md2 ln 2 lnp1`eq

∆min
.

5.3.6 Putting everything together

Finally, we can put everything together and obtain the regret upper bound found in 1 with the
following polynomial constant term :

P

ˆ

m, d,
1

∆min
,∆max, σ

˙

“ ∆max

«

C
´1{α
4

α
Γ

ˆ

1

α

˙

` 4

ff

` d∆max

ˆ

32m2σ2

∆2
min

`
5π2

3

˙

` ∆max

ˆ

P1

ˆ

m, d,
1

∆min
, σ

˙

` P2

ˆ

m,
1

∆min
, σ

˙˙

` 1152
σ2md2 ln 2 lnp1 ` eq

∆min
.

The degree of this polynomial depends on 1 ` 1{α ă 10 with α “ 0.131. So the degrees of the
polynomial in m, d, 1{∆min, σ,∆max are respectively 30, 10, 20, 20, 1.

6 Numerical experiments

In this section we perform numerical experiments with Beta CTS, BG-CTS and ESCB on a case
where there are only two actions A “

 

A1, A2
(

of size m “ d{2 with A1 “ p1, ..., 1, 0, ..., 0q

and A2 “ p0, ..., 0, 1, ..., 1q. This action set exhibited exponential regret in [24]. We set µ‹ “

p0.7, ..., 0.7, 0.9, ..., 0.9q with a Bernoulli distribution. The algorithm Beta CTS Uniform prior is
initialized with the uniform distribution, while the Beta CTS Jeffreys is initialized with the Jeffreys
prior on r0, 1s, which puts more weight around the extremities of r0, 1s, increasing exploration.

(a) Average regret over time (b) Average final regret as a function of m

In the first experiment, we set a time horizon of T “ 2 ˆ 104, and each decision has m “ 50 items.
We run the experiment 100 times and plot the average regret over time and two empirical standard
deviations in Figure 1a. The regret is nearly linear for the Beta-based Thompson samplings, whereas
the subgaussian Thompson sampling and ESCB showcase regret of magnitude much lower. We set
a time horizon in the second experiment T “ 1 ˆ 104. For each decision size m P t5, 25, 45, 65u,
we run the experiments 150 times, and we plot the final regret as a function of m in Figure 1b. In
the Beta-based Thompson samplings, the final regret and its variance rapidly increase with m. In
comparison, BG-CTS and ESCB do not seem to be affected.

7 Conclusion

We proposed a Boosted variance Gaussian Thompson Sampling for linear combinatorial bandits
(BG-CTS) and proved using novel strategies that its regret is bounded polynomially. This variant of
TS far outperforms the classical TS by several orders of magnitude on a 2 decisions Bernoulli reward
example.
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A Glossary

List notation related to problem setting

Notation Description Page
List

rT s Set of time step until T : t1, 2, ..., T u 1
A Combinatorial set of interest include in t0, 1ud 1
Aptq Action taken at time t 1
d Number of arms, dimension of the problem 1
m Maximal size of a decision 1
Xptq Random vector of dimension d representing the reward of each arm at time t 1
Y ptq Observation made by the learner at time t : Y ptq :“ Aptq d Xptq 1
d The Hadamard operator of two vectors or matrix A,B of the same size. pA d Bqi,j :“

Ai,jBi,j

1

µ‹ The true unknown parameters 1
A‹ The optimal action 1
∆A The reward gap between the optimal decision and the decision A 1
∆min The minimal reward gap, the reward gap between the optimal decision and one of the

second best decision
1

∆max The maximal reward gap, the reward gap between the optimal decision and one of the
worse decision

1

∆ptq Reward gap at time t of the action Aptq 1
σ Sub-gaussian constant of the problem 1
RpT, µ‹q Regret at time T for instance µ‹ 1

List notations related to the algorithm and its analysis

Notation Description Page
List

pµptq The empirical mean of the parameters at time t 3
θptq Sample from the posterior distribution of µ‹ given by the algorithm at time t 2
Nptq Number of times each arm has been selected until time t 3
MAptq Number of time the action A has been selected until time t 3
V ptq Squared diagonal matrix containing the inverse of Nptq. The variance of the Thompson

samples are proportional to V(t)
3

Hptq History up to time t, (The observation at time t is not included) 4
αptq First parameter of the Beta distribution at time t 4
βptq Second parameter of the Beta distribution at time t 4
gptq Bonus variance added to the Thompson samples distribution at time t 4
fptq Maximal concentration inequality function at time t, given by [10] 4
f̃ptq Upper bound on the quantity gptq ˚ lnp|A|q. Controls the deviation random part of the

Thompson sample of the arm played.
8

hptq Vanishing term that controls how close the Thompson sample of the optimal action is to
its true mean during a clean run

7

Zptq Random i.i.d. Gaussian unitary vector of dimension d folowing N p0, Idq used to
generate the Thompson samples at time t

4

Q Tail function of a standard Gaussian distribution Qpxq :“ PpN p0, 1q ě xq 6
U‹psq Quantity related to the empirical mean of the best decision at time s 6
S‹psq Quantity related to the random part of the Thompson sample of the best decision at time

s
6

W psq Counting process of the number of times the random part of the Thompson sample of
the mean of the best decision deviated

7

P1 Polynomial term in m, d, 1{∆min, σ that represents the waiting time so that the best
action is played more than fractional power of t

8
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Notation Description Page
List

P2 Polynomial term in m, 1{∆min, σ that represents the waiting time so that the average
mean of the best action is close to its true mean

8

P Polynomial term in m, d, 1{∆min, σ replacing the exponential term in the previous
annalysis of [10]

9

List of events

Notation Description Page
List

At Event of a clean run at time t 5
Bt The empirical mean deviated too much during the run until time t 6
Ct The random vector Zptq deviated to much during the run until time t 6
Dt The empirical mean of the reward of the optimal action deviated too much during the

run until time t
6

Et The random part of the Thompson sample of the best decision deviated too few times
during the run until time t

6

Zt The algorithm plays a suboptimal decision at time t 8
Ft At time t, the empirical mean of one of the arms played is too far from the true mean 8
Gt At time t, the Thompson sample of the decision played is too far from its true mean 8
Ht At time t, the random part of the Thompson sample of the decision played deviated too

much
8

List of the constants used in the paper

Notation Description Page
List

C1 C1 “
?
8 `

?
72 5

C2 C2 “ 1

213{4`C2
3 {2C3

?
2π

5

C3 C3 “
?
1.238 5

C4 C4 “ C2{8 5
C5 C5 “ 23 5
C6 C6 “ C4{2 7
C C “ 768 constant in front of the log term in the regret bound 9
C 1 C 1 “ 2304 lnp2q constant in front of loglog term in the regret bound 9
α α “ 3{4 ´ p1{2qpC3q2 « 0.131 5

13



B Algorithm

Here are the algorithm for Beta Combinatorial Thompson Sampling (Beta CTS) and Boosted Gaussian
Combinatorial Thompson Sampling (BG-CTS) that we use in the paper.

Algorithm 1: Beta Combinatorial Thompson Sampling (Beta CTS) (with a uniform prior)

1 Initialization : Uniform prior for beta distribution αp0q “ βp0q , r1sd ;
2 for t “ 1, ..., T do
3 Draw θiptq „ Betapαipt ´ 1q, βipt ´ 1qq

4 Compute Aptq “ argmaxAPAtAT θptqu

5 The environment draws Xiptq „ Berpµ˚
i q

6 Observe Xptq d Aptq, Receive reward AptqTXptq
7 Update priors αptq “ αpt´ 1q `Xptq dApsq and βptq “ βpt´ 1q ` pAptq ´ Xptq d Aptqq

8 end

Algorithm 2: Boosted Gaussian Combinatorial Thompson Sampling (BG-CTS) (with improper
prior)
Input: λ ą 0, σ ą 0

1 Initialization : @i P rds, Nip0q “ 0, pµip0q “ 0 Uniform improper distribution on Rd, select
decisions until miniPrds Niptq ą 0. Update @i P rds, Nip0q, µip0q accordingly. Generate
@t P rT s,@i P rds, Ziptq „ N p0, 1q i.i.d.

2 for t “ 1, ..., T do
3 Compute θiptq “ pµipt ´ 1q ` σ

b

2gptq
Nipt´1q

Ziptq.

4 Compute Aptq “ argmaxAPAtAT θptqu.
5 The environment draws @i P rds, Xiptq.

6 Observe Xptq d Aptq, Receive reward AptqTXptq.

7 Update @i P Aptq, Niptq “ Nipt ´ 1q ` 1, pµiptq “
Niptq´1
Niptq pµipt ´ 1q `

Xiptq
Niptq .

8 end

C Proofs of main results

Here in 2 is the diagram of the regret decomposition on the complete event system in green. In red
is the novel part of the proof that we introduce. It replaces the step 4 of the proof in [20] wich was
inspired by [23] who we think addapted ideas from [2] and [14]. We, in some sense, rediscovered
those ideas for the case of combinatorial bandits by controling the numbre of times the optimal action
is played
Lemma 4. We have :

sFt X Gt X sHt Ă

"

∆t ă 2σ

b

8f̃ptqAJptqV ptqAptq

*

.

And therefore (This is lemma 4 from [19]):
ÿ

tPrT s

Er∆t1
 

sFt X Gt X sHt

(

s ď
ÿ

tPrT s

E
„

∆ptq1

"

∆t ă 2σ

b

8f̃ptqAJptqV ptqAptq

*

.

6 384σ2 lnmf̃pT q
ÿ

iPrds

1

∆i,min
.

And

500σ2d lnmf̃pT q

∆min
ă C

σ2d lnm

∆min
lnT ` C 1 σ

2d2m lnm

∆min
ln lnT ` 1152

md2 ln 2 lnp1 ` eq

∆min

with C “ 768, C 1 “ 2304 ln 2.
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Proof. Gt implies that we have

3∆ptq

4
6

ÿ

iPAptq

pθiptq ´ µ‹
i q

6
ÿ

iPAptq

pθiptq ´ pµiptqq `
ÿ

iPAptq

ppµipt ´ 1q ´ µ‹
i q

Then sFt respectively sHt imply that
ř

iPAptq

ppµiptq ´ µ‹
i q ă ∆t

4 respectively
ř

iPAptq

pθiptq ´ pµiptqq ă

σ

b

8f̃ptqAJptqV ptqAptq. Therefore, we have that :

∆ptq ă 2σ

b

8f̃ptqAJptqV ptqAptq

Then because f̃ is increasing, we can use lemma 4 from [19] with βi,T “ 64σ2f̃pT q. And we have
that @i, pi “ 1 because we are not working on triggering bandits. ( βi,T and pi are from their notation,
We can also notice that because each arm is played at least once in our algorithm we do not have the
first term in d∆max that is counted elsewhere) We have that :

ÿ

tPrT s

Er∆ptq1
 

sFt X Gt X sHt

(

s

6
ÿ

tPrT s

E
„

∆ptq1

"

∆ptq ă 2σ

b

8f̃pT qAJptqV ptqAptq

*

6 64σ2f̃pT q
ÿ

iPrds

3 ` lnpmq

∆i,min
.

To make the formula more readable we use that for m ą 2 we have that 5 lnm ą 3 so that :

64σ2f̃pT q
ÿ

iPrds

3 ` lnpmq

∆i,min
ă 384σ2f̃pT q

ÿ

iPrds

lnpmq

∆i,min

By definition of f̃ , we have that C “ 768. And assuming m > 1, d > 3 we have that pm ` 2qp1 `

d ln 2q ă 3dm ln 2 so C 1 can be taken as 2304 ln 2 and the last constant is 1152 lnp2q.

D Concentration results

Lemma 5. For t > 2, let λ ą 0, let δt ą 0. Let fpδ̃tq :“ lnp 1
δt

q ` m ln ln t ` m
2 ln

`

1 ` e
λ

˘

. Then
the event Dt “ tmaxsPrts U

‹psq ě σ
a

2p1 ` λqfpδtqu happen with probability PpDtq ă δt

Proof. See lemma 3 of [10]. Moreover, notice that in their lemma 6, they use a union bound on all
the possible values of pNiqiPA‹ P rtsm to get their result. (This is symbolized by their set Da)

Lemma 6 (Multiplicative Azuma Chernoff). Let pWtqtPN‹ be a sum of random variable : @t P

N‹,Wt “
t
ř

s“1
Xs Where pXtqtPN‹ verify that there exist pptqtPN Ps0, 1r such that :

@t P N‹, PpXt “ 1|Hpt ´ 1qq “ pt,

PpXt “ 0|Hpt ´ 1qq “ 1 ´ pt.

And pHptqqtPN‹ is a filtration where @t P N‹, Xt is Hptq measurable. We note mt “
t
ř

t“1
pt1 .
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Let t P N‹,@δ ą 0 we have that :

P pWt > p1 ` δqmtq ă expp
δ2mt

2 ` δ
q

and @ 1 ą δ > 0

P pWt 6 p1 ´ δqmtq ă expp
δ2mt

2
q

Proof. For the first inequality, let t P N‹, λ, x P R`, we have by Markov inequality:

PpWt > xq “ PpλWt > λxq

“ PpeλWt > eλxq

6 EpeλWtqe´λx

Let s P rts, by definition of Xs and using that @x P R, exppxq > 1 ` x we have that :

EreλXs |Hps ´ 1qs “ pse
λ ` p1 ´ psq

“ pspeλ ´ 1q ` 1

6 expppspeλ ´ 1qq.

Then, by the tower property of the expectation and induction:

EpeλWtq “ E
“

eλWt´1E
“

eλXt |Ht´1

‰‰

6 E
“

eλWt´1
‰

expppspeλ ´ 1qq

6 exp

¨

˝

ÿ

sPrts

pspeλ ´ 1q

˛

‚ .

Combining with the first equation, we have :

PpWt ą xq ă exp
`

mtpe
λ ´ 1q ´ λx

˘

This is true for all x, λ P R` so by setting λ “ lnp1 ` δq and x “ p1 ` δqmt we have :

PpWt ą p1 ` δqmtq ă exp
´

mtpe
lnp1`δq ´ 1q ´ p1 ` δq lnp1 ` δqmt

¯

6 exppmtpδ ´ p1 ` δq lnp1 ` δqqq

6 expp´
δ2mt

2 ` δ
q

Because @δ ą 0, δ ´ p1 ` δq lnp1 ` δq ă ´δ2

2`δ .

For the second inequality, let λ P R`:

PpWt ă xq “ Pp´λWt ą ´λxq

“ Ppe´λWt ą e´λxq

6 Epe´λWtqeλx

Let s P rts, by definition of Xs we have that :

Ere´λXs |Hps ´ 1qs “ pse
´λ ` p1 ´ psq

“ pspe´λ ´ 1q ` 1

6 expppspe´λ ´ 1qq

17



Then, by the tower property of the expectation and induction:

Epe´λWtq “ E
“

e´λWt´1E
“

e´λXt |Ht´1

‰‰

6 E
“

e´λWt´1
‰

expppspe´λ ´ 1qq

6 exp

¨

˝

ÿ

sPrts

pspe´λ ´ 1q

˛

‚

Combining with the first equation, we have :

PpWt ă xq ă exp
`

mtpe
´λ ´ 1q ` λx

˘

This is true for all x, λ P R` so by setting λ “ ´ lnp1 ´ δq and x “ p1 ´ δqmt we have :

PpWt ă p1 ´ δqmtq ă exp
´

mtpe
lnp1´δq ´ 1q ´ p1 ´ δq lnp1 ´ δqmt

¯

6 exppmtp´δ ´ p1 ´ δq lnp1 ´ δqqq

6

ˆ

e´δ

p1 ´ δqp1´δq

˙mt

6 e´
δ2mt

2

Lemma 7. Let t P rT s, let us consider the event :

Bptq :“

"

max
sPrts

}V
1
2 psq pµ‹ ´ pµpsqq }8 ą σ

?
8 ln t

*

.

We have that PpBptqq ă d
t2 . This result can be in part found in [16] in their proof of lemma 1.

Proof. We control it with the deviation of individual arms.

Biptq :“

#

Ds P rts, |µ‹
i ´ pµipsq| ą σ

d

8 ln t

Nipsq

+

We have by a double union bound, and because the rewards are σ2 subgaussian using Hoeffding:

PpBiptqq “
ř

sPrts

ř

nPrss

Pp|µ‹
i ´ pµipsq| ą σ

b

8 ln t
n , Nipsq “ nq

ă
ř

sPrts

ř

nPrss

Pp|
ř

kPrns

pXipkq ´ µ‹
i q | ą σ

?
8n ln tq

ă 2t2 expp´4 ln tq
ă 2

t2

We have that Bptq Ă
Ť

iPd Miptq. So by union bound PpBptqq ă 2d
t2 .

Lemma 8. Let i P rds, t P rT s, let us consider the event :

Fptq :“

"

Di P Aptq, pµiptq ´ µ‹
i ą

∆min

2m
´

ε

m

*

We have :

E

»

–

ÿ

tPrT s

1

"

i P Aptq, pµiptq ´ µ‹
i ą

∆min

2m
´

ε

m

*

fi

fl ă
8m2σ2

p∆min ´ 2εq2

And :

E

»

–

ÿ

tPrT s

∆ptq1 tFptqu

fi

fl ă d∆max

ˆ

8m2σ2

p∆min ´ 2εq2

˙

This is a result from [6] lemma 2 adapted to the σ2 subgaussian case.
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Proof. We use a union bound and Hoeffding’s inequality for σ2 subgaussian random variable. Let
i P rds,

E

»

–

ÿ

tPrT s

1

"

i P Aptq, pµiptq ´ µ‹
i ą

∆min

2m
´

ε

m

*

fi

fl

ăE

«

8
ÿ

t“1

1

"

i P Aptq, pµiptq ´ µ‹
i ą

∆min

2m
´

ε

m

*

ff

ăE

«

8
ÿ

n“1

1

"

pµi ´ µ‹
i ą

∆min

2m
´

ε

m
,Ni “ n

*

ff

ă

8
ÿ

n“1

P
ˆ

pµi ´ µ‹
i ą

∆min

2m
´

ε

m
,Ni “ n

˙

ă

8
ÿ

n“1

exp

˜

´
n

2σ2

ˆ

∆min

2m
´

ε

m

˙2
¸

ă

exp
´

´ 1
2σ2

`

∆min

2m ´ ε
m

˘2
¯

1 ´ exp
´

´ 1
2σ2

`

∆min

2m ´ ε
m

˘2
¯

ă
8m2σ2

p∆min ´ 2εq
2 .

Then decomposing Fptq with a union bound of the
 

i P Aptq, pµiptq ´ µ‹
i ą ∆min

2m ´ ε
m

(

and summing
over i P rds we get the second result.

Lemma 9. Let t P rT s we have :

P
ˆ

AJptqpθptq ´ pµptqq > σ
b

8gptq ln p|A|tqAJptqV ptqAptq|Hptq

˙

ă
1

t2

Which implies that PpHptq|Hptqq ă 1
t2 .

Defining :

f̃ptq :“ p1 ` λq

´

ln p|A|tq ` pm ` 2qp1 ` d lnp2qq lnpln tq `
mp1`d lnp2qq

2 ln
´

1 `
e

λ

¯¯

,

we have that gptq lnp|A|tq ă f̃ptq and thus:

P
ˆ

AJptqpθptq ´ pµptqq > σ

b

8f̃ptqAJptqV ptqAptq|Hptq

˙

ă
1

t2

Finally:

E

»

–

ÿ

tPrT s

∆ptq1 tHptqu

fi

fl ă ∆max
π2

6

Proof. Let c ą 0 by union bound we have :
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P
ˆ

AJptqpθptq ´ pµptqq > cσ
b

2gptqAJptqV ptqAptq|Hptq

˙

ă
ÿ

APA
P

˜

AJptqpθptq ´ pµptqq

σ
a

2gptqAJptqV ptqAptq
> c|Hptq

¸

ă
ÿ

APA
P

˜

σ
a

2gptqAJptqV
1
2 ptqZptq

σ
a

2gptqAJptqV ptqAptq
> c|Hptq

¸

“|A|Qpcq

ă
|A|

c
?
2π

expp´
c2

2
q

ă|A| expp´
c2

2
q

By setting c “
a

4 ln p|A|tq ą 1 we have |A| exp
´

´ c2

2

¯

“ 1
t2 hence the first result.

Then we have that : lnp|A|q 6 d lnp2q so that :

ln p|A|tq

ln t
6 lnp|A|q ` 1

6 1 ` d lnp2q

Hence, the second result.

And by summing over t:

E

»

–

ÿ

tPrT s

∆ptq1 tHptqu

fi

fl ă
ÿ

tPrT s

∆maxE rE r1 tHptqu |Hptqss

ă
ÿ

tPrT s

∆maxE rPpHptqq|Hptqs

ă
ÿ

tPrT s

∆max
1

t2

ă ∆max
π2

6

We recall simple tail bounds for Gaussian random variables. (see for instance [12])

Lemma 10. Consider Z „ Np0, 1q, then we have

PpZ ě xq “ Qpxq “
1

?
2π

ż `8

x

e´ z2

2 dz

furthermore for all x ě 0:

1
?
2π

x

1 ` x2
e´ z2

2 ď Qpxq ď
1

?
2π

1

x
e´ x2

2

As well as:

Qpxq ď e´ x2

2

It is also noted that by symmetry Pp|Z| ě xq “ 2Qpxq.
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E Functions Study

Lemma f. 1. Let f be the following function :

fpt,m, λq :“ p1 ` λq

´

ln t ` pm ` 2q ln ln t `
m

2
ln
´

1 `
e

λ

¯¯

We have

@t ą 23,m P N‹, λ P R`,
fpt,m, λq

fp t
2 ,m, λq

6
fp23, 1, λq

fp 23
2 , 1, λq

6 1.282.

Proof.
fpt,m, λq

fp t
2 ,m, λq

“
p1 ` λq

`

ln t ` pm ` 2q ln ln t ` m
2 ln

`

1 ` e
λ

˘˘

p1 ` λq
`

lnp t
2 q ` pm ` 2q ln lnp t

2 q ` m
2 ln

`

1 ` e
λ

˘˘

Using f. 2 we have that :

fpt,m, λq

fp t
2 ,m, λq

6
ln t ` pm ` 2q ln ln t

lnp t
2 q ` pm ` 2q ln lnp t

2 q

Using f. 3 we have that for t ą 23,@m > 1

fpt,m, λq

fp t
2 ,m, λq

6
ln t ` 3 ln ln t

lnp t
2 q ` 3 ln lnp t

2 q

But thanks to f. 4, the right-hand side is decreasing in t, so :

@t ą 23,m P N‹, λ P R`,
fpt,m, λq

fp t
2 ,m, λq

6
fp23, 1, λq

fp 23
2 , 1, λq

6 1.282.

Lemma f. 2. Let a > b > 0 and let g : R` Ñ R` be the following function :

gptq :“
a ` t

b ` t

Then @t > 0, gptq ă gp0q ă a
b

Proof. Let t P R`, we have :

gptq “
a ` t

b ` t

“
a ` b ` t

b ` t
´

b

b ` t

“ 1 `
a ´ b

b ` t

So g is decreasing in t.

Lemma f. 3. The function

fpt,mq :“
ln t ` pm ` 2q ln ln t

lnp t
2 q ` pm ` 2q ln lnp t

2 q

is decreasing in m for t ą 23.

Which means that for t ą 23, for @m > 1 :

ln t ` pm ` 2q ln ln t

lnp t
2 q ` pm ` 2q ln lnp t

2 q
6

ln t ` ln ln t

lnp t
2 q ` 3 ln lnp t

2 q
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Proof. Let lpmq “ a`mb
c`md , its derivative is :

l1pmq “
bpc ` mdq ´ pa ` mbqd

pc ` mdq2
“

bc ´ ad

pc ` mdq2

So l1pmq ą 0 i.i.f. bc ´ ad ą 0. Furthermore, ln ln t lnp t
2 q ´ ln lnp t

2 q ln t ă 0 for t ą 23 So
@t ą 23, fpt,mq is decreasing in m and @t ą 23, fpt,mq ă fpt, 1q.

Lemma f. 4. The function :

fptq :“
ln t ` 3 ln ln t

lnp t
2 q ` 3 ln lnp t

2 q
,

is decreasing.

Proof. We differentiate, and we obtain

f 1ptq ă 0

ðñ p
1

t
`

3

t ln t
q

ˆ

ln

ˆ

t

2

˙

` 3 ln lnp
t

2
q

˙

´ p
1

t
`

3

t lnp t
2 q

qpln t ` 3 ln ln tq ă 0.

We expend and simplify :

p
1

t
`

3

t ln t
q

ˆ

ln

ˆ

t

2

˙

` 3 ln lnp
t

2
q

˙

´ p
1

t
`

3

t lnp t
2 q

qpln t ` 3 ln ln tq

“ ´
lnp2q

t
`

ˆ

3 lnp t
2 q

t ln t
´

3 ln t

t lnp t
2 q

˙

`

ˆ

3 ln lnp t
2 q

t
´

3 ln ln t

t

˙

`

ˆ

9 ln lnp t
2 q

t ln t
´

9 ln ln t

t lnp t
2 q

˙

.

We have :

3 ln t

t lnp t
2 q

ą
3 ln t

t ln t
ą

3 lnp t
2 q

t ln t

and

3 ln ln t

t
ą

3 ln lnp t
2 q

t

and

9 ln ln t

t lnp t
2 q

ą
9 ln ln t

t ln t
ą

9 ln lnp t
2 q

t ln t

Therefore @t ą 3, f 1ptq ă 0 and the function f is decreasing.

Lemma f. 5. Let c ą 1 be a positive constant and let f be the following function :

fptq “ Qpc
a

lnpt{2qq >
1

?
2π

c
a

lnpt{2q

1 ` c2 lnpt{2q
pt{2q´ c2

2
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Then for t ą 2e we have

fptq >
1

?
2π

1

2c
pt{2q´

c2` 1
2

2 “
1

?
2π

1

2
5
4 2

c2

2 c
t´

c2` 1
2

2

Proof. For t ą 2e we have that 1 ă c2 lnpt{2q so :

c
a

lnpt{2q

1 ` c2 ln pt{2q
ą

1

2c

1
a

lnpt{2q

For t ą 2e we have that 1
a

lnpt{2q
“ exp

`

´ 1
2 ln lnpt{2q

˘

ą exp
`

´ 1
4 lnpt{2q

˘

. Therefore :

fptq >
1

?
2π

c
a

lnpt{2q

1 ` c2 lnpt{2q
pt{2q´ c2

2 ą
1

?
2π

1

2c
pt{2q´

c2` 1
2

2

Lemma f. 6.
@t ą e,

ln ln t

ln t
ă

1

2
Lemma f. 7. Let f, g the following function :

fpt,m, λq :“ p1 ` λq

´

ln t ` pm ` 2q ln ln t `
m

2
ln
´

1 `
e

λ

¯¯

gptq “
fptq

ln t

For t ą e and t ą 1 ` e
λ we have ln ln t

ln t ă 1
2 thus

fptq ă p1 ` λq p2m ` 1q ln t,

and
gptq ă p1 ` λq p2m ` 1q .

Proof. For t ą e, ln t ą ln ln t and for t ą 1 ` e
λ , ln t ą lnp1 ` e

λ q thus the result

Lemma f. 8. Let α, c P R‹
`, two strictly positive constants such that c

α ą 1 and define the

function fptq :“ tα ´ c ln t. We have that @t ą

´

c
α ln c

α

1´ 1
e

¯
1
α

, fptq ą 0. Furthermore, we have :
´

c
α ln c

α

1´ 1
e

¯
1
α

ă
`

1
α

˘1` 2
α
`

1 ´ 1
e

˘´ 1
α c1` 1

α

Proof. Let’s study the function GpT q “ T ´ c ln
´

T
1
α

¯

“ T ´ c
α ln pT q. For T > c

αe by using the
concavity of the logarithm and differentiating T ÞÑ c

α ln pT q at the point c
αe we have that :

c

α
ln pT q ă

c

α
ln
´ c

α
e
¯

`

´

T ´
c

α
e
¯ 1

e

ă
T

e
`

c

α
ln
´ c

α

¯

Then for T > c
αe

T ´
c

α
ln pT q ą T ´

T

e
´

c

α
ln
´ c

α

¯

ą

ˆ

1 ´
1

e

˙

T ´
c

α
lnp

c

α
q
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So for T ą
c
α lnp c

α q

1´ 1
e

, T ´ c
α ln pT q ą 0. Which means that by a change of variable that for

tα ą
c
α lnp c

α q

1´ 1
e

ðñ t ą p
c
α ln c

α

1´ 1
e

q
1
α we have that fptq ą 0. Hence, the first result.

We have using that lnpxq ă x :

´

ln
c

α

¯
1
α

“

ˆ

1

α
ln
´´ c

α

¯α¯
˙

1
α

ă

ˆ

1

α

˙
1
α c

α

Finally, combined with the rest, we get the second result.

Lemma f. 9. Let c ą 0, α ą 0 the series
řJ

t“1 expp´ctαq converges when T Ñ `8 and :

8
ÿ

t“1

expp´ctαq ă
c´ 1

α

α
Γp

1

α
q

Proof. Because the function t ÞÑ expp´ctαq is decreasing, by an integral test for convergence, we
have that :

8
ÿ

t“1

expp´ctαq ă

`8
ż

0

expp´ctαqdt.

A primitive of the function : t ÞÑ expp´ctαq is T ÞÑ c´ 1
α

α

`8
ş

cTα

t
1
α ´1e´tdt. So :

8
ÿ

t“1

expp´ctαq ă
c´ 1

α

α

`8
ż

0

t
1
α ´1e´tdt ´ 0

6
c´ 1

α

α
Γp

1

α
q
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We introduced the setting and the assumption needed so that our main result is
applicable. We tried not to overstate our results and be as close as possible of our theoretical
results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: As a theoretical paper, we only claim that our result is true under some as-
sumptions. We discussed the computational complexity of our method under the assumption
that a certain linear combinatorial problem can be solved efficiently.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We clearly stated the assumptions needed for our main result to hold. We
provided complete proof of our results in the appendix with its lemmas. And we refer to
previous works by citing them when needed.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: While this is not an experimental-focused paper, we provided all the details
needed to reproduce the plots found section 6: The parameters used, the number of arms,
and the number of runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper generates synthetic data of the bandit model considered. The code
is available at https://github.com/RaymZhang/CTS-Mismatched-Paradox

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The parameters of the algorithm and the environment are provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We plot the confidence intervals of the regret in the simulation section, with 2
standard deviations error intervals.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Because of lack of space. Here they are: the experiments were run on a single
core of i9 (i9-12900H) laptop computer with 32GB of RAM with python 3. The experiments
took less than 1 hour to run.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute
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