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Abstract

We have proposed an optimal experimental design method for spectroscopic mea-
surement that can determine the appropriate number and placement of measure-
ment points in a rational manner. Spectroscopic measurement is a fundamental
experiment for material characterization. It is essential to determine the optimal
experimental points automatically for autonomous experiments, however they have
traditionally been decided by human expert. In this work, we have developed
a method for extracting prior information from a standard spectra database and
incorporating it into the Bayesian experimental design framework to determine the
optimal measurement points automatically. We verified the proposed method by
applying it to X-ray absorption spectrum measurements and evaluated its optimality
by typical analysis. We found that only 70% of the measurement points used in
previous studies were sufficient and also the determined points are consistent to
the experts’ intuition. The proposed method is expected to facilitate more efficient
and fully automated experiments in the future.

1 Introduction

Spectroscopy is a fundamental multi-modal (image + spectra) measurement technique for material
characterization that provides spectra reflecting the electronic or chemical states at each spatial
point [1, 2, 3]. Although useful, it is time-consuming because it involves capturing spectral informa-
tion with spatial information (2D, 3D), making it a multi-dimensional measurement.

In spectroscopy measurements, continuous spectra are often discretized for measurement, and
interpretation is performed by interpolation. Therefore, determining which points and how many
points to measure in the spectral dimension directly affects the measurement time and accuracy. Since
the optimal conditions for these measurements vary depending on the sample and the measurement
instruments, these conditions have traditionally been determined manually at each time. However,
for fully automated experiments [4, 5], it is extremely important to automatically determine these
conditions in a rational manner.

Ueno et al. proposed a method for adaptively determining the measurement points and the number of
them [6, 7]. However, this method can only be used when spectra are measured at each spatial point
individually. There are currently no established optimization methods that can be applied to cases
where multiple spectra are measured simultaneously, such as 3D measurements [1].

In this paper, we propose a method for determining the optimal condition in general spectroscopic
measurement case before conducting the experiment (not adaptively). Our method involves Bayesian
experimental design to find the optimal experimental conditions based on prior information [8, 9, 10].
We use standard spectra database [11] to obtain the prior information and determine “how many”
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and “which” energy points should be measured. Additionally, our approach enables determining the
minimum number of measurement points by evaluating the bias, which is the mean of the expected
measurement error when measurements are performed multiple times at specific energy points, and
the variance of the measurement results.

2 Method

To determine the optimal measurement points, we define an evaluation function for measurement
conditions called expected loss based on Bayesian experimental design [8, 9, 10]. The optimal
conditions can be obtained by minimizing this function. First, we present the overall expression
of the expected loss, followed by an explanation of each element in the formula. The relationship
between a standard Bayesian experimental design method are explained in Appendix A.1.

2.1 Overall formulation
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Figure 1: Construction of the evaluation function (expected loss). The expected loss can be calculated
by determining the evaluation function of the measurement points (xm,ym) when measuring a certain
spectrum f , and the probability of a certain spectrum being measured using a database. Then,
minimizing the expected loss provides the optimal measurement point.

Spectra are generally continuous and modeled as a function f(x), where x is an evaluation point
and f(x) is the value of the spectra curve. However, in computers and measurement devises, a
spectrum (x, f(x)) is treated as a vector taking values at sufficiently finely discretized input points
and their outputs. When the size of the discretized spectra is N , the spectrum is characterized by N
dimensional vectors x = (x1, . . . , xN ) and f = (f(x1), . . . , f(xN )). Additionally, measurement
noise is treated as zero-mean Gaussian with possibly varying standard deviation σ(x) depending on
the point x, and the corresponding N dimensional vector is denoted by σ ∈ RN .

The overall formula for the expected loss function, which serves as the evaluation function for the
measurement points xm ∈ RM ,M < N , can be represented as follows:

Ue(xm) =

∫
dym

∫
dfU(f ,xm,ym)N(ym|fxm , diag(σ2

xm
))p(f), (1)

where fxm ∈ RM is the subset of values in f and σ2
xm
∈ RM is the subset of values in σ at the

measurement points xm. Namely, we use xm as a indicator vector of length M which extracts subset
of points from a vector of length N . The function U(f ,xm,ym) in the integrand of Eq. (1) is called
the loss function, which is the evaluation function when a certain spectrum f is measured at the
measurement point xm and then ym is obtained. Note that diag(σ2

xm
) ∈ RM×M is a diagonal matrix

with elements diag(σ2
xm

)ii = σ2
xmi

, i = 1, . . . ,M . This formula captures meaningful concept as
shown in Fig. 1: It starts by generating a spectrum from a prior distribution, then obtains measurement
points by adding noise, and finally evaluates the measurement points by calculating the loss considered
the generated spectrum as ground truth of the measurement target. The formula can be considered as
calculating the expected value of the loss function at xm with respect to the prior distribution of the
spectral and the conditional distribution of the noise corrupted measurement. Note that the ground
truth is sampled probabilistically because it is more natural than considering the ground truth as
deterministic, since the object of measurement is unknown.
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2.2 Determination of prior probability distribution

In this paper, we used the standard spectra database to determine the spectral prior probability
distribution p(f) [11]. To facilitate subsequent analysis, the prior distribution is assumed to be
Gaussian distribution: p(f) = N(f |µ,K). The mean and variance are those of the spectra contained
within the spectra database, and the covariance is determined by setting the correlation of the points
xi, xj ∈ x with the parameter c: k(xi, xj) = exp

{
−(xi − xj)

2/c2
}

. The parameter c that means
correlation distances to other measurement points was determined by using the framework of type II
maximum likelihood estimation [12]. Details are provided in Appendix A.2.

2.3 Loss function and corresponding expected loss

We used the squared error between grand truth function (which is sampled from the prior distribution
constructed by using a database) and mean function of posterior distribution for the loss function:
U(f ,xm,ym) = ||f − µpost||2, where µpost represents the mean value of posterior distribution
p(f |xm,ym). We then can obtain the following representation of the expected loss by substituting
them into Eq. (1):

Ue(xm) =
∑
i

[k(xi, xi)− kM(xi)
TC−1

M kM(xi)], (2)

where (kM(xi))i = k(xi, xmi), i = 1, 2, . . . ,M . Details of calculations are given in Appendix A.3.
Finally, we can determine the optimal measurement points by identifying those that minimizing the
expected loss.

3 Experiment
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Figure 2: Result and evaluation of measurement points obtained by minimizing expected loss. (a)
Optimal measurement points when the number of measurement points are 30. (b) The performance
comparison between proposed method (red) and uniform step sampling (blue) by the accuracy of
linear regression, a typical analysis method.

3.1 Application to XAS

We applied the proposed method to the Fe-K edge X-ray absorption spectrum (XAS) measurement,
which measures the absorbance at each X-ray energy. We used the MDR XAFS Database [11] to
obtain the prior distribution. We then obtained the measurement points that optimize the expected
loss defined in Eq. (2) following the methodology described in the Appendix A.4. Experimental
details are provided in the Appendix A.5. Figure 2(a) shows the 30 measurement points optimized by
using the proposed method. Comparison between uniform step size sampling in various number of
measurement points are provided in Appendix A.6. The measurement points obtained are sparse in
the low-energy region, which is less informative, but are more densely sampled after the absorption
edge, where they provide greater information.

3.2 Evaluation

In order to evaluate the obtained measurement points quantitatively, we evaluated the performance
based on the accuracy of linear regression, which is a typical analysis method for XAS. We generated
spectra by randomly selecting two spectra from the standard spectra dataset, weighting them with
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randomly generated coefficients, and adding noise. Then, we performed linear regression using least
squares method on the generated spectrum using the standard spectra from which it was generated,
and calculated the error in the coefficients. We used the average error value from 10,000 trials to
assess the measurement points. Figure 2(b) shows the results of the performance evaluation at the
optimal measurement point for each number of measurement points. For comparison, it also shows
the results of the performance evaluation using equally spaced sampling. Appendix A.7 shows
the cases of three, four, and five randomly selected spectra, respectively. We confirmed that highly
efficient measurement points were realized, achieving the same level of accuracy as the conventionally
used 301 points of equally interval sampling with only about 71.4 % of the 215 points.

4 Discussion

Optimal number of measurement points. In the proposed method, we considered the spectrum
generated from the prior distribution as the ground truth spectrum of the measurement target and
calculated the squared error when performing regression solely based on the information provided
by the measurement points. The optimal number of measurement points can be determined by the
following step: first, determine the optimal measurement points in conditions where the measurement
points are fixed. Then, calculate the expected loss value for this configuration and compare it with the
desired accuracy. If the expected accuracy is not satisfactory, we can gradually increase the number
of measurement points to determine the optimal number of them.
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Figure 3: The result of bias-variance decomposition.
The point where bias and variance intersect repre-
sents the minimal number of measurement points.

Minimal number of measurement points.
Expected loss can be decomposed into
(squared) bias, which is the mean of the ex-
pected measurement error and its variance,
which is the variability of the predicted re-
sults as shown in Appendix A.8. Figure 3
shows the results of calculating each for the
measurement points. It can be observed that in
regions with few measurement points, the con-
tribution of bias is dominant, while in regions
with many measurement points, the variance
prevails. The minimal number of measure-
ment points can be considered as the number
of points that yield a small bias, allowing for
accurate average predictions. Therefore, the
intersection of bias and variance serves as an
indicator of the minimal number of measure-
ment points. In the application for XAS shown
in the previous section, the number of measurement points at the intersecting points is 27, which is
consistent with expert knowledge [13].

Limitations. Since our method assumes the existence of a database, it cannot be applied to
measurement techniques that do not have accumulated data. This problem is expected to be solved
by the expansion of the extensive simulation database that has been actively developed in recent
years [14]. In addition, the mean and variance in the database are used to create the prior distribution.
However, this approach may overlook small features, such as small peaks. A future task is to develop
a more effective prior distribution that takes into account factors such as the rate of change.

5 Conclusion

In this work, we formulated an evaluation function for the measurement points by using Bayesian
experimental design framework and demonstrated that efficient measurement points could be obtained
by minimizing this function. Additionally, we determined the optimal number of measurement points
under the given conditions and the minimal measurement points by discussing the evaluation function.
Since this method can be broadly applied to spectroscopic measurements, we believe it can be used
to determine optimal conditions in a wide range of automated experiments, contributing to the fully
automated material discovery.
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A Appendix

A.1 The relationship between previous Bayesian experimental design method

In this section, we derive the expected loss function from the Bayesian experimental design frame-
work.

In accordance with Chaloner’s review [8], optimal experimental design is achieved through the
optimization of “expected loss”. In the general case, when the experimental design is η, the values to
be estimated is θ ∈ Θ , and the measurement results are y ∈ Y , the optimal experimental design η∗

is given by minimizing (or maximizing) the following expected loss (or utility) function:

Ue(η) =

∫
Y

dy

∫
Θ

dθU(θ, η, y)p(θ, y|η), (A.1)

where U(θ, η, y) represents the loss function when the ground truth parameter value is θ, the experi-
mental design η and the measurement results are y, and Y ,Θ represent all possible measurement
results and parameters.

We then consider the aforementioned formulation with respect to spectral measurements. In this paper,
we replaced the spectrum measurement as the problem of estimating f(x) under the assumption that
y = f(x) + ϵ, where x represents the parameter to be varied in the spectral measurements, y is the
corresponding output and ϵ is the measurement noise. Therefore, the experimental design η is the set
of measurement points xm ∈ RM , and the parameter to be estimated, denoted as θ, is the function f
that represents a spectrum. To simplify the analysis , we treat the function f(x) instead as a pair of
vectors (x,f) of sufficiently finely discretized input and function values. Then the optimal set of
measurement points x∗

m can be obtained by minimizing the following expected loss function Ue(xm):

Ue(xm) =

∫
dym

∫
dfU(f ,xm,ym)N(ym|fxm , diag(σ2

xm
))p(f), (A.2)

where fxm ∈ RM is the subset of values in f and σ2
xm
∈ RM is the subset of values in σ at the mea-

surement points xm. Here, we assumed that the measurement noise is Gaussian noise and its standard
deviation be σ, and used p(f ,ym|xm) = p(ym|fxm ,xm)p(f) = N(ym|fxm , diag(σ2

xm
))p(f), where

p(f) is the prior distribution of the spectrum to be measured and diag(σ2
xm

) ∈ RM×M is a diagonal
matrix with elements diag(σ2

xm
)ii = σ2

xmi
, i = 1, . . . ,M .

A.2 Type II maximum likelihood estimation

Type II maximum likelihood estimation method involves calculating the marginal likelihood by the
measurement data and selecting parameter that maximizes it [12]. Instead, since the spectra of
standard spectra database have no measurement noise, we calculated the expected marginal likelihood
L:

L =
∑
i

∫
dy ln(N(y|µ, C))N(y|si, diag(σ2))

=
∑
i

(
− N

2
ln(2π)− 1

2
ln |C| − 1

2
Tr(ΣC−1)− 1

2
(si − µ)TC−1(si − µ)

)
, (A.3)

where si is a spectrum of standard spectral dataset, C = K + diag(σ2), Kij = k(xi, xj) and σ2

is the set of standard deviation of measurement noises at each point. We obtained optimal c by
maximizing L by calculating a value for each c discretized sufficiently finely and setting it to the
value that is the largest.

A.3 Details of calculations of expected utilities

Expected loss Ue(xm) are formulated as follows when the loss is the squared L2 error of f and µpost:

Ue(xm) =

∫
dym

∫
df ||f − µpost||2N(ym|fxm , σ

2
xm

)p(f)

=
∑
i

∫
dym

∫
df(fi − µposti)

2N(ym|fxm , σ
2
xm

)p(f), (A.4)
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where µpost represents the mean value of posterior distribution p(f |xm,ym) and p(f) = N(f |µ,K).
By using the results of Gaussian process regression [12], µpost can be represented as µposti =

µi+kT
M(xi)C

−1
M (ym −µM) where (kM(xi))i = k(xi, xmi), i = 1, 2, . . . ,M . By performing simple

calculation, we have

Ue(xm) =
∑
i

[k(xi, xi)− kM(xi)
TC−1

M kM(xi)]. (A.5)

A.4 Optimization method for expected loss function

It is difficult to analytically find the measurement points that minimizes expected loss function defined
by Eq. (2). The optimization was performed using the greedy method. First, the initial sampling is
done, and then the next points that will decrease the expected loss the most are sampled one after
another, as shown in Algorithm 1. This process results in a measurement points that approximately
optimizes the expected loss. In the case of XAS application, the computational time is about 15
minutes by using a laptop with Apple M2 CPU (16GB RAM).

Algorithm 1 Optimization expected loss Ue

Input: M : Number of measurement points
xi : Initial measuring points
x : Grid point set

Output: xm : Optimal measurement points
1: x∗← xi
2: for t = 1 to M do
3: Calculate Ue(x

∗ ∪ x)
4: Sampling the most beneficial point

xt = argminx∈xUe(x
∗ ∪ x )

5: x∗ ← x∗ ∪ xt
6: end for
7: return x∗

A.5 Experimental details

We used 61 Fe-K edge XAS from the MDR XAFS Database [11], as of May 2022, for our standard
spectra database. The continuous spectra were discretized in steps of 0.1 eV over the range from
7076.2 eV to 7181.2 eV and treated as vectors. While the measurement noise varies depending on the
measurement method and instrument, we adopted the noise quantities reported by Ito et al. [15] as an
example. To determine the parameter c in the prior distribution, we calculated the expected marginal
likelihood using Eq. (A.3) by varying the parameter c from 4 eV to 5 eV in increments of 0.05 eV
as shown in Fig. A.1. The optimal value of parameter c, which maximizes the expected marginal
likelihood, was determined to be 4.35 eV. When using the method in Appendix A.4 to obtain the
optimal measurement points, the initial points were set at 7076.2 eV and 7181.2 eV at each end.
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Figure A.1: Expected marginal likelihood versus parameter c. The optimal parameter c was set to the
value that maximizes the expected marginal likelihood.

8



A.6 Comparison between uniform sampling in various number of measurement points
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Figure A.2: Measurement points obtained by optimizing expected loss (upper row) and equal intervals
(lower row). From left to right, the number of measurement points are 30 points, 40 points and 50
points. For comparison, the lower row shows the case of equal interval sampling.

A.7 Evaluation by linear regression when more than 3 components
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Figure A.3: Evaluation of measurement points obtained by optimizing expected loss. The performance
was evaluated by the accuracy of linear regression, a typical analysis method. Panel (a) shows the
linear regression with a number of Components of 3. Panel (b, c) show when the number of
Components is 4, 5 respectably.

A.8 Calculation of bias variance decomposition

By performing simple calculation, we can decompose it into bias and variance terms as described
below:

Ue(xm) =

∫
dym

∫
df ||f − Eym [µpost]||2N(ym|fxm , σ

2
xm

)p(f)

+

∫
dym

∫
df ||µpost − Eym [µpost]||2N(ym|fxm , σ

2
xm

)p(f)

=
∑
i

[k(xmi, xmi) + kM(xmi)
T {C−1

M KMC−1
M − 2C−1

M }kM(xmi)]

+
∑
i

[kM(xmi)
T {C−1

M diag(σ2
xm

)C−1
M }kM(xmi)] (A.6)
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The first term represents the error between the mean of the prediction results and the grand truth
spectrum generated from the prior distribution p(f), i.e., bias, while the second term represents the
variability of the prediction results, i.e., variance.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided the full source code and standard spectra dataset for reproducing
our results in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The data and code are not currently publicly available since we are preparing
an extended version of this work for a journal. We plan to release the data and code after
publication of the journal article. We provided the full source code to reviewers.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We stated the used standard spectra database for understanding the results in
the Section 3. We also provided the full source code including all of the parameters in the
supplemental materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our optimization algorithm described in the section 2 is deterministic. Al-
though our evaluation method 3.2 is a probabilistic, we did not consider this a problem as
we evaluated the linear regression accuracy at any number of measurement points and the
result is almost smooth.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided our computational resource using for this research in the Ap-
pendix A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirmed that our research is conducted in the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

14

https://neurips.cc/public/EthicsGuidelines


Justification: Our proposed method is an automatic measurement optimisation method and
has no impact on society. This is because the method does not lead to new measurement
methods, but is combined with existing measurement methods.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our proposed method has no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We used the public database "MDR XAS Database" [11] in the Section 3. We
cited it appropriately. Spectra that we used in this research are provided in the supplemental
material. We confirmed that the license of this database is CC-BY-NC-SA.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provided the implementation of our proposed method in the Supplementary
Materials, including the documentation file (README.md).
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We confirmed that this paper does not involve crowdsourcing nor research
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: We confirmed that this paper does not involve crowdsourcing nor research
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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