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Abstract

In modern Mixed-integer Programming(MIP) solvers, the concept of heuristic is1

well rooted as a principle underlying the search of high-quality solutions. In this2

respect, Large Neighborhood Search (LNS) has been the first refinement heuristics3

for improving existing solutions through a generic MIP solver used as a black box.4

For a refinement heuristic, the quality of the search neighborhood is of critical5

importance. However, existing methods have not fully investigated the strategy for6

balancing exploration and exploitation of search spaces. In this work, we introduce7

a novel refinement strategy for improving MIP solutions. The proposed framework8

leverages the ideas of integrality grip to guide the neighborhood selection. More-9

over, in order to achieve a good trade-off between exploration and exploitation10

of the solution space, the LNS search is further improved by investigating the11

convex relaxations of LNS sub-problems with Monte Carlo Tree Search (MCTS).12

In particular, at each iteration of LNS, MCTS is firstly executed to evaluate the13

integrality grip of the convex relxations of next LNS sub-problems. Then the14

expanded MCTS tree will select a promising solution neighborhood, which will be15

solved to produce improving solutions. Our MCTS method reduces the challenging16

LNS neighborhood selection problem to solving a series of LP relaxations. Those17

LP problems are polynomial-time solvable, ensuring computational tractability.18

We have conducted comprehensive computational experiments demonstrating sig-19

nificant performance improvements of our proposed algorithms over existing LNS20

methods, particularly in complex MIP scenarios.21

1 Introduction22

Combinatorial Optimization plays a crucial role in solving a wide range of complex decision-making23

problems with discrete structures. At the core of modeling these problems lies Mixed-integer24

Programming (MIP) [Jünger et al., 2009, Wolsey, 2020], a mathematical framework designed to25

optimize specific objective functions subject to a set of constraints. Despite the broad applicability26

of MIP for representing intricate scenarios, the inherent NP-hardness of many such problems poses27

significant computational challenges, often requiring innovative algorithmic strategies to find feasible28

solutions within reasonable time.29

Recent advancements in solving MIPs involve integrating sophisticated heuristics [Blum and Roli,30

2003, Berthold, 2006], Branch-and-Bound (B&B) [Land and Doig, 2010], Cutting Planes [Balas31

et al., 1993, Marchand et al., 2002] and preprocessing [Achterberg et al., 2020] within modern MIP32

solvers. These methods collectively aim to enhance the solver’s capability to manage large-scale33

problems. Heuristic methods, in particular, are crucial for providing high-quality solutions rapidly,34

complementing the slower, more resource-intensive exact methods such as B&B, which, although35

powerful, may not be practical for very complex problems due to their computational demands.36
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Among heuristic approaches, Large Neighborhood Search (LNS) [Shaw, 1998] stands out for its37

effectiveness in exploring extensive solution spaces. LNS iteratively modifies a subset of decision38

variables within an existing solution to probe various neighborhood structures methodically. However,39

traditional LNS implementations often struggle with efficiency and adaptability, as they typically40

rely on manually crafted rules that may not fully leverage the problem’s structure and dynamic41

information to select neighborhoods during the search process [Danna et al., 2005].42

In response to these limitations, recent research has explored the integration of machine learning43

techniques to inform the neighborhood selection process [Sonnerat et al., 2021, Wu et al., 2021a,b,44

Liu et al., 2022, Huang et al., 2023]. Those approaches leverage available data and train deep learning45

models to predict the most promising solution neighborhoods during the search. However, deep46

learning based methods often face generalization issues and may not perform well on heterogeneous47

datasets, such as those found in MIPLIB, due to the diversity of problem structures and instances.48

To address these challenges, this paper introduces two LNS heuristics, designed to optimize dynamic49

neighborhood selection and systematically explore the solution space for improving MIP solving. The50

first LNS algorithm, called Integrality Grip Induced LNS (IG-LNS), utilizes the concept of integrality51

grip—a metric that measures the closeness of a localized LP relaxation’s solution to integrality—to52

dynamically select variables for refinement, focusing the search on regions likely to yield significant53

improvements.54

Further advancing this concept, the second algorithm, MCTS Enhanced IG-LNS (MIG-LNS), inte-55

grates Monte Carlo Tree Search (MCTS) method into the IG-LNS framework. Specifically, at each56

iteration of LNS, MCTS is firstly executed to assess the outcome of candidate solution neighborhoods57

by solving the convex relaxations of expanded LNS sub-problems. Then the algorithm will select a58

promising LNS neighborhood from the expanded MCTS tree, which will be solved by the off-the-shelf59

MIP solver to produce improved solutions. By simulating various neighborhood configurations and60

evaluating their potential outcomes through LP relaxations, the MIG-LNS algorithm optimizes the61

neighborhood selection process to adapt to the evolving landscape of the solution space dynamically.62

Main Contributions:63

• We propose a new class of LNS heuristic for MIP that leverages the concept of integrality grip64

to guide neighborhood selection, enhancing the traditional LNS approach.65

• We design an efficient MCTS algorithm to improve IG-LNS heuristic. Our MCTS method is66

more adaptable and efficient by reducing the challenging LNS neighborhood selection problem67

to solving a series of LP relaxations. These LP problems are polynomial-time solvable, ensuring68

computational tractability.69

• Our methods do not require any machine learning pre-training, making the framework more70

generalizable and adaptable to broader classes of MIP problems, particularly beneficial for new71

problems with limited data availability.72

• We conduct comprehensive computational experiments demonstrating significant performance73

improvements of both proposed algorithms over existing LNS methods, particularly in complex74

MIP scenarios.75

The remainder of the paper is organized as follows: Section 2 reviews related works, Section 376

discusses preliminary concepts and foundational algorithms, Section 4 and 5 details the methodologies77

of IG-LNS and MCTS Improved IG-LNS, including the integration of GNN-based techniques, Section78

6 presents experimental results and discussions, and Section 7 concludes with final remarks and79

future research directions.80

2 Related Work81

The progress in machine learning (ML) has stimulated increasing research interest in applying ML for82

solving MIPs. These works can be broadly divided into two categories, learning auxiliary strategies83

within MILP solvers and learning heuristics.84

The first approach investigates the use of ML to learn to make algorithmic decisions within a MILP85

solver, which is typically built upon a general B&B framework. The learned policies can be either86

cheap approximations of existing expensive methods, or more sophisticated strategies that are new87
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to be discovered. Related works include: learning to select branching variables [Khalil et al., 2016,88

Balcan, 2018, Gasse et al., 2019], learning to select branching nodes [He et al., 2014], learning to89

select cutting planes [Tang et al., 2020], and learning to optimize the usage of primal heuristics90

[Khalil et al., 2017, Chmiela et al., 2021].91

The learning heuristics approach is to learn algorithms to produce primal solutions for MIPs. There92

are a few works in this direction that typically use ML methods to develop LNS heuristics. Within an93

LNS scheme, ML models are trained to predict promising solution neighborhoods that are expected to94

contain improving solutions. Nair et al. [2020] used neural networks to predict partial solutions. The95

subproblems defined by fixing the predicted partial solutions are solved by a MIP solver. Song et al.96

[2020] proposed a decomposition-based LNS heuristic. They use imitation learning and reinforcement97

learning to decompose the set of integer variables into subsets of fixed size. Each subset defines a98

subproblem and the number of subsets is fixed as a hyperparameter. Sonnerat et al. [2021] proposed99

a LNS heuristic based on a “learn to destroy" strategy, which frees part of the current solution. The100

variables to be freed are selected by trained neural networks using imitation learning.101

3 Preliminaries102

3.1 Mixed-integer Programming103

We consider a MIP problem of the form,104

(P ) min cTx (1)
s.t. Ax ≤ b, (2)

xj ∈ {0, 1}, ∀j ∈ B, (3)

xj ∈ Z+, ∀j ∈ G, (4)
xj ≥ 0, ∀j ∈ C, (5)

where the index set of decision variables N := {1, . . . , n} is partitioned into B,G, C, which are the105

index sets of binary, general integer and continuous variables, respectively.106

3.2 Large Neighborhood Search107

Large neighborhood search (LNS) is a refinement heuristic. In general, one iteration of LNS consists108

of 3 building blocks,109

• Destroy function: destructs a part of the current solution x by freeing a subset of variables and110

produces a solution neighborhood N(x);111

• Repair function: rebuilds the destroyed solution, typically by solving a sub-MIP defined by112

N(x). Note: for some cases, the repaired solution can be worse than the destroyed solution;113

• Accept function: decides whether the new solution should be accepted or rejected.114

Given as an input a feasible solution x̄, it searches the best feasible solution in neighbourhood of x̄115

(the size of the neighborhood is a parameter). Once the best feasible solution x̃ in the neighborhood116

is found, the procedure updates x̄ = x̃. The method keeps searching for the best feasible solution in117

the new neighborhood until the stopping criterion is reached.118

3.3 Mont Carlo Tree Search119

Monte Carlo Tree Search (MCTS) is an innovative search algorithm widely recognized for its effec-120

tiveness in handling complex decision-making processes, particularly in environments characterized121

by vast decision trees and stochastic outcomes. Initially popularized through its applications in board122

games like Go, MCTS has diversified its utility across a range of strategic and planning problems in123

artificial intelligence Browne et al. [2012].124

Central to MCTS is its strategic use of random simulations to accumulate statistically meaningful125

data that informs robust decision-making. This algorithm diverges from conventional exhaustive126

search methods by preferentially expanding promising moves through an iterative process comprised127

of four key phases: selection, expansion, simulation, and backpropagation.128
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Algorithm 1 Basic LNS heuristic
Input: instance dataset P = {pj}Mj=1

for instance pj ∈ P do
initialize the state s with an initial solution x̄;
x∗←x;
repeat

N(x)←destroy(x);
x′←repair(N(x));

if accept(x′, x) then
x←x′;

end
if f(x) < f(x∗) then

x∗←x;
end

until termination condition is reached;
end
return x∗

• Selection: This phase involves traversing the tree from the root to a leaf node by selecting optimal129

child nodes at each level. The selection strategy is governed by a balance between exploiting130

nodes with high win ratios and exploring under-visited nodes to ensure a comprehensive search131

distribution. This is typically guided by a policy like the Upper Confidence Bound (UCB)132

applied to trees.133

• Expansion: Upon reaching a leaf node that does not terminate the game, the tree is expanded by134

adding one or more child nodes. This expansion is contingent upon the possible moves from the135

current game state, thereby incrementally building the tree structure.136

• Simulation: Also known as the playout or rollout phase, a simulation is conducted from the137

newly expanded nodes using a default or random policy to play out the game until a terminal138

state or predefined depth is reached. These simulations are crucial as they provide insights into139

the potential outcomes of moves, which are otherwise not assessed through deep analytical140

computations.141

• Backpropagation: The outcomes of the simulations are propagated back through the tree, from142

the leaf nodes up to the root. Each node visited during the simulation phase is updated to reflect143

the new data, adjusting metrics such as average win rates and visit counts. This iterative updating144

ensures that the tree gradually evolves to reflect more accurate assessments of potential moves.145

The iterative four-step process continues until a termination condition is met, such as a time constraint.146

Subsequently, the move associated with the highest-reward or most frequently visited child node of147

the root is executed. The opponent then makes their move, and the cycle recommences with a fresh148

search tree that reflects the current state of the game.149

4 Integrality Grip Enhanced LNS150

In this section, we present a novel class of MIP LNS heuristic, Integrality Grip Induced LNS (IG-151

LNS), through a combination of local constraints, LP relaxations and LNS strategies. By focusing on152

the idea of integrality grip, which refers to the measure of how close the LP relaxation’s solution is153

to being entirely integral, the algorithm effectively narrows the search space and improves solution154

quality. The algorithm can utilize any local constraint to construct an LP relaxation around the current155

incumbent solution and employs the fractionality of this solution to dynamically select variables for156

constructing targeted LNS sub-problems.157

4.1 Integrality Grip158

The concept of “integrality grip” quantifies the closeness of a solution obtained from the LP relaxation159

of a sub-MIP around an existing integer solution of the original MIP. The sub-MIP is typically defined160

by some local constraints (e.g., local branching constraints [Fischetti and Lodi, 2003]) structured161

from the current integer solution. This metric evaluates how closely the LP relaxation’s solution162
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approximates the current integral solution, emphasizing the influence of the integer solution in163

shaping the LP relaxation. We formally the define the integrality grip as:164

G(x′, x∗) = 1− 1

n

n∑
i=1

|x′
i − x∗

i | (6)

where x′ = (x′
1, x

′
2, . . . , x

′
N ) is the solution vector from the LP relaxation of the sub-MIP, and165

x∗ = (x∗
1, x

∗
2, . . . , x

∗
N ) is the initial integer solution. The term N denotes the number of variables.166

|x′
i − x∗

i | calculates the deviation of each component x′
i from the corresponding integer component167

x∗
i , determining how far each component of the LP solution is from being integral. The integrality168

grip G(x′, x∗) varies from 0 to 1, where 0 indicates a solution with maximum fractionality and 1169

denotes a solution where all variables are integral.170

Example Given an initial integer solution x∗ = (4, 2, 4, 3) of a simple MIP problem, and an171

LP relaxation of a sub-MIP formed with a local branching constraint around x∗, suppose this LP172

relaxation produces a solution vector x′ = (3.5, 1.8, 4.0, 2.9). Substituting these values into the173

integrality grip formula yields an integrality grip of 0.8, indicating that the solution x′ is relatively174

close to the integral values specified by x∗.175

Integrality grip is pivotal in determining the focus areas for the LNS, as it identifies where small,176

targeted modifications can potentially lead to substantial improvements in the overall solution quality.177

4.2 The IG-LNS Heuristc178

Now we present our IG-LNS heuristic, which consists of the following components.179

• Building LP Relaxation with Local Constraints The IG-LNS algorithm starts by selecting180

a current integer solution, x̄, around which the LP relaxation is constructed. This relaxation181

incorporates a local constraint that limits the search space to a neighborhood defined by a182

Hamming distance from x̄. The constraint is formulated as:183

∆(x′, x̄) =
∑
i∈J

|xi − x̄i| ≤ k (7)

where J is the set of indices of integer variables. Parameter k controls the neighborhood size.184

• The Upper Bound of Local Constraint Let x′ be the optimal LP solution of the original MIP185

model without any local constraint, and let k′ be the value of the left-hand side of the local186

constraint evaluated using x′. Specifically, k′ is computed by187

k′ = ∆(x′, x̄). (8)
If parameter k is greater than or equal to value k′, the LP solution is likely to remain unchanged188

after adding the local constraint. Consequently, k′ serves as an upper bound for k. We can189

therefore parametrize k as190

k = ϕ k′, (9)
where ϕ ∈ [0, 1]. Therefore, the value of ϕ should be determined when building a local LP191

relaxation constrained by (7).192

• Solving the LP Relaxation The local LP relaxation is solved to produce an LP solution x′,193

which is evaluated for its integrality grip. The fractional components of x′ indicate the variables194

that are most challenging to integrate, providing a direct method to target the subsequent LNS195

steps.196

• Constructing and Solving the LNS Sub-MIP Using the fractional variables identified from197

x′, a sub-MIP is constructed. This sub-MIP selectively “destroys” and “repairs” parts of x∗198

by allowing these variables to vary, while keeping others fixed. This targeted disruption aims199

to explore the solution space more deeply where the LP relaxation indicates potential for200

improvement.201

• Iterative Refinement The process iterates with the newly found solutions from the LNS sub-202

MIPs being used to redefine the neighborhood in the LP relaxation, continually refining the203

approach towards an optimal solution. Each iteration recalibrates the parameter k based on the204

integrality grip and the outcomes of the LNS, adjusting the balance between exploration and205

exploitation.206
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5 Exploring Integrality Grip by MCTS Planning207

To further enhance the IG-LNS algorithm, in this section, we study how to explore the integrality grip208

to improve the LNS search by MCTS planning. This approach is designed to dynamically explore and209

optimize the neighborhood through a guided search within the action space. We will first model the210

LNS into a Markov Decision Process (MDP) and then introduce how to efficiently integrate MCTS211

planning into the IG-LNS algorithm.212

5.1 Markov Decision Process Modeling of LNS213

Given an MIP instance with an initial feasible solution. The procedure can be formulated as a Markov214

Decision Process(MDP), wherein at each step, a LNS neigbhorhood is selected to build a sub-MIP215

and an off-the-shelf MIP solver is called to solve the LNS sub-problem.216

- State(S): The state consists of the solution status of sub-MIP and the encoded state of any MILP217

instance. After each LNS step, the resulting state can generally be classified into one of the four218

groups, depending on the status of the sub-MIP and the objective value, shown in Figure 1.219

- Action(a): The set of possible actions consists of the portion d of variables to be destroyed from220

the current solution, where d ∈ [0, 1]. The number of destroyed variables n will be n = d ∗N ,221

where N is the number of integer variables in the MIP model.222

- Policy(π): The policy maps a state to an action in action space.223

- Reward(r): By applying the updated k, the next iteration of LNS will be executed with time224

limit tlimit. Then the solution status of sub-MIP will be collected to create the next state. The225

reward will be formulated according to both the computing time and the quality of the new226

solution.227

Figure 1: Solution states of sub-MIP in MDP of LNS

The definition above is just one possibility to build a MDP for this problem. In fact, how to define a228

compact MDP (e.g. state, reward) is crucial for constructing efficient LNS algorithms.229

5.2 MCTS Integration into IG-LNS230

MCTS is applied to the action space determined by the neighborhood size k, which is crucial for231

controlling the breadth of the search of LNS. In our method, we define the action a to determine the232

value of ϕ within the range [0, 1]. As introduced in (9), ϕ dictates the proportion of integer variables233

considered in each iteration, such that k = ϕ · k′, where k′ represents the upper bound of parameter234

k computed by (8).235

MCTS Expansion Strategy The tree in MCTS is expanded by selecting actions based on the236

proportion of variables to be included in k. At each node of the MCTS, an LNS sub-MIP is237

constructed and only the LP relaxation of this sub-MIP is solved. This strategy ensures that each238

MCTS iteration remains computationally efficient, as solving the LP relaxation is polynomially239

tractable, thereby allowing rapid generation of the tree.240

Reward Function in MCTS The reward function in the MCTS framework is composed of three241

main components:242
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• Objective Improvement: This component measures the improvement in the objective value of243

the LP relaxation of the LNS sub-MIP compared to the previous iterations.244

• Solving Time: The computational time required to solve the LP relaxation of the LNS sub-MIP245

is considered, emphasizing efficiency.246

• Integrality Grip: Assesses how closely the LP solution approximates an integral solution,247

providing insights into the quality of the LP solution in terms of feasibility.248

These components collectively guide the search towards areas of the action space that potentially249

yield significant improvements in solution quality and computational efficiency. The balance between250

exploration and exploitation is managed through the selection and backpropagation steps of the251

MCTS, ensuring that the algorithm progressively refines the neighborhood size K towards optimal252

settings.253

5.3 Integrality Grip Tarlored MCTS254

Our implementation of MCTS is customized to explore the action space of the neighborhood size k.255

• Selection Phase: During the selection phase, the MCTS algorithm assesses each node by256

exploring potential actions based on their historical success and exploratory value using the257

Upper Confidence Bound (UCB) strategy. This phase is critical for navigating the expansive258

solution space, aiming to incrementally approach the most promising areas that could yield259

significant improvements in the heuristic’s performance.260

• Expansion Phase: Upon selecting a node, the expansion phase involves introducing new child261

nodes into the tree. Each node corresponds to a different action a, which variably adjusts the k262

parameter of LNS neighborhood. This strategic expansion allows the heuristic to probe various263

configurations of local constraints, enriching the diversity of solutions explored and identifying264

potentially optimal neighborhood sizes.265

• Simulation Phase: The simulation phase at each node involves solving only the LP relaxation266

of the LNS sub-MIP associated with the current node configuration. This focused simulation is267

key to maintaining the method’s efficiency, as solving the LP relaxation is polynomially solvable,268

ensuring that the algorithm can rapidly evaluate a vast number of potential configurations without269

excessive computational costs.270

• Backpropagation Phase: Following the simulation, results are used to update the tree during271

the backpropagation phase. This process adjusts the statistical values of the nodes, from the272

expanded node back to the root, based on the outcome of the LP relaxation. These updates273

refine the decision-making process, enhancing the algorithm’s capability to make more informed274

selections in subsequent iterations.275

By integrating MCTS into the IG-LNS heuristic, we obtain an extended LNS algorithm, namely276

MCTS-enhanced IG-LNS (MIG-LNS). This extension provides a more adaptive and targeted approach277

to managing the LNS neighborhood. This enhancement is expected to lead to faster convergence to278

high-quality solutions, particularly in complex combinatorial optimization problems where traditional279

LNS might stall or converge prematurely.280

6 Experiments281

In this section, we present our experimental results over three MIP benchmarks. We compare different282

settings of our approach against the original LNS algorithm, using SCIP [Gerald et al., 2020] as the283

underlying MILP solver.284

6.1 Dataset285

MIP Benchmark We first apply our framework to MIPLIB [Gleixner et al., 2021], the most well-286

konwn state-of-the-art MIP benchmark. The MIPLIB instances are selected from the following287

process: We want to collect a reasonable intermediate solution as the starting point for LNS search.288

To get this, we run the SCIP 7.0.1 solver to solve the root node of each instance in MIPLIB2017 with289

a time limit of 1 hour, and filter out all the instances that have reached to optimal on root node or still290

can not find a solution after 1 hour. By this process, we filter out some instances that are too easy291

or too difficult to find a starting solution for LNS search, which results in 126 instances. For each292

instance, an initial feasible solution is required to start the LNS heuristic. We use an intermediate293
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Table 1: Statistics(mean, standard deviation (STD), maximum, minimum) on final primal gap and
final primal integral over SC dataset.

Primal Gap Primal Integral

Algorithm Mean ± STD Max Min Mean ± STD Max Min

Default SCIP 5.060 ± 16.133 101.100 0.0 19.935 ± 9.013 35.749 6.493
LB 18.705 ± 23.765 58.966 0.0 19.901 ± 11.168 36.780 4.045
Random-LNS 11.343 ± 36.439 209.764 0.0 24.703 ± 8.826 42.156 10.759
GNN-LNS 0.869 ± 0.696 2.643 0.0 15.214 ± 10.364 33.954 4.907
IG-LNS 0.241 ± 0.497 2.217 0.0 13.071 ± 10.331 28.613 3.945
MIG-INS 0.203 ± 0.492 2.486 0.0 12.664 ± 9.832 32.973 3.911

Table 2: Statistics(mean, standard deviation (STD), maximum, minimum) on final primal gap and
final primal integral over GISP dataset.

Primal Gap Primal Integral

Algorithm Mean ± STD Max Min Mean ± STD Max Min

Default SCIP 8.329 ± 30.008 163.106 0.0 6.995 ± 9.696 37.301 0.008
LB 12.809 ± 21.585 88.829 0.0 8.901 ± 10.761 40.905 0.011
Random-LNS 8.534 ± 30.016 163.122 0.0 5.883 ± 8.394 37.273 0.010
GNN-LNS 7.896 ± 30.053 46.775 0.0 4.990 ± 10.598 41.330 0.005
IG-LNS 7.728 ± 34.153 87.857 0.0 4.813 ± 8.925 40.055 0.006
MIG-LNS 5.949 ± 26.410 45.140 0.0 4.385 ± 8.581 29.705 0.006

solution found by SCIP, typically the best solution obtained by SCIP at the end of the root node294

computation, i.e., before branching.295

SC and GISP Benchmarks In practice, there are many specific MIP applications where instances296

from the same class of problem are formulated and solved repeatedly. Therefore, in order to297

demonstrate how effective our approach is on those homogeneous problems, we conduct further298

computational experiments to two classes of MIP benchmarks: set covering (SC) [Balas and Ho,299

1980] and generalized independent set problem (GISP) [Hochbaum and Pathria, 1997, Colombi et al.,300

2017]. For SC benchmark, we generate 200 instances with 5000 rows and 2000 columns. For GISP,301

we use the public dataset from Chmiela et al. [2021].302

6.2 Algorithmic Comparisons303

We conduct experiments to compare the following algorithms:304

• SCIP, the SCIP solver with default setting;305

• Random-LNS, the LNS baseline algorithm;306

• LB, the Local Branching heuristic [Fischetti and Lodi, 2003];307

• GNN-LNS, the most commonly used state-of-the-art GNNs [Sonnerat et al., 2021] that have308

been trained for LNS neighborhood predictionss;309

• IG-LNS, basic version of our proposed Integrality Grip Enhanced LNS;310

• MIG-LNS, our extended IG-LNS improved from exploring integrality grip by MCTS planning.311

All the algorithms use SCIP as the underlying MIP solver.312

We use the primal integral [Berthold, 2013] and standard primal gap to measure the performance of313

the compared MIP algorithms. Detailed information and formulations for computing the two metrics314

can be found in Appendix A.1.315

6.3 Experimental Results316

We evaluate the compared algorithms over the three benchmarks. The results of all the algorithms are317

shown in Table 1, 2, 3.318
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Table 3: Statistics(mean, standard deviation (STD), maximum, minimum) on final primal gap and
final primal integral over MIPLIB dataset.

Primal Gap Primal Integral

Algorithm Mean ± STD Max Min Mean ± STD Max Min

Default SCIP 8.257 ± 29.894 163.024 0.0 6.912 ± 9.654 37.222 0.001
LB 12.750 ± 21.530 88.786 0.0 8.880 ± 10.722 40.848 0.001
Random-LNS 8.485 ± 29.959 163.0241 0.0 5.86516 ± 8.367 37.245 0.001
GNN-LNS 7.865 ± 30.005 46.729 0.0 4.969 ± 10.574 41.305 0.001
IG-LNS 7.692 ± 34.110 87.826 0.0 10.891 ± 8.894 40.024 0.001
MIG-LNS 5.917 ± 26.363 45.114 0.0 4.373 ± 8.558 29.687 0.001

From the results, our IG-LNS and MIG-LNS algorithm presents the best heuristic behavior over all319

the compared algorithms in terms of both primal integral and primal gap, showing that the proposed320

local LP relaxation based LNS method is able to produce promising and robust LNS neighborhoods321

by gripping the integrality of candidate solutions within the neighborhood. The results of MIG-LNS322

also demonstrate that our MCTS algorithm achieves a better trade-off between exploitation and323

exploration of the solution space during LNS search. The LNS behavior of our approach is robuster324

than the compared baselines by improving both the feasibility and the objective of solutions within325

the selected neighborhoods.326

A significant advantage of our proposed methods is that they do not require any machine learning327

pre-training. This feature enhances the generalizability and adaptability of our framework to a broader328

range of MIP problems. It is particularly beneficial for new problems with limited data availability,329

as our methods can be applied directly without the need for extensive training on large datasets.330

7 Conclusion331

In this work, we introduce the Integrality Grip Induced Large Neighborhood Search (IG-LNS)332

algorithm, a novel class of LNS heuristic for Mixed-Integer Programming (MIP). Our approach333

leverages the concept of integrality grip to dynamically guide neighborhood exploration, thereby334

enhancing the effectiveness of the classic LNS method. The integrality grip measures how closely335

an LP relaxation’s solution approximates integrality, enabling more targeted and efficient searches336

within the solution space.337

Building upon the IG-LNS framework, we integrate an efficient Monte Carlo Tree Search (MCTS)338

algorithm to further refine and improve the heuristic. The MCTS method addresses the challenging339

problem of LNS neighborhood selection by reducing it to solving a series of LP relaxations. These340

LP problems are polynomial-time solvable, ensuring computational tractability and making the search341

process more adaptable and efficient. We conduct comprehensive computational experiments to342

validate our approaches, demonstrating significant performance improvements over existing LNS343

methods.344

While the IG-LNS algorithm with MCTS planning demonstrates significant improvements in solving345

MIP problems, there are still limitations and open questions for future research. For example, although346

the MCTS framework improves neighborhood selection efficiency, the computational overhead of347

maintaining and updating the tree structure can be substantial for very large-scale problems. Future348

research could focus on enhancing the scalability of the MCTS algorithm by exploring parallelization349

techniques or hybrid approaches that combine MCTS with other metaheuristics. Another promising350

direction is to investigate adaptive mechanisms that can dynamically adjust the parameters of the351

integrality grip and MCTS based on problem characteristics. Finally, while our approach does not352

require pre-training, exploring the integration of lightweight learning models to enhance decision-353

making processes within the heuristic could offer additional performance gains without compromising354

adaptability.355
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A Appendix446

A.1 Metrics for Measuring the Performance of MIP Algorithms447

The primal integral was originally proposed to measure the performance of primal heuristics for448

solving mixed-integer programs. The metric takes into account both the quality of solutions and the449

computing time spent to find those solutions during the solving process. To define the primal integral,450

we first consider a scaled primal gap function p(t) as a function of time, defined as451

p(t) =

{
1, if no incumbent until time t,
γ̄(x̃(t)), otherwise,

where x̃(t) is the incumbent solution at time t, and γ̄(·) ∈ [0, 1] is the scaled primal gap452

γ̄(x̃) =
|f(x̃opt)− f(x̃)|
|f(x̃opt)− f(x̃init)|

,

where f(x̃) denotes the objective value given solution x̃, x̃opt is either the optimal solution or the453

best one known for the instance and x̃init is the initial solution.454

The standard primal gap without scaling is defined as455

γ(x̃) =
|f(x̃opt)− f(x̃)|
|f(x̃opt)|

.

Let tmax > 0 be the time limit for executing the heuristic. The primal integral measure is then defined456

as457

P (tmax) =

∫ tmax

0

p(t) dt.

A.2 Experimental Settings and Hyperparameters458

For training GNN models, we used the focal loss as the loss function. For tuning the learning rate,459

we have experimented different learning rates from 10−5 to 10−1 and have chosen a learning rate of460

10−4. We trained the model with a limit of 500 epochs.461

For the LNS hyperparameters, we set a time limit of 3 seconds for each LNS iteration for all the462

compared algorithms. The global time limit for all algorithms is set to 3600 seconds.463

For the baselines, we compare the performance of our extended GNNs against state-of-the-art464

message-passing based GNNs used in other works and also against classic LNS algorithm and default465

SCIP solver baseline. We are aware of the fact that there are more learning-based LNS baselines in466

the literature which could be potentially added to the list for a fair comparison. However, some of467

existing works have not revealed their code to public and it is challenging to fairly implement their468

models.469

Our code is written in Python 3.8 and we use Pytorch 1.7.1 Paszke et al. [2019], Pytorch Geometric470

2.0.2 Fey and Lenssen [2019], PySCIPOpt 3.1.1 Maher et al. [2016], SCIP 7.01 Gamrath et al. [2020]471

for developing our models and sovling MIPs. Our experiments were conducted on 2.70 GHz Intel472

Xeon Gold 6258R machines with 8 cores.473
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1. Claims475

Question: Do the main claims made in the abstract and introduction accurately reflect the476

paper’s contributions and scope?477

Answer: [Yes]478

Justification: We have carefully write our main claims in the abstract and introduction to479

reflect the paper’s contributions and scope.480

Guidelines:481

• The answer NA means that the abstract and introduction do not include the claims482

made in the paper.483

• The abstract and/or introduction should clearly state the claims made, including the484

contributions made in the paper and important assumptions and limitations. A No or485

NA answer to this question will not be perceived well by the reviewers.486

• The claims made should match theoretical and experimental results, and reflect how487

much the results can be expected to generalize to other settings.488

• It is fine to include aspirational goals as motivation as long as it is clear that these goals489

are not attained by the paper.490

2. Limitations491

Question: Does the paper discuss the limitations of the work performed by the authors?492

Answer: [Yes]493

Justification: We have discussed the limitations of the work and also provide perspectives494

for future research.495

Guidelines:496

• The answer NA means that the paper has no limitation while the answer No means that497

the paper has limitations, but those are not discussed in the paper.498

• The authors are encouraged to create a separate "Limitations" section in their paper.499

• The paper should point out any strong assumptions and how robust the results are to500

violations of these assumptions (e.g., independence assumptions, noiseless settings,501

model well-specification, asymptotic approximations only holding locally). The authors502

should reflect on how these assumptions might be violated in practice and what the503

implications would be.504

• The authors should reflect on the scope of the claims made, e.g., if the approach was505

only tested on a few datasets or with a few runs. In general, empirical results often506

depend on implicit assumptions, which should be articulated.507

• The authors should reflect on the factors that influence the performance of the approach.508

For example, a facial recognition algorithm may perform poorly when image resolution509

is low or images are taken in low lighting. Or a speech-to-text system might not be510

used reliably to provide closed captions for online lectures because it fails to handle511

technical jargon.512

• The authors should discuss the computational efficiency of the proposed algorithms513

and how they scale with dataset size.514

• If applicable, the authors should discuss possible limitations of their approach to515

address problems of privacy and fairness.516

• While the authors might fear that complete honesty about limitations might be used by517

reviewers as grounds for rejection, a worse outcome might be that reviewers discover518

limitations that aren’t acknowledged in the paper. The authors should use their best519

judgment and recognize that individual actions in favor of transparency play an impor-520

tant role in developing norms that preserve the integrity of the community. Reviewers521

will be specifically instructed to not penalize honesty concerning limitations.522

3. Theory Assumptions and Proofs523

Question: For each theoretical result, does the paper provide the full set of assumptions and524

a complete (and correct) proof?525
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Answer: [NA]526

Justification: This paper does not provide theoretical results.527

Guidelines:528

• The answer NA means that the paper does not include theoretical results.529

• All the theorems, formulas, and proofs in the paper should be numbered and cross-530

referenced.531

• All assumptions should be clearly stated or referenced in the statement of any theorems.532

• The proofs can either appear in the main paper or the supplemental material, but if533

they appear in the supplemental material, the authors are encouraged to provide a short534

proof sketch to provide intuition.535

• Inversely, any informal proof provided in the core of the paper should be complemented536

by formal proofs provided in appendix or supplemental material.537

• Theorems and Lemmas that the proof relies upon should be properly referenced.538

4. Experimental Result Reproducibility539

Question: Does the paper fully disclose all the information needed to reproduce the main ex-540

perimental results of the paper to the extent that it affects the main claims and/or conclusions541

of the paper (regardless of whether the code and data are provided or not)?542

Answer: [Yes]543

Justification: We have provided all the information needed to reproduce the main experi-544

mental results of the paper. Code is provided and detailed hyperparameter settings can be545

found in Appendix.546

Guidelines:547

• The answer NA means that the paper does not include experiments.548

• If the paper includes experiments, a No answer to this question will not be perceived549

well by the reviewers: Making the paper reproducible is important, regardless of550

whether the code and data are provided or not.551

• If the contribution is a dataset and/or model, the authors should describe the steps taken552

to make their results reproducible or verifiable.553

• Depending on the contribution, reproducibility can be accomplished in various ways.554

For example, if the contribution is a novel architecture, describing the architecture fully555

might suffice, or if the contribution is a specific model and empirical evaluation, it may556

be necessary to either make it possible for others to replicate the model with the same557

dataset, or provide access to the model. In general. releasing code and data is often558

one good way to accomplish this, but reproducibility can also be provided via detailed559

instructions for how to replicate the results, access to a hosted model (e.g., in the case560

of a large language model), releasing of a model checkpoint, or other means that are561

appropriate to the research performed.562

• While NeurIPS does not require releasing code, the conference does require all submis-563

sions to provide some reasonable avenue for reproducibility, which may depend on the564

nature of the contribution. For example565

(a) If the contribution is primarily a new algorithm, the paper should make it clear how566

to reproduce that algorithm.567

(b) If the contribution is primarily a new model architecture, the paper should describe568

the architecture clearly and fully.569

(c) If the contribution is a new model (e.g., a large language model), then there should570

either be a way to access this model for reproducing the results or a way to reproduce571

the model (e.g., with an open-source dataset or instructions for how to construct572

the dataset).573

(d) We recognize that reproducibility may be tricky in some cases, in which case574

authors are welcome to describe the particular way they provide for reproducibility.575

In the case of closed-source models, it may be that access to the model is limited in576

some way (e.g., to registered users), but it should be possible for other researchers577

to have some path to reproducing or verifying the results.578

5. Open access to data and code579
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Question: Does the paper provide open access to the data and code, with sufficient instruc-580

tions to faithfully reproduce the main experimental results, as described in supplemental581

material?582

Answer: [Yes]583

Justification: We have provided code and data.584

Guidelines:585

• The answer NA means that paper does not include experiments requiring code.586

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/587

public/guides/CodeSubmissionPolicy) for more details.588

• While we encourage the release of code and data, we understand that this might not be589

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not590

including code, unless this is central to the contribution (e.g., for a new open-source591

benchmark).592

• The instructions should contain the exact command and environment needed to run to593

reproduce the results. See the NeurIPS code and data submission guidelines (https:594

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.595

• The authors should provide instructions on data access and preparation, including how596

to access the raw data, preprocessed data, intermediate data, and generated data, etc.597

• The authors should provide scripts to reproduce all experimental results for the new598

proposed method and baselines. If only a subset of experiments are reproducible, they599

should state which ones are omitted from the script and why.600

• At submission time, to preserve anonymity, the authors should release anonymized601

versions (if applicable).602

• Providing as much information as possible in supplemental material (appended to the603

paper) is recommended, but including URLs to data and code is permitted.604

6. Experimental Setting/Details605

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-606

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the607

results?608

Answer: [Yes]609

Justification: We have provided those experimental details in the paper and code package.610

Guidelines:611

• The answer NA means that the paper does not include experiments.612

• The experimental setting should be presented in the core of the paper to a level of detail613

that is necessary to appreciate the results and make sense of them.614

• The full details can be provided either with the code, in appendix, or as supplemental615

material.616

7. Experiment Statistical Significance617

Question: Does the paper report error bars suitably and correctly defined or other appropriate618

information about the statistical significance of the experiments?619

Answer: [Yes]620

Justification: We have reported statistical details in the report of the experimental results.621

Guidelines:622

• The answer NA means that the paper does not include experiments.623

• The authors should answer "Yes" if the results are accompanied by error bars, confi-624

dence intervals, or statistical significance tests, at least for the experiments that support625

the main claims of the paper.626

• The factors of variability that the error bars are capturing should be clearly stated (for627

example, train/test split, initialization, random drawing of some parameter, or overall628

run with given experimental conditions).629

• The method for calculating the error bars should be explained (closed form formula,630

call to a library function, bootstrap, etc.)631
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• The assumptions made should be given (e.g., Normally distributed errors).632

• It should be clear whether the error bar is the standard deviation or the standard error633

of the mean.634

• It is OK to report 1-sigma error bars, but one should state it. The authors should635

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis636

of Normality of errors is not verified.637

• For asymmetric distributions, the authors should be careful not to show in tables or638

figures symmetric error bars that would yield results that are out of range (e.g. negative639

error rates).640

• If error bars are reported in tables or plots, The authors should explain in the text how641

they were calculated and reference the corresponding figures or tables in the text.642

8. Experiments Compute Resources643

Question: For each experiment, does the paper provide sufficient information on the com-644

puter resources (type of compute workers, memory, time of execution) needed to reproduce645

the experiments?646

Answer: [Yes]647

Justification: We have provided those detailed information on the computer resources needed648

to reproduce the experiments.649

Guidelines:650

• The answer NA means that the paper does not include experiments.651

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,652

or cloud provider, including relevant memory and storage.653

• The paper should provide the amount of compute required for each of the individual654

experimental runs as well as estimate the total compute.655

• The paper should disclose whether the full research project required more compute656

than the experiments reported in the paper (e.g., preliminary or failed experiments that657

didn’t make it into the paper).658

9. Code Of Ethics659

Question: Does the research conducted in the paper conform, in every respect, with the660

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?661

Answer: [Yes]662

Justification: We have read NeurIPS Code of Ethics and we do not find any concern related663

to our submission.664

Guidelines:665

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.666

• If the authors answer No, they should explain the special circumstances that require a667

deviation from the Code of Ethics.668

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-669

eration due to laws or regulations in their jurisdiction).670

10. Broader Impacts671

Question: Does the paper discuss both potential positive societal impacts and negative672

societal impacts of the work performed?673

Answer: [Yes]674

Justification: We have discussed the potential societal impacts of our work.675

Guidelines:676

• The answer NA means that there is no societal impact of the work performed.677

• If the authors answer NA or No, they should explain why their work has no societal678

impact or why the paper does not address societal impact.679

• Examples of negative societal impacts include potential malicious or unintended uses680

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations681

(e.g., deployment of technologies that could make decisions that unfairly impact specific682

groups), privacy considerations, and security considerations.683
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• The conference expects that many papers will be foundational research and not tied684

to particular applications, let alone deployments. However, if there is a direct path to685

any negative applications, the authors should point it out. For example, it is legitimate686

to point out that an improvement in the quality of generative models could be used to687

generate deepfakes for disinformation. On the other hand, it is not needed to point out688

that a generic algorithm for optimizing neural networks could enable people to train689

models that generate Deepfakes faster.690

• The authors should consider possible harms that could arise when the technology is691

being used as intended and functioning correctly, harms that could arise when the692

technology is being used as intended but gives incorrect results, and harms following693

from (intentional or unintentional) misuse of the technology.694

• If there are negative societal impacts, the authors could also discuss possible mitigation695

strategies (e.g., gated release of models, providing defenses in addition to attacks,696

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from697

feedback over time, improving the efficiency and accessibility of ML).698

11. Safeguards699

Question: Does the paper describe safeguards that have been put in place for responsible700

release of data or models that have a high risk for misuse (e.g., pretrained language models,701

image generators, or scraped datasets)?702

Answer: [NA]703

Justification: We do not find any of those risk listed above for this submission.704

Guidelines:705

• The answer NA means that the paper poses no such risks.706

• Released models that have a high risk for misuse or dual-use should be released with707

necessary safeguards to allow for controlled use of the model, for example by requiring708

that users adhere to usage guidelines or restrictions to access the model or implementing709

safety filters.710

• Datasets that have been scraped from the Internet could pose safety risks. The authors711

should describe how they avoided releasing unsafe images.712

• We recognize that providing effective safeguards is challenging, and many papers do713

not require this, but we encourage authors to take this into account and make a best714

faith effort.715

12. Licenses for existing assets716

Question: Are the creators or original owners of assets (e.g., code, data, models), used in717

the paper, properly credited and are the license and terms of use explicitly mentioned and718

properly respected?719

Answer: [NA]720

Justification: This submission does not use existing assets.721

Guidelines:722

• The answer NA means that the paper does not use existing assets.723

• The authors should cite the original paper that produced the code package or dataset.724

• The authors should state which version of the asset is used and, if possible, include a725

URL.726

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.727

• For scraped data from a particular source (e.g., website), the copyright and terms of728

service of that source should be provided.729

• If assets are released, the license, copyright information, and terms of use in the730

package should be provided. For popular datasets, paperswithcode.com/datasets731

has curated licenses for some datasets. Their licensing guide can help determine the732

license of a dataset.733

• For existing datasets that are re-packaged, both the original license and the license of734

the derived asset (if it has changed) should be provided.735
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• If this information is not available online, the authors are encouraged to reach out to736

the asset’s creators.737
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• At submission time, remember to anonymize your assets (if applicable). You can either750
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14. Crowdsourcing and Research with Human Subjects752

Question: For crowdsourcing experiments and research with human subjects, does the paper753
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Answer: [NA]756

Justification: The paper does not involve crowdsourcing nor research with human subjects.757
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• Including this information in the supplemental material is fine, but if the main contribu-762

tion of the paper involves human subjects, then as much detail as possible should be763

included in the main paper.764

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,765

or other labor should be paid at least the minimum wage in the country of the data766

collector.767

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human768

Subjects769

Question: Does the paper describe potential risks incurred by study participants, whether770

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)771

approvals (or an equivalent approval/review based on the requirements of your country or772

institution) were obtained?773

Answer: [NA]774

Justification: The paper does not involve crowdsourcing nor research with human subjects.775

Guidelines:776

• The answer NA means that the paper does not involve crowdsourcing nor research with777

human subjects.778

• Depending on the country in which research is conducted, IRB approval (or equivalent)779

may be required for any human subjects research. If you obtained IRB approval, you780

should clearly state this in the paper.781

• We recognize that the procedures for this may vary significantly between institutions782

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the783

guidelines for their institution.784

• For initial submissions, do not include any information that would break anonymity (if785

applicable), such as the institution conducting the review.786
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