
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CODEALIGNBENCH : ASSESSING CODE GENERA-
TION MODELS ON DEVELOPER-PREFERRED CODE
ADJUSTMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models become increasingly capable of generating code, eval-
uating their performance remains a complex and evolving challenge. Existing
benchmarks primarily focus on functional correctness, overlooking the diversity
of real-world coding tasks and developer expectations. To this end, we introduce a
multi-language benchmark that evaluates LLM instruction-following capabilities
and is extensible to operate on any set of standalone coding problems. Our bench-
mark evaluates instruction following in two key settings: adherence to pre-defined
constraints specified with the initial problem, and the ability to perform refine-
ments based on follow-up instructions. For this paper’s analysis, we empirically
evaluated our benchmarking pipeline with programming tasks from LiveBench,
that are also automatically translated from Python into Java and JavaScript. Our
automated benchmark reveals that models exhibit differing levels of performance
across multiple dimensions of instruction-following. Our benchmarking pipeline
provides a more comprehensive evaluation of code generation models, highlight-
ing their strengths and limitations across languages and generation goals.

1 INTRODUCTION

Program synthesis has been a long standing challenge in the field of computer science research. It
is defined as the automatic generation of programs in a given language in order to fulfill user intent,
typically expressed through natural language instructions (Gulwani et al., 2017). It is a particularly
difficult challenge because user intents are often underspecified, ambiguous, or expressed in ways
that leave multiple valid interpretations. This is compounded by the fact that for any given user
intent, there may exist a vast search space of programs that are both syntactically correct and seman-
tically valid, which increases the complexity of finding a solution that precisely matches the user’s
desired behavior.

This challenge has grown more attainable with the advent of Large Language Models (LLMs).
LLMs have demonstrated impressive capabilities in various code generation tasks, assessed on
benchmarks ranging from completing a code snippet (White et al., 2025a; Chen et al., 2021) to
repairing an issue in a large codebase (Jimenez et al., 2024), and more pertinently, for program syn-
thesis from natural language descriptions (Hendrycks et al., 2021; Jain et al., 2024). Existing bench-
marks, however promising, often fall short of capturing the complex nuances of code generation,
particularly in assessing how well models align generated code with the developer’s instructions.

Among all functionally correct solutions to a problem described in natural language, developers
often prefer one particular implementation over others. For instance, when iterating over a list in
Python, both a for loop and a list comprehension are functionally correct. Yet, a developer who finds
one-liners harder to interpret, may instruct the model to use the for loop for its enhanced readability.
Such developer-defined instructions can reflect a variety of concerns, including code refactoring
instructions (Fowler, 2018), adherence to stylistic conventions such as Python best practices (van
Rossum et al., 2001), or any other non-functional qualities like reliability and maintainability.

To evaluate models’ ability to generate code aligned with developer intent, we introduce
CodeAlignBench —a benchmark specifically designed to assess instruction-following (IF) ca-
pabilities in the context of code constraints. CodeAlignBench sources its instructions from a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Problem: Extract valid email addresses from a list of strings.

valid_emails = [email.strip().lower() for email in raw_inputs \
 if email and "@" in email and email.endswith(".com")]

valid_emails = []
for email in raw_inputs:
 if email and "@" in email and email.endswith(".com"):
 valid_emails.append(email.strip().lower())

🤖

Instruction: Avoid using list compression

👩💻

👩💻

🤖

Problem
 + :
instruction

👩💻

valid_emails = []
for email in raw_inputs:
 if email and "@" in email and email.endswith(".com"):
 valid_emails.append(email.strip().lower())

🤖

Extract valid email addresses from a list of strings.
Avoid using list compression

(a) Follow-up instructions (b) Predefined instructions

Figure 1: Illustration of two instruction settings in CodeAlignBench : (a) Follow-up Instruc-
tions, where additional instructions are provided after an initial code generation.(b) Predefined In-
structions, where developer constraint is embedded in the initial prompt.

user study with developers across three programming languages, collecting instructions grounded
in actual developers preferences. These instruction categories form the foundation for an automated
framework that curates IF tasks tailored to each natural language prompt. This framework enables
a combination of rule-based methods and LLM-as-a-judge techniques to determine which instruc-
tion types apply to a given problem, and to check if the instructions were correctly followed. We
empirically evaluated this framework on LLM-judged instructions and found that it achieves a high
agreement rate with human judges in verifying whether the instruction was followed, averaging
87%. Overall, this framework enables systematic evaluation of how well models apply developer
instructions during code generation.

Figure 1 illustrates the two instruction settings that are supported in this benchmark. In the Follow-
up Instruction setting, developers provide instructions after the initial code has been generated.
In contrast, the Predefined Instruction setting embeds the instruction directly within the initial
prompt. With model scores differing by about 30% among frontier models, our benchmark pro-
vides a meaningful measure of instruction-aligned code generation capabilities, yielding a ranking
of models that does not mirror their functional correctness performance. This benchmark also pro-
vides a foundation for curating more complex instructions with a combination of atomic instruction
in CodeAlignBench or iterative refinement in multi-turn settings, allowing models to progres-
sively improve their alignment with developer instructions.

This paper makes the following contributions:

• The first IF benchmark designed to evaluate models ability to generate code aligned with
real-world developer instructions.

• An extensive user study with developers across three programming languages to collect
and categorize real-world code instructions.

• An automated framework that systematically curates and evaluates IF tasks.
• An empirical evaluation of ten LLMs on CodeAlignBench tasks, providing insight into

current capabilities and limitations in instruction-aligned code generation.

The remainder of this paper is organized as follows. Section 2 describes the user study and the pro-
cess of cataloging real-world developer instructions. Section 3 introduces our automated evaluation
framework. Section 4 outlines the experimental setup and presents the results. Section 5 discusses
related work, and Section 6 concludes the paper with directions for future research.

2 INSTRUCTION CATALOG CONSTRUCTION

To construct the instruction catalog, we conducted a user study involving developers with exper-
tise in three different programming languages: Python, Java, JavaScript. For each programming
language, participants were presented with pairs of functionally correct code solutions for program-
ming problems from competitive websites and were asked to identify which version they preferred.
They were then instructed to write natural language instructions that, if followed, would transform
the less preferred code into the more desirable one. These instructions reflect actionable, human-
authored guidance aimed at improving code quality, style, readability, or structure — beyond mere
functional correctness. Appendix B illustrates an example of such a task. The collected instructions

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

📄✎

1. Manual coding

🧑💻

👩💻

👨💻

📝

📝

📝
📝

codebook

exemplars

📋

2. LLM coding

🤖

exemplars

📋 codebook
🤖

👨

📝
codebook
👨

3. Alignment

📝
codebook
👨

📄✎
codebook
🤖

📄✏
codebook
🤖

4. Agreement rate

🤖📄✏
codebook
🤖

📄✏
codebook
🤖

Inter-rater 
agreement📝

codebook
👨

Figure 2: LLM-Assisted Coding Procedure. Stage 1: Manual open coding to create an initial code-
book. Stage 2: Exemplar-based prompting of an LLM to generate codes at scale. Stage 3: Alignment
and consolidation of LLM- and human-created codebooks. Stage 4: Evaluation of LLM coding re-
liability against human labels using inter-rater agreement.

were then analyzed through an open coding process, with the assistance of LLMs, to identify com-
mon themes and instruction types. This iterative coding process resulted in a structured taxonomy
of instructions, which forms the basis of our instruction catalog.

Section 2.1 provides details on the design and implementation of the user study, including task selec-
tion and developer guidelines. Section 2.2 outlines the open coding methodology used to synthesize
the instruction types, including the role of LLMs in accelerating analysis and ensuring consistency
across languages.

2.1 USER STUDY DESIGN

Tasks: The input set for our user study is derived from the LiveBench (White et al., 2025b) code
generation tasks, i.e. programming questions from LeetCode and atCoder. To create pairs of func-
tionally correct code variants for each task, we utilized seven different LLMs to generate code com-
pletions. Our goal was to randomly select two generations per task that passed all predefined test
cases, ensuring both versions were functionally correct. However, naive random sampling tends
to favor higher-performing models, as they produce correct outputs more frequently. To mitigate
this sampling bias and ensure fair representation across models, we employed a balanced sampling
strategy, ensuring a more balanced distribution of code across the questions.

Participants and guidelines: The tasks were conducted by a team of 30 developers, i.e., 10 raters
across three programming languages (Python, Java and Javascript). Raters were software developers
with experience spanning from 3 to 16 years. Each developer completed all tasks and was asked to
choose the code response they preferred, without any additional guidance. This design allowed
raters to apply their own criteria for evaluation, such as the readability of code, coding style, or
other quality aspects they deemed important. If a code was selected, a text box prompted them
to provide one or more instructions they would give to improve the less preferred code. To avoid
forcing arbitrary decisions, raters were also given the option to select “no preference”, or indicate
that they had no clear reason for their preference. This helped ensure that responses were authentic
and not influenced by perceived expectations. Additionally, to ensure response quality, five tasks
were randomly selected and repeated within the task set. Developers who did not demonstrate
consistent preferences across repeated tasks were disqualified, and their responses were excluded
from the final analysis.

2.2 LLM-ASSISTED CODING

In this section, we describe the process of constructing a catalog of instruction types from raw
developer-provided responses. Our methodology is inspired by prior work on human-LLM collab-
orative coding (Dai et al., 2023), and it follows a four-stage inductive coding process as outlined in
Figure 2.

In the first stage, we employed stratified random sampling to select a representative subset of devel-
oper responses from each programming language. Using standard statistical sampling techniques,
we chose 50 responses per language to achieve a 90% confidence level with a 5% margin of error.
These 250 responses were selected for manual open coding. Three authors independently famil-
iarized themselves with the sampled data, coded the instructions using an open coding approach,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Summary of instructions by language and type
Java JavaScript Python
184 175 171

Cosmetic Semantic Structural
32 89 104

Performance Correctness Algorithm
54 6 29
Total verified instructions: 228

and developed an initial codebook of instruction categories. The coders then met to compare and
reconcile their individual types of instructions, resolve any disagreements through discussion, and
consolidate the instruction categories. From this curated subset, 8 representative examples were
selected to serve as exemplars in the next stage. According to previous studies, 4-8 exemplars is
optimal for in-context learning (Min et al., 2022). The exemplars described the code for a sample
user response and the rationale behind that decision.

In the second stage, we used the selected exemplars to prompt a LLM to code the remaining de-
veloper responses. This prompt included the exemplars and a description of the coding task. The
LLM returned a proposed codebook and corresponding labels for each instruction in the dataset,
effectively simulating a human-led thematic analysis at scale.

In the third stage, we aligned the LLM-generated codebook with the human-created codebook. First,
we prompted an LLM to find semantically similar codes. If two codes were semantically similar but
differed in phrasing (e.g., ”add comments” vs. ”enhance documentation”), we manually consoli-
dated them under a single, consistent label. This harmonization step ensured consistent interpreta-
tion across sources.

Finally, to assess the quality and reliability of the LLM’s categorizations, we prompted it to label
the 250 held-out responses from the initial manual coding phase, using the revised codebook. We
compared these LLM-assigned codes with human labels and computed inter-rater agreement using
Cohen’s kappa. This provided a quantitative measure of the LLM’s effectiveness and reliability in
the coding task. For the Python category, Claude Sonnet 4 achieved a higher agreement rate of 0.75
versus GPT 5 Nano that reached 0.72 and has been used as our assistance. However, the performance
of GPT 5 Nano demonstrates that even smaller models can be reliably used in this process.

Above we described our coding process for generating a catalog of diverse instruction categories,
and their corresponding real user responses. We also leveraged an LLM to flag user responses that
were sufficiently generic to be applicable across multiple problems within the same category. For
instance, under the category “use descriptive names,” a response like “rename get y to get height to
be informative” is specific to a particular problem, whereas “use more descriptive names” is generic
enough to be applied to other code snippets with the same issue. This step was critical for assign-
ing instructions at the right level of granularity and applicability to our problem statements during
benchmarking that we will discuss in the next section. Appendix A provides examples of developer
instructions with instruction ids. A full list of instructions are also available in our supplementary
materials.

To ensure the integrity of the data, a human verification step was conducted to assess each instruc-
tion and filter out developer strings that were overly specific, contradictory, or ambiguous. Human
annotators also categorized the instruction categories into the following types:

Cosmetic: Modifications affecting readability, style, or presentation without altering the underly-
ing logic.
Structural: Changes to the implementation’s form or structure (e.g., using specific constructs or
data structures) while preserving the core logic.
Semantic:

– Algorithm: Tasks requiring a fundamental change in the high-level problem-solving strategy,
such as replacing a brute-force approach with a dynamic programming solution.

– Performance: Instructions targeting improvements in time or space complexity by optimizing
computations, reducing redundancy, or managing resources more effectively.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Applicability
Checker

Add User
Instruction

LLM Code
Generator IF Verifier

Code Generation

Problems

IF Categories

Results
Aggregation

Task Construction IF Evaluation

Figure 3: Instruction-following benchmarking framework for code generation

– Correctness: Instructions aimed at fixing bugs, handling edge cases, and ensuring the code is
resilient to unexpected inputs or states.

The detailed guideline on different types is available in our supplementary materials. As shown in
Table 1, in total, we cataloged 228 verified instructions, consisting of 32 cosmetic, 89 semantic, and
114 structural ones. This categorization facilitates insights into the instruction types where models
perform well or tend to fail. It also enables a uniform distribution of IF tasks when sampled multiple
times for benchmarking that will be discussed in details next.

3 INSTRUCTION FOLLOWING BENCHMARKING

In this section, we present an automated framework for evaluating the ability of LLMs to follow
developer-provided instructions. Figure 3 provides an overview of our benchmarking pipeline,
which is organized into two primary stages: Task Construction and IF Evaluation, denoted by the
dashed boxes in the figure.

In the Task Construction stage, we curate instruction-following tasks from existing code genera-
tion problems and categorize them based on the instruction types extracted through our user study
(Section 2). In the subsequent IF Evaluation stage, we evaluate model performance in adhering to
these instructions. To support both stages, our framework offers an interface for defining instruc-
tions from the catalog. Each instruction includes two key functions: is applicable(code)
and verify(code after, code before: Optional). The former determines whether
the instruction is relevant to a given code snippet, while the latter verifies whether the instruction
has been successfully followed. The specific role of these functions and the details of each stage in
the pipeline are elaborated in the remainder of this section.

3.1 TASK CONSTRUCTION

Our benchmarking pipeline begins by collecting code responses from all models under test, for every
problem in the given dataset.

the Task Construction stage creates IF tasks by associating each code solution to a subset of relevant
instruction categories along with the user responses for those categories collected in Section 2.

Not all instruction categories are applicable to every code sample. For instance, the category “avoid
recursion” is only relevant to recursive implementations and does not apply to iterative ones. To
address this, the Applicability Checker identifies a suitable subset of instruction categories for each
code sample.

The Applicability Checker identifies k applicable categories by randomly sampling from the cat-
alog. To ensure diversity of instructions within each sample and maintain consistent instruction
category distributions across runs, we employ balanced sampling, i.e., drawing from each instruc-
tion type described in Section 2. For each type and candidate category, the checker invokes the
is applicable function, which is implemented individually for each instruction. This interface
encapsulates the logic specific to each instruction, regardless of whether they have been implemented
through a rule-based approach or LLM judge, enabling high-accuracy applicability checks that ac-
count for both the syntax and semantics of the code. Complete implementations of these functions

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

for all instruction categories are included in the supplementary materials and will be made available
online upon approval.

For each applicable category, a generic developer-provided instruction is sampled and added to
the collection of applicable instructions. If no such generic instruction exists for a category, the
category id and description are used as a proxy to represent the generic intent of the associated
specific instructions. (More details in Section 2).

The collection of applicable instructions are added to the original programming problem to generate
IF problems in the IF Evaluation stage as described below.

3.2 INSTRUCTION FOLLOWING EVALUATION

For each IF problem, we evaluate models under two different settings: (1) providing the coding prob-
lem, the initial generated code, and instruction, i.e., Follow-up Instructions (Figure 1 (a)); and (2)
providing the coding problem with only the instruction, i.e., Predefined Instructions (Figure 1 (b)).
In each setting, we first collect new model responses for the constructed IF problem. Then, an IF
Verifier component evaluates whether the provided instruction was successfully followed. This veri-
fier leverages the verify function defined for each instruction category, which determines whether
the new solution adheres to the instruction. In the first scenario (Follow-up), both the original and
the updated solutions are provided for verification, while only the updated solution is available to the
second scenario (Predefined). Similar to is applicable function, verify can be implemented
with any approach, rule-based or LLM judge, tailored for each instruction. Finally, the verifier’s
binary judgments are aggregated across all tasks to report each model’s success rate.

4 EXPERIMENTS

In this section we discuss the details of experiments and present the results of different models on
CodeAlignBench .

4.1 DATASET SOURCE

CodeAlignBench requires coding problems as a basis for curating IF tasks. In this work, we
build on the LiveBench code generation tasks (White et al., 2025b), which consist of coding prob-
lems from platforms such as LeetCode and AtCoder. These problems are regularly updated to miti-
gate risks of data contamination. While the original benchmark only supports Python, we extend it to
include additional languages such as Java and JavaScript by implementing an automated translation
pipeline and dedicated evaluation environments for each language. This pipeline enables the auto-
matic extension of the latest versions of LiveBench to new languages. The translated dataset, along
with details of the translation process and execution environments, is provided in the supplementary
materials.

4.2 EXPERIMENTAL SETUP

All experiments were conducted on a local machine, a MacBook Pro equipped with an Apple M1
chip and 16 GB of unified memory. LLM inference for obtaining solutions and judgments were
completed using calls to an API. We used this setup to run the evaluation pipeline, including prompt
generation, code execution, and automated grading across multiple programming languages. Our
modular pipeline is lightweight and platform-agnostic, enabling reproducibility even on resource-
constrained machines.

For LLM-assisted annotation, we use OpenAI’s GPT o4 mini for creating the aligned codebook and
Claude’s sonnet 4 to filter user strings. For instructions that use an LLM judge in their applica-
bility and verification implementation, we use Claude Sonnet 4. For benchmarking, we evaluate
10 models spanning 3 major families, OpenAI, Claude and Gemini, to represent a diverse set of
design trade-offs. These models vary in architecture, parameter scale, reasoning depth, and release
recency, ensuring coverage of both state-of-the-art leading models and smaller, more cost-efficient
alternatives.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Pr
ed

efi
ne

d
Fo

llo
w
-u
p

Python Java JavaScript
Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Figure 4: Radar plots of the top models from each family (GPT, Gemini, and Sonnet), showing
performance across instruction categories (Structural, Semantic, and Cosmetic) as well as the overall
aggregate. The top panels correspond to predefined tasks, while the bottom panel presents follow-up
tasks. Shaded regions represent the standard error of the mean (SEM).

4.3 BENCHMARK RESULTS

A primary finding of our study is the significant performance gap between task types, where models
consistently performed better on follow-up tasks than on predefined tasks. This observation held true
across all evaluated languages and was confirmed by Wilcoxon signed-rank tests, which revealed a
substantial improvement for follow-up tasks in Python (median difference = 0.181, p < 0.01), Java
(median difference = 0.146, p < 0.01), and JavaScript (median difference = 0.240, p < 0.01). This
confirms that providing contextual history allows models to better follow user instructions, and gen-
erate more accurate code modifications. Alternatively, this suggests that models are more effective
with a single, focused instruction than with a problem–instruction pair, which may constitute a more
complex task.

Beyond the influence of scenarios, the nature of the required modification also proved to be a critical
factor. Structural tasks, in particular, consistently yielded the highest performance scores. A Fried-
man test substantiated this finding for predefined tasks across Python (χ2(2) = 12.20, p = 0.0022,
Kendall’s W = 0.61), Java (χ2(2) = 6.20, p = 0.045, W = 0.31), and JavaScript (χ2(2) =
12.60, p = 0.0018, W = 0.63). A similar trend was observed for follow-up tasks, where structural
modifications led to significantly higher performance in JavaScript (χ2(2) = 9.80, p = 0.0074,
W = 0.49).

In terms of model-specific performance, GPT-5, GPT-5 mini, two latest members of the openAI
family, and GPT-o3 mini with high reasoning emerged as the top-performing models, though their
results were often statistically indistinguishable from one another (Table 2). Notably, these leading
GPT models significantly outperformed the best models from the Sonnet and Gemini families in
several instances. This pattern of dominance was less pronounced, however, when analyzing the
granular Semantic, Structural, and Cosmetic categories, where significant differences between top-
tier models were rare.

A secondary trend observed was consistent generational improvement within model families. For
example, Sonnet 4 surpassed Sonnet 3.7 across all evaluated categories and languages, illustrating
a clear pattern of iterative refinement. However, these individual improvements were not always
statistically significant across all model families.

Finally, despite the notably strong performance of GPT models, our results indicate that no model
achieved performance saturation across the full suite of tasks. Even the most capable models exhib-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ited clear limitations particularly in the semantic and cosmetic categories. This substantial headroom
for improvement, along with the flexibility of our benchmarking pipeline where we are able to com-
bine multiple instructions and tune task difficulties, underscores the utility of our benchmark for
tracking future progress.

Table 2: Model performance for different instruction categories across languages. Left-hand values
in each column are for predefined scenarios; right-hand values are for follow-up scenarios. Greyed
values indicate the confidence-interval margins (i.e., the rates are within ± the grey value).
Gem = Gemini, Fl = Flash, Pr = Pro, mi = mini

Model Semantic Structural Cosmetic Overall
Python

Sonnet 3.7 0.40 (0.11) / 0.53 (0.11) 0.49 (0.11) / 0.61 (0.11) 0.54 (0.11) / 0.79 (0.09) 0.47 (0.06) / 0.64 (0.06)
Sonnet 4 0.69 (0.10) / 0.86 (0.08) 0.81 (0.09) / 0.95 (0.05) 0.71 (0.10) / 0.84 (0.08) 0.74 (0.06) / 0.88 (0.04)
Gem 2.0 Fl 0.31 (0.10) / 0.43 (0.11) 0.51 (0.11) / 0.63 (0.11) 0.42 (0.11) / 0.80 (0.09) 0.41 (0.06) / 0.62 (0.06)
Gem 2.5 Fl 0.45 (0.11) / 0.63 (0.11) 0.73 (0.10) / 0.87 (0.08) 0.47 (0.11) / 0.72 (0.10) 0.55 (0.06) / 0.74 (0.06)
Gem 2.5 Pr 0.71 (0.10) / 0.79 (0.09) 0.87 (0.07) / 0.92 (0.06) 0.59 (0.11) / 0.79 (0.09) 0.72 (0.06) / 0.83 (0.05)
GPT 4.1 0.60 (0.11) / 0.84 (0.08) 0.74 (0.10) / 0.87 (0.08) 0.50 (0.11) / 0.87 (0.08) 0.62 (0.06) / 0.86 (0.05)
GPT 4o 0.37 (0.11) / 0.80 (0.09) 0.65 (0.11) / 0.82 (0.09) 0.51 (0.11) / 0.87 (0.07) 0.51 (0.06) / 0.83 (0.05)
GPT 5 0.77 (0.09) / 0.96 (0.04) 0.90 (0.07) / 0.96 (0.04) 0.55 (0.11) / 0.79 (0.09) 0.74 (0.06) / 0.90 (0.04)
GPT 5 mini 0.73 (0.10) / 0.93 (0.06) 0.83 (0.08) / 0.97 (0.04) 0.63 (0.11) / 0.80 (0.09) 0.73 (0.06) / 0.90 (0.04)
GPT o3 mi 0.65 (0.11) / 0.95 (0.05) 0.83 (0.08) / 0.95 (0.05) 0.60 (0.11) / 0.88 (0.07) 0.70 (0.06) / 0.93 (0.03)

Java
Sonnet 3.7 0.48 (0.20) / 0.40 (0.20) 0.57 (0.16) / 0.60 (0.15) 0.55 (0.18) / 0.71 (0.16) 0.54 (0.10) / 0.58 (0.10)
Sonnet 4 0.56 (0.20) / 0.68 (0.19) 0.80 (0.13) / 0.85 (0.11) 0.55 (0.18) / 0.81 (0.14) 0.66 (0.10) / 0.79 (0.08)
Gem 2.0 Fl 0.44 (0.20) / 0.52 (0.20) 0.45 (0.16) / 0.45 (0.16) 0.61 (0.17) / 0.68 (0.17) 0.50 (0.10) / 0.54 (0.10)
Gem 2.5 Fl 0.60 (0.20) / 0.68 (0.19) 0.50 (0.16) / 0.68 (0.15) 0.48 (0.18) / 0.68 (0.17) 0.52 (0.10) / 0.68 (0.09)
Gem 2.5 Pr 0.76 (0.17) / 0.84 (0.15) 0.75 (0.14) / 0.88 (0.10) 0.65 (0.17) / 0.77 (0.15) 0.72 (0.09) / 0.83 (0.07)
GPT 4.1 0.64 (0.19) / 0.72 (0.18) 0.75 (0.14) / 0.88 (0.10) 0.52 (0.18) / 0.87 (0.12) 0.65 (0.10) / 0.83 (0.07)
GPT 4o 0.48 (0.20) / 0.56 (0.20) 0.55 (0.16) / 0.78 (0.13) 0.58 (0.18) / 0.84 (0.13) 0.54 (0.10) / 0.74 (0.09)
GPT 5 0.60 (0.20) / 0.92 (0.11) 0.72 (0.14) / 0.97 (0.05) 0.58 (0.18) / 0.87 (0.12) 0.65 (0.10) / 0.93 (0.05)
GPT 5 mi 0.72 (0.18) / 0.80 (0.16) 0.88 (0.10) / 0.93 (0.08) 0.65 (0.17) / 0.90 (0.11) 0.76 (0.09) / 0.89 (0.06)
GPT o3 mi 0.64 (0.19) / 0.76 (0.17) 0.65 (0.15) / 0.93 (0.08) 0.58 (0.18) / 0.94 (0.09) 0.62 (0.10) / 0.89 (0.06)

JavaScript
Sonnet 3.7 0.29 (0.11) / 0.56 (0.12) 0.59 (0.15) / 0.63 (0.15) 0.41 (0.14) / 0.69 (0.13) 0.41 (0.08) / 0.62 (0.08)
Sonnet 4 0.61 (0.12) / 0.85 (0.09) 0.68 (0.14) / 0.90 (0.09) 0.63 (0.13) / 0.84 (0.10) 0.64 (0.08) / 0.86 (0.05)
Gem 2.0 Fl 0.27 (0.11) / 0.47 (0.13) 0.46 (0.15) / 0.71 (0.14) 0.47 (0.14) / 0.78 (0.11) 0.39 (0.08) / 0.64 (0.08)
Gem 2.5 Fl 0.37 (0.12) / 0.66 (0.12) 0.56 (0.15) / 0.93 (0.08) 0.49 (0.14) / 0.78 (0.11) 0.46 (0.08) / 0.77 (0.07)
Gem 2.5 Pr 0.32 (0.12) / 0.82 (0.10) 0.71 (0.14) / 0.85 (0.11) 0.63 (0.13) / 0.80 (0.11) 0.53 (0.08) / 0.82 (0.06)
GPT 4.1 0.65 (0.12) / 0.85 (0.09) 0.73 (0.14) / 0.93 (0.08) 0.45 (0.14) / 0.75 (0.12) 0.60 (0.08) / 0.84 (0.06)
GPT 4o 0.39 (0.12) / 0.76 (0.11) 0.73 (0.14) / 0.93 (0.08) 0.51 (0.14) / 0.73 (0.12) 0.52 (0.08) / 0.79 (0.06)
GPT 5 0.73 (0.11) / 0.95 (0.05) 0.78 (0.13) / 1.00 (0.00) 0.65 (0.13) / 0.80 (0.11) 0.71 (0.07) / 0.92 (0.04)
GPT 5 mi 0.71 (0.11) / 0.90 (0.07) 0.88 (0.10) / 0.95 (0.07) 0.49 (0.14) / 0.82 (0.11) 0.68 (0.07) / 0.89 (0.05)
GPT o3 mi 0.66 (0.12) / 0.90 (0.07) 0.80 (0.12) / 1.00 (0.00) 0.49 (0.14) / 0.86 (0.10) 0.64 (0.08) / 0.92 (0.04)

LLM Judgment reliability: LLM judgments were used to determine whether a given instruction
was correctly followed. To evaluate our model’s performance on this task, we employed a set of
questions containing real user instructions collected from the user study. This approach allowed us
to isolate the verifier component from the rest of the pipeline (i.e., the applicability checker) and
focus solely on its effectiveness. We picked top 10 most frequent instructions, least 10 frequent
ones, as well as 10 randomly selected ones. This ensured that the evaluation covered both com-
monly encountered instructions and those that might be unique to a particular user or code snippet.
Then, two authors independently assessed the responses and resolved any disagreements through
discussion to reach a consensus. We compared the outputs of Claude Sonnet 4 performing the same
verification task against human assessments. Using Claude Sonnet 4, we observed four instances of
disagreement with human judgments, giving this model 86.67 accuracy in terms of verifying if the
instruction has been followed. We also ran the same set of questions from the user study with Gemini
2.5 pro. We found that 0.8249 of Gemini 2.5 pro’s judgments matched the predictions from Claude
Sonnet 4. Further analysis of the LLM judge can be found in Appendix D. These results demonstrate
the reliability of LLMs, under our prompting, in performing instruction following verification.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 RELATED WORKS

Evaluating Code Generation Models: Code generation using LLMs has become a prominent area
of research and practical application (Jiang et al., 2024; Jain et al., 2024). By leveraging representa-
tions from vast pre-training corpora, LLMs have demonstrated a remarkable capability to transform
natural language descriptions into functional code (Hou et al., 2024). This progress has driven the
creation of benchmarks to systematically evaluate reliability and guide future work (Jiang et al.,
2024). The majority of these benchmarks consist of short, self-contained, algorithmic tasks, exem-
plified by HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021). Recent benchmarks have
expanded the scope of evaluation to more complex settings, such as class-level generation (Du et al.,
2023) and repository-level tasks built on open-source projects (Li et al., 2024; Liu et al., 2024). Un-
like CodeAlignBench , these benchmarks often stop at the threshold of functional correctness,
content with any working solution in the vast space of possible solutions.

Instruction Following Evaluation: IF is a fundamental capability of LLMs. To evaluate this ability
systematically, researchers have proposed a growing number of automated benchmarks. Most of
these approaches define instruction following in terms of format adherence; a model is considered
successful when its outputs meet the explicit requirements specified in the prompt.

Early efforts in evaluating IF, such as IFEval (Zhou et al., 2023; He et al., 2024), focused on automat-
ically verifiable constraints like word limits or required phrases, which allowed for straightforward,
rule-based evaluation. Building on this foundation, more recent work like LiveBench has extended
this paradigm to diverse creative tasks such as summarization and story generation, while still main-
taining the format of objective checks against explicit instructions (White et al., 2025b). Alongside
increasing task diversity, research has also broadened the scope of IF benchmarks. For instance,
multilingual variants like M-IFEval (Dussolle et al., 2025) highlight performance variations across
languages, while LIFBench addresses the challenges of instruction following in long-context set-
tings (Wu et al., 2025). A complementary line of inquiry examines the evaluation process itself,
with approaches like LLMBar (Zeng et al., 2024) assessing the ability of LLMs to act as reliable
judges. Collectively, these diverse efforts are crucial for ensuring that IF benchmarks move beyond
simple instructions in unrealistic settings to become truly informative and robust.

Although most IF benchmarks have centered on natural language tasks, more recent work extends
these evaluation to the code generation setting. Early efforts in this space, such as CodeIF (Wang
et al., 2025a) introduced multi-constraint tasks across multiple languages and assesses adherence
with automated rule-based metrics. BigCodeBench-Instruct (Zhuo et al., 2025) addresses instruc-
tion following in more complex contexts by reformulating function docstrings into concise and ver-
ifiable natural language tasks that may require multiple library calls. CodeIF-Bench (Wang et al.,
2025b) aims to simulate developer workflows in interactive settings by means of verifiable instruc-
tions and test-case scoring; however, its tasks are synthetically constructed rather than sourced from
real developers . Complementing these constraint-centric efforts, CodeUltraFeedback (Weyssow
et al., 2024) shifts the focus from correctness to quality, leveraging an LLM to judge preferences
like readability and style. Despite these advances, a common limitation persists: many of these
benchmarks rely on synthetic tasks and prioritize easily verifiable outcomes. Our work builds on
this foundation by grounding evaluation in realistic instructions sourced directly from developers.
Moreover, CodeAlignBench reduces the risk of data contamination, an issue for static bench-
marks that often appear in the training data of newer models, by incorporating live benchmarks such
as LiveBench (White et al., 2025b), which are continuously updated with new, real-world tasks.

6 CONCLUSION

In this paper we introduced a comprehensive and extensible benchmark for LLM code generation.
It extends an existing dataset to support three languages and a catalog of instruction-based tasks,
evaluating dimensions beyond functional correctness. Our findings show that frontier models, while
often generating functionally correct code, fail to adhere to specific stylistic or structural instructions.
The novel, modular design of our evaluation pipeline is central to our contribution. This paves the
way for more nuanced evaluations by enabling the seamless addition of new problems and, in the
future, more complex multi-turn instructions. To ensure clarity and correctness, we also employed
LLMs to proofread the written text and refine grammar throughout the paper.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Shih-Chieh Dai, Aiping Xiong, and Lun-Wei Ku. Llm-in-the-loop: Leveraging large language
model for thematic analysis. arXiv preprint arXiv:2310.15100, 2023.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for eval-
uating llms on class-level code generation, 2023. URL https://arxiv.org/abs/2308.
01861.

Antoine Dussolle, A. Cardeña, Shota Sato, and Peter Devine. M-IFEval: Multilingual instruction-
following evaluation. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Findings of the
Association for Computational Linguistics: NAACL 2025, pp. 6161–6176, Albuquerque, New
Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7.
doi: 10.18653/v1/2025.findings-naacl.344. URL https://aclanthology.org/2025.
findings-naacl.344/.

Martin Fowler. Catalog of refactorings. https://refactoring.com/catalog/, 2018. On-
line catalog supporting the second edition of Refactoring.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119, 2017.

Qianyu He, Jie Zeng, Qianxi He, Jiaqing Liang, and Yanghua Xiao. From complex to simple:
Enhancing multi-constraint complex instruction following ability of large language models. arXiv
preprint arXiv:2404.15846, 2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. NeurIPS, 2021.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic litera-
ture review. ACM Transactions on Software Engineering and Methodology, 33(8):1–79, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Huanyu Liu, Hao Zhu, Lecheng Wang, Kaibo Liu, Zheng
Fang, Lanshen Wang, Jiazheng Ding, Xuanming Zhang, Yuqi Zhu, Yihong Dong, Zhi Jin, Binhua
Li, Fei Huang, and Yongbin Li. Deveval: A manually-annotated code generation benchmark
aligned with real-world code repositories, 2024. URL https://arxiv.org/abs/2405.
19856.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=pPjZIOuQuF.

10

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://aclanthology.org/2025.findings-naacl.344/
https://aclanthology.org/2025.findings-naacl.344/
https://refactoring.com/catalog/
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2405.19856
https://arxiv.org/abs/2405.19856
https://openreview.net/forum?id=pPjZIOuQuF

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work?,
2022. URL https://arxiv.org/abs/2202.12837.

Guido van Rossum, Barry Warsaw, and Nick Coghlan. Pep 8 – style guide for python code. https:
//peps.python.org/pep-0008/, 2001. Python Enhancement Proposal.

Peiding Wang, Li Zhang, Fang Liu, Lin Shi, Minxiao Li, Bo Shen, and An Fu. Codeif-bench: Eval-
uating instruction-following capabilities of large language models in interactive code generation.
arXiv preprint arXiv:2503.22688, 2025a.

Peiding Wang, Li Zhang, Fang Liu, Lin Shi, Minxiao Li, Bo Shen, and An Fu. Codeif-bench: Eval-
uating instruction-following capabilities of large language models in interactive code generation,
2025b. URL https://arxiv.org/abs/2503.22688.

Martin Weyssow, Aton Kamanda, Xin Zhou, and Houari Sahraoui. Codeultrafeedback: An llm-as-
a-judge dataset for aligning large language models to coding preferences, 2024. URL https:
//arxiv.org/abs/2403.09032.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain, Ravid
Shwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh
Sandha, Siddartha Venkat Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie
Neiswanger, and Micah Goldblum. Livebench: A challenging, contamination-free LLM bench-
mark. In The Thirteenth International Conference on Learning Representations, 2025a.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain, Ravid
Shwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh
Sandha, Siddartha Venkat Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie
Neiswanger, and Micah Goldblum. Livebench: A challenging, contamination-limited LLM
benchmark. In The Thirteenth International Conference on Learning Representations, 2025b.
URL https://openreview.net/forum?id=sKYHBTAxVa.

Xiaodong Wu, Minhao Wang, Yichen Liu, Xiaoming Shi, He Yan, Xiangju Lu, Junmin Zhu, and Wei
Zhang. Lifbench: Evaluating the instruction following performance and stability of large language
models in long-context scenarios, 2025. URL https://arxiv.org/abs/2411.07037.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqi Chen. Evaluating large
language models at evaluating instruction following. In International Conference on Learning
Representations (ICLR), 2024.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen GONG, James
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and Le-
andro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls and
complex instructions. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=YrycTjllL0.

11

https://arxiv.org/abs/2202.12837
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/
https://arxiv.org/abs/2503.22688
https://arxiv.org/abs/2403.09032
https://arxiv.org/abs/2403.09032
https://openreview.net/forum?id=sKYHBTAxVa
https://arxiv.org/abs/2411.07037
https://openreview.net/forum?id=YrycTjllL0

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A SAMPLE OF CODEALIGNBENCH ’S INSTRUCTIONS

Table 3: Sample of developer instructions with language column.
Category Instruction ID Sample User String Language
Cosmetic add-comments Add comments to complex main logic of the code. JS, P, J

add-type-hints Add type annotations to function parameters and return val-
ues.

P

concise-variable-names Use concise variable naming. JS, P, J
consistent-formatting Use consistent formatting for spacing and variables. JS, P, J
consistent-naming-
convention

Use consistent naming convention. JS, P, J

move-imports-to-top Move imports to the top of the file. JS, P, J
reduce-comments Remove unnecessary comments from the code. JS, P, J
remove-redundant-code-
and-comments

Remove redundant comments and variables. JS, P, J

remove-unused-imports Remove unused import statements. JS, P, J
use-lowercase-variable-
names

Use lowercase variable names. JS, P, J

use-symbolic-constants Use symbolic constants. JS, P, J
Structural add-intermediate-variable Store intermediate results in a separate variable. JS, P, J

add-missing-import Identify and add missing import statements. JS, P, J
add-test-cases Create executable test code to verify correctness. JS, P, J
avoid-code-duplication Eliminate repeated code by consolidating duplicate logic. JS, P, J
avoid-global-variables Avoid using global or external variables. JS, P, J
avoid-nested-functions Avoid defining functions inside other functions. JS, P
inline-helper-functions Inline simple helper functions. JS, P, J
modularize-code Use proper functions or modules for the logic. JS, P, J
move-print-outside-loop Produce output at the end of the main code logic. JS, P, J
remove-unused-function Remove unused functions. JS, P, J
shorten-if-else-chains Reduce the length of if-else chains. JS, P, J
use-counter-object Use Counter for frequency counting. P
use-dictionary-mapping Use a dictionary for mapping. JS, P, J
use-enumerate Use enumerate for loops. JS, P
use-list-comprehensions Use list comprehensions. P
use-loop-indices Use index-based traversal. JS, P, J
use-string-multiplication-
operator

Use string multiplication operator. P

Semantic
Algorithm avoid-floating-point-

operations
Avoid floating-point operations. JS, P, J

avoid-recursion Avoid using recursion. JS, P, J
change-inner-loop-to-
start-from-outer-index

Change inner loop to start from outer index. JS, P, J

use-binary-search Implement binary search for value lookups. JS, P, J
use-dynamic-
programming

Use dynamic programming. JS, P, J

use-greedy-algorithm Use greedy algorithm. JS, P, J
use-iterative-dp Use iterative dynamic programming. JS, P, J

Performance avoid-extra-array-storage Avoid unnecessary array storage. JS, P, J
avoid-redundant-
computation

Avoid redundant computation. JS, P, J

limit-variable-scope Limit the tracking scope or prune the search space. JS, P, J
optimize-io-performance Use buffered I/O and input processing. JS, P, J
reduce-dictionary-
operations

Reduce dictionary operations. JS, P, J

set-recursion-limit Set recursion limit. P
use-efficient-algorithm Use a more efficient algorithm. JS, P, J
use-efficient-data-
structure

Use a more efficient data structure. JS, P, J

Correctness check-edge-cases Add checks for edge cases when possible. JS, P, J
error-handling Handle different errors properly. JS, P, J

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B SAMPLE OF USER STUDY TASKS

Figure 5: Pairwise evaluation task

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C SAMPLE SCREENSHOT OF PAIRWISE MODEL COMPARISON

The benchmark is accompanied by visualization tools designed to aid in the interpretation and anal-
ysis of results. Image 6 illustrates a screenshot of pairwise comparator.

 class Solution:
 def findWordsContaining(self, words: List[str], x: str) -> List[int]:
 result = []

 for i, word in enumerate(words):
 if x in word:
 result.append(i)

 return result

class Solution:
 def findWordsContaining(self, words: List[str], x: str) -> List[int]:
 result = []

 for i, word in enumerate(words):
 if x in word:
 result.append(i)

 return result

if __name__ == "__main__":
 sol = Solution()

 # Example 1
 words1 = ["leet", "code"]
 x1 = "e"
 out1 = sol.findWordsContaining(words1, x1)
 print("Output 1:", out1)
 assert out1 == [0, 1], f"Expected [0, 1], got {out1}"

 # Example 2
 words2 = ["abc", "bcd", "aaaa", "cbc"]
 x2 = "a"
 out2 = sol.findWordsContaining(words2, x2)
 print("Output 2:", out2)
 assert out2 == [0, 2], f"Expected [0, 2], got {out2}"

 # Example 3
 words3 = ["abc", "bcd", "aaaa", "cbc"]
 x3 = "z"
 out3 = sol.findWordsContaining(words3, x3)
 print("Output 3:", out3)
 assert out3 == [], f"Expected [], got {out3}"

 # Additional tests
 words4 = ["a", "b", "c", "a"]
 x4 = "a"
 out4 = sol.findWordsContaining(words4, x4)
 print("Output 4:", out4)
 assert out4 == [0, 3], f"Expected [0, 3], got {out4}"

 words5 = ["xyz", "yzx", "zxy"]
 x5 = "x"
 out5 = sol.findWordsContaining(words5, x5)
 print("Output 5:", out5)
 assert out5 == [0, 1, 2], f"Expected [0, 1, 2], got {out5}"

 print("All tests passed.")

GPT-5-miniClaude Sonnet 4

 class Solution:
 def findWordsContaining(self, words: List[str], x: str) -> List[int]:
 result = []

 for i, word in enumerate(words):
 if x in word:
 result.append(i)

 return result

Instruction: Add test cases as executable examples to validate core logic

Pairwise Analysis
ID: 9026b23d1094bb0072bae31bd66f9a8cc7220e3951dc520c53a2f21c4e8a472c

Category: add-test-cases

Result: claude-sonnet-4 fails, gpt-5-mini passes

Previous solution

Figure 6: Example of an instruction that Sonnet 4 failed to follow, but was correctly executed by
GPT-5 mini.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D RADAR PLOTS FOR ALL MODEL FAMILIES

Here we demonstrate performance of all models within each model family on our benchmark. Sub-
stantial and significant generational improvements are observable within different model families.

Pr
ed

efi
ne

d
Fo

llo
w
-u
p

Python Java JavaScript
Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Figure 7: Radar plots of models from the Sonnet family, showing performance across instruction
categories (Structural, Semantic, and Cosmetic) as well as the overall aggregate. The top panels
correspond to predefined tasks, while the bottom panel presents follow-up tasks. Shaded regions
represent the standard error of the mean (SEM).

Pr
ed

efi
ne

d
Fo

llo
w
-u
p

Python Java JavaScript
Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Figure 8: Radar plots of models from the Gemini family, showing performance across instruction
categories (Structural, Semantic, and Cosmetic) as well as the overall aggregate. The top panels
correspond to predefined tasks, while the bottom panel presents follow-up tasks. Shaded regions
represent the standard error of the mean (SEM).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Pr
ed

efi
ne

d
Fo

llo
w
-u
p

Python Java JavaScript
Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Figure 9: Radar plots of models from the GPT family, showing performance across instruction
categories (Structural, Semantic, and Cosmetic) as well as the overall aggregate. The top panels
correspond to predefined tasks, while the bottom panel presents follow-up tasks. Shaded regions
represent the standard error of the mean (SEM).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E LLM JUDGE BIAS

In our experiments, we employ Claude Sonnet 4 as the LLM judge for instruction verification.
This creates a potential source of bias as the judgments of Claude Sonnet 4 may be biased towards
generations from Claude Sonnet 4. To analyze the effects of using Claude as the judge, we performed
an ablation using GPT-5 as the judge model on JavaScript and Java problems. We found that the
Sonnet 4 Judge scores are not always higher for Sonnet 4 code generations. Additionally, the relative
rankings between models remained pretty consistent.

Language Setting Judge gemini-2.5-pro sonnet 4
JavaScript Follow-up gpt 5 0.790 0.811
JavaScript Follow-up sonnet 4 0.854 0.871
JavaScript Predefined gpt 5 0.602 0.615
JavaScript Predefined sonnet 4 0.585 0.671

Java Follow-up gpt 5 0.794 0.811
Java Follow-up sonnet 4 0.863 0.863
Java Predefined gpt 5 0.653 0.670
Java Predefined sonnet 4 0.649 0.632

Table 4: Comparison of gemini-2.5-pro and sonnet 4 across different languages, settings, and judges.

17

	Introduction
	Instruction Catalog Construction
	User Study Design
	LLM-Assisted Coding

	Instruction Following Benchmarking
	Task Construction
	Instruction Following Evaluation

	Experiments
	Dataset source
	Experimental setup
	Benchmark Results

	Related works
	Conclusion
	Sample of CodeAlignBench 's instructions
	Sample of user study tasks
	Sample screenshot of pairwise model comparison
	Radar plots for all model families
	LLM Judge Bias

