
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CODEALIGNBENCH : ASSESSING CODE GENERA-
TION MODELS ON DEVELOPER-PREFERRED CODE
ADJUSTMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models become increasingly capable of generating code, eval-
uating their performance remains a complex and evolving challenge. Existing
benchmarks primarily focus on functional correctness, overlooking the diversity
of real-world coding tasks and developer expectations. To this end, we introduce a
multi-language benchmark that evaluates LLM instruction-following capabilities
and is extensible to operate on any set of standalone coding problems. Our bench-
mark evaluates instruction following in two key settings: adherence to pre-defined
constraints specified with the initial problem, and the ability to perform refine-
ments based on follow-up instructions. For this paper’s analysis, we empirically
evaluated our benchmarking pipeline with programming tasks from LiveBench,
that are also automatically translated from Python into Java and JavaScript. Our
automated benchmark reveals that models exhibit differing levels of performance
across multiple dimensions of instruction-following. Our benchmarking pipeline
provides a more comprehensive evaluation of code generation models, highlight-
ing their strengths and limitations across languages and generation goals.

1 INTRODUCTION

Program synthesis has been a long standing challenge in the field of computer science research. It
is defined as the automatic generation of programs in a given language in order to fulfill user intent,
typically expressed through natural language instructions (Gulwani et al., 2017). It is a particularly
difficult challenge because user intents are often underspecified, ambiguous, or expressed in ways
that leave multiple valid interpretations. This is compounded by the fact that for any given user
intent, there may exist a vast search space of programs that are both syntactically correct and seman-
tically valid, which increases the complexity of finding a solution that precisely matches the user’s
desired behavior.

This challenge has grown more attainable with the advent of Large Language Models (LLMs).
LLMs have demonstrated impressive capabilities in various code generation tasks, assessed on
benchmarks ranging from completing a code snippet (White et al., 2025a; Chen et al., 2021) to
repairing an issue in a large codebase (Jimenez et al., 2024), and more pertinently, for program syn-
thesis from natural language descriptions (Hendrycks et al., 2021; Jain et al., 2024). Existing bench-
marks, however promising, often fall short of capturing the complex nuances of code generation,
particularly in assessing how well models align generated code with the developer’s instructions.

Among all functionally correct solutions to a problem described in natural language, developers
often prefer one particular implementation over others. For instance, when iterating over a list in
Python, both a for loop and a list comprehension are functionally correct. Yet, a developer who finds
one-liners harder to interpret, may instruct the model to use the for loop for its enhanced readability.
Such developer-defined instructions can reflect a variety of concerns, including code refactoring
instructions (Fowler, 2018), adherence to stylistic conventions such as Python best practices (van
Rossum et al., 2001), or any other non-functional qualities like reliability and maintainability.

To evaluate models’ ability to generate code aligned with developer intent, we introduce
CodeAlignBench —a benchmark specifically designed to assess instruction-following (IF) ca-
pabilities in the context of code constraints. CodeAlignBench sources its instructions from a
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Problem: Extract valid email addresses from a list of strings.

valid_emails = [email.strip().lower() for email in raw_inputs \ 
                if email and "@" in email and email.endswith(".com")]

valid_emails = [] 
for email in raw_inputs: 
    if email and "@" in email and email.endswith(".com"): 
        valid_emails.append(email.strip().lower())

🤖

Instruction: Avoid using list compression

👩💻

👩💻

🤖

Problem  
         +        : 
instruction                                             

👩💻

valid_emails = [] 
for email in raw_inputs: 
    if email and "@" in email and email.endswith(".com"): 
        valid_emails.append(email.strip().lower())

🤖

Extract valid email addresses from a list of strings.  
Avoid using list compression

(a) Follow-up instructions (b) Predefined instructions

Figure 1: Illustration of two instruction settings in CodeAlignBench : (a) Follow-up Instruc-
tions, where additional instructions are provided after an initial code generation.(b) Predefined In-
structions, where developer constraint is embedded in the initial prompt.

user study with developers across three programming languages, collecting instructions grounded
in actual developers preferences. These instruction categories form the foundation for an automated
framework that curates IF tasks tailored to each natural language prompt. This framework enables
a combination of rule-based methods and LLM-as-a-judge techniques to determine which instruc-
tion types apply to a given problem, and to check if the instructions were correctly followed. We
empirically evaluated this framework on LLM-judged instructions and found that it achieves a high
agreement rate with human judges in verifying whether the instruction was followed, averaging
87%. Overall, this framework enables systematic evaluation of how well models apply developer
instructions during code generation.

Figure 1 illustrates the two instruction settings that are supported in this benchmark. In the Follow-
up Instruction setting, developers provide instructions after the initial code has been generated.
In contrast, the Predefined Instruction setting embeds the instruction directly within the initial
prompt. With model scores differing by about 30% among frontier models, our benchmark pro-
vides a meaningful measure of instruction-aligned code generation capabilities, yielding a ranking
of models that does not mirror their functional correctness performance. This benchmark also pro-
vides a foundation for curating more complex instructions with a combination of atomic instruction
in CodeAlignBench or iterative refinement in multi-turn settings, allowing models to progres-
sively improve their alignment with developer instructions.

This paper makes the following contributions:

• The first IF benchmark designed to evaluate models ability to generate code aligned with
real-world developer instructions.

• An extensive user study with developers across three programming languages to collect
and categorize real-world code instructions.

• An automated framework that systematically curates and evaluates IF tasks.
• An empirical evaluation of ten LLMs on CodeAlignBench tasks, providing insight into

current capabilities and limitations in instruction-aligned code generation.

The remainder of this paper is organized as follows. Section 2 describes the user study and the pro-
cess of cataloging real-world developer instructions. Section 3 introduces our automated evaluation
framework. Section 4 outlines the experimental setup and presents the results. Section 5 discusses
related work, and Section 6 concludes the paper with directions for future research.

2 INSTRUCTION CATALOG CONSTRUCTION

To construct the instruction catalog, we conducted a user study involving developers with exper-
tise in three different programming languages: Python, Java, JavaScript. For each programming
language, participants were presented with pairs of functionally correct code solutions for program-
ming problems from competitive websites and were asked to identify which version they preferred.
They were then instructed to write natural language instructions that, if followed, would transform
the less preferred code into the more desirable one. These instructions reflect actionable, human-
authored guidance aimed at improving code quality, style, readability, or structure — beyond mere
functional correctness. Appendix B illustrates an example of such a task. The collected instructions
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Figure 2: LLM-Assisted Coding Procedure. Stage 1: Manual open coding to create an initial code-
book. Stage 2: Exemplar-based prompting of an LLM to generate codes at scale. Stage 3: Alignment
and consolidation of LLM- and human-created codebooks. Stage 4: Evaluation of LLM coding re-
liability against human labels using inter-rater agreement.

were then analyzed through an open coding process, with the assistance of LLMs, to identify com-
mon themes and instruction types. This iterative coding process resulted in a structured taxonomy
of instructions, which forms the basis of our instruction catalog.

Section 2.1 provides details on the design and implementation of the user study, including task selec-
tion and developer guidelines. Section 2.2 outlines the open coding methodology used to synthesize
the instruction types, including the role of LLMs in accelerating analysis and ensuring consistency
across languages.

2.1 USER STUDY DESIGN

Tasks: The input set for our user study is derived from the LiveBench (White et al., 2025b) code
generation tasks, i.e. programming questions from LeetCode and atCoder. To create pairs of func-
tionally correct code variants for each task, we utilized seven different LLMs to generate code com-
pletions. Our goal was to randomly select two generations per task that passed all predefined test
cases, ensuring both versions were functionally correct. However, naive random sampling tends
to favor higher-performing models, as they produce correct outputs more frequently. To mitigate
this sampling bias and ensure fair representation across models, we employed a balanced sampling
strategy, ensuring a more balanced distribution of code across the questions.

Participants and guidelines: The tasks were conducted by a team of 30 developers, i.e., 10 raters
across three programming languages (Python, Java and Javascript). Raters were software developers
with experience spanning from 3 to 16 years. Each developer completed all tasks and was asked to
choose the code response they preferred, without any additional guidance. This design allowed
raters to apply their own criteria for evaluation, such as the readability of code, coding style, or
other quality aspects they deemed important. If a code was selected, a text box prompted them
to provide one or more instructions they would give to improve the less preferred code. To avoid
forcing arbitrary decisions, raters were also given the option to select “no preference”, or indicate
that they had no clear reason for their preference. This helped ensure that responses were authentic
and not influenced by perceived expectations. Additionally, to ensure response quality, five tasks
were randomly selected and repeated within the task set. Developers who did not demonstrate
consistent preferences across repeated tasks were disqualified, and their responses were excluded
from the final analysis.

2.2 LLM-ASSISTED CODING

In this section, we describe the process of constructing a catalog of instruction types from raw
developer-provided responses. Our methodology is inspired by prior work on human-LLM collab-
orative coding (Dai et al., 2023), and it follows a four-stage inductive coding process as outlined in
Figure 2.

In the first stage, we employed stratified random sampling to select a representative subset of devel-
oper responses from each programming language. Using standard statistical sampling techniques,
we chose 50 responses per language to achieve a 90% confidence level with a 5% margin of error.
These 250 responses were selected for manual open coding. Three authors independently famil-
iarized themselves with the sampled data, coded the instructions using an open coding approach,
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Table 1: Summary of instructions by language and type
Java JavaScript Python
184 175 171

Cosmetic Semantic Structural
32 89 104

Performance Correctness Algorithm
54 6 29
Total verified instructions: 228

and developed an initial codebook of instruction categories. The coders then met to compare and
reconcile their individual types of instructions, resolve any disagreements through discussion, and
consolidate the instruction categories. From this curated subset, 8 representative examples were
selected to serve as exemplars in the next stage. According to previous studies, 4-8 exemplars is
optimal for in-context learning (Min et al., 2022). The exemplars described the code for a sample
user response and the rationale behind that decision.

In the second stage, we used the selected exemplars to prompt a LLM to code the remaining de-
veloper responses. This prompt included the exemplars and a description of the coding task. The
LLM returned a proposed codebook and corresponding labels for each instruction in the dataset,
effectively simulating a human-led thematic analysis at scale.

In the third stage, we aligned the LLM-generated codebook with the human-created codebook. First,
we prompted an LLM to find semantically similar codes. If two codes were semantically similar but
differed in phrasing (e.g., ”add comments” vs. ”enhance documentation”), we manually consoli-
dated them under a single, consistent label. This harmonization step ensured consistent interpreta-
tion across sources.

Finally, to assess the quality and reliability of the LLM’s categorizations, we prompted it to label
the 250 held-out responses from the initial manual coding phase, using the revised codebook. We
compared these LLM-assigned codes with human labels and computed inter-rater agreement using
Cohen’s kappa. This provided a quantitative measure of the LLM’s effectiveness and reliability in
the coding task. For the Python category, Claude Sonnet 4 achieved a higher agreement rate of 0.75
versus GPT 5 Nano that reached 0.72 and has been used as our assistance. However, the performance
of GPT 5 Nano demonstrates that even smaller models can be reliably used in this process.

Above we described our coding process for generating a catalog of diverse instruction categories,
and their corresponding real user responses. We also leveraged an LLM to flag user responses that
were sufficiently generic to be applicable across multiple problems within the same category. For
instance, under the category “use descriptive names,” a response like “rename get y to get height to
be informative” is specific to a particular problem, whereas “use more descriptive names” is generic
enough to be applied to other code snippets with the same issue. This step was critical for assign-
ing instructions at the right level of granularity and applicability to our problem statements during
benchmarking that we will discuss in the next section. Appendix A provides examples of developer
instructions with instruction ids. A full list of instructions are also available in our supplementary
materials.

To ensure the integrity of the data, a human verification step was conducted to assess each instruc-
tion and filter out developer strings that were overly specific, contradictory, or ambiguous. Human
annotators also categorized the instruction categories into the following types:

Cosmetic: Modifications affecting readability, style, or presentation without altering the underly-
ing logic.
Structural: Changes to the implementation’s form or structure (e.g., using specific constructs or
data structures) while preserving the core logic.
Semantic:

– Algorithm: Tasks requiring a fundamental change in the high-level problem-solving strategy,
such as replacing a brute-force approach with a dynamic programming solution.

– Performance: Instructions targeting improvements in time or space complexity by optimizing
computations, reducing redundancy, or managing resources more effectively.
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Figure 3: Instruction-following benchmarking framework for code generation

– Correctness: Instructions aimed at fixing bugs, handling edge cases, and ensuring the code is
resilient to unexpected inputs or states.

The detailed guideline on different types is available in our supplementary materials. As shown in
Table 1, in total, we cataloged 228 verified instructions, consisting of 32 cosmetic, 89 semantic, and
114 structural ones. This categorization facilitates insights into the instruction types where models
perform well or tend to fail. It also enables a uniform distribution of IF tasks when sampled multiple
times for benchmarking that will be discussed in details next.

3 INSTRUCTION FOLLOWING BENCHMARKING

In this section, we present an automated framework for evaluating the ability of LLMs to follow
developer-provided instructions. Figure 3 provides an overview of our benchmarking pipeline,
which is organized into two primary stages: Task Construction and IF Evaluation, denoted by the
dashed boxes in the figure.

In the Task Construction stage, we curate instruction-following tasks from existing code genera-
tion problems and categorize them based on the instruction types extracted through our user study
(Section 2). In the subsequent IF Evaluation stage, we evaluate model performance in adhering to
these instructions. To support both stages, our framework offers an interface for defining instruc-
tions from the catalog. Each instruction includes two key functions: is applicable(code)
and verify(code after, code before: Optional). The former determines whether
the instruction is relevant to a given code snippet, while the latter verifies whether the instruction
has been successfully followed. The specific role of these functions and the details of each stage in
the pipeline are elaborated in the remainder of this section.

3.1 TASK CONSTRUCTION

Our benchmarking pipeline begins by collecting code responses from all models under test, for every
problem in the given dataset.

the Task Construction stage creates IF tasks by associating each code solution to a subset of relevant
instruction categories along with the user responses for those categories collected in Section 2.

Not all instruction categories are applicable to every code sample. For instance, the category “avoid
recursion” is only relevant to recursive implementations and does not apply to iterative ones. To
address this, the Applicability Checker identifies a suitable subset of instruction categories for each
code sample.

The Applicability Checker identifies k applicable categories by randomly sampling from the cat-
alog. To ensure diversity of instructions within each sample and maintain consistent instruction
category distributions across runs, we employ balanced sampling, i.e., drawing from each instruc-
tion type described in Section 2. For each type and candidate category, the checker invokes the
is applicable function, which is implemented individually for each instruction. This interface
encapsulates the logic specific to each instruction, regardless of whether they have been implemented
through a rule-based approach or LLM judge, enabling high-accuracy applicability checks that ac-
count for both the syntax and semantics of the code. Complete implementations of these functions
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for all instruction categories are included in the supplementary materials and will be made available
online upon approval.

For each applicable category, a generic developer-provided instruction is sampled and added to
the collection of applicable instructions. If no such generic instruction exists for a category, the
category id and description are used as a proxy to represent the generic intent of the associated
specific instructions. (More details in Section 2).

The collection of applicable instructions are added to the original programming problem to generate
IF problems in the IF Evaluation stage as described below.

3.2 INSTRUCTION FOLLOWING EVALUATION

For each IF problem, we evaluate models under two different settings: (1) providing the coding prob-
lem, the initial generated code, and instruction, i.e., Follow-up Instructions (Figure 1 (a)); and (2)
providing the coding problem with only the instruction, i.e., Predefined Instructions (Figure 1 (b)).
In each setting, we first collect new model responses for the constructed IF problem. Then, an IF
Verifier component evaluates whether the provided instruction was successfully followed. This veri-
fier leverages the verify function defined for each instruction category, which determines whether
the new solution adheres to the instruction. In the first scenario (Follow-up), both the original and
the updated solutions are provided for verification, while only the updated solution is available to the
second scenario (Predefined). Similar to is applicable function, verify can be implemented
with any approach, rule-based or LLM judge, tailored for each instruction. Finally, the verifier’s
binary judgments are aggregated across all tasks to report each model’s success rate.

4 EXPERIMENTS

In this section we discuss the details of experiments and present the results of different models on
CodeAlignBench .

4.1 DATASET SOURCE

CodeAlignBench requires coding problems as a basis for curating IF tasks. In this work, we
build on the LiveBench code generation tasks (White et al., 2025b), which consist of coding prob-
lems from platforms such as LeetCode and AtCoder. These problems are regularly updated to miti-
gate risks of data contamination. While the original benchmark only supports Python, we extend it to
include additional languages such as Java and JavaScript by implementing an automated translation
pipeline and dedicated evaluation environments for each language. This pipeline enables the auto-
matic extension of the latest versions of LiveBench to new languages. The translated dataset, along
with details of the translation process and execution environments, is provided in the supplementary
materials.

4.2 EXPERIMENTAL SETUP

All experiments were conducted on a local machine, a MacBook Pro equipped with an Apple M1
chip and 16 GB of unified memory. LLM inference for obtaining solutions and judgments were
completed using calls to an API. We used this setup to run the evaluation pipeline, including prompt
generation, code execution, and automated grading across multiple programming languages. Our
modular pipeline is lightweight and platform-agnostic, enabling reproducibility even on resource-
constrained machines.

For LLM-assisted annotation, we use OpenAI’s GPT o4 mini for creating the aligned codebook and
Claude’s sonnet 4 to filter user strings. For instructions that use an LLM judge in their applica-
bility and verification implementation, we use Claude Sonnet 4. For benchmarking, we evaluate
10 models spanning 3 major families, OpenAI, Claude and Gemini, to represent a diverse set of
design trade-offs. These models vary in architecture, parameter scale, reasoning depth, and release
recency, ensuring coverage of both state-of-the-art leading models and smaller, more cost-efficient
alternatives.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Pr
ed

efi
ne

d
Fo

llo
w
-u
p

Python Java JavaScript
Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Structural

Cosmetic Semantic

Overall

Figure 4: Radar plots of the top models from each family (GPT, Gemini, and Sonnet), showing
performance across instruction categories (Structural, Semantic, and Cosmetic) as well as the overall
aggregate. The top panels correspond to predefined tasks, while the bottom panel presents follow-up
tasks. Shaded regions represent the standard error of the mean (SEM).

4.3 BENCHMARK RESULTS

A primary finding of our study is the significant performance gap between task types, where models
consistently performed better on follow-up tasks than on predefined tasks. This observation held true
across all evaluated languages and was confirmed by Wilcoxon signed-rank tests, which revealed a
substantial improvement for follow-up tasks in Python (median difference = 0.181, p < 0.01), Java
(median difference = 0.146, p < 0.01), and JavaScript (median difference = 0.240, p < 0.01). This
confirms that providing contextual history allows models to better follow user instructions, and gen-
erate more accurate code modifications. Alternatively, this suggests that models are more effective
with a single, focused instruction than with a problem–instruction pair, which may constitute a more
complex task.

Beyond the influence of scenarios, the nature of the required modification also proved to be a critical
factor. Structural tasks, in particular, consistently yielded the highest performance scores. A Fried-
man test substantiated this finding for predefined tasks across Python (χ2(2) = 12.20, p = 0.0022,
Kendall’s W = 0.61), Java (χ2(2) = 6.20, p = 0.045, W = 0.31), and JavaScript (χ2(2) =
12.60, p = 0.0018, W = 0.63). A similar trend was observed for follow-up tasks, where structural
modifications led to significantly higher performance in JavaScript (χ2(2) = 9.80, p = 0.0074,
W = 0.49).

In terms of model-specific performance, GPT-5, GPT-5 mini, two latest members of the openAI
family, and GPT-o3 mini with high reasoning emerged as the top-performing models, though their
results were often statistically indistinguishable from one another (Table 2). Notably, these leading
GPT models significantly outperformed the best models from the Sonnet and Gemini families in
several instances. This pattern of dominance was less pronounced, however, when analyzing the
granular Semantic, Structural, and Cosmetic categories, where significant differences between top-
tier models were rare.

A secondary trend observed was consistent generational improvement within model families. For
example, Sonnet 4 surpassed Sonnet 3.7 across all evaluated categories and languages, illustrating
a clear pattern of iterative refinement. However, these individual improvements were not always
statistically significant across all model families.

Finally, despite the notably strong performance of GPT models, our results indicate that no model
achieved performance saturation across the full suite of tasks. Even the most capable models exhib-
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ited clear limitations particularly in the semantic and cosmetic categories. This substantial headroom
for improvement, along with the flexibility of our benchmarking pipeline where we are able to com-
bine multiple instructions and tune task difficulties, underscores the utility of our benchmark for
tracking future progress.

Table 2: Model performance for different instruction categories across languages. Left-hand values
in each column are for predefined scenarios; right-hand values are for follow-up scenarios. Greyed
values indicate the confidence-interval margins (i.e., the rates are within ± the grey value).
Gem = Gemini, Fl = Flash, Pr = Pro, mi = mini

Model Semantic Structural Cosmetic Overall
Python

Sonnet 3.7 0.40 (0.11) / 0.53 (0.11) 0.49 (0.11) / 0.61 (0.11) 0.54 (0.11) / 0.79 (0.09) 0.47 (0.06) / 0.64 (0.06)
Sonnet 4 0.69 (0.10) / 0.86 (0.08) 0.81 (0.09) / 0.95 (0.05) 0.71 (0.10) / 0.84 (0.08) 0.74 (0.06) / 0.88 (0.04)
Gem 2.0 Fl 0.31 (0.10) / 0.43 (0.11) 0.51 (0.11) / 0.63 (0.11) 0.42 (0.11) / 0.80 (0.09) 0.41 (0.06) / 0.62 (0.06)
Gem 2.5 Fl 0.45 (0.11) / 0.63 (0.11) 0.73 (0.10) / 0.87 (0.08) 0.47 (0.11) / 0.72 (0.10) 0.55 (0.06) / 0.74 (0.06)
Gem 2.5 Pr 0.71 (0.10) / 0.79 (0.09) 0.87 (0.07) / 0.92 (0.06) 0.59 (0.11) / 0.79 (0.09) 0.72 (0.06) / 0.83 (0.05)
GPT 4.1 0.60 (0.11) / 0.84 (0.08) 0.74 (0.10) / 0.87 (0.08) 0.50 (0.11) / 0.87 (0.08) 0.62 (0.06) / 0.86 (0.05)
GPT 4o 0.37 (0.11) / 0.80 (0.09) 0.65 (0.11) / 0.82 (0.09) 0.51 (0.11) / 0.87 (0.07) 0.51 (0.06) / 0.83 (0.05)
GPT 5 0.77 (0.09) / 0.96 (0.04) 0.90 (0.07) / 0.96 (0.04) 0.55 (0.11) / 0.79 (0.09) 0.74 (0.06) / 0.90 (0.04)
GPT 5 mini 0.73 (0.10) / 0.93 (0.06) 0.83 (0.08) / 0.97 (0.04) 0.63 (0.11) / 0.80 (0.09) 0.73 (0.06) / 0.90 (0.04)
GPT o3 mi 0.65 (0.11) / 0.95 (0.05) 0.83 (0.08) / 0.95 (0.05) 0.60 (0.11) / 0.88 (0.07) 0.70 (0.06) / 0.93 (0.03)

Java
Sonnet 3.7 0.48 (0.20) / 0.40 (0.20) 0.57 (0.16) / 0.60 (0.15) 0.55 (0.18) / 0.71 (0.16) 0.54 (0.10) / 0.58 (0.10)
Sonnet 4 0.56 (0.20) / 0.68 (0.19) 0.80 (0.13) / 0.85 (0.11) 0.55 (0.18) / 0.81 (0.14) 0.66 (0.10) / 0.79 (0.08)
Gem 2.0 Fl 0.44 (0.20) / 0.52 (0.20) 0.45 (0.16) / 0.45 (0.16) 0.61 (0.17) / 0.68 (0.17) 0.50 (0.10) / 0.54 (0.10)
Gem 2.5 Fl 0.60 (0.20) / 0.68 (0.19) 0.50 (0.16) / 0.68 (0.15) 0.48 (0.18) / 0.68 (0.17) 0.52 (0.10) / 0.68 (0.09)
Gem 2.5 Pr 0.76 (0.17) / 0.84 (0.15) 0.75 (0.14) / 0.88 (0.10) 0.65 (0.17) / 0.77 (0.15) 0.72 (0.09) / 0.83 (0.07)
GPT 4.1 0.64 (0.19) / 0.72 (0.18) 0.75 (0.14) / 0.88 (0.10) 0.52 (0.18) / 0.87 (0.12) 0.65 (0.10) / 0.83 (0.07)
GPT 4o 0.48 (0.20) / 0.56 (0.20) 0.55 (0.16) / 0.78 (0.13) 0.58 (0.18) / 0.84 (0.13) 0.54 (0.10) / 0.74 (0.09)
GPT 5 0.60 (0.20) / 0.92 (0.11) 0.72 (0.14) / 0.97 (0.05) 0.58 (0.18) / 0.87 (0.12) 0.65 (0.10) / 0.93 (0.05)
GPT 5 mi 0.72 (0.18) / 0.80 (0.16) 0.88 (0.10) / 0.93 (0.08) 0.65 (0.17) / 0.90 (0.11) 0.76 (0.09) / 0.89 (0.06)
GPT o3 mi 0.64 (0.19) / 0.76 (0.17) 0.65 (0.15) / 0.93 (0.08) 0.58 (0.18) / 0.94 (0.09) 0.62 (0.10) / 0.89 (0.06)

JavaScript
Sonnet 3.7 0.29 (0.11) / 0.56 (0.12) 0.59 (0.15) / 0.63 (0.15) 0.41 (0.14) / 0.69 (0.13) 0.41 (0.08) / 0.62 (0.08)
Sonnet 4 0.61 (0.12) / 0.85 (0.09) 0.68 (0.14) / 0.90 (0.09) 0.63 (0.13) / 0.84 (0.10) 0.64 (0.08) / 0.86 (0.05)
Gem 2.0 Fl 0.27 (0.11) / 0.47 (0.13) 0.46 (0.15) / 0.71 (0.14) 0.47 (0.14) / 0.78 (0.11) 0.39 (0.08) / 0.64 (0.08)
Gem 2.5 Fl 0.37 (0.12) / 0.66 (0.12) 0.56 (0.15) / 0.93 (0.08) 0.49 (0.14) / 0.78 (0.11) 0.46 (0.08) / 0.77 (0.07)
Gem 2.5 Pr 0.32 (0.12) / 0.82 (0.10) 0.71 (0.14) / 0.85 (0.11) 0.63 (0.13) / 0.80 (0.11) 0.53 (0.08) / 0.82 (0.06)
GPT 4.1 0.65 (0.12) / 0.85 (0.09) 0.73 (0.14) / 0.93 (0.08) 0.45 (0.14) / 0.75 (0.12) 0.60 (0.08) / 0.84 (0.06)
GPT 4o 0.39 (0.12) / 0.76 (0.11) 0.73 (0.14) / 0.93 (0.08) 0.51 (0.14) / 0.73 (0.12) 0.52 (0.08) / 0.79 (0.06)
GPT 5 0.73 (0.11) / 0.95 (0.05) 0.78 (0.13) / 1.00 (0.00) 0.65 (0.13) / 0.80 (0.11) 0.71 (0.07) / 0.92 (0.04)
GPT 5 mi 0.71 (0.11) / 0.90 (0.07) 0.88 (0.10) / 0.95 (0.07) 0.49 (0.14) / 0.82 (0.11) 0.68 (0.07) / 0.89 (0.05)
GPT o3 mi 0.66 (0.12) / 0.90 (0.07) 0.80 (0.12) / 1.00 (0.00) 0.49 (0.14) / 0.86 (0.10) 0.64 (0.08) / 0.92 (0.04)

LLM Judgment reliability: LLM judgments were used to determine whether a given instruction
was correctly followed. To evaluate our model’s performance on this task, we employed a set of
questions containing real user instructions collected from the user study. This approach allowed us
to isolate the verifier component from the rest of the pipeline (i.e., the applicability checker) and
focus solely on its effectiveness. We picked top 10 most frequent instructions, least 10 frequent
ones, as well as 10 randomly selected ones. This ensured that the evaluation covered both com-
monly encountered instructions and those that might be unique to a particular user or code snippet.
Then, two authors independently assessed the responses and resolved any disagreements through
discussion to reach a consensus. We compared the outputs of Claude Sonnet 4 performing the same
verification task against human assessments. Using Claude Sonnet 4, we observed four instances of
disagreement with human judgments, giving this model 86.67 accuracy in terms of verifying if the
instruction has been followed. We also ran the same set of questions from the user study with Gemini
2.5 pro. We found that 0.8249 of Gemini 2.5 pro’s judgments matched the predictions from Claude
Sonnet 4. Further analysis of the LLM judge can be found in Appendix D. These results demonstrate
the reliability of LLMs, under our prompting, in performing instruction following verification.
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5 RELATED WORKS

Evaluating Code Generation Models: Code generation using LLMs has become a prominent area
of research and practical application (Jiang et al., 2024; Jain et al., 2024). By leveraging representa-
tions from vast pre-training corpora, LLMs have demonstrated a remarkable capability to transform
natural language descriptions into functional code (Hou et al., 2024). This progress has driven the
creation of benchmarks to systematically evaluate reliability and guide future work (Jiang et al.,
2024). The majority of these benchmarks consist of short, self-contained, algorithmic tasks, exem-
plified by HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021). Recent benchmarks have
expanded the scope of evaluation to more complex settings, such as class-level generation (Du et al.,
2023) and repository-level tasks built on open-source projects (Li et al., 2024; Liu et al., 2024). Un-
like CodeAlignBench , these benchmarks often stop at the threshold of functional correctness,
content with any working solution in the vast space of possible solutions.

Instruction Following Evaluation: IF is a fundamental capability of LLMs. To evaluate this ability
systematically, researchers have proposed a growing number of automated benchmarks. Most of
these approaches define instruction following in terms of format adherence; a model is considered
successful when its outputs meet the explicit requirements specified in the prompt.

Early efforts in evaluating IF, such as IFEval (Zhou et al., 2023; He et al., 2024), focused on automat-
ically verifiable constraints like word limits or required phrases, which allowed for straightforward,
rule-based evaluation. Building on this foundation, more recent work like LiveBench has extended
this paradigm to diverse creative tasks such as summarization and story generation, while still main-
taining the format of objective checks against explicit instructions (White et al., 2025b). Alongside
increasing task diversity, research has also broadened the scope of IF benchmarks. For instance,
multilingual variants like M-IFEval (Dussolle et al., 2025) highlight performance variations across
languages, while LIFBench addresses the challenges of instruction following in long-context set-
tings (Wu et al., 2025). A complementary line of inquiry examines the evaluation process itself,
with approaches like LLMBar (Zeng et al., 2024) assessing the ability of LLMs to act as reliable
judges. Collectively, these diverse efforts are crucial for ensuring that IF benchmarks move beyond
simple instructions in unrealistic settings to become truly informative and robust.

Although most IF benchmarks have centered on natural language tasks, more recent work extends
these evaluation to the code generation setting. Early efforts in this space, such as CodeIF (Wang
et al., 2025a) introduced multi-constraint tasks across multiple languages and assesses adherence
with automated rule-based metrics. BigCodeBench-Instruct (Zhuo et al., 2025) addresses instruc-
tion following in more complex contexts by reformulating function docstrings into concise and ver-
ifiable natural language tasks that may require multiple library calls. CodeIF-Bench (Wang et al.,
2025b) aims to simulate developer workflows in interactive settings by means of verifiable instruc-
tions and test-case scoring; however, its tasks are synthetically constructed rather than sourced from
real developers . Complementing these constraint-centric efforts, CodeUltraFeedback (Weyssow
et al., 2024) shifts the focus from correctness to quality, leveraging an LLM to judge preferences
like readability and style. Despite these advances, a common limitation persists: many of these
benchmarks rely on synthetic tasks and prioritize easily verifiable outcomes. Our work builds on
this foundation by grounding evaluation in realistic instructions sourced directly from developers.
Moreover, CodeAlignBench reduces the risk of data contamination, an issue for static bench-
marks that often appear in the training data of newer models, by incorporating live benchmarks such
as LiveBench (White et al., 2025b), which are continuously updated with new, real-world tasks.

6 CONCLUSION

In this paper we introduced a comprehensive and extensible benchmark for LLM code generation.
It extends an existing dataset to support three languages and a catalog of instruction-based tasks,
evaluating dimensions beyond functional correctness. Our findings show that frontier models, while
often generating functionally correct code, fail to adhere to specific stylistic or structural instructions.
The novel, modular design of our evaluation pipeline is central to our contribution. This paves the
way for more nuanced evaluations by enabling the seamless addition of new problems and, in the
future, more complex multi-turn instructions. To ensure clarity and correctness, we also employed
LLMs to proofread the written text and refine grammar throughout the paper.

9
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A SAMPLE OF CODEALIGNBENCH ’S INSTRUCTIONS

Table 3: Sample of developer instructions with language column.
Category Instruction ID Sample User String Language
Cosmetic add-comments Add comments to complex main logic of the code. JS, P, J

add-type-hints Add type annotations to function parameters and return val-
ues.

P

concise-variable-names Use concise variable naming. JS, P, J
consistent-formatting Use consistent formatting for spacing and variables. JS, P, J
consistent-naming-
convention

Use consistent naming convention. JS, P, J

move-imports-to-top Move imports to the top of the file. JS, P, J
reduce-comments Remove unnecessary comments from the code. JS, P, J
remove-redundant-code-
and-comments

Remove redundant comments and variables. JS, P, J

remove-unused-imports Remove unused import statements. JS, P, J
use-lowercase-variable-
names

Use lowercase variable names. JS, P, J

use-symbolic-constants Use symbolic constants. JS, P, J
Structural add-intermediate-variable Store intermediate results in a separate variable. JS, P, J

add-missing-import Identify and add missing import statements. JS, P, J
add-test-cases Create executable test code to verify correctness. JS, P, J
avoid-code-duplication Eliminate repeated code by consolidating duplicate logic. JS, P, J
avoid-global-variables Avoid using global or external variables. JS, P, J
avoid-nested-functions Avoid defining functions inside other functions. JS, P
inline-helper-functions Inline simple helper functions. JS, P, J
modularize-code Use proper functions or modules for the logic. JS, P, J
move-print-outside-loop Produce output at the end of the main code logic. JS, P, J
remove-unused-function Remove unused functions. JS, P, J
shorten-if-else-chains Reduce the length of if-else chains. JS, P, J
use-counter-object Use Counter for frequency counting. P
use-dictionary-mapping Use a dictionary for mapping. JS, P, J
use-enumerate Use enumerate for loops. JS, P
use-list-comprehensions Use list comprehensions. P
use-loop-indices Use index-based traversal. JS, P, J
use-string-multiplication-
operator

Use string multiplication operator. P

Semantic
Algorithm avoid-floating-point-

operations
Avoid floating-point operations. JS, P, J

avoid-recursion Avoid using recursion. JS, P, J
change-inner-loop-to-
start-from-outer-index

Change inner loop to start from outer index. JS, P, J

use-binary-search Implement binary search for value lookups. JS, P, J
use-dynamic-
programming

Use dynamic programming. JS, P, J

use-greedy-algorithm Use greedy algorithm. JS, P, J
use-iterative-dp Use iterative dynamic programming. JS, P, J

Performance avoid-extra-array-storage Avoid unnecessary array storage. JS, P, J
avoid-redundant-
computation

Avoid redundant computation. JS, P, J

limit-variable-scope Limit the tracking scope or prune the search space. JS, P, J
optimize-io-performance Use buffered I/O and input processing. JS, P, J
reduce-dictionary-
operations

Reduce dictionary operations. JS, P, J

set-recursion-limit Set recursion limit. P
use-efficient-algorithm Use a more efficient algorithm. JS, P, J
use-efficient-data-
structure

Use a more efficient data structure. JS, P, J

Correctness check-edge-cases Add checks for edge cases when possible. JS, P, J
error-handling Handle different errors properly. JS, P, J
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B SAMPLE OF USER STUDY TASKS

Figure 5: Pairwise evaluation task
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C SAMPLE SCREENSHOT OF PAIRWISE MODEL COMPARISON

The benchmark is accompanied by visualization tools designed to aid in the interpretation and anal-
ysis of results. Image 6 illustrates a screenshot of pairwise comparator.

    class Solution: 
        def findWordsContaining(self, words: List[str], x: str) -> List[int]: 
            result = [] 
             
            for i, word in enumerate(words): 
                if x in word: 
                    result.append(i) 
             
            return result 

class Solution: 
    def findWordsContaining(self, words: List[str], x: str) -> List[int]: 
        result = [] 
         
        for i, word in enumerate(words): 
            if x in word: 
                result.append(i) 
         
        return result 

if __name__ == "__main__": 
    sol = Solution() 
     
    # Example 1 
    words1 = ["leet", "code"] 
    x1 = "e" 
    out1 = sol.findWordsContaining(words1, x1) 
    print("Output 1:", out1) 
    assert out1 == [0, 1], f"Expected [0, 1], got {out1}" 
     
    # Example 2 
    words2 = ["abc", "bcd", "aaaa", "cbc"] 
    x2 = "a" 
    out2 = sol.findWordsContaining(words2, x2) 
    print("Output 2:", out2) 
    assert out2 == [0, 2], f"Expected [0, 2], got {out2}" 
     
    # Example 3 
    words3 = ["abc", "bcd", "aaaa", "cbc"] 
    x3 = "z" 
    out3 = sol.findWordsContaining(words3, x3) 
    print("Output 3:", out3) 
    assert out3 == [], f"Expected [], got {out3}" 
     
    # Additional tests 
    words4 = ["a", "b", "c", "a"] 
    x4 = "a" 
    out4 = sol.findWordsContaining(words4, x4) 
    print("Output 4:", out4) 
    assert out4 == [0, 3], f"Expected [0, 3], got {out4}" 
     
    words5 = ["xyz", "yzx", "zxy"] 
    x5 = "x" 
    out5 = sol.findWordsContaining(words5, x5) 
    print("Output 5:", out5) 
    assert out5 == [0, 1, 2], f"Expected [0, 1, 2], got {out5}" 
     
    print("All tests passed.") 

GPT-5-miniClaude Sonnet 4

    class Solution: 
        def findWordsContaining(self, words: List[str], x: str) -> List[int]: 
            result = [] 
             
            for i, word in enumerate(words): 
                if x in word: 
                    result.append(i) 
             
            return result 

Instruction: Add test cases as executable examples to validate core logic

Pairwise Analysis 
ID: 9026b23d1094bb0072bae31bd66f9a8cc7220e3951dc520c53a2f21c4e8a472c 

Category: add-test-cases 

Result: claude-sonnet-4 fails, gpt-5-mini passes

Previous solution

Figure 6: Example of an instruction that Sonnet 4 failed to follow, but was correctly executed by
GPT-5 mini.
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D RADAR PLOTS FOR ALL MODEL FAMILIES

Here we demonstrate performance of all models within each model family on our benchmark. Sub-
stantial and significant generational improvements are observable within different model families.
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Figure 7: Radar plots of models from the Sonnet family, showing performance across instruction
categories (Structural, Semantic, and Cosmetic) as well as the overall aggregate. The top panels
correspond to predefined tasks, while the bottom panel presents follow-up tasks. Shaded regions
represent the standard error of the mean (SEM).
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Figure 8: Radar plots of models from the Gemini family, showing performance across instruction
categories (Structural, Semantic, and Cosmetic) as well as the overall aggregate. The top panels
correspond to predefined tasks, while the bottom panel presents follow-up tasks. Shaded regions
represent the standard error of the mean (SEM).
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Figure 9: Radar plots of models from the GPT family, showing performance across instruction
categories (Structural, Semantic, and Cosmetic) as well as the overall aggregate. The top panels
correspond to predefined tasks, while the bottom panel presents follow-up tasks. Shaded regions
represent the standard error of the mean (SEM).
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E LLM JUDGE BIAS

In our experiments, we employ Claude Sonnet 4 as the LLM judge for instruction verification.
This creates a potential source of bias as the judgments of Claude Sonnet 4 may be biased towards
generations from Claude Sonnet 4. To analyze the effects of using Claude as the judge, we performed
an ablation using GPT-5 as the judge model on JavaScript and Java problems. We found that the
Sonnet 4 Judge scores are not always higher for Sonnet 4 code generations. Additionally, the relative
rankings between models remained pretty consistent.

Language Setting Judge gemini-2.5-pro sonnet 4
JavaScript Follow-up gpt 5 0.790 0.811
JavaScript Follow-up sonnet 4 0.854 0.871
JavaScript Predefined gpt 5 0.602 0.615
JavaScript Predefined sonnet 4 0.585 0.671

Java Follow-up gpt 5 0.794 0.811
Java Follow-up sonnet 4 0.863 0.863
Java Predefined gpt 5 0.653 0.670
Java Predefined sonnet 4 0.649 0.632

Table 4: Comparison of gemini-2.5-pro and sonnet 4 across different languages, settings, and judges.
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