
Published as a conference paper at ICLR 2025

AGENTIC KNOWLEDGEABLE SELF-AWARENESS

Shuofei Qiao♠∗, Zhisong Qiu♠∗, Baochang Ren♠, Xiaobin Wang♢, Xiangyuan Ru♠,
Ningyu Zhang♠†, Xiang Chen♣, Yong Jiang♢, Pengjun Xie♢, Fei Huang♢, Huajun Chen♠♡†
♠Zhejiang University ♢Alibaba Group ♣Nanjing University of Aeronautics and Astronautics
♡Zhejiang Key Laboratory of Big Data Intelligent Computing
{shuofei,zhangningyu,huajunsir}@zju.edu.cn

ABSTRACT

Large language agents have achieved considerable performance across various
agentic planning tasks. However, most current agent learning methods are spoon-
feeding, with gold trajectories, external feedback and knowledge mindlessly
feeding into agent models regardless of their actual needs, resulting in a lack
of self-consciousness during the planning process. In this paper, we introduce
KnowSelf, a data-centric approach that enables agents to have knowledgeable
self-awareness similar to humans, selectively self-correcting and querying knowl-
edge based on certain situations during the planning process. Concretely, we devise
a heuristic situation judgement criterion to mark special tokens on the agent’s
self-explored trajectories for collecting training data. Through a two-stage training
process, the agent model can switch between different situations by generating
specific special tokens, achieving optimal planning effects with minimal costs. Our
experiments demonstrate that KnowSelf can outperform various strong baselines
on different tasks and models with minimal use of external knowledge. We also
present further analysis to examine the effectiveness of agentic knowledgeable
self-awareness from different aspects.

1 INTRODUCTION

It’s easy! I
can do it.

It’s not easy. I
need more
thinking…

It’s too hard.
I need

knowledge.

Environment

Difficulty Increases

Figure 1: Agentic Knowledgeable Self-
awareness.

The remarkable advances in Large Language Models
(LLMs) have witnessed considerable progress in language
agent learning (Xi et al., 2023; Wang et al., 2024a; Huang
et al., 2024; Durante et al., 2024). According to how agents
learn decision-making, current agent learning methods can
be categorized into three types: i) directly fitting trajectory
patterns through prompting or training (Yao et al., 2023;
Chen et al., 2023; Zeng et al., 2023); ii) trial-and-error
based on various feedback (Shinn et al., 2023; Xiang et al.,
2023; Song et al., 2024b; Zhang et al., 2024b); iii) incor-
porating knowledge as guidance (Zhao et al., 2024a; Fu
et al., 2024b; Zhu et al., 2024; Chen et al., 2024).

However, current agent learning resembles more of an
unconscious pattern-fitting process (Mirzadeh et al., 2024;
Shi et al., 2023; Dziri et al., 2023). Agent models are
compelled to learn implicit planning capabilities by being
indiscriminately fed explicit planning trajectories, leading to a fragility towards unexpected signals
during the inference process, thereby easily dropping into pattern collapse. Further enhanced
approaches such as the introduction of external feedback or knowledge often tend to be a “flood
irrigation” strategy, disregarding the agents’ real necessity. However, excessive trial-and-error and
blind incorporation of knowledge are usually unfeasible in practical settings and markedly elevate the
inference cost of the model. Conversely, humans possess self-awareness of their situation (Keenan
et al., 2011; Lewis et al., 2011; Lou et al., 2017), enabling them to selectively reflect and seek

∗ Equal Contribution.
† Corresponding Author.

1

Published as a conference paper at ICLR 2025

knowledge based on their capabilities. So can language agents also have situational self-awareness
like humans?

To answer the above problem, in this paper, we propose KnowSelf, a data-driven method that
endows agent models with the ability of knowledgeable self-awareness which enables agent models
to selectively introduce knowledge based on the current situation in the environment (see Figure 1).
Specifically, we enable the agent to self-explore and gather situations within the environment. Then
we design a heuristic criterion to classify three kinds of situations (fast thinking, slow thinking,
knowledgeable thinking) and mark them with special tokens to produce self-awareness training data.
Subsequently, a two-stage training process is employed to train the agent model’s self-awareness
capability. We first conduct supervised fine-tuning to teach agent models initial self-awareness
planning patterns. Then we utilize an RPO loss (Pang et al., 2024) according to the long-horizon
nature of trajectories to further boost self-awareness abilities. Finally, the agent signifies its situa-
tional awareness by generating certain special tokens, enabling selective reflection or knowledge
incorporation during inference.

We evaluate KnowSelf on two simulated agent planning datasets: ALFWorld (Shridhar et al., 2021)
and WebShop (Yao et al., 2022), with two different scales of models: Llama-8B (Dubey et al., 2024)
and Gemma-2B (Rivière et al., 2024). Experimental results show that our KnowSelf can achieve
superior performance with minimal reflection and knowledge compared to various baselines. Our
Llama-8B model even performs comparably to five rounds of reflection (hit@5) on GPT-4o (Hurst
et al., 2024). Moreover, we conduct further analysis to examine the scaling law, generalization, and
mechanism of knowledgeable self-awareness.

In a nutshell, our contributions are as follows:

• Method. We introduce KnowSelf, an agentic knowledgeable self-awareness framework
that enables agent models to selectively introduce knowledge based on situations.

• Experiments. Experimental results show that KnowSelf can achieve superior performance
with minimal reflection and knowledge compared to various baselines.

• Analysis. Except for ablation studies, we further explore the scaling law, generalization and
mechanism of agentic self-awareness.

2 BACKGROUND

We briefly provide a formal definition of the problem we study. A dynamic interactive environment
can be regarded as a Partially Observable Markov Decision Process: (U ,S,A, T ,O). Initially, a
specific task u ∈ U is typically accompanied by an initial environmental state s0 ∈ S. Given
the current state s, after performing an action a ∈ A, the state transition function T (s′|s, a) ∈ T
determines the next state s′. Due to partial observation, the current state is provided to the language
agent in the form of an observation o ∈ O. Then the historical interaction trajectory at time t can
be represented as ht = (u, a0, o0, a1, o1, . . . , at, ot). In our scenario, a language agent π backed by
an LLM with parameters θ is responsible for deciding the next action at+1 based on the historical
trajectory ht:

at+1 ∼ πθ(·|ht). (1)

In current methods, agents rely on fitting trajectories to make decisions, which is more akin to rote
memorization. They lack cognitive awareness of their own decisions. However, self-awareness is a
crucial ability for humans during the decision-making process, enabling them to have a cognition of
their abilities based on the current situation. So in this paper, we propose agentic knowledgeable
self-awareness which refers to the agent’s cognition of whether itself has the ability to provide the
correct next action given the current environmental context ht. More specifically, we define three
types of situations based on agents’ ability:

• Fast thinking. The agent is able to directly provide the correct action with little thinking.
• Slow thinking. The agent is able to provide the correct action but requires multiple steps of

thinking and reflection.
• Knowledgeable thinking. The agent is unable to provide the correct action and needs to rely on

external knowledge for thinking.

2

Published as a conference paper at ICLR 2025

Step 1

Self-awareness Data Construction

Task: put a clean egg in microwave

……
Action: go to fridge 1
Observation: The fridge 1 is closed.
Action: open fridge 1
Observation: The fridge 1 is open. In it, you see a cup 3, a cup 1,
a lettuce 1, an egg 2.

Action: close fridge 1 Action: take egg 2 from fridge 1
Fast T

hinking

Reflection <r>I need a clean
egg, but egg 2 is not clean. I
need to search for another
place to find a clean egg.</r>

Action: go to drawer 1

Reflection <r>Oh, it seems
that I missed the egg. I need
to pick it up and clean it
now.</r>

Action: take egg 2 from
fridge 1

Slow Thinking

Knowledge <k>To obtain a cleaned objective, you should first find the objective
and then clean it, rather than search for a cleaned objective directly.</k>
Action: take egg 2 from fridge 1 Knowledgeable

Thinking

Step 2

Self-awareness Learning
SFT

SFT agentSFT agent RPO agent

RPO
explore

Step 3

Self-awareness Inference

Task: put two newspapers in drawer
……

Action: go to sofa 1
Observation: On the sofa 1, you see a creditcard 2, a newspaper 1.
Action: take newspaper 1 from sofa 1
Observation: You pick up the newspaper 1 from the sofa 1.
Action: go to counter 2
Observation: On the counter 2, you see a newspaper 2.

Action: take newspaper 2 from counter 2

Reflection <r>Sorry, I made a mistake. I need put the
first newspaper before picking another one.</r>

Action: go to drawer 2

Reflection

Knowledge

Knowledge <k>When the agent has taken a
target object and needs to take additional
items to fulfill a task, the agent should first
place the current object at its target
receptacle, ensuring it is holding nothing.</k>

Action: goto drawer 2 knowledge set

select model

NEXT STEP

Fast Thinking

Slow Thinking

Knowledgeable
Thinking

Figure 2: The framework of our KnowSelf. Firstly, we mark self-explored trajectories with
special tokens according to the situation judgement criterion to form the training data. Secondly,
we apply a two-stage training framework to teach the agent model knowledgeable self-awareness
abilities. Finally, the agent model identifies different situations by generating specific special tokens
during inference.

We go beyond the paradigm of fast or slow thinking (Yu et al., 2024; Saha et al., 2024; Christakopoulou
et al., 2024; OpenAI, 2024), striving to explore the knowledgeable self-awareness capability of
language agents based on the three situations mentioned above and endeavoring to preliminarily
design methods to enhance this ability.

3 METHOD

3.1 KNOWLEDGE SYSTEM CONSTRUCTION

Given that our emphasis is on knowledgeable self-awareness rather than the construction of a
knowledge system, we draw upon and polish up a simple yet effective knowledge collection method
outlined in Chen et al. (2024) to minimize costs in this process. Our knowledge collection includes
two main components: 1) Planner Agent engaging in self-play within the environment to gather
trajectories categorized into three types: direct success, indirect success, and failure. 2) Builder
Agent, which is responsible for summarizing knowledge based on the trajectories obtained by the
planner agent and updating and pruning the knowledge set according to a predetermined maximum
number of knowledge Nmax. The formation of the knowledge set is offline and lightweight, relying
on an extremely minimal number of trajectories to be completed. We denote the final knowledge
system as S : (K,R), where K = {k1, k2, ..., kNmax

} is the knowledge set containing pieces of
knowledge, and R is the knowledge selection module that can select the required knowledge based
on the agent’s historical trajectory ht. For further details, please refer to Appendix A.

3.2 SITUATION JUDGEMENT CRITERION

Based on Equation 1 and our definition of three situations in 2, we classify the agent’s situations
into three types. Assuming the given history is denoted as ht, the gold next action is described
as at+1, and the next action predicted directly by the agent is represented as apt+1. We allow the
agent to rethink when the predicted action is incorrect, resulting in a revised action denoted as
art+1 = rethink(ht, a

p
t+1). We then determine the agent’s situation according to the following

criteria C:

1. Fast Thinking: apt+1 = at+1. The agent can directly generate the correct action.

2. Slow Thinking: apt+1 ̸= at+1, a
r
t+1 = at+1. The agent can generate the correct action but needs

rethinking.
3. Knowledgeable Thinking: apt+1, a

r
t+1 ̸= at+1. The agent is unable to generate the correct action,

so it needs knowledge.

3

Published as a conference paper at ICLR 2025

Table 1: Three kinds of agentic situations defined in our paper. We show the symbolized definition,
corresponding situational special token and output for each situation in this table to provide readers a
clearer understanding.

Symbol Situation Token Definition Output

ht: gold history trajectory
at+1: gold action

apt+1: predicted action
art+1: reflected action

(art+1 = reflection(apt+1))

Fast Thinking – apt+1 = at+1 at+1

Slow Thinking Reflection
ap
t+1 ̸= at+1

ar
t+1 = at+1

[apt+1, Reflection <r>ret</r>, at+1]

Knowledgeable Thinking Knowledge
ap
t+1 ̸= at+1

ar
t+1 ̸= at+1

[Knowledge <k>know</k>, at+1]

This criterion will guide us in building situation awareness data, enabling the agents to make
autonomous judgments about situations themselves.

3.3 SELF-AWARENESS APPLY

We design a data-driven method called KnowSelf (Agentic Knowledgeable Self-awareness) to
endow the agent with knowledgeable self-awareness capabilities as shown in Figure 2.

Data Construction. Given the history-action pair (ht, at+1) and an untrained agent πθ, we augment
the original action based on the situation criterion C to construct the agent-specific supervised self-
awareness data. If the agent determines a correct action apt+1 (Fast Thinking), y = at+1 will be
directly used as the output. If the agent provides an incorrect action apt+1 in the first trial, it will be
given a prompt to rethink1. The chain of thought during this rethinking process is denoted as ret. If
the determined action art+1 after rethinking is correct (Slow Thinking), the output at this point is:

y = [apt+1, Reflection <r>ret</r>, at+1], (2)

where [] represents concat with \n, Reflection is a special token used to mark the situation of Slow
Thinking, <r> and </r> are special tokens surrounding the rethink chain of thought. However, if
the reflected action art+1 is incorrect, we introduce knowledge (Knowledgeable Thinking). We use
the selection model R to choose the most appropriate piece of knowledge2 know from the knowledge
set K and then the output at this situation is:

y = [Knowledge <k>know</k>, at+1], (3)

where Knowledge is the situational special token, <k> and </k> are special tokens surrounding the
knowledge. After traversing all input-output pairs, we obtain the self-awareness training data Dself .

Self-awareness Learning. We apply a two-stage training process to teach the naive agent on our
curated agentic knowledgeable awareness dataset Dself . First, we train with the autoregressive loss to
obtain the reference agent πref :

LSFT = −E(ht,y)∼Dself
log πθ(y|ht). (4)

Then we enable the reference agent to explore on Dself and collect the predicted yp with wrong
actions as negative samples to construct a pair-wise awareness dataset Dpair. In the second stage, we
additionally introduce an offline DPO objective to further boost the self-awareness performance:

LDPO = −E(ht,y,yp)∼Dpair

[
log σ

(
β log

πθ(y|ht)

πref(y|ht)
− β log

πθ(y
p|ht)

πref(yp|ht)

)]
. (5)

Due to the narrow space of correct actions, following Pang et al. (2024), we re-introduce the SFT
loss and normalize it by the output length in the second stage to stabilize the training process:

LNLL = −E(ht,y,yp)∼Dpair

log πθ(y|ht)

|y|
, (6)

1Detailed prompt for rethinking is in Appendix G.3.
2See Appendix A for detailed knowledge selection process.

4

Published as a conference paper at ICLR 2025

Table 2: Main Results on ALFWorld. We use average reward as the metric. The best results are
marked in bold. All the prompt-based baselines (�) are evaluated under two-shot prompting and
all the fine-tuning-based baselines (\) are trained with full parameters. Know% represents the
percentage of actions enhanced with knowledge.

Backbone Method Know% Put Clean Heat Cool Examine Put Two All

GPT-4o
� REACT 0% 83.33 74.19 69.57 85.71 77.78 64.71 76.12
� Reflexion 0% 100.00 87.10 73.91 90.48 83.33 70.59 85.07
� ExpeL 100% 95.83 83.87 69.57 80.95 88.89 52.94 79.85

Llama-8B

� REACT 0% 33.33 3.23 0.00 57.14 66.67 23.53 27.61
� Reflexion 0% 62.96 22.73 5.88 64.29 86.36 50.00 51.49
� ExpeL 100% 83.33 32.26 30.43 23.81 55.56 17.65 41.04
\ ETO 0% 91.67 70.59 82.61 61.90 88.89 64.71 78.36
\ KnowAgent 100% 87.50 93.55 65.22 66.67 61.11 64.71 75.37
\ WKM 100% 95.83 87.10 86.96 61.90 66.67 52.94 77.61

\ KnowSelf 15.01% 91.67 87.10 91.30 85.71 77.78 64.71 84.33

Gemma-2B

� REACT 0% 0.00 9.68 0.00 4.76 44.44 0.00 8.96
� Reflexion 0% 4.76 10.71 0.00 9.52 65.38 0.00 17.16
� ExpeL 100% 0.00 3.23 0.00 0.00 27.78 0.00 4.48
\ ETO 0% 91.67 83.87 78.26 52.38 77.78 29.41 71.64
\ KnowAgent 100% 91.67 90.32 69.57 71.43 66.67 41.18 73.88
\ WKM 100% 91.67 87.10 78.26 71.43 61.11 52.94 76.12

\ KnowSelf 26.41% 87.50 93.55 73.91 76.19 83.33 52.94 79.85

resulting in the final loss for this stage:

LRPO = LDPO + αLNLL, (7)

where α is a hyperparameter to balance the two loss terms. During training, we expand the vocabulary
of models to adapt to the added special tokens.

Self-awareness Inference. During the inference process, if the agent stops outputting after the
first trial, we directly place the predicted action in the history ht for the next-step decision. If the
agent generates Reflection after the first action, we allow it to continue the reflective process and place
the reflected action into ht. If the agent directly generates Knowledge , we use R to choose a piece of
knowledge from K. We append the selected knowledge to the context to allow the agent to continue
this step, and then place the generated action into the history for the next decision. A running example
of KnowSelf inference can be seen in Figure 2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Table 3: Main Results on WebShop.

Backbone Method Know% All

GPT-4o
� REACT 0% 61.33
� Reflexion 0% 67.40
� ExpeL 100% 57.65

Llama-8B

� Reflexion 0% 60.60
� ExpeL 100% 49.58
\ ETO 0% 63.93
\ KnowAgent 100% 61.82

\ KnowSelf 17.12% 67.14

Datasets and Metrics. We evaluate KnowSelf on
two real-world simulated planning datasets: ALFWorld
(Shridhar et al., 2021) and WebShop (Yao et al., 2022).
ALFWorld is a household dataset requiring the agent to
navigate through the room and manipulate objects. The re-
ward of ALFWorld is binary 0 or 1, indicating whether the
agent has successfully completed the task or not. WebShop
is an online shopping dataset in a website environment.
It provides dense final rewards from 0 to 1 to measure
the completion level of the task. So for all the datasets,

we apply Average Reward as the final metrics. Our gold training trajectories are sourced from
AgentBank (Song et al., 2024a). For more details of each dataset, please refer to Appendix D.

Models and Baselines. We evaluate KnowSelf on two open-source models with different scales:
1) Gemma-2B (Rivière et al., 2024), the gemma-2-2b-it version; 2) Llama-8B (Dubey et al., 2024),
the Llama-3.1-8B-Instruct version. To demonstrate validity, we compare KnowSelf with one
general agent planning methods: REACT (Yao et al., 2023); two agent planning methods with

5

Published as a conference paper at ICLR 2025

trial-and-error: Reflexion (Shinn et al., 2023) and ETO (Song et al., 2024b); three knowledge-
augmented agent planning methods: 1) ExpeL (Zhao et al., 2024a), model-summarized insights and
skills knowledge; 2) KnowAgent (Zhu et al., 2024), human-curated symbolic action knowledge;
3) WKM (Qiao et al., 2024b), model-synthetic parameterized world knowledge. We also include
GPT-4o (gpt-4o-2024-08-06) (Hurst et al., 2024) as a strong upper-bound baseline. Note that all
the prompt-based baselines are tested with two-shot examples. Please refer to Appendix E for more
baselines and re-producing details.

Training and Inference Details. For the first training stage, we apply a learning rate of 2e-5 and a
batch size of 8. For the second training stage, the learning rate is set to 5e-7 and the batch size is 3.
The β in DPO loss is set to 0.5 and the balanced factor α is set to 1. We train 3 epochs during the
first stage and 1 epoch for the second stage. AdamW (Loshchilov & Hutter, 2019) is utilized as the
optimizer. For all the inferences, we fix the temperature at 0. We use vLLM (Kwon et al., 2023) to
accelerate the inference of Llama-8B. All our experiments are conducted on 8 NVIDIA A800 80G
GPUs. More details can be seen in Appendix F.

4.2 MAIN RESULTS

Comparison with baselines w/o knowledge. Table 2&3 show the comparison between our method
and baselines without knowledge (Know%=0%). KnowSelf consistently demonstrates superiority
over baselines without knowledge on both Llama-8B and Gemma-2B. The performance of Gemma-
2B even surpasses that of GPT-4o’s REACT. Furthermore, our Llama-8B model performs comparably
to GPT-4o’s Reflexion, with the latter allowing the model to attempt a task up to 5 times until
successful which is essentially a performance akin to hit@5. These emphasize the importance of
knowledge in agent planning.

Comparison with baselines w/ knowledge. We also contrast with knowledge-enhanced baselines
to illustrate the advantages of knowledgeable self-awareness. From Table 2&3, it can be observed
that KnowSelf surpasses all 100% knowledge baselines with a minimal amount of knowledge. This
clearly demonstrates that not all knowledge is effective during agent planning. Additionally, we
find that, both as prompt-based baselines, Gemma-2B’s performance on ExpeL is even inferior to
REACT. Combining this observation with our findings in the ablation study (Figure 3), it indicates
that excessive knowledge enhancement can even have a negative impact on models with weaker
capabilities. Notably, our KnowSelf, with only 15.01% and 17.12% knowledge rate on Llama-8B,
surpasses GPT-4o’s ExpeL on ALFWorld and WebShop. Furthermore, KnowSelf achieves better
performance on ALFWorld with relatively less knowledge on Llama-8B (15.01%) than on Gemma-
2B (26.41%). This aligns with the fact that models with stronger capabilities require less external
knowledge to complete tasks. The above phenomenon demonstrates that agentic knowledgeable
self-awareness ability can advance agent planning while reducing the need for knowledge injection,
significantly saving the costs of training and inference.

5 ANALYSIS

5.1 ABLATION STUDIES.

Llama-8B Gemma-2B60

65

70

75

80

85

90

95

SR
%

w/o all
w/o ret

w/o know
w/ full know

ours

Figure 3: Ablation studies for
KnowSelf. A detailed definition of
each legend can be seen in §5.1.

Figure 3 illustrates the impact on the performance of
KnowSelf when certain key steps are replaced from the
training data. w/o ret denotes the exclusion of the reflec-
tion, where even if the reflection is correct, training is
directly conducted with the gold action. w/o know signi-
fies only using the model’s reflective capabilities, where
if reflection is incorrect, training is done directly with the
gold action without introducing knowledge. w/o all repre-
sents the retention of only situation 1, which is equivalent
to training directly with gold trajectories. We also intro-
duce knowledge at every step to create a scenario with
know%=100% (w/ full know).

6

Published as a conference paper at ICLR 2025

It can be observed that reflection and knowledge are crucial for agent planning. Training directly
on gold trajectories is more akin to fitting patterns in trajectories while introducing reflective and
knowledgable self-awareness can enable agents to plan better. On both Llama-8B and Gemma-2B,
the sole introduction of self-reflection (w/o know) even outperforms the introduction of knowledge
(w/o ret). This indicates that in many instances, agents are not incapable of making correct decisions
but are rather constrained by planning patterns. Introducing autonomous reflective mechanisms like
O1 can unlock greater potential in agents. Furthermore, KnowSelf achieves superior performance
to fully introducing knowledge (w/ full know) with a very low knowledge introduction rate (15.01%
on Llama-8B and 26.41% on Gemma-2B). On Gemma-2B, the performance of w/ full know even
falls behind w/o ret, indicating that an excessive amount of knowledge introduction can have a
counterproductive effect, especially for weaker models. Therefore, a precise knowledge introduction
mechanism with self-awareness is crucial.

5.2 SCALING LAW OF SELF-AWARENESS

0 20 40 60 80 100
Percentage

10

20

30

40

50

60

70

80

SR
%

relative-Llama-8B
absolute-Llama-8B
relative-Gemma-2B
absolute-Gemma-2B

Figure 4: Scaling law of agentic
knowledgeable self-awareness. We an-
alyze the aspects of model and data
scales (§5.2).

In Figure 4, we explore the scaling law of self-awareness from
two perspectives: model size and the volume of self-awareness
training data. Regarding data volume, we analyze it from both
relative and absolute standpoints. When considering the vol-
ume of Dself as 100%, absolute denotes the portion of data that
is randomly sampled from Dself for training purposes, while
relative includes common gold trajectories on top of the abso-
lute data to constitute 100% of the volume of Dself . Overall,
in various settings, the performance of Llama-8B is superior
to Gemma-2B. This advantage is more pronounced when no
training has been conducted (where absolute=0%). However,
after training, the difference between the two models is not
substantial. This may indicate that post fine-tuning in a specific
domain makes 2B and 8B models essentially belong to the
same tier regarding the model size. Regarding the training data volume, we observe a consistent
performance improvement as the absolute data volume of self-awareness increases. However, when
the relative proportion of self-awareness is below 40%, we observe fluctuations or even a decrease in
performance for both models. We speculate that this might resemble an emergent phenomenon where
the model only exhibits certain self-awareness capabilities when the proportion of self-awareness
exceeds 40%.

5.3 GENERALIZATION OF SELF-AWARENESS

Heat

Cool

PutTwo

0

5

10

15

Reflexion
ETO

Knowagent
KnowSelf

Figure 5: Generalization ability
of KnowSelf. We select three
simple task types in ALFWorld as
training sets and the other three
kinds of tasks as test sets (§5.3).

We select three simple tasks on AlfWorld as the training set and
evaluate the generalization ability of KnowSelf on three other
challenging tasks. Figure 5 illustrates the Out-Of-Domain (OOD)
performance of KnowSelf compared to baselines. We observe
that whether to introduce external knowledge, the trained baselines
exhibit serious overfitting. ETO achieve a success rate of 5.88%
only on PutTwo task, with 0% success rates on the other two kinds
of tasks, while KnowAgent does not even achieve any success on
the three tasks. In contrast, KnowSelf demonstrates sustainable
generalization, performing superior to the strongest prompt-based
baseline (Reflexion) on all three kinds of tasks. This indicates that
KnowSelf can effectively break the traditional pattern-matching
issue of training directly on planning trajectories, enabling the model
to acquire a degree of cross-task situational awareness. As a result,
the model retains the ability to selectively reflect and incorporate
knowledge on unseen tasks, thereby enhancing its generalization
performance.

7

Published as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Llama Layer

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Pr
ob

 (w
/ K

no
w

)

[Knowledge]
[Reflection]
Action

0 5 10 15 20 25 30
Llama Layer

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Pr
ob

 (w
/o

 K
no

w
)

[Knowledge]
[Reflection]
Action

0 5 10 15 20 25
Gemma Layer

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Pr
ob

 (w
/ K

no
w

)

[Knowledge]
[Reflection]
Action

0 5 10 15 20 25
Gemma Layer

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Pr
ob

 (w
/o

 K
no

w
)

[Knowledge]
[Reflection]
Action

Figure 6: Mechainsm of agentic knowledgeable self-awareness (§5.4). We calculate the average
probabilities of tokens representing various situations at each layer of the Transformer across both
knowledgeable thinking (w/ Know) and fast thinking (w/o Know) scenarios. A more detailed experi-
ment setup can bee seen in Appendix C.

(a) Task: put a hot mug in cabinet
……

Action: take mug 1 from countertop 1

Observation: You pick up the mug 1 from the countertop 1.

Action: go to microwave 1

Observation: The microwave 1 is closed.

Action: open microwave 1

Observation: You open the microwave 1. In it, you see an egg 1.

[Knowledge]<k>If the agent is in a situation where it needs to modify the
temperature of an object using a receptacle (e.g., a fridge for cooling), it
should directly perform the specific action like 'cool' or 'heat' instead of
placing the object on it.</k>

Action: take egg 1 from microwave 1

Observation: Nothing happens.

……

Action: take mug 1 from countertop 1

Observation: You pick up the mug 1 from the countertop 1.

Action: go to microwave 1

Observation: The microwave 1 is closed.

Action: open microwave 1

Observation: You open the microwave 1. In it, you see an egg 1.

Action: put mug 1 in/on microwave 1

[Reflection]<r>Wait, let's check the action. Let's think step by step. With the
microwave open, I can heat the mug using the microwave.</r>

Action: heat mug 1 with microwave 1

O1 KnowSelf

(b) Task: put a saltshaker in drawer
……

Action: take saltshaker 1 from countertop 3

Observation: You pick up the saltshaker 1 from the countertop 3.

Action: go to drawer 1

Observation: The drawer 1 is open. In it, you see a fork 1.

Action: put saltshaker 1 in/on drawer 1

[Reflection]<r>Wait, the drawer is open, so the saltshaker might fall inside. I
need to close the drawer first.</r>

Action: close drawer 1

Observation: You close the drawer 1.

Action: put saltshaker 1 in/on drawer 1

Observation: Nothing happens.

……

Action: take saltshaker 1 from countertop 3

Observation: You pick up the saltshaker 1 from the countertop 3.

Action: go to drawer 1

Observation: The drawer 1 is closed.

Action: open drawer 1

Observation: You open the drawer 1. In it, you see a fork 1.

[Knowledge]<k>When the agent encounters a situation where receptacles
contain other items but only needs to place the target object, the agent
should proceed to place the object without removing unrelated items.</k>

Action: put saltshaker 1 in/on drawer 1

O1 KnowSelf

Figure 7: Case Study.

5.4 MECHANISM OF SELF-AWARENESS

To understand the mechanism of agentic knowledgeable self-awareness, we collect data on both
fast thinking and knowledgeable thinking to investigate how models make decisions on whether to
invoke knowledge in the context of next token prediction. We calculate the average probabilities of
tokens representing various situations at each layer of the Transformer across all data, as illustrated in
Figure 6. It can be observed that due to the absence of slow thinking, the probability of the Reflection
token remains consistently at 0. Moreover, both the Knowledge token and Action token emerge in
the final few layers of the Transformer, whether on the Llama or Gemma models. It indicates that
the agent internally determines whether it needs to invoke external knowledge only in the final few
hidden layers. Besides, when the agent decides to invoke knowledge, this decision occurs even later,
as there are indications that the probability of the Action token may accidentally surpass that of
the Knowledge token at even later layers; however, the probability of the Action token subsequently
decreases rapidly. This appears to resemble a game-like process within the agent model, where the
implicit rewards learned by the model guide it to search within the token space, ultimately leading to
a decision.

5.5 CASE STUDY

We carefully design prompt3 to teach O1 (OpenAI, 2024) in agentic knowledgeable self-awareness,
sample and test its performance on ALFWorld, and compare it with KnowSelf. We showcase

3The specific prompt can be found in Appendix G.4.

8

Published as a conference paper at ICLR 2025

two typical examples in Figure 7. In case (a), O1’s decision to invoke knowledge without a proper
understanding led to an erroneous action. However, KnowSelf rectifies the incorrect action through
a simple self-reflection, indicating that knowledge is not always effective. In case (b), O1 does
not opt to utilize knowledge but relies on self-belief. Despite a rethink, the correct action is still
not produced. In contrast, KnowSelf adeptly avoids error-prone scenarios by precisely leveraging
knowledge. Therefore, in complex agentic scenarios, the ability of self-awareness is highly crucial.
In dynamically changing environments, an agent model must have an accurate understanding of its
capabilities and make decisions based on varying situations; this is the essence of the agent we aspire
to create. However, it is evident that merely providing prompts to the model is far from sufficient for
it to acquire these abilities. More efforts are required in terms of data, training strategies, and model
architecture to achieve this goal.

6 RELATED WORK

6.1 LANGUAGE AGENT PLANNING.

Pocessing impressive reasoning and planning abilities (Qiao et al., 2023; Huang et al., 2024), Large
Language Models (LLMs) are becoming the core of AI agents (Wang et al., 2024a; Xi et al., 2023;
Durante et al., 2024) that have been developed for application in robotics (Ahn et al., 2022; Singh
et al., 2023; Song et al., 2023), OS manipulation (Wu et al., 2024; Lai et al., 2024; Zhang et al.,
2024a; Hu et al., 2024), software engineering (Hong et al., 2024b; Qian et al., 2024; Wang et al.,
2024b; Yang et al., 2024), data science (Guo et al., 2024; Chan et al., 2024; Hong et al., 2024a), and
more. Despite achieving unprecedented success, language agents still suffer from tricky issues in
terms of planning, including generating planning hallucinations (Zhu et al., 2024; Qiao et al., 2024b)
or merely fitting planning patterns (Mirzadeh et al., 2024; Shi et al., 2023; Dziri et al., 2023) due to
their lack of real-world knowledge. To alleviate this phenomenon, recent works introduce various
forms of knowledge to align agent planning with the environment, such as symbolic workflows (Xiao
et al., 2024; Qiao et al., 2024a; Zhang et al., 2024c; Fan et al., 2024), experienced insights (Zhao
et al., 2024a; Fu et al., 2024a; Chen et al., 2024), and constrained rules or pipelines (Guan et al.,
2024; Li et al., 2024a; Hong et al., 2024b). However, existing knowledgeable agent methods often
forcefully inject knowledge through prompts or fine-tuning, overlooking the awareness of the agent
itself.

6.2 SITUATION-AWARENESS IN LLMS.

Situational Awareness (SA) is the understanding of an environment, its elements, and how it changes
with respect to time or other factors and is important for effective decision-making in many envi-
ronments4. It has received widespread research attention in autonomous driving (Avetisyan et al.,
2024; Haselberger et al., 2024; Zhou et al., 2024), robotics (Hill et al., 2021; Ginesi et al., 2020;
Casablanca et al., 2024), human-computer interaction (Li et al., 2024b; Srivastava et al., 2023), etc.
Recently, it has been introduced into LLMs to explore whether LLMs possess self-awareness or
self-knowledge (Berglund et al., 2023; Laine et al., 2024; Tang et al., 2024; Binder et al., 2024).
Different from the concept of knowledge boundaries (Cheng et al., 2024; Yin et al., 2023; Ren et al.,
2023), SA places greater emphasis on the self-awareness of LLMs in dynamic environmental states
rather than the recognition of static factual knowledge. In the realm of LLM agents, Wang & Zhong
(2024); Zhao et al. (2024b) make initial attempts to explore SA-augmented planning. To the best
of our knowledge, we are the first to systematically analyze and design methods to enhance the SA
capabilities of knowledgeable agents.

7 CONCLUSION

In this paper, we raise and explore the problem of agentic knowledgeable self-awareness. We propose
KnowSelf, a data-centric approach that enables agents to have knowledgeable self-awareness
similar to humans, selectively self-correcting and querying knowledge based on certain situations
during the planning process. We design various experiments to show the effectiveness and efficiency

4https://en.wikipedia.org/wiki/Situation_awareness

9

https://en.wikipedia.org/wiki/Situation_awareness

Published as a conference paper at ICLR 2025

of KnowSelf. Our work is just a preliminary exploration, and we hope it can draw some attention
of the community to agentic self-awareness.

LIMITATIONS

Despite our best efforts, this paper may still have some remaining limitations.

Tasks and Models. Due to limited computational resources, we only conduct experiments on two
simulation datasets. The agentic tasks encompass many other aspects such as function calling, code
generation, and more. Additionally, our experiments are limited to small-scale models (7B, 2B), with
larger models (30B, 70B) not yet explored.

Modality. We believe that in the future, large agent models will undoubtedly be multimodal, capable
of dealing with more complex situations involving images, videos, and audio. In this paper, we
have only scratched the surface of language agents’ scenarios, but in the future, we will incorporate
multimodal agents into our research.

Methods. In this paper, we mainly introduce a data-driven approach to endow agents with knowl-
edgeable self-awareness. The ultimate solution may involve changes in training perspectives (e.g.,
reinforcement learning) or model architectures (new model architectures), all of which are worth
further exploration.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog, Daniel Ho, Jasmine Hsu,
Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally
Jesmonth, Nikhil J. Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, and Mengyuan Yan. Do
as I can, not as I say: Grounding language in robotic affordances. CoRR, abs/2204.01691, 2022.
doi: 10.48550/ARXIV.2204.01691. URL https://doi.org/10.48550/arXiv.2204.
01691.

Lilit Avetisyan, X. Jessie Yang, and Feng Zhou. Towards context-aware modeling of situation
awareness in conditionally automated driving. CoRR, abs/2405.07088, 2024. doi: 10.48550/
ARXIV.2405.07088. URL https://doi.org/10.48550/arXiv.2405.07088.

Lukas Berglund, Asa Cooper Stickland, Mikita Balesni, Maximilian Kaufmann, Meg Tong, Tomasz
Korbak, Daniel Kokotajlo, and Owain Evans. Taken out of context: On measuring situational
awareness in llms. CoRR, abs/2309.00667, 2023. doi: 10.48550/ARXIV.2309.00667. URL
https://doi.org/10.48550/arXiv.2309.00667.

Felix J. Binder, James Chua, Tomasz Korbak, Henry Sleight, John Hughes, Robert Long, Ethan
Perez, Miles Turpin, and Owain Evans. Looking inward: Language models can learn about
themselves by introspection. CoRR, abs/2410.13787, 2024. doi: 10.48550/ARXIV.2410.13787.
URL https://doi.org/10.48550/arXiv.2410.13787.

Ernesto Casablanca, Zengjie Zhang, Gregorio Marchesini, Sofie Haesaert, Dimos V. Dimarogonas,
and Sadegh Soudjani. Symaware: A software development framework for trustworthy multi-agent
systems with situational awareness. CoRR, abs/2409.14833, 2024. doi: 10.48550/ARXIV.2409.
14833. URL https://doi.org/10.48550/arXiv.2409.14833.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Lilian Weng, and Aleksander Madry.
Mle-bench: Evaluating machine learning agents on machine learning engineering. CoRR,
abs/2410.07095, 2024. doi: 10.48550/ARXIV.2410.07095. URL https://doi.org/10.
48550/arXiv.2410.07095.

10

https://doi.org/10.48550/arXiv.2204.01691
https://doi.org/10.48550/arXiv.2204.01691
https://doi.org/10.48550/arXiv.2405.07088
https://doi.org/10.48550/arXiv.2309.00667
https://doi.org/10.48550/arXiv.2410.13787
https://doi.org/10.48550/arXiv.2409.14833
https://doi.org/10.48550/arXiv.2410.07095
https://doi.org/10.48550/arXiv.2410.07095

Published as a conference paper at ICLR 2025

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
Fireact: Toward language agent fine-tuning. CoRR, abs/2310.05915, 2023. doi: 10.48550/ARXIV.
2310.05915. URL https://doi.org/10.48550/arXiv.2310.05915.

Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu, Binbin Lin, and Xiaofei He. Automanual:
Generating instruction manuals by LLM agents via interactive environmental learning. CoRR,
abs/2405.16247, 2024. doi: 10.48550/ARXIV.2405.16247. URL https://doi.org/10.
48550/arXiv.2405.16247.

Qinyuan Cheng, Tianxiang Sun, Xiangyang Liu, Wenwei Zhang, Zhangyue Yin, Shimin Li, Linyang
Li, Zhengfu He, Kai Chen, and Xipeng Qiu. Can AI assistants know what they don’t know?
In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
girxGkdECL.

Konstantina Christakopoulou, Shibl Mourad, and Maja J. Mataric. Agents thinking fast and slow: A
talker-reasoner architecture. CoRR, abs/2410.08328, 2024. doi: 10.48550/ARXIV.2410.08328.
URL https://doi.org/10.48550/arXiv.2410.08328.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh
Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell,
Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus
Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv
Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin,
Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, and et al.
The llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783.
URL https://doi.org/10.48550/arXiv.2407.21783.

Zane Durante, Qiuyuan Huang, Naoki Wake, Ran Gong, Jae Sung Park, Bidipta Sarkar, Rohan Taori,
Yusuke Noda, Demetri Terzopoulos, Yejin Choi, Katsushi Ikeuchi, Hoi Vo, Li Fei-Fei, and Jianfeng
Gao. Agent AI: surveying the horizons of multimodal interaction. CoRR, abs/2401.03568, 2024.
doi: 10.48550/ARXIV.2401.03568. URL https://doi.org/10.48550/arXiv.2401.
03568.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Xiang
Ren, Allyson Ettinger, Zaïd Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
compositionality. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference
on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/deb3c28192f979302c157cb653c15e90-Abstract-Conference.html.

Shengda Fan, Xin Cong, Yuepeng Fu, Zhong Zhang, Shuyan Zhang, Yuanwei Liu, Yesai Wu, Yankai
Lin, Zhiyuan Liu, and Maosong Sun. Workflowllm: Enhancing workflow orchestration capability
of large language models, 2024. URL https://arxiv.org/abs/2411.05451.

Dayuan Fu, Biqing Qi, Yihuai Gao, Che Jiang, Guanting Dong, and Bowen Zhou. Msi-agent:
Incorporating multi-scale insight into embodied agents for superior planning and decision-making.
In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA,
November 12-16, 2024, pp. 643–659. Association for Computational Linguistics, 2024a. URL
https://aclanthology.org/2024.emnlp-main.38.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae,
and Honglak Lee. Autoguide: Automated generation and selection of state-aware guidelines for
large language model agents. CoRR, abs/2403.08978, 2024b. doi: 10.48550/ARXIV.2403.08978.
URL https://doi.org/10.48550/arXiv.2403.08978.

11

https://doi.org/10.48550/arXiv.2310.05915
https://doi.org/10.48550/arXiv.2405.16247
https://doi.org/10.48550/arXiv.2405.16247
https://openreview.net/forum?id=girxGkdECL
https://openreview.net/forum?id=girxGkdECL
https://doi.org/10.48550/arXiv.2410.08328
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2401.03568
https://doi.org/10.48550/arXiv.2401.03568
http://papers.nips.cc/paper_files/paper/2023/hash/deb3c28192f979302c157cb653c15e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/deb3c28192f979302c157cb653c15e90-Abstract-Conference.html
https://arxiv.org/abs/2411.05451
https://aclanthology.org/2024.emnlp-main.38
https://doi.org/10.48550/arXiv.2403.08978

Published as a conference paper at ICLR 2025

Michele Ginesi, Daniele Meli, Andrea Roberti, Nicola Sansonetto, and Paolo Fiorini. Autonomous
task planning and situation awareness in robotic surgery. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2020, Las Vegas, NV, USA, October 24, 2020 - January
24, 2021, pp. 3144–3150. IEEE, 2020. doi: 10.1109/IROS45743.2020.9341382. URL https:
//doi.org/10.1109/IROS45743.2020.9341382.

Jian Guan, Wei Wu, Zujie Wen, Peng Xu, Hongning Wang, and Minlie Huang. AMOR: A recipe for
building adaptable modular knowledge agents through process feedback. CoRR, abs/2402.01469,
2024. doi: 10.48550/ARXIV.2402.01469. URL https://doi.org/10.48550/arXiv.
2402.01469.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Automated
data science by empowering large language models with case-based reasoning. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=LfJgeBNCFI.

Johann Haselberger, Bonifaz Stuhr, Bernhard Schick, and Steffen Müller. Situation awareness for
driver-centric driving style adaptation. CoRR, abs/2403.19595, 2024. doi: 10.48550/ARXIV.2403.
19595. URL https://doi.org/10.48550/arXiv.2403.19595.

Vincent W. Hill, Ryan W. Thomas, and Jordan D. Larson. Autonomous situational awareness
for robotic swarms in high-risk environments. CoRR, abs/2105.04764, 2021. URL https:
//arxiv.org/abs/2105.04764.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi
Zhang, Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, Mingchen Zhuge, Taicheng Guo,
Tuo Zhou, Wei Tao, Wenyi Wang, Xiangru Tang, Xiangtao Lu, Xiawu Zheng, Xinbing Liang,
Yaying Fei, Yuheng Cheng, Zongze Xu, and Chenglin Wu. Data interpreter: An LLM agent
for data science. CoRR, abs/2402.18679, 2024a. doi: 10.48550/ARXIV.2402.18679. URL
https://doi.org/10.48550/arXiv.2402.18679.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for A multi-
agent collaborative framework. In The Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024b. URL
https://openreview.net/forum?id=VtmBAGCN7o.

Xueyu Hu, Tao Xiong, Biao Yi, Zishu Wei, Ruixuan Xiao, Yurun Chen, Jiasheng Ye, Meiling
Tao, Xiangxin Zhou, Ziyu Zhao, Yuhuai Li, Shengze Xu, Shawn Wang, Xinchen Xu, Shuofei
Qiao, Kun Kuang, Tieyong Zeng, Liang Wang, Jiwei Li, Yuchen Eleanor Jiang, Wangchunshu
Zhou, Guoyin Wang, Keting Yin, Zhou Zhao, Hongxia Yang, Fan Wu, Shengyu Zhang, and Fei
Wu. Os agents: A survey on mllm-based agents for general computing devices use. https:
//github.com/OS-Agent-Survey/OS-Agent-Survey/, 2024.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of LLM agents: A survey. CoRR,
abs/2402.02716, 2024. doi: 10.48550/ARXIV.2402.02716. URL https://doi.org/10.
48550/arXiv.2402.02716.

Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb, Alex
Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex Ren-
zin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali, Allan
Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya Kumar, Andrea
Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu,
Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, Antoine
Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver,
and et al. Gpt-4o system card. CoRR, abs/2410.21276, 2024. doi: 10.48550/ARXIV.2410.21276.
URL https://doi.org/10.48550/arXiv.2410.21276.

12

https://doi.org/10.1109/IROS45743.2020.9341382
https://doi.org/10.1109/IROS45743.2020.9341382
https://doi.org/10.48550/arXiv.2402.01469
https://doi.org/10.48550/arXiv.2402.01469
https://openreview.net/forum?id=LfJgeBNCFI
https://doi.org/10.48550/arXiv.2403.19595
https://arxiv.org/abs/2105.04764
https://arxiv.org/abs/2105.04764
https://doi.org/10.48550/arXiv.2402.18679
https://openreview.net/forum?id=VtmBAGCN7o
https://github.com/OS-Agent-Survey/OS-Agent-Survey/
https://github.com/OS-Agent-Survey/OS-Agent-Survey/
https://doi.org/10.48550/arXiv.2402.02716
https://doi.org/10.48550/arXiv.2402.02716
https://doi.org/10.48550/arXiv.2410.21276

Published as a conference paper at ICLR 2025

Julian Paul Keenan, Hanna Oh, and Franco Amati. An overview of self-awareness. The oxford
handbook of social neuroscience, pp. 314, 2011.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Jason Flinn, Margo I. Seltzer, Peter Druschel, Antoine Kaufmann,
and Jonathan Mace (eds.), Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP 2023, Koblenz, Germany, October 23-26, 2023, pp. 611–626. ACM, 2023. doi: 10.1145/
3600006.3613165. URL https://doi.org/10.1145/3600006.3613165.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: A large language model-based
web navigating agent. In Ricardo Baeza-Yates and Francesco Bonchi (eds.), Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024, Barcelona,
Spain, August 25-29, 2024, pp. 5295–5306. ACM, 2024. doi: 10.1145/3637528.3671620. URL
https://doi.org/10.1145/3637528.3671620.

Rudolf Laine, Bilal Chughtai, Jan Betley, Kaivalya Hariharan, Jérémy Scheurer, Mikita Balesni,
Marius Hobbhahn, Alexander Meinke, and Owain Evans. Me, myself, and AI: the situational
awareness dataset (SAD) for llms. CoRR, abs/2407.04694, 2024. doi: 10.48550/ARXIV.2407.
04694. URL https://doi.org/10.48550/arXiv.2407.04694.

Peter R Lewis, Arjun Chandra, Shaun Parsons, Edward Robinson, Kyrre Glette, Rami Bahsoon, Jim
Torresen, and Xin Yao. A survey of self-awareness and its application in computing systems. In
2011 Fifth IEEE conference on self-adaptive and self-organizing systems workshops, pp. 102–107.
IEEE, 2011.

Zelong Li, Wenyue Hua, Hao Wang, He Zhu, and Yongfeng Zhang. Formal-llm: Integrating formal
language and natural language for controllable llm-based agents. CoRR, abs/2402.00798, 2024a.
doi: 10.48550/ARXIV.2402.00798. URL https://doi.org/10.48550/arXiv.2402.
00798.

Zhipeng Li, Christoph Gebhardt, Yves Inglin, Nicolas Steck, Paul Streli, and Christian Holz. Situa-
tionadapt: Contextual UI optimization in mixed reality with situation awareness via LLM reasoning.
In Lining Yao, Mayank Goel, Alexandra Ion, and Pedro Lopes (eds.), Proceedings of the 37th
Annual ACM Symposium on User Interface Software and Technology, UIST 2024, Pittsburgh, PA,
USA, October 13-16, 2024, pp. 43:1–43:13. ACM, 2024b. doi: 10.1145/3654777.3676470. URL
https://doi.org/10.1145/3654777.3676470.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Hans C Lou, Jean-Pierre Changeux, and Astrid Rosenstand. Towards a cognitive neuroscience of
self-awareness. Neuroscience & Biobehavioral Reviews, 83:765–773, 2017.

Seyed-Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
Mehrdad Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in
large language models. CoRR, abs/2410.05229, 2024. doi: 10.48550/ARXIV.2410.05229. URL
https://doi.org/10.48550/arXiv.2410.05229.

OpenAI. Introducing openai o1-preview, 2024. https://openai.com/index/
introducing-openai-o1-preview/.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization, 2024. URL https://arxiv.org/abs/
2404.19733.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev: Commu-
nicative agents for software development. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics

13

https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3637528.3671620
https://doi.org/10.48550/arXiv.2407.04694
https://doi.org/10.48550/arXiv.2402.00798
https://doi.org/10.48550/arXiv.2402.00798
https://doi.org/10.1145/3654777.3676470
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.48550/arXiv.2410.05229
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/2404.19733

Published as a conference paper at ICLR 2025

(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 15174–15186.
Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.810. URL
https://doi.org/10.18653/v1/2024.acl-long.810.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan,
Fei Huang, and Huajun Chen. Reasoning with language model prompting: A survey. In Anna
Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 5368–5393. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.ACL-LONG.294. URL https://doi.org/10.18653/v1/
2023.acl-long.294.

Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin Wang, Ningyu Zhang, Yong Jiang, Pengjun Xie,
Fei Huang, and Huajun Chen. Benchmarking agentic workflow generation. CoRR, abs/2410.07869,
2024a. doi: 10.48550/ARXIV.2410.07869. URL https://doi.org/10.48550/arXiv.
2410.07869.

Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang,
Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model. CoRR,
abs/2405.14205, 2024b. doi: 10.48550/ARXIV.2405.14205. URL https://doi.org/10.
48550/arXiv.2405.14205.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System op-
timizations enable training deep learning models with over 100 billion parameters. In Ra-
jesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash (eds.), KDD ’20: The 26th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA,
August 23-27, 2020, pp. 3505–3506. ACM, 2020. doi: 10.1145/3394486.3406703. URL
https://doi.org/10.1145/3394486.3406703.

Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin Zhao, Jing Liu, Hao Tian, Hua Wu, Ji-Rong Wen,
and Haifeng Wang. Investigating the factual knowledge boundary of large language models with
retrieval augmentation. CoRR, abs/2307.11019, 2023. doi: 10.48550/ARXIV.2307.11019. URL
https://doi.org/10.48550/arXiv.2307.11019.

Morgane Rivière, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le Lan, Sammy
Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin, and et al. Gemma 2:
Improving open language models at a practical size. CoRR, abs/2408.00118, 2024. doi: 10.48550/
ARXIV.2408.00118. URL https://doi.org/10.48550/arXiv.2408.00118.

Swarnadeep Saha, Archiki Prasad, Justin Chih-Yao Chen, Peter Hase, Elias Stengel-Eskin, and
Mohit Bansal. System-1.x: Learning to balance fast and slow planning with language models.
CoRR, abs/2407.14414, 2024. doi: 10.48550/ARXIV.2407.14414. URL https://doi.org/
10.48550/arXiv.2407.14414.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H. Chi, Nathanael Schärli,
and Denny Zhou. Large language models can be easily distracted by irrelevant context. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), International Conference on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pp. 31210–
31227. PMLR, 2023. URL https://proceedings.mlr.press/v202/shi23a.html.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.

14

https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.48550/arXiv.2410.07869
https://doi.org/10.48550/arXiv.2410.07869
https://doi.org/10.48550/arXiv.2405.14205
https://doi.org/10.48550/arXiv.2405.14205
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.48550/arXiv.2307.11019
https://doi.org/10.48550/arXiv.2408.00118
https://doi.org/10.48550/arXiv.2407.14414
https://doi.org/10.48550/arXiv.2407.14414
https://proceedings.mlr.press/v202/shi23a.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html

Published as a conference paper at ICLR 2025

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew J.
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
0IOX0YcCdTn.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In IEEE International Conference on Robotics and Automation, ICRA 2023,
London, UK, May 29 - June 2, 2023, pp. 11523–11530. IEEE, 2023. doi: 10.1109/ICRA48891.
2023.10161317. URL https://doi.org/10.1109/ICRA48891.2023.10161317.

Chan Hee Song, Brian M. Sadler, Jiaman Wu, Wei-Lun Chao, Clayton Washington, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, France, October
1-6, 2023, pp. 2986–2997. IEEE, 2023. doi: 10.1109/ICCV51070.2023.00280. URL https:
//doi.org/10.1109/ICCV51070.2023.00280.

Yifan Song, Weimin Xiong, Xiutian Zhao, Dawei Zhu, Wenhao Wu, Ke Wang, Cheng Li, Wei
Peng, and Sujian Li. Agentbank: Towards generalized LLM agents via fine-tuning on 50000+
interaction trajectories. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA, November
12-16, 2024, pp. 2124–2141. Association for Computational Linguistics, 2024a. URL https:
//aclanthology.org/2024.findings-emnlp.116.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for LLM agents. CoRR, abs/2403.02502, 2024b. doi: 10.
48550/ARXIV.2403.02502. URL https://doi.org/10.48550/arXiv.2403.02502.

Divya K. Srivastava, J. Mason Lilly, and Karen M. Feigh. Improving operator situation awareness
when working with AI recommender systems. CoRR, abs/2310.11370, 2023. doi: 10.48550/
ARXIV.2310.11370. URL https://doi.org/10.48550/arXiv.2310.11370.

Guo Tang, Zheng Chu, Wenxiang Zheng, Ming Liu, and Bing Qin. Towards benchmarking situational
awareness of large language models: Comprehensive benchmark, evaluation and analysis. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2024, Miami, Florida, USA, November 12-16, 2024, pp. 7904–
7928. Association for Computational Linguistics, 2024. URL https://aclanthology.
org/2024.findings-emnlp.464.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on large lan-
guage model based autonomous agents. Frontiers Comput. Sci., 18(6):186345, 2024a. doi: 10.1007/
S11704-024-40231-1. URL https://doi.org/10.1007/s11704-024-40231-1.

Liman Wang and Hanyang Zhong. LLM-SAP: large language models situational awareness-based
planning. In IEEE International Conference on Multimedia and Expo, ICME 2024 - Workshops,
Niagara Falls, ON, Canada, July 15-19, 2024, pp. 1–6. IEEE, 2024. doi: 10.1109/ICMEW63481.
2024.10645429. URL https://doi.org/10.1109/ICMEW63481.2024.10645429.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better LLM agents. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024b. URL
https://openreview.net/forum?id=jJ9BoXAfFa.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

15

https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=0IOX0YcCdTn
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://aclanthology.org/2024.findings-emnlp.116
https://aclanthology.org/2024.findings-emnlp.116
https://doi.org/10.48550/arXiv.2403.02502
https://doi.org/10.48550/arXiv.2310.11370
https://aclanthology.org/2024.findings-emnlp.464
https://aclanthology.org/2024.findings-emnlp.464
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1109/ICMEW63481.2024.10645429
https://openreview.net/forum?id=jJ9BoXAfFa
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

Published as a conference paper at ICLR 2025

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. OS-ATLAS: A foundation action model for
generalist GUI agents. CoRR, abs/2410.23218, 2024. doi: 10.48550/ARXIV.2410.23218. URL
https://doi.org/10.48550/arXiv.2410.23218.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Jun-
zhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao
Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan
Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng
Qiu, Xuanjing Huan, and Tao Gui. The rise and potential of large language model based
agents: A survey. CoRR, abs/2309.07864, 2023. doi: 10.48550/ARXIV.2309.07864. URL
https://doi.org/10.48550/arXiv.2309.07864.

Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui Wang, Zichao Yang, and Zhiting Hu.
Language models meet world models: Embodied experiences enhance language models. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
ee6630dcbcff857026e474fc857aa9f0-Abstract-Conference.html.

Ruixuan Xiao, Wentao Ma, Ke Wang, Yuchuan Wu, Junbo Zhao, Haobo Wang, Fei Huang, and
Yongbin Li. Flowbench: Revisiting and benchmarking workflow-guided planning for llm-
based agents. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of
the Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA, Novem-
ber 12-16, 2024, pp. 10883–10900. Association for Computational Linguistics, 2024. URL
https://aclanthology.org/2024.findings-emnlp.638.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
CoRR, abs/2405.15793, 2024. doi: 10.48550/ARXIV.2405.15793. URL https://doi.org/
10.48550/arXiv.2405.15793.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scal-
able real-world web interaction with grounded language agents. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/forum?id=WE_vluYUL-X.

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu, Xipeng Qiu, and Xuanjing Huang. Do large
language models know what they don’t know? In Anna Rogers, Jordan L. Boyd-Graber, and
Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 8653–8665. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.FINDINGS-ACL.551. URL https://doi.org/10.18653/
v1/2023.findings-acl.551.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. CoRR,
abs/2407.06023, 2024. doi: 10.48550/ARXIV.2407.06023. URL https://doi.org/10.
48550/arXiv.2407.06023.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for llms. CoRR, abs/2310.12823, 2023. doi: 10.48550/ARXIV.
2310.12823. URL https://doi.org/10.48550/arXiv.2310.12823.

16

https://doi.org/10.48550/arXiv.2410.23218
https://doi.org/10.48550/arXiv.2309.07864
http://papers.nips.cc/paper_files/paper/2023/hash/ee6630dcbcff857026e474fc857aa9f0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ee6630dcbcff857026e474fc857aa9f0-Abstract-Conference.html
https://aclanthology.org/2024.findings-emnlp.638
https://doi.org/10.48550/arXiv.2405.15793
https://doi.org/10.48550/arXiv.2405.15793
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.18653/v1/2023.findings-acl.551
https://doi.org/10.18653/v1/2023.findings-acl.551
https://doi.org/10.48550/arXiv.2407.06023
https://doi.org/10.48550/arXiv.2407.06023
https://doi.org/10.48550/arXiv.2310.12823

Published as a conference paper at ICLR 2025

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma, Guyue
Liu, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Large language model-
brained gui agents: A survey, 2024a. URL https://arxiv.org/abs/2411.18279.

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: LLM self-training
via process reward guided tree search. CoRR, abs/2406.03816, 2024b. doi: 10.48550/ARXIV.2406.
03816. URL https://doi.org/10.48550/arXiv.2406.03816.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. Aflow: Automating agentic workflow generation. CoRR, abs/2410.10762, 2024c. doi: 10.
48550/ARXIV.2410.10762. URL https://doi.org/10.48550/arXiv.2410.10762.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel:
LLM agents are experiential learners. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam
Natarajan (eds.), Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-
Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024,
Vancouver, Canada, pp. 19632–19642. AAAI Press, 2024a. doi: 10.1609/AAAI.V38I17.29936.
URL https://doi.org/10.1609/aaai.v38i17.29936.

Qiwei Zhao, Xujiang Zhao, Yanchi Liu, Wei Cheng, Yiyou Sun, Mika Oishi, Takao Osaki, Katsushi
Matsuda, Huaxiu Yao, and Haifeng Chen. Saup: Situation awareness uncertainty propagation on
llm agent, 2024b. URL https://arxiv.org/abs/2412.01033.

Guan-Cheng Zhou, Chen Chengb, and Yan-zhou Chena. Efficient multi-branch segmentation network
for situation awareness in autonomous navigation. CoRR, abs/2404.00366, 2024. doi: 10.48550/
ARXIV.2404.00366. URL https://doi.org/10.48550/arXiv.2404.00366.

Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng, Ningyu Zhang, Shiwei Lyu, Yue Shen, Lei Liang,
Jinjie Gu, and Huajun Chen. Knowagent: Knowledge-augmented planning for llm-based agents.
CoRR, abs/2403.03101, 2024. doi: 10.48550/ARXIV.2403.03101. URL https://doi.org/
10.48550/arXiv.2403.03101.

A KNOWLEDGE SYSTEM CONSTRUCTION

Our knowledge system construction consists of two designed phases.

Step-level Trajectory Pair Generation. Given a history-action pair (ht, at+1), we employ ReAct-
style prompting to elicit GPT-4o prediction for the subsequent action apt+1. If the model generate an
incorrect action apt+1 ̸= at+1, we designate the ground-truth action at+1 as the win action aw and the
model’s prediction apt+1 as the loss action al. This process yields our step-level pairwise trajectory

dataset Ds = (ht, a
w
t+1, a

l
t+1)

|Ds|
i=1

. For ALFWorld, |Ds| is 36, which includes 6 for each task type.
For WebShop, |Ds| is 20.

Knowledge Generation and Consolidation. We follow AutoManual (Chen et al., 2024) to generate
and consolidate knowledge. For knowledge generation, we use few-shots to prompt GPT-4o to
generate knowledge of Error type by analyzing and contrasting (aw, al) pairs within their contextual
history ht. When (ht, a

w
t+1) constitutes a complete successful trajectory, we extend the analysis to

derive knowledge of Success Process type, capturing effective reasoning patterns. For knowledge
consolidation, we limit the knowledge base to 24 entries for ALFWorld and 10 for WebShop based
on task complexity.

B KNOWLEDGE SELECTION

Knowledge selection is categorized into two types.

17

https://arxiv.org/abs/2411.18279
https://doi.org/10.48550/arXiv.2406.03816
https://doi.org/10.48550/arXiv.2410.10762
https://doi.org/10.1609/aaai.v38i17.29936
https://arxiv.org/abs/2412.01033
https://doi.org/10.48550/arXiv.2404.00366
https://doi.org/10.48550/arXiv.2403.03101
https://doi.org/10.48550/arXiv.2403.03101

Published as a conference paper at ICLR 2025

Training Data Construction. Given the task objective o, historical context ht, win action aw, and
loss action al, we enable DeepSeek-v3 to select appropriate knowledge from the knowledge system
by analyzing and contrasting (aw, al) pairs.

Inference-time Knowledge Selection. When provided with the task objective o, current context ht,
and pending action at+1, DeepSeek-v3 performs analytical reasoning to identify the most relevant
knowledge from the knowledge base.

C MECHANISM SETUP

We collect historical contexts of knowledgeable thinking and fast thinking through sampling. Then we
input these contexts into KnowSelfmodel. By attaching lm-head modules to each Transformer layer,
we obtain logits for token Knowledge (representing knowledgeable thinking), Reflection (representing
slow thinking), and "Thought" (representing fast thinking) of the first generated token at each layer.
These logits are converted into probabilities via softmax normalization. The final probability for each
token at each layer is determined by averaging its generation probabilities obtained from all historical
contexts within the same layer.

D DATASETS

ALFWorld. ALFWorld (Shridhar et al., 2021) is a household dataset requiring the agent to navigate
through the room and manipulate objects. It contains 6 different kinds of tasks commonly appears in
the household scenario including Put, Clean, Heat, Cool, Examine, Puttwo. The reward of ALFWorld
is binary 0 or 1, indicating whether the agent has completed the task or not. Our gold training
trajectories are sourced from AgentBank (Song et al., 2024a). A detailed statistics can be seen in
Table 4.

Datasets Train Test
Put Clean Heat Cool Examine Puttwo Total

ALFworld 2851 24 31 23 21 18 17 134

Table 4: Statistics of ALFWorld.

WebShop. WebShop (Yao et al., 2022) is an online shopping platform where agents explore the
website to make purchases according to user instructions. Upon selecting the "buy" option, the system
offers a final reward determined by the heuristic matching of the product’s attributes and price. Also,
we collect gold trajectories from AgentBank. The detailed statistics can be seen in Table 5.

Datasets Train Test
WebShop 1598 200

Table 5: Statistics of WebShop.

E BASELINES AND REPRODUCTION DETAILS

Here we detailedly introduce the baselines we compare with and our re-produce details.

• REACT (Yao et al., 2023). The first work includes Chain-of-Thought (Wei et al., 2022)
prompting in agent planning tasks with a format of Thought-Action-Observation loop.

• Reflexion (Shinn et al., 2023). A strong prompt-based baseline reinforces language agent
planning with verbal feedback. Manually designed prompts are used to enable the agent
to reflect on the historical trajectory and re-plan based on the feedback. In our paper, we
iterate five rounds of reflection and take the highest as the final result.

18

Published as a conference paper at ICLR 2025

• ExpeL (Zhao et al., 2024a). The first work automatically extracts insights and experiences
from offline trial-and-error without gradient updates. During inference, the most similar
experiences are retrieved as few-shot examples and all the insights are injected into prompts
to facilitate agent planning. For a fair comparison with KnowSelf, instead of self-explored
experience gathering, we directly use the trajectories collected from AGENTBANK (Song
et al., 2024a) as the experience base for retrieval. The insights used are the same set with
KnowSelf.

• ETO (Song et al., 2024b). A baseline includes negative trajectories during agent training.
The method contains two training phases, of which the first phase is behavior cloning which
fine-tunes the agent on expert trajectories, and the second phase is learning from failures
which further fine-tunes the agent through DPO. In our paper, we remove the one-shot
prompt for fairness and retain all the default hyperparameters proposed in ETO.

• KnowAgent (Zhu et al., 2024). This method utilizes human-curated symbolic action
knowledge to constrain the agent’s behavior and a self-training framework to iteratively
boost the agent’s performance without relying on gold trajectories. For a fair comparison
with KnowSelf, we replace the self-training process and directly fine-tune KnowAgent on
the same training set with KnowSelf.

• WKM (Qiao et al., 2024b). WKM uses self-synthetic task and state knowledge to train a
parameterized world knowledge model. During inference, the knowledge model is invoked
to offer global knowledge for task-level planning and local knowledge for step-level planning.
We use the same training set with KnowSelf to synthesize knowledge and train the agent
and knowledge model of WKM in our paper.

All the prompt-based baselines are evaluated in a two-shot manner. In ALFWorld, to enhance the
model’s performance, we designate specific two-shot examples for each of the six tasks. And all the
fine-tuning-based baselines are trained with full parameters.

F TRAINING SETUPS

We fine-tune Llama-8B and Gemma-2B with full parameters using DeepSpeed (Rasley et al., 2020).
For the first training stage, we apply a learning rate of 2e-5 and a batch size of 8. For the second
training stage, the learning rate is set to 5e-7 and the batch size is 3. The β in DPO loss is set to
0.5 and the balanced factor α is set to 1. We train 3 epochs during the first stage and 1 epoch for
the second stage. AdamW (Loshchilov & Hutter, 2019) is utilized as the optimizer. For all the
inferences, we fix the temperature at 0. We use vLLM (Kwon et al., 2023) to accelerate the inference
of Llama-8B. All our experiments are conducted on 8 NVIDIA A800 80G GPUs. A more detailed
hyperparameters setup can be seen in Table 6.

Name Stage-I Stage-II
cutoff len 3,072 4,096

epochs 3 1
batch size 8 3

batch size per device 1 1
gradient accumulation steps 1 1

learning rate 2e-5 5e-7
lr scheduler type cosine constant_with_warmup

warmup ratio 0.1 0.1
fp16 true true

Table 6: Detailed training hyperparameters used in our paper.

19

Published as a conference paper at ICLR 2025

G PROMPTS

G.1 KNOWLEDGE SYSTEM CONSTRUCTION

Prompt for Knowledge Generation

[Role]
You are observing a housekeeper agent as it acts within a simulated environment (game).
Your role is to construct a manual of rules to not only assist the agent in completing tasks
but also to do so with the least amount of action attempts/errors. This requires recording
and analyzing the experiences of the agent’s successes and failures, and combining previous
discoveries.
[Functions]
You will be presented with the current trajectory, which is the trajectory the agent is currently
exploring. And then, you will be provided with the action and feedback the agent is currently
performing, and the correct action and feedback annotated by experts.
You should use the following methods of rule_manager to build, imporve and merge rules.
rule_manager.write_rule(rule, type="", example="", task_id="")
Write down a new rule of the game you discovered.
Parameters:
- rule: a rule of the game you discovered. Try to keep it general and universal. Don’t
reference any specific item or location. Follow the format that "When the agent is/has
[situation], the agent should [action]".
- type: the type of the rule, chosen from ["Error", "Success Process"].
- example: a example from the trajectory demonstrates this rule. You can add detailed
information in the comment.
- task_id: the id of the task that this rule is discovered from. If this rule is not discovered
from any specific task, leave it empty. It should be string.
rule_manager.update_rule(rule_id, rule="", type="", example=""),
Rewrite the attributes of a existing rule, when you come up with better understanding.
Input only the attributes you want to rewrite.
Use full rule_id, such as rule_0, rule_1
rule_manager.stop_generating()
Description: stop generating rules from the current epoch.
Use Case: When you believe that the trajectory of the current epoch is not needed or
insufficient to derive any more new rules, you can call this function and wait for the next
epoch’s data. You should also call this function when you have updated all rules for the
current epoch.
[Actions]
At each epoch, an agent is created in an environment and the initial observation and target
task are printed.
The agent can only use the following actions. If the precondition of the action is not met, its
observation will include "Nothing happens":
go to {recep} # Go to a receptacle and update the agent’s location.
open {recep} # Open a receptacle and observe its contents.
close {recep} # Close a opened receptacle.
take {obj} from {recep} # Take an object from a receptacle if the agent is not holding
anything.
put {obj} in/on {recep} # Put an object in or on a receptacle if the agent is holding it.
use {obj} # Use a lamp.
clean {obj} with {recep} # Clean an object with a receptacle.
heat {obj} with {recep} # Heat an object with a receptacle.
cool {obj} with {recep} # Cool an object with a receptacle.
[Output Format Instructions]
Base on the current trajectory, you should output the following things:
* State before Action: Analyze and summarize the state of the current trajectory. Don’t
mention action or feedback that are not part of the current trajectory.
* Why correct action is correct: Analyze the reason why the correct action is correct.

20

Published as a conference paper at ICLR 2025

* Why explore action is not correct: Analyze the difference between the explore action and
the correct action. And analyze the reason why the explore action is incorrect.
* Potential Rules: Describe your thoughts about potential rules based on the current trajectory.
Depending on the results, you may need to check *Success Process*, *Error*, and other
findings in sequence. Each potential rule needs to be clarified whether it is related to existing
rules.
* Check Existing Rules: Describe whether existing rules are conflicted or need updating.
* Code: Finally, sequentially call the rule_manager’s functions within ‘```python’ and ‘```’.
[Detailed instructions]
Follow these instructions:
Add or Update Rules
1. **Add Rules for Failure** summarize the error that led to failure. You should write a
"Error" rule to record the error: in what situation, what the agent should do and should not
to do . So that they can serve as reminders for the agent in the future. Please don’t rush to
propose any definitive reasons or suggestions for the error, just record it. And please strictly
follow the reason why the correct action is correct.
2. **Add Rules for Success** If the task is completed in the golden action (feedback is "Task
done"), it is essential to extract the useful strategy from the success, if it has not been included
in the rules yet. Additionally, document all steps (marked as "[Step]") in the successful rule
within a rule of the type "Success Process".
Keep new rules targeted and precise. Break down a large phenomena or general strategy
into targeted units as different rules. These can later be upgraded or merged into a more
general or larger rule. Keep the rules as concise and easy to understand as possible, avoiding
lengthy or complex descriptions.
Keep new rules general and universal. The rule should not reference any specific item or
location. You need to generalize across various items to help the agent learn to apply the rule.
Keep new rules in format. The rule should be in the format "When the agent in [situation]/
When the task requires [situation], the agent should [action]".
Avoiding overconfidence for new rules. Please acknowledge the need for further verifica-
tion in your note.
Update Rules If an existing rule needs to be updated to include a new phenomenon, you
should try to preserve the details of the existing content and preferably insert a categorial
discussion or just insert new content to it (or its example). Especially, the rules of "Success
Process" type should retain their details.
Follow these instructions. Think step by step.

Prompt for Knowledge Consolidation

[Role]
You are observing a housekeeper agent as it codes and acts within a simulated environment
(game). Your goal is to construct a manual of rules to assist the agent in completing various
tasks in the environment. Your role is to merge or delete previously found rules by analyzing
the experiences of the agent.
[Functions]
You will be presented with the current found rules. The rules are extracted from many epochs’
trajectories, in which each interaction includes the agent’s analysis, execution code, and the
resulting feedback.
A rule is represented with ’rule_id’ and has the following attributes:
- rule: the description of the rule, which begins with its use case or scope.
- type: the type of the rule, chosen from ["Error", "Success Process"].
- example: an example (or code) from the trajectory demonstrates this rule. You can add
detailed information in the comment.
- task_id: the task id of the rule.
You should use the following methods of rule_manager to delete and merge rules.
rule_manager.update_rule(rule_id, rule="", type="", example=""),
Rewrite the attributes of an existing rule when you come up with a better understanding.

21

Published as a conference paper at ICLR 2025

Input only the attributes you want to rewrite.
Use full rule_id, such as rule_0, rule_1
Wrap the example string with ”’.
rule_manager.delete_rule(rule_id),
delete a existing rule with rule_id, such as rule_0, rule_1
How to merge To merge two existing rules, you can call rule_manager.update_rule for
one rule and then call rule_manager.delete_rule to delete another rule.
rule_manager.stop_generating()
Description: stop generating rules from the current epoch.
Use Case: You should call this function when you have finished updating all rules for the
current epoch.
[Actions]
At each epoch, an agent is created in an environment and the initial observation and target
task are printed. The agent can only use the following actions. If the precondition of the
action is not met, its observation will include "Nothing happens":
go to {recep} # Go to a receptacle and update the agent’s location.
open {recep} # Open a receptacle and observe its contents.
close {recep} # Close a opened receptacle.
take {obj} from {recep} # Take an object from a receptacle if the agent is not holding
anything.
put {obj} in/on {recep} # Put an object in or on a receptacle if the agent is holding it.
use {obj} # Use a lamp.
clean {obj} with {recep} # Clean an object with a receptacle.
heat {obj} with {recep} # Heat an object with a receptacle.
cool {obj} with {recep} # Cool an object with a receptacle.
[Response Instructions]
Detailed instructions:
Maintain a maximum of 24 rules
Merge if addressed If a "Success Process" rule can address the "Error" rule, you can
consider merging these rules while retaining their details.
Retain important details The rules of "Success Process" type should retain their details,
and should not be deleted or easily refreshed by new updates. **Cannot merge two rules of
type "Success Process"**
Insertion is preferable If a rule is updated to include the content of other rules, you
should try to preserve the details of the existing content and preferably insert a categorial
discussion or just insert new content to it (or its example).
When using update_rule, it’s crucial to manually input the attributes directly into
the function call. Avoid using existing variables to concatenate or modify rules.
For example, should not update the rule like: rule_manager.update_rule("rule_0",
rule=rule_manager.all_rules["rule_0"]+rule_manager.all_rules["rule_1"]) And
you should wrap the example string with ”’ in update_rule function, such as
rule_manager.update_rule("rule_0", rule="......", example=”’<example>”’)

G.2 KNOWLEDGE SELECTION

Knowledge Selection for Training Data Construction

ALFWorld
You are observing a housekeeper agent as it acts within a simulated environment (game).
Your role is to select a rule to not only assist the agent in completing tasks but also to do so
with the least amount of action attempts/errors. This requires analyzing the current state of
the agent and understanding the rule.
Here’s the information you’ll have:
The objective: This is the task you’re trying to complete.
The current trajectory: This is the current sequence of actions the agent has taken to reach the
current state.

22

Published as a conference paper at ICLR 2025

The correct action: This is the correct action that you should use knowledge to help the agent
do.
The wrong action: This is the wrong action that you should use knowledge to help the agent
avoid.
The rules: This is a list of rules that can be applied to the current state to achieve the objective.
Base on the current trajectory, you should output the following things:
[Current State]: Analyze and summarize the state of the current trajectory.
[Why correct action is correct]: Describe your thoughts to analysis why the correct action is
correct.
[Why wrong action is wrong]: Describe your thoughts to analysis why the wrong action is
wrong.
[Analysis]: Describe your thoughts to choose the most appropriate rule to avoid the wrong
action.
[Chosen Rule]: Choose the rule from the rule list that you think is the most appropriate for
the current state.
Follow these instructions:
1. Please generate current state strictly in the format of "[Current State]: ...
2. Please generate analysis strictly in the format of "[Why correct action is correct]: let’s think
step by step, ...", "[Why wrong action is wrong]: let’s think step by step, ...", "[Analysis]:
let’s think step by step, ...".
3. Please generate chosen rule strictly in the format of "[Chosen Rule]: rule ID: rule
description".
4. Notice that the agent doesn’t actually conduct the correct action or the wrong action. You
should choose the most appropriate rule to help the agent avoid the wrong action.

WebShop
You are an autonomous intelligent agent tasked with navigating a simulated web browser. You
will be given web-based tasks in the simulated WebShopping. Your role is to select a rule to
not only assist the agent in completing tasks but also to do so with the least amount of action
attempts/errors. This requires analyzing the current state of the agent and understanding the
rule.
Here’s the information you’ll have:
The objective: This is the task you’re trying to complete.
The current trajectory: This is the current sequence of actions the agent has taken to reach the
current state.
The correct action: This is the correct action that you should use knowledge to help the agent
do.
The wrong action: This is the wrong action that you should use knowledge to help the agent
avoid.
The rules: This is a list of rules that can be applied to the current state to achieve the objective.
Base on the current trajectory, you should output the following things:
[Current State]: Analyze and summarize the state of the current trajectory.
[Why correct action is correct]: Describe your thoughts to analysis why the correct action is
correct.
[Why wrong action is wrong]: Describe your thoughts to analysis why the wrong action is
wrong.
[Analysis]: Describe your thoughts to choose the most appropriate rule to avoid the wrong
action.
[Chosen Rule]: Choose the rule from the rule list that you think is the most appropriate for
the current state.
Follow these instructions:
1. Please generate current state strictly in the format of "[Current State]: ...
2. Please generate analysis strictly in the format of "[Why correct action is correct]: let’s think
step by step, ...", "[Why wrong action is wrong]: let’s think step by step, ...", "[Analysis]:
let’s think step by step, ...".
3. Please generate chosen rule strictly in the format of "[Chosen Rule]: rule ID: rule
description".

23

Published as a conference paper at ICLR 2025

4. Notice that the agent doesn’t actually conduct the correct action or the wrong action. You
should choose the most appropriate rule to help the agent avoid the wrong action.

Knowledge Selection for Inference

ALFWorld
You are observing a housekeeper agent as it acts within a simulated environment (game).
Your role is to select a rule to assist the agent in completing tasks. This requires analyzing the
current state of the agent and understanding the rule.
Here’s the information you’ll have:
The objective: This is the task you’re trying to complete.
The current trajectory: This is the current sequence of actions the agent has taken to reach the
current state.
The rules: This is a list of rules that can be applied to the current state to achieve the objective.
Base on the current trajectory, you should output the following things:
[Current State]: Analyze and summarize the state of the current trajectory.
[Analysis]: Describe your thoughts to choose the most appropriate rule.
[Chosen Rule]: Choose the rule from the rule list that you think is the most appropriate for
the current state.
Follow these instructions:
1. Please generate current state strictly in the following format: [Current State]: ... [Analysis]:
let’s think step by step, ... [Chosen Rule]: <rule description>
2. The state you summarize needs to align with the task type. There are some examples:
Put an object on a receptacle: Has found the object, Has taken the object and need to go to
the receptacle, Has reached the receptacle
Examine an object under a desklamp: Has taken the object and need to find the desklamp,
Has found the desklamp and need to use it
Clean an object: Has taken the object and need to find the receptacle to clean it, Has reached
the receptacle and need to clean the object
Heat an object: Has taken the object and need to find the receptacle to heat it, Has reached
the receptacle and need to heat the object
Cool an object: Has taken the object and need to find the receptacle to cool it, Has reached
the receptacle and need to cool the object
Put two objects on a receptacle: Has taken one object and need to go to the receptacle to put
it, Has put one object and need to find another

WebShop
You are observing a web page agent as it acts within a Web environment. Your role is to
select a rule to assist the agent in completing tasks. This requires analyzing the current state
of the agent and understanding the rule.
Here’s the information you’ll have:
The objective: This is the task you’re trying to complete.
The current trajectory: This is the current sequence of actions and environment observations
the agent has taken to reach the current state.
The rules: This is a list of rules that can be applied to the current state to achieve the objective.
Base on the current trajectory, you should output the following things:
[Current State]: Analyze and summarize the state of the current trajectory. Ensure the state
aligns with the task’s progression and includes relevant details about the agent’s current
position (e.g., on a search results page, on a product page and need to click detail options, or
ready to purchase).
[Analysis]: Analyze the task’s progress, and describe your thought process for selecting the
most appropriate rule, considering the current state and the task’s objective.
[Chosen Rule]: Select the rule from the rule list that is most appropriate for the current state.
Follow these instructions:
1. Please generate current state strictly in the following format: [Current State]: Let’s think
step by step, <summary of the current state>. [Analysis]: Let’s think step by step, <detailed
analysis of the task’s progress and rule selection>. [Chosen Rule]: <rule description>

24

Published as a conference paper at ICLR 2025

2. When the agent in the product’s page, and there are "[SEP] <detail option about product>
[SEP]" options to choose, and the agent doesn’t conduct actions like "click [detail option]",
you should select corresponding knowledge to guide the agent to click the detail options one
by one, like color, size options, ensure the agent click all options.
3. The number of actions taken by the agent should be limited to 10 or fewer. You need to
first ensure that the agent is able to purchase the correct product, and then strive to meet as
many task requirements as possible. It is not necessary to strictly fulfill all the requirements
of the task. Some fuzzy matching and minor omissions are tolerable.
4. Avoid selecting the same rule consecutively more than twice. And avoid selecting
knowledge that requires the agent to backtrack or undo actions, unless the task has become
impossible to complete.
5. Please perform a fuzzy match on the product features, for instance, treating baby blue and
blue as the same color.

G.3 REFLECTION

Prompt for Reflection

ALFWorld
There are something wrong with your action. Your action was not actually executed success-
fully. Please reconsider your situation and change another action to complete the task. Please
response strictly in the format:\n\nThought: Let’s think step by step. <your thoughts>\nAction:
<your next action>

WebShop
There are something wrong with your action. Your action was not actually executed success-
fully. Please reconsider your situation and change another action to complete the task.\nNote
that you should align the content you click with the webpage.\nYour previous action is
{previous action}\nPlease response strictly in the format:\n\nThought: Let’s think step by
step. <your thoughts>\nAction: <your next action>

G.4 PROMPT KNOWSELF

Prompt for Prompt Knowself

Interact with a household to solve a task. Imagine you are an intelligent agent in a household
environment and your target is to perform actions to complete the task goal. At the beginning
of your interactions, you will be given the detailed description of the current environment
and your goal to accomplish.
For each of your turn, you will be given the observation of the last turn. And then, remember
that:
You should first consider the current situation. If you believe that you are unable to perform
the correct action, you can output "[Knowledge]" to acquire additional knowledge to help
your thinking. If you think you can perform the correct action, then you can directly output
your think and action.
After you output your think and action, if you think there is an issue with the current action,
you can output "[Reflection]", and then proceed to rethink and re-execute the action.
Your think and action must strictly follow this format:"Thought: your thoughts.\nAction:
your next action".
The available actions are:
1. go to {recep}
2. take {obj} from {recep}
3. put {obj} in/on {recep}
4. open {recep}
5. close {recep}

25

Published as a conference paper at ICLR 2025

6. toggle {obj} {recep}
7. clean {obj} with {recep}
8. heat {obj} with {recep}
9. cool {obj} with {recep}
where {obj} and {recep} correspond to objects and receptacles. You should strictly follow
the format of the actions.
After your each turn, the environment will give you immediate feedback based on which
you plan your next few steps. if the envrionment output "Nothing happened", that means the
previous action is invalid and you should try more options.
Your response should use one of the three following format:
1. Thought: <your thoughts>
Action: <your next action>
2. [Knowledge]<knowledge>...</knowledge>
Thought: <your thoughts>
Action: <your next action>
3. Thought: <your thoughts>
Action: <your next action>
[Reflection]Thought: <your thoughts>
Action: <your next action>
Only one of the three formats should be used in each turn. And you must always contain
both lines in each format. Never omit the Thought line. Never produce only the Action line.
Generating only the Action is not allowed. No other lines or text should be produced. Please
only provide the Thought and Action, do not generate Observation yet. And do not output
multiple actions in one turn or output multiple actions in one line.
Here are two examples:
{example1}
——
{example2}
——
Remember that:
1. When you think you need to acquire additional knowledge, you should output "[Knowl-
edge]" first, and then output your think and action. Only acquire knowledge once in one
turn.
2. If you think there is an issue with the current action, you should output "[Reflection]" first,
and then output your think and action. Only reflect once in one turn.
3. Strictly follow the format of the output. And strictly follow the format of the actions.
4. Plase make your reason and thought concise and clear. Do not output too much information
in one turn. Restrict your total output to 2000 characters.
5. Please conduct only one Action in one line each turn. Do not output multiple actions in
one line or output multiple actions in one turn. Do not generate multiple thoughts or actions
in one turn except for "[Reflection]". And only reflect once in one turn.
Now, it’s your turn!

26

	Introduction
	Background
	Method
	Knowledge System Construction
	Situation Judgement Criterion
	Self-awareness Apply

	Experiments
	Experimental Settings
	Main Results

	Analysis
	Ablation Studies.
	Scaling Law of Self-awareness
	Generalization of Self-awareness
	Mechanism of Self-awareness
	Case Study

	Related Work
	Language Agent Planning.
	Situation-awareness in LLMs.

	Conclusion
	Knowledge System Construction
	Knowledge Selection
	Mechanism Setup
	Datasets
	Baselines and Reproduction Details
	Training Setups
	Prompts
	Knowledge System Construction
	Knowledge Selection
	Reflection
	Prompt Knowself

