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ABSTRACT

Large language agents have achieved considerable performance across various
agentic planning tasks. However, most current agent learning methods are spoon-
feeding, with gold trajectories, external feedback and knowledge mindlessly
feeding into agent models regardless of their actual needs, resulting in a lack
of self-consciousness during the planning process. In this paper, we introduce
KnowSelf, a data-centric approach that enables agents to have knowledgeable
self-awareness similar to humans, selectively self-correcting and querying knowl-
edge based on certain situations during the planning process. Concretely, we devise
a heuristic situation judgement criterion to mark special tokens on the agent’s
self-explored trajectories for collecting training data. Through a two-stage training
process, the agent model can switch between different situations by generating
specific special tokens, achieving optimal planning effects with minimal costs. Our
experiments demonstrate that KnowSelf can outperform various strong baselines
on different tasks and models with minimal use of external knowledge. We also
present further analysis to examine the effectiveness of agentic knowledgeable
self-awareness from different aspects.

1 INTRODUCTION

It’s easy! I 
can do it.

It’s not easy. I 
need more 
thinking…

It’s too hard. 
I need 

knowledge.

Environment

Difficulty Increases

Figure 1: Agentic Knowledgeable Self-
awareness.

The remarkable advances in Large Language Models
(LLMs) have witnessed considerable progress in language
agent learning (Xi et al., 2023; Wang et al., 2024a; Huang
et al., 2024; Durante et al., 2024). According to how agents
learn decision-making, current agent learning methods can
be categorized into three types: i) directly fitting trajectory
patterns through prompting or training (Yao et al., 2023;
Chen et al., 2023; Zeng et al., 2023); ii) trial-and-error
based on various feedback (Shinn et al., 2023; Xiang et al.,
2023; Song et al., 2024b; Zhang et al., 2024b); iii) incor-
porating knowledge as guidance (Zhao et al., 2024a; Fu
et al., 2024b; Zhu et al., 2024; Chen et al., 2024).

However, current agent learning resembles more of an
unconscious pattern-fitting process (Mirzadeh et al., 2024;
Shi et al., 2023; Dziri et al., 2023). Agent models are
compelled to learn implicit planning capabilities by being
indiscriminately fed explicit planning trajectories, leading to a fragility towards unexpected signals
during the inference process, thereby easily dropping into pattern collapse. Further enhanced
approaches such as the introduction of external feedback or knowledge often tend to be a “flood
irrigation” strategy, disregarding the agents’ real necessity. However, excessive trial-and-error and
blind incorporation of knowledge are usually unfeasible in practical settings and markedly elevate the
inference cost of the model. Conversely, humans possess self-awareness of their situation (Keenan
et al., 2011; Lewis et al., 2011; Lou et al., 2017), enabling them to selectively reflect and seek
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knowledge based on their capabilities. So can language agents also have situational self-awareness
like humans?

To answer the above problem, in this paper, we propose KnowSelf, a data-driven method that
endows agent models with the ability of knowledgeable self-awareness which enables agent models
to selectively introduce knowledge based on the current situation in the environment (see Figure 1).
Specifically, we enable the agent to self-explore and gather situations within the environment. Then
we design a heuristic criterion to classify three kinds of situations (fast thinking, slow thinking,
knowledgeable thinking) and mark them with special tokens to produce self-awareness training data.
Subsequently, a two-stage training process is employed to train the agent model’s self-awareness
capability. We first conduct supervised fine-tuning to teach agent models initial self-awareness
planning patterns. Then we utilize an RPO loss (Pang et al., 2024) according to the long-horizon
nature of trajectories to further boost self-awareness abilities. Finally, the agent signifies its situa-
tional awareness by generating certain special tokens, enabling selective reflection or knowledge
incorporation during inference.

We evaluate KnowSelf on two simulated agent planning datasets: ALFWorld (Shridhar et al., 2021)
and WebShop (Yao et al., 2022), with two different scales of models: Llama-8B (Dubey et al., 2024)
and Gemma-2B (Rivière et al., 2024). Experimental results show that our KnowSelf can achieve
superior performance with minimal reflection and knowledge compared to various baselines. Our
Llama-8B model even performs comparably to five rounds of reflection (hit@5) on GPT-4o (Hurst
et al., 2024). Moreover, we conduct further analysis to examine the scaling law, generalization, and
mechanism of knowledgeable self-awareness.

In a nutshell, our contributions are as follows:

• Method. We introduce KnowSelf, an agentic knowledgeable self-awareness framework
that enables agent models to selectively introduce knowledge based on situations.

• Experiments. Experimental results show that KnowSelf can achieve superior performance
with minimal reflection and knowledge compared to various baselines.

• Analysis. Except for ablation studies, we further explore the scaling law, generalization and
mechanism of agentic self-awareness.

2 BACKGROUND

We briefly provide a formal definition of the problem we study. A dynamic interactive environment
can be regarded as a Partially Observable Markov Decision Process: (U ,S,A, T ,O). Initially, a
specific task u ∈ U is typically accompanied by an initial environmental state s0 ∈ S. Given
the current state s, after performing an action a ∈ A, the state transition function T (s′|s, a) ∈ T
determines the next state s′. Due to partial observation, the current state is provided to the language
agent in the form of an observation o ∈ O. Then the historical interaction trajectory at time t can
be represented as ht = (u, a0, o0, a1, o1, . . . , at, ot). In our scenario, a language agent π backed by
an LLM with parameters θ is responsible for deciding the next action at+1 based on the historical
trajectory ht:

at+1 ∼ πθ(·|ht). (1)

In current methods, agents rely on fitting trajectories to make decisions, which is more akin to rote
memorization. They lack cognitive awareness of their own decisions. However, self-awareness is a
crucial ability for humans during the decision-making process, enabling them to have a cognition of
their abilities based on the current situation. So in this paper, we propose agentic knowledgeable
self-awareness which refers to the agent’s cognition of whether itself has the ability to provide the
correct next action given the current environmental context ht. More specifically, we define three
types of situations based on agents’ ability:

• Fast thinking. The agent is able to directly provide the correct action with little thinking.
• Slow thinking. The agent is able to provide the correct action but requires multiple steps of

thinking and reflection.
• Knowledgeable thinking. The agent is unable to provide the correct action and needs to rely on

external knowledge for thinking.
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Step 1 

Self-awareness Data Construction

Task: put a clean egg in microwave

…… 
Action: go to fridge 1 
Observation: The fridge 1 is closed. 
Action: open fridge 1 
Observation: The fridge 1 is open. In it, you see a cup 3, a cup 1, 
a lettuce 1, an egg 2.

Action:  close fridge 1 Action:  take egg 2 from fridge 1
Fast T

hinking

Reflection <r>I need a clean 
egg, but egg 2 is not clean. I 
need to search for another 
place to find a clean egg.</r>

Action:  go to drawer 1

Reflection <r>Oh, it seems 
that I missed the egg. I need 
to pick it up and clean it 
now.</r>

Action:  take egg 2 from 
fridge 1

Slow Thinking

Knowledge <k>To obtain a cleaned objective, you should first find the objective 
and then clean it, rather than search for a cleaned objective directly.</k> 
Action:  take egg 2 from fridge 1 Knowledgeable 

Thinking

Step 2 

Self-awareness Learning
SFT

SFT agentSFT agent RPO agent

RPO
explore

Step 3 

Self-awareness Inference

Task: put two newspapers in drawer 
…… 

Action: go to sofa 1 
Observation: On the sofa 1, you see a creditcard 2, a newspaper 1. 
Action: take newspaper 1 from sofa 1 
Observation: You pick up the newspaper 1 from the sofa 1. 
Action: go to counter 2 
Observation: On the counter 2, you see a newspaper 2.

Action: take newspaper 2 from counter 2

Reflection <r>Sorry, I made a mistake. I need put the 
first newspaper before picking another one.</r>

Action: go to drawer 2

Reflection

Knowledge

Knowledge <k>When the agent has taken a 
target object and needs to take additional 
items to fulfill a task, the agent should first 
place the current object at its target 
receptacle, ensuring it is holding nothing.</k>

Action: goto drawer 2 knowledge set

select model

NEXT STEP

Fast Thinking

Slow Thinking

Knowledgeable 
Thinking

Figure 2: The framework of our KnowSelf. Firstly, we mark self-explored trajectories with
special tokens according to the situation judgement criterion to form the training data. Secondly,
we apply a two-stage training framework to teach the agent model knowledgeable self-awareness
abilities. Finally, the agent model identifies different situations by generating specific special tokens
during inference.

We go beyond the paradigm of fast or slow thinking (Yu et al., 2024; Saha et al., 2024; Christakopoulou
et al., 2024; OpenAI, 2024), striving to explore the knowledgeable self-awareness capability of
language agents based on the three situations mentioned above and endeavoring to preliminarily
design methods to enhance this ability.

3 METHOD

3.1 KNOWLEDGE SYSTEM CONSTRUCTION

Given that our emphasis is on knowledgeable self-awareness rather than the construction of a
knowledge system, we draw upon and polish up a simple yet effective knowledge collection method
outlined in Chen et al. (2024) to minimize costs in this process. Our knowledge collection includes
two main components: 1) Planner Agent engaging in self-play within the environment to gather
trajectories categorized into three types: direct success, indirect success, and failure. 2) Builder
Agent, which is responsible for summarizing knowledge based on the trajectories obtained by the
planner agent and updating and pruning the knowledge set according to a predetermined maximum
number of knowledge Nmax. The formation of the knowledge set is offline and lightweight, relying
on an extremely minimal number of trajectories to be completed. We denote the final knowledge
system as S : (K,R), where K = {k1, k2, ..., kNmax

} is the knowledge set containing pieces of
knowledge, and R is the knowledge selection module that can select the required knowledge based
on the agent’s historical trajectory ht. For further details, please refer to Appendix A.

3.2 SITUATION JUDGEMENT CRITERION

Based on Equation 1 and our definition of three situations in 2, we classify the agent’s situations
into three types. Assuming the given history is denoted as ht, the gold next action is described
as at+1, and the next action predicted directly by the agent is represented as apt+1. We allow the
agent to rethink when the predicted action is incorrect, resulting in a revised action denoted as
art+1 = rethink(ht, a

p
t+1). We then determine the agent’s situation according to the following

criteria C:

1. Fast Thinking: apt+1 = at+1. The agent can directly generate the correct action.

2. Slow Thinking: apt+1 ̸= at+1, a
r
t+1 = at+1. The agent can generate the correct action but needs

rethinking.
3. Knowledgeable Thinking: apt+1, a

r
t+1 ̸= at+1. The agent is unable to generate the correct action,

so it needs knowledge.
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Table 1: Three kinds of agentic situations defined in our paper. We show the symbolized definition,
corresponding situational special token and output for each situation in this table to provide readers a
clearer understanding.

Symbol Situation Token Definition Output

ht: gold history trajectory
at+1: gold action

apt+1: predicted action
art+1: reflected action

(art+1 = reflection(apt+1))

Fast Thinking – apt+1 = at+1 at+1

Slow Thinking Reflection
ap
t+1 ̸= at+1

ar
t+1 = at+1

[apt+1, Reflection <r>ret</r>, at+1]

Knowledgeable Thinking Knowledge
ap
t+1 ̸= at+1

ar
t+1 ̸= at+1

[ Knowledge <k>know</k>, at+1]

This criterion will guide us in building situation awareness data, enabling the agents to make
autonomous judgments about situations themselves.

3.3 SELF-AWARENESS APPLY

We design a data-driven method called KnowSelf (Agentic Knowledgeable Self-awareness) to
endow the agent with knowledgeable self-awareness capabilities as shown in Figure 2.

Data Construction. Given the history-action pair (ht, at+1) and an untrained agent πθ, we augment
the original action based on the situation criterion C to construct the agent-specific supervised self-
awareness data. If the agent determines a correct action apt+1 (Fast Thinking), y = at+1 will be
directly used as the output. If the agent provides an incorrect action apt+1 in the first trial, it will be
given a prompt to rethink1. The chain of thought during this rethinking process is denoted as ret. If
the determined action art+1 after rethinking is correct (Slow Thinking), the output at this point is:

y = [apt+1, Reflection <r>ret</r>, at+1], (2)

where [] represents concat with \n, Reflection is a special token used to mark the situation of Slow
Thinking, <r> and </r> are special tokens surrounding the rethink chain of thought. However, if
the reflected action art+1 is incorrect, we introduce knowledge (Knowledgeable Thinking). We use
the selection model R to choose the most appropriate piece of knowledge2 know from the knowledge
set K and then the output at this situation is:

y = [ Knowledge <k>know</k>, at+1], (3)

where Knowledge is the situational special token, <k> and </k> are special tokens surrounding the
knowledge. After traversing all input-output pairs, we obtain the self-awareness training data Dself .

Self-awareness Learning. We apply a two-stage training process to teach the naive agent on our
curated agentic knowledgeable awareness dataset Dself . First, we train with the autoregressive loss to
obtain the reference agent πref :

LSFT = −E(ht,y)∼Dself
log πθ(y|ht). (4)

Then we enable the reference agent to explore on Dself and collect the predicted yp with wrong
actions as negative samples to construct a pair-wise awareness dataset Dpair. In the second stage, we
additionally introduce an offline DPO objective to further boost the self-awareness performance:

LDPO = −E(ht,y,yp)∼Dpair

[
log σ

(
β log

πθ(y|ht)

πref(y|ht)
− β log

πθ(y
p|ht)

πref(yp|ht)

)]
. (5)

Due to the narrow space of correct actions, following Pang et al. (2024), we re-introduce the SFT
loss and normalize it by the output length in the second stage to stabilize the training process:

LNLL = −E(ht,y,yp)∼Dpair

log πθ(y|ht)

|y|
, (6)

1Detailed prompt for rethinking is in Appendix G.3.
2See Appendix A for detailed knowledge selection process.
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Table 2: Main Results on ALFWorld. We use average reward as the metric. The best results are
marked in bold. All the prompt-based baselines ( � ) are evaluated under two-shot prompting and
all the fine-tuning-based baselines ( \ ) are trained with full parameters. Know% represents the
percentage of actions enhanced with knowledge.

Backbone Method Know% Put Clean Heat Cool Examine Put Two All

GPT-4o
� REACT 0% 83.33 74.19 69.57 85.71 77.78 64.71 76.12
� Reflexion 0% 100.00 87.10 73.91 90.48 83.33 70.59 85.07
� ExpeL 100% 95.83 83.87 69.57 80.95 88.89 52.94 79.85

Llama-8B

� REACT 0% 33.33 3.23 0.00 57.14 66.67 23.53 27.61
� Reflexion 0% 62.96 22.73 5.88 64.29 86.36 50.00 51.49
� ExpeL 100% 83.33 32.26 30.43 23.81 55.56 17.65 41.04
\ ETO 0% 91.67 70.59 82.61 61.90 88.89 64.71 78.36
\ KnowAgent 100% 87.50 93.55 65.22 66.67 61.11 64.71 75.37
\ WKM 100% 95.83 87.10 86.96 61.90 66.67 52.94 77.61

\ KnowSelf 15.01% 91.67 87.10 91.30 85.71 77.78 64.71 84.33

Gemma-2B

� REACT 0% 0.00 9.68 0.00 4.76 44.44 0.00 8.96
� Reflexion 0% 4.76 10.71 0.00 9.52 65.38 0.00 17.16
� ExpeL 100% 0.00 3.23 0.00 0.00 27.78 0.00 4.48
\ ETO 0% 91.67 83.87 78.26 52.38 77.78 29.41 71.64
\ KnowAgent 100% 91.67 90.32 69.57 71.43 66.67 41.18 73.88
\ WKM 100% 91.67 87.10 78.26 71.43 61.11 52.94 76.12

\ KnowSelf 26.41% 87.50 93.55 73.91 76.19 83.33 52.94 79.85

resulting in the final loss for this stage:

LRPO = LDPO + αLNLL, (7)

where α is a hyperparameter to balance the two loss terms. During training, we expand the vocabulary
of models to adapt to the added special tokens.

Self-awareness Inference. During the inference process, if the agent stops outputting after the
first trial, we directly place the predicted action in the history ht for the next-step decision. If the
agent generates Reflection after the first action, we allow it to continue the reflective process and place
the reflected action into ht. If the agent directly generates Knowledge , we use R to choose a piece of
knowledge from K. We append the selected knowledge to the context to allow the agent to continue
this step, and then place the generated action into the history for the next decision. A running example
of KnowSelf inference can be seen in Figure 2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Table 3: Main Results on WebShop.

Backbone Method Know% All

GPT-4o
� REACT 0% 61.33
� Reflexion 0% 67.40
� ExpeL 100% 57.65

Llama-8B

� Reflexion 0% 60.60
� ExpeL 100% 49.58
\ ETO 0% 63.93
\ KnowAgent 100% 61.82

\ KnowSelf 17.12% 67.14

Datasets and Metrics. We evaluate KnowSelf on
two real-world simulated planning datasets: ALFWorld
(Shridhar et al., 2021) and WebShop (Yao et al., 2022).
ALFWorld is a household dataset requiring the agent to
navigate through the room and manipulate objects. The re-
ward of ALFWorld is binary 0 or 1, indicating whether the
agent has successfully completed the task or not. WebShop
is an online shopping dataset in a website environment.
It provides dense final rewards from 0 to 1 to measure
the completion level of the task. So for all the datasets,

we apply Average Reward as the final metrics. Our gold training trajectories are sourced from
AgentBank (Song et al., 2024a). For more details of each dataset, please refer to Appendix D.

Models and Baselines. We evaluate KnowSelf on two open-source models with different scales:
1) Gemma-2B (Rivière et al., 2024), the gemma-2-2b-it version; 2) Llama-8B (Dubey et al., 2024),
the Llama-3.1-8B-Instruct version. To demonstrate validity, we compare KnowSelf with one
general agent planning methods: REACT (Yao et al., 2023); two agent planning methods with
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trial-and-error: Reflexion (Shinn et al., 2023) and ETO (Song et al., 2024b); three knowledge-
augmented agent planning methods: 1) ExpeL (Zhao et al., 2024a), model-summarized insights and
skills knowledge; 2) KnowAgent (Zhu et al., 2024), human-curated symbolic action knowledge;
3) WKM (Qiao et al., 2024b), model-synthetic parameterized world knowledge. We also include
GPT-4o (gpt-4o-2024-08-06) (Hurst et al., 2024) as a strong upper-bound baseline. Note that all
the prompt-based baselines are tested with two-shot examples. Please refer to Appendix E for more
baselines and re-producing details.

Training and Inference Details. For the first training stage, we apply a learning rate of 2e-5 and a
batch size of 8. For the second training stage, the learning rate is set to 5e-7 and the batch size is 3.
The β in DPO loss is set to 0.5 and the balanced factor α is set to 1. We train 3 epochs during the
first stage and 1 epoch for the second stage. AdamW (Loshchilov & Hutter, 2019) is utilized as the
optimizer. For all the inferences, we fix the temperature at 0. We use vLLM (Kwon et al., 2023) to
accelerate the inference of Llama-8B. All our experiments are conducted on 8 NVIDIA A800 80G
GPUs. More details can be seen in Appendix F.

4.2 MAIN RESULTS

Comparison with baselines w/o knowledge. Table 2&3 show the comparison between our method
and baselines without knowledge (Know%=0%). KnowSelf consistently demonstrates superiority
over baselines without knowledge on both Llama-8B and Gemma-2B. The performance of Gemma-
2B even surpasses that of GPT-4o’s REACT. Furthermore, our Llama-8B model performs comparably
to GPT-4o’s Reflexion, with the latter allowing the model to attempt a task up to 5 times until
successful which is essentially a performance akin to hit@5. These emphasize the importance of
knowledge in agent planning.

Comparison with baselines w/ knowledge. We also contrast with knowledge-enhanced baselines
to illustrate the advantages of knowledgeable self-awareness. From Table 2&3, it can be observed
that KnowSelf surpasses all 100% knowledge baselines with a minimal amount of knowledge. This
clearly demonstrates that not all knowledge is effective during agent planning. Additionally, we
find that, both as prompt-based baselines, Gemma-2B’s performance on ExpeL is even inferior to
REACT. Combining this observation with our findings in the ablation study (Figure 3), it indicates
that excessive knowledge enhancement can even have a negative impact on models with weaker
capabilities. Notably, our KnowSelf, with only 15.01% and 17.12% knowledge rate on Llama-8B,
surpasses GPT-4o’s ExpeL on ALFWorld and WebShop. Furthermore, KnowSelf achieves better
performance on ALFWorld with relatively less knowledge on Llama-8B (15.01%) than on Gemma-
2B (26.41%). This aligns with the fact that models with stronger capabilities require less external
knowledge to complete tasks. The above phenomenon demonstrates that agentic knowledgeable
self-awareness ability can advance agent planning while reducing the need for knowledge injection,
significantly saving the costs of training and inference.

5 ANALYSIS

5.1 ABLATION STUDIES.

Llama-8B Gemma-2B60

65

70

75

80

85

90

95

SR
%

w/o all
w/o ret

w/o know
w/ full know

ours

Figure 3: Ablation studies for
KnowSelf. A detailed definition of
each legend can be seen in §5.1.

Figure 3 illustrates the impact on the performance of
KnowSelf when certain key steps are replaced from the
training data. w/o ret denotes the exclusion of the reflec-
tion, where even if the reflection is correct, training is
directly conducted with the gold action. w/o know signi-
fies only using the model’s reflective capabilities, where
if reflection is incorrect, training is done directly with the
gold action without introducing knowledge. w/o all repre-
sents the retention of only situation 1, which is equivalent
to training directly with gold trajectories. We also intro-
duce knowledge at every step to create a scenario with
know%=100% (w/ full know).
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It can be observed that reflection and knowledge are crucial for agent planning. Training directly
on gold trajectories is more akin to fitting patterns in trajectories while introducing reflective and
knowledgable self-awareness can enable agents to plan better. On both Llama-8B and Gemma-2B,
the sole introduction of self-reflection (w/o know) even outperforms the introduction of knowledge
(w/o ret). This indicates that in many instances, agents are not incapable of making correct decisions
but are rather constrained by planning patterns. Introducing autonomous reflective mechanisms like
O1 can unlock greater potential in agents. Furthermore, KnowSelf achieves superior performance
to fully introducing knowledge (w/ full know) with a very low knowledge introduction rate (15.01%
on Llama-8B and 26.41% on Gemma-2B). On Gemma-2B, the performance of w/ full know even
falls behind w/o ret, indicating that an excessive amount of knowledge introduction can have a
counterproductive effect, especially for weaker models. Therefore, a precise knowledge introduction
mechanism with self-awareness is crucial.

5.2 SCALING LAW OF SELF-AWARENESS

0 20 40 60 80 100
Percentage

10

20

30

40

50

60

70

80

SR
%

relative-Llama-8B
absolute-Llama-8B
relative-Gemma-2B
absolute-Gemma-2B

Figure 4: Scaling law of agentic
knowledgeable self-awareness. We an-
alyze the aspects of model and data
scales (§5.2).

In Figure 4, we explore the scaling law of self-awareness from
two perspectives: model size and the volume of self-awareness
training data. Regarding data volume, we analyze it from both
relative and absolute standpoints. When considering the vol-
ume of Dself as 100%, absolute denotes the portion of data that
is randomly sampled from Dself for training purposes, while
relative includes common gold trajectories on top of the abso-
lute data to constitute 100% of the volume of Dself . Overall,
in various settings, the performance of Llama-8B is superior
to Gemma-2B. This advantage is more pronounced when no
training has been conducted (where absolute=0%). However,
after training, the difference between the two models is not
substantial. This may indicate that post fine-tuning in a specific
domain makes 2B and 8B models essentially belong to the
same tier regarding the model size. Regarding the training data volume, we observe a consistent
performance improvement as the absolute data volume of self-awareness increases. However, when
the relative proportion of self-awareness is below 40%, we observe fluctuations or even a decrease in
performance for both models. We speculate that this might resemble an emergent phenomenon where
the model only exhibits certain self-awareness capabilities when the proportion of self-awareness
exceeds 40%.

5.3 GENERALIZATION OF SELF-AWARENESS

Heat

Cool

PutTwo

0

5

10

15

Reflexion
ETO

Knowagent
KnowSelf

Figure 5: Generalization ability
of KnowSelf. We select three
simple task types in ALFWorld as
training sets and the other three
kinds of tasks as test sets (§5.3).

We select three simple tasks on AlfWorld as the training set and
evaluate the generalization ability of KnowSelf on three other
challenging tasks. Figure 5 illustrates the Out-Of-Domain (OOD)
performance of KnowSelf compared to baselines. We observe
that whether to introduce external knowledge, the trained baselines
exhibit serious overfitting. ETO achieve a success rate of 5.88%
only on PutTwo task, with 0% success rates on the other two kinds
of tasks, while KnowAgent does not even achieve any success on
the three tasks. In contrast, KnowSelf demonstrates sustainable
generalization, performing superior to the strongest prompt-based
baseline (Reflexion) on all three kinds of tasks. This indicates that
KnowSelf can effectively break the traditional pattern-matching
issue of training directly on planning trajectories, enabling the model
to acquire a degree of cross-task situational awareness. As a result,
the model retains the ability to selectively reflect and incorporate
knowledge on unseen tasks, thereby enhancing its generalization
performance.
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Figure 6: Mechainsm of agentic knowledgeable self-awareness (§5.4). We calculate the average
probabilities of tokens representing various situations at each layer of the Transformer across both
knowledgeable thinking (w/ Know) and fast thinking (w/o Know) scenarios. A more detailed experi-
ment setup can bee seen in Appendix C.

(a) Task: put a hot mug in cabinet
……


Action: take mug 1 from countertop 1

Observation: You pick up the mug 1 from the countertop 1.

Action: go to microwave 1

Observation: The microwave 1 is closed.

Action: open microwave 1

Observation: You open the microwave 1. In it, you see an egg 1.

[Knowledge]<k>If the agent is in a situation where it needs to modify the 
temperature of an object using a receptacle (e.g., a fridge for cooling), it 
should directly perform the specific action like 'cool' or 'heat' instead of 
placing the object on it.</k>

Action: take egg 1 from microwave 1

Observation: Nothing happens.

……

Action: take mug 1 from countertop 1

Observation: You pick up the mug 1 from the countertop 1.

Action: go to microwave 1

Observation: The microwave 1 is closed.

Action: open microwave 1

Observation: You open the microwave 1. In it, you see an egg 1.

Action: put mug 1 in/on microwave 1

[Reflection]<r>Wait, let's check the action. Let's think step by step. With the 
microwave open, I can heat the mug using the microwave.</r>

Action: heat mug 1 with microwave 1

O1 KnowSelf

(b) Task: put a saltshaker in drawer
……


Action: take saltshaker 1 from countertop 3

Observation: You pick up the saltshaker 1 from the countertop 3.

Action: go to drawer 1

Observation: The drawer 1 is open. In it, you see a fork 1.

Action: put saltshaker 1 in/on drawer 1

[Reflection]<r>Wait, the drawer is open, so the saltshaker might fall inside. I 
need to close the drawer first.</r>

Action: close drawer 1

Observation: You close the drawer 1.

Action: put saltshaker 1 in/on drawer 1

Observation: Nothing happens.

……

Action: take saltshaker 1 from countertop 3

Observation: You pick up the saltshaker 1 from the countertop 3.

Action: go to drawer 1

Observation: The drawer 1 is closed.

Action: open drawer 1

Observation: You open the drawer 1. In it, you see a fork 1.

[Knowledge]<k>When the agent encounters a situation where receptacles 
contain other items but only needs to place the target object, the agent 
should proceed to place the object without removing unrelated items.</k>

Action: put saltshaker 1 in/on drawer 1

O1 KnowSelf

Figure 7: Case Study.

5.4 MECHANISM OF SELF-AWARENESS

To understand the mechanism of agentic knowledgeable self-awareness, we collect data on both
fast thinking and knowledgeable thinking to investigate how models make decisions on whether to
invoke knowledge in the context of next token prediction. We calculate the average probabilities of
tokens representing various situations at each layer of the Transformer across all data, as illustrated in
Figure 6. It can be observed that due to the absence of slow thinking, the probability of the Reflection
token remains consistently at 0. Moreover, both the Knowledge token and Action token emerge in
the final few layers of the Transformer, whether on the Llama or Gemma models. It indicates that
the agent internally determines whether it needs to invoke external knowledge only in the final few
hidden layers. Besides, when the agent decides to invoke knowledge, this decision occurs even later,
as there are indications that the probability of the Action token may accidentally surpass that of
the Knowledge token at even later layers; however, the probability of the Action token subsequently
decreases rapidly. This appears to resemble a game-like process within the agent model, where the
implicit rewards learned by the model guide it to search within the token space, ultimately leading to
a decision.

5.5 CASE STUDY

We carefully design prompt3 to teach O1 (OpenAI, 2024) in agentic knowledgeable self-awareness,
sample and test its performance on ALFWorld, and compare it with KnowSelf. We showcase

3The specific prompt can be found in Appendix G.4.
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two typical examples in Figure 7. In case (a), O1’s decision to invoke knowledge without a proper
understanding led to an erroneous action. However, KnowSelf rectifies the incorrect action through
a simple self-reflection, indicating that knowledge is not always effective. In case (b), O1 does
not opt to utilize knowledge but relies on self-belief. Despite a rethink, the correct action is still
not produced. In contrast, KnowSelf adeptly avoids error-prone scenarios by precisely leveraging
knowledge. Therefore, in complex agentic scenarios, the ability of self-awareness is highly crucial.
In dynamically changing environments, an agent model must have an accurate understanding of its
capabilities and make decisions based on varying situations; this is the essence of the agent we aspire
to create. However, it is evident that merely providing prompts to the model is far from sufficient for
it to acquire these abilities. More efforts are required in terms of data, training strategies, and model
architecture to achieve this goal.

6 RELATED WORK

6.1 LANGUAGE AGENT PLANNING.

Pocessing impressive reasoning and planning abilities (Qiao et al., 2023; Huang et al., 2024), Large
Language Models (LLMs) are becoming the core of AI agents (Wang et al., 2024a; Xi et al., 2023;
Durante et al., 2024) that have been developed for application in robotics (Ahn et al., 2022; Singh
et al., 2023; Song et al., 2023), OS manipulation (Wu et al., 2024; Lai et al., 2024; Zhang et al.,
2024a; Hu et al., 2024), software engineering (Hong et al., 2024b; Qian et al., 2024; Wang et al.,
2024b; Yang et al., 2024), data science (Guo et al., 2024; Chan et al., 2024; Hong et al., 2024a), and
more. Despite achieving unprecedented success, language agents still suffer from tricky issues in
terms of planning, including generating planning hallucinations (Zhu et al., 2024; Qiao et al., 2024b)
or merely fitting planning patterns (Mirzadeh et al., 2024; Shi et al., 2023; Dziri et al., 2023) due to
their lack of real-world knowledge. To alleviate this phenomenon, recent works introduce various
forms of knowledge to align agent planning with the environment, such as symbolic workflows (Xiao
et al., 2024; Qiao et al., 2024a; Zhang et al., 2024c; Fan et al., 2024), experienced insights (Zhao
et al., 2024a; Fu et al., 2024a; Chen et al., 2024), and constrained rules or pipelines (Guan et al.,
2024; Li et al., 2024a; Hong et al., 2024b). However, existing knowledgeable agent methods often
forcefully inject knowledge through prompts or fine-tuning, overlooking the awareness of the agent
itself.

6.2 SITUATION-AWARENESS IN LLMS.

Situational Awareness (SA) is the understanding of an environment, its elements, and how it changes
with respect to time or other factors and is important for effective decision-making in many envi-
ronments4. It has received widespread research attention in autonomous driving (Avetisyan et al.,
2024; Haselberger et al., 2024; Zhou et al., 2024), robotics (Hill et al., 2021; Ginesi et al., 2020;
Casablanca et al., 2024), human-computer interaction (Li et al., 2024b; Srivastava et al., 2023), etc.
Recently, it has been introduced into LLMs to explore whether LLMs possess self-awareness or
self-knowledge (Berglund et al., 2023; Laine et al., 2024; Tang et al., 2024; Binder et al., 2024).
Different from the concept of knowledge boundaries (Cheng et al., 2024; Yin et al., 2023; Ren et al.,
2023), SA places greater emphasis on the self-awareness of LLMs in dynamic environmental states
rather than the recognition of static factual knowledge. In the realm of LLM agents, Wang & Zhong
(2024); Zhao et al. (2024b) make initial attempts to explore SA-augmented planning. To the best
of our knowledge, we are the first to systematically analyze and design methods to enhance the SA
capabilities of knowledgeable agents.

7 CONCLUSION

In this paper, we raise and explore the problem of agentic knowledgeable self-awareness. We propose
KnowSelf, a data-centric approach that enables agents to have knowledgeable self-awareness
similar to humans, selectively self-correcting and querying knowledge based on certain situations
during the planning process. We design various experiments to show the effectiveness and efficiency

4https://en.wikipedia.org/wiki/Situation_awareness
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of KnowSelf. Our work is just a preliminary exploration, and we hope it can draw some attention
of the community to agentic self-awareness.

LIMITATIONS

Despite our best efforts, this paper may still have some remaining limitations.

Tasks and Models. Due to limited computational resources, we only conduct experiments on two
simulation datasets. The agentic tasks encompass many other aspects such as function calling, code
generation, and more. Additionally, our experiments are limited to small-scale models (7B, 2B), with
larger models (30B, 70B) not yet explored.

Modality. We believe that in the future, large agent models will undoubtedly be multimodal, capable
of dealing with more complex situations involving images, videos, and audio. In this paper, we
have only scratched the surface of language agents’ scenarios, but in the future, we will incorporate
multimodal agents into our research.

Methods. In this paper, we mainly introduce a data-driven approach to endow agents with knowl-
edgeable self-awareness. The ultimate solution may involve changes in training perspectives (e.g.,
reinforcement learning) or model architectures (new model architectures), all of which are worth
further exploration.
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A KNOWLEDGE SYSTEM CONSTRUCTION

Our knowledge system construction consists of two designed phases.

Step-level Trajectory Pair Generation. Given a history-action pair (ht, at+1), we employ ReAct-
style prompting to elicit GPT-4o prediction for the subsequent action apt+1. If the model generate an
incorrect action apt+1 ̸= at+1, we designate the ground-truth action at+1 as the win action aw and the
model’s prediction apt+1 as the loss action al. This process yields our step-level pairwise trajectory

dataset Ds = (ht, a
w
t+1, a

l
t+1)

|Ds|
i=1

. For ALFWorld, |Ds| is 36, which includes 6 for each task type.
For WebShop, |Ds| is 20.

Knowledge Generation and Consolidation. We follow AutoManual (Chen et al., 2024) to generate
and consolidate knowledge. For knowledge generation, we use few-shots to prompt GPT-4o to
generate knowledge of Error type by analyzing and contrasting (aw, al) pairs within their contextual
history ht. When (ht, a

w
t+1) constitutes a complete successful trajectory, we extend the analysis to

derive knowledge of Success Process type, capturing effective reasoning patterns. For knowledge
consolidation, we limit the knowledge base to 24 entries for ALFWorld and 10 for WebShop based
on task complexity.

B KNOWLEDGE SELECTION

Knowledge selection is categorized into two types.
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Training Data Construction. Given the task objective o, historical context ht, win action aw, and
loss action al, we enable DeepSeek-v3 to select appropriate knowledge from the knowledge system
by analyzing and contrasting (aw, al) pairs.

Inference-time Knowledge Selection. When provided with the task objective o, current context ht,
and pending action at+1, DeepSeek-v3 performs analytical reasoning to identify the most relevant
knowledge from the knowledge base.

C MECHANISM SETUP

We collect historical contexts of knowledgeable thinking and fast thinking through sampling. Then we
input these contexts into KnowSelfmodel. By attaching lm-head modules to each Transformer layer,
we obtain logits for token Knowledge (representing knowledgeable thinking), Reflection (representing
slow thinking), and "Thought" (representing fast thinking) of the first generated token at each layer.
These logits are converted into probabilities via softmax normalization. The final probability for each
token at each layer is determined by averaging its generation probabilities obtained from all historical
contexts within the same layer.

D DATASETS

ALFWorld. ALFWorld (Shridhar et al., 2021) is a household dataset requiring the agent to navigate
through the room and manipulate objects. It contains 6 different kinds of tasks commonly appears in
the household scenario including Put, Clean, Heat, Cool, Examine, Puttwo. The reward of ALFWorld
is binary 0 or 1, indicating whether the agent has completed the task or not. Our gold training
trajectories are sourced from AgentBank (Song et al., 2024a). A detailed statistics can be seen in
Table 4.

Datasets Train Test
Put Clean Heat Cool Examine Puttwo Total

ALFworld 2851 24 31 23 21 18 17 134

Table 4: Statistics of ALFWorld.

WebShop. WebShop (Yao et al., 2022) is an online shopping platform where agents explore the
website to make purchases according to user instructions. Upon selecting the "buy" option, the system
offers a final reward determined by the heuristic matching of the product’s attributes and price. Also,
we collect gold trajectories from AgentBank. The detailed statistics can be seen in Table 5.

Datasets Train Test
WebShop 1598 200

Table 5: Statistics of WebShop.

E BASELINES AND REPRODUCTION DETAILS

Here we detailedly introduce the baselines we compare with and our re-produce details.

• REACT (Yao et al., 2023). The first work includes Chain-of-Thought (Wei et al., 2022)
prompting in agent planning tasks with a format of Thought-Action-Observation loop.

• Reflexion (Shinn et al., 2023). A strong prompt-based baseline reinforces language agent
planning with verbal feedback. Manually designed prompts are used to enable the agent
to reflect on the historical trajectory and re-plan based on the feedback. In our paper, we
iterate five rounds of reflection and take the highest as the final result.
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• ExpeL (Zhao et al., 2024a). The first work automatically extracts insights and experiences
from offline trial-and-error without gradient updates. During inference, the most similar
experiences are retrieved as few-shot examples and all the insights are injected into prompts
to facilitate agent planning. For a fair comparison with KnowSelf, instead of self-explored
experience gathering, we directly use the trajectories collected from AGENTBANK (Song
et al., 2024a) as the experience base for retrieval. The insights used are the same set with
KnowSelf.

• ETO (Song et al., 2024b). A baseline includes negative trajectories during agent training.
The method contains two training phases, of which the first phase is behavior cloning which
fine-tunes the agent on expert trajectories, and the second phase is learning from failures
which further fine-tunes the agent through DPO. In our paper, we remove the one-shot
prompt for fairness and retain all the default hyperparameters proposed in ETO.

• KnowAgent (Zhu et al., 2024). This method utilizes human-curated symbolic action
knowledge to constrain the agent’s behavior and a self-training framework to iteratively
boost the agent’s performance without relying on gold trajectories. For a fair comparison
with KnowSelf, we replace the self-training process and directly fine-tune KnowAgent on
the same training set with KnowSelf.

• WKM (Qiao et al., 2024b). WKM uses self-synthetic task and state knowledge to train a
parameterized world knowledge model. During inference, the knowledge model is invoked
to offer global knowledge for task-level planning and local knowledge for step-level planning.
We use the same training set with KnowSelf to synthesize knowledge and train the agent
and knowledge model of WKM in our paper.

All the prompt-based baselines are evaluated in a two-shot manner. In ALFWorld, to enhance the
model’s performance, we designate specific two-shot examples for each of the six tasks. And all the
fine-tuning-based baselines are trained with full parameters.

F TRAINING SETUPS

We fine-tune Llama-8B and Gemma-2B with full parameters using DeepSpeed (Rasley et al., 2020).
For the first training stage, we apply a learning rate of 2e-5 and a batch size of 8. For the second
training stage, the learning rate is set to 5e-7 and the batch size is 3. The β in DPO loss is set to
0.5 and the balanced factor α is set to 1. We train 3 epochs during the first stage and 1 epoch for
the second stage. AdamW (Loshchilov & Hutter, 2019) is utilized as the optimizer. For all the
inferences, we fix the temperature at 0. We use vLLM (Kwon et al., 2023) to accelerate the inference
of Llama-8B. All our experiments are conducted on 8 NVIDIA A800 80G GPUs. A more detailed
hyperparameters setup can be seen in Table 6.

Name Stage-I Stage-II
cutoff len 3,072 4,096

epochs 3 1
batch size 8 3

batch size per device 1 1
gradient accumulation steps 1 1

learning rate 2e-5 5e-7
lr scheduler type cosine constant_with_warmup

warmup ratio 0.1 0.1
fp16 true true

Table 6: Detailed training hyperparameters used in our paper.
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G PROMPTS

G.1 KNOWLEDGE SYSTEM CONSTRUCTION

Prompt for Knowledge Generation

[Role]
You are observing a housekeeper agent as it acts within a simulated environment (game).
Your role is to construct a manual of rules to not only assist the agent in completing tasks
but also to do so with the least amount of action attempts/errors. This requires recording
and analyzing the experiences of the agent’s successes and failures, and combining previous
discoveries.
[Functions]
You will be presented with the current trajectory, which is the trajectory the agent is currently
exploring. And then, you will be provided with the action and feedback the agent is currently
performing, and the correct action and feedback annotated by experts.
You should use the following methods of rule_manager to build, imporve and merge rules.
rule_manager.write_rule(rule, type="", example="", task_id="")
# Write down a new rule of the game you discovered.
# Parameters:
# - rule: a rule of the game you discovered. Try to keep it general and universal. Don’t
reference any specific item or location. Follow the format that "When the agent is/has
[situation], the agent should [action]".
# - type: the type of the rule, chosen from ["Error", "Success Process"].
# - example: a example from the trajectory demonstrates this rule. You can add detailed
information in the comment.
# - task_id: the id of the task that this rule is discovered from. If this rule is not discovered
from any specific task, leave it empty. It should be string.
rule_manager.update_rule(rule_id, rule="", type="", example=""),
# Rewrite the attributes of a existing rule, when you come up with better understanding.
# Input only the attributes you want to rewrite.
# Use full rule_id, such as rule_0, rule_1
rule_manager.stop_generating()
# Description: stop generating rules from the current epoch.
# Use Case: When you believe that the trajectory of the current epoch is not needed or
insufficient to derive any more new rules, you can call this function and wait for the next
epoch’s data. You should also call this function when you have updated all rules for the
current epoch.
[Actions]
At each epoch, an agent is created in an environment and the initial observation and target
task are printed.
The agent can only use the following actions. If the precondition of the action is not met, its
observation will include "Nothing happens":
go to {recep} # Go to a receptacle and update the agent’s location.
open {recep} # Open a receptacle and observe its contents.
close {recep} # Close a opened receptacle.
take {obj} from {recep} # Take an object from a receptacle if the agent is not holding
anything.
put {obj} in/on {recep} # Put an object in or on a receptacle if the agent is holding it.
use {obj} # Use a lamp.
clean {obj} with {recep} # Clean an object with a receptacle.
heat {obj} with {recep} # Heat an object with a receptacle.
cool {obj} with {recep} # Cool an object with a receptacle.
[Output Format Instructions]
Base on the current trajectory, you should output the following things:
* State before Action: Analyze and summarize the state of the current trajectory. Don’t
mention action or feedback that are not part of the current trajectory.
* Why correct action is correct: Analyze the reason why the correct action is correct.
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* Why explore action is not correct: Analyze the difference between the explore action and
the correct action. And analyze the reason why the explore action is incorrect.
* Potential Rules: Describe your thoughts about potential rules based on the current trajectory.
Depending on the results, you may need to check *Success Process*, *Error*, and other
findings in sequence. Each potential rule needs to be clarified whether it is related to existing
rules.
* Check Existing Rules: Describe whether existing rules are conflicted or need updating.
* Code: Finally, sequentially call the rule_manager’s functions within ‘```python’ and ‘```’.
[Detailed instructions]
Follow these instructions:
***Add or Update Rules***
1. **Add Rules for Failure** summarize the error that led to failure. You should write a
"Error" rule to record the error: in what situation, what the agent should do and should not
to do . So that they can serve as reminders for the agent in the future. Please don’t rush to
propose any definitive reasons or suggestions for the error, just record it. And please strictly
follow the reason why the correct action is correct.
2. **Add Rules for Success** If the task is completed in the golden action (feedback is "Task
done"), it is essential to extract the useful strategy from the success, if it has not been included
in the rules yet. Additionally, document all steps (marked as "[Step]") in the successful rule
within a rule of the type "Success Process".
**Keep new rules targeted and precise.** Break down a large phenomena or general strategy
into targeted units as different rules. These can later be upgraded or merged into a more
general or larger rule. Keep the rules as concise and easy to understand as possible, avoiding
lengthy or complex descriptions.
**Keep new rules general and universal.** The rule should not reference any specific item or
location. You need to generalize across various items to help the agent learn to apply the rule.
**Keep new rules in format.** The rule should be in the format "When the agent in [situation]/
When the task requires [situation], the agent should [action]".
**Avoiding overconfidence for new rules.** Please acknowledge the need for further verifica-
tion in your note.
**Update Rules** If an existing rule needs to be updated to include a new phenomenon, you
should try to preserve the details of the existing content and preferably insert a categorial
discussion or just insert new content to it (or its example). Especially, the rules of "Success
Process" type should retain their details.
Follow these instructions. Think step by step.

Prompt for Knowledge Consolidation

[Role]
You are observing a housekeeper agent as it codes and acts within a simulated environment
(game). Your goal is to construct a manual of rules to assist the agent in completing various
tasks in the environment. Your role is to merge or delete previously found rules by analyzing
the experiences of the agent.
[Functions]
You will be presented with the current found rules. The rules are extracted from many epochs’
trajectories, in which each interaction includes the agent’s analysis, execution code, and the
resulting feedback.
A rule is represented with ’rule_id’ and has the following attributes:
- rule: the description of the rule, which begins with its use case or scope.
- type: the type of the rule, chosen from ["Error", "Success Process"].
- example: an example (or code) from the trajectory demonstrates this rule. You can add
detailed information in the comment.
- task_id: the task id of the rule.
You should use the following methods of rule_manager to delete and merge rules.
rule_manager.update_rule(rule_id, rule="", type="", example=""),
# Rewrite the attributes of an existing rule when you come up with a better understanding.
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# Input only the attributes you want to rewrite.
# Use full rule_id, such as rule_0, rule_1
# Wrap the example string with ”’.
rule_manager.delete_rule(rule_id),
# delete a existing rule with rule_id, such as rule_0, rule_1
# **How to merge** To merge two existing rules, you can call rule_manager.update_rule for
one rule and then call rule_manager.delete_rule to delete another rule.
rule_manager.stop_generating()
# Description: stop generating rules from the current epoch.
# Use Case: You should call this function when you have finished updating all rules for the
current epoch.
[Actions]
At each epoch, an agent is created in an environment and the initial observation and target
task are printed. The agent can only use the following actions. If the precondition of the
action is not met, its observation will include "Nothing happens":
go to {recep} # Go to a receptacle and update the agent’s location.
open {recep} # Open a receptacle and observe its contents.
close {recep} # Close a opened receptacle.
take {obj} from {recep} # Take an object from a receptacle if the agent is not holding
anything.
put {obj} in/on {recep} # Put an object in or on a receptacle if the agent is holding it.
use {obj} # Use a lamp.
clean {obj} with {recep} # Clean an object with a receptacle.
heat {obj} with {recep} # Heat an object with a receptacle.
cool {obj} with {recep} # Cool an object with a receptacle.
[Response Instructions]
Detailed instructions:
**Maintain a maximum of 24 rules**
**Merge if addressed** If a "Success Process" rule can address the "Error" rule, you can
consider merging these rules while retaining their details.
**Retain important details** The rules of "Success Process" type should retain their details,
and should not be deleted or easily refreshed by new updates. **Cannot merge two rules of
type "Success Process"**
**Insertion is preferable** If a rule is updated to include the content of other rules, you
should try to preserve the details of the existing content and preferably insert a categorial
discussion or just insert new content to it (or its example).
When using update_rule, it’s crucial to manually input the attributes directly into
the function call. Avoid using existing variables to concatenate or modify rules.
For example, should not update the rule like: rule_manager.update_rule("rule_0",
rule=rule_manager.all_rules["rule_0"]+rule_manager.all_rules["rule_1"]) And
you should wrap the example string with ”’ in update_rule function, such as
rule_manager.update_rule("rule_0", rule="......", example=”’<example>”’)

G.2 KNOWLEDGE SELECTION

Knowledge Selection for Training Data Construction

ALFWorld
You are observing a housekeeper agent as it acts within a simulated environment (game).
Your role is to select a rule to not only assist the agent in completing tasks but also to do so
with the least amount of action attempts/errors. This requires analyzing the current state of
the agent and understanding the rule.
Here’s the information you’ll have:
The objective: This is the task you’re trying to complete.
The current trajectory: This is the current sequence of actions the agent has taken to reach the
current state.
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The correct action: This is the correct action that you should use knowledge to help the agent
do.
The wrong action: This is the wrong action that you should use knowledge to help the agent
avoid.
The rules: This is a list of rules that can be applied to the current state to achieve the objective.
Base on the current trajectory, you should output the following things:
[Current State]: Analyze and summarize the state of the current trajectory.
[Why correct action is correct]: Describe your thoughts to analysis why the correct action is
correct.
[Why wrong action is wrong]: Describe your thoughts to analysis why the wrong action is
wrong.
[Analysis]: Describe your thoughts to choose the most appropriate rule to avoid the wrong
action.
[Chosen Rule]: Choose the rule from the rule list that you think is the most appropriate for
the current state.
Follow these instructions:
1. Please generate current state strictly in the format of "[Current State]: ...
2. Please generate analysis strictly in the format of "[Why correct action is correct]: let’s think
step by step, ...", "[Why wrong action is wrong]: let’s think step by step, ...", "[Analysis]:
let’s think step by step, ...".
3. Please generate chosen rule strictly in the format of "[Chosen Rule]: rule ID: rule
description".
4. Notice that the agent doesn’t actually conduct the correct action or the wrong action. You
should choose the most appropriate rule to help the agent avoid the wrong action.

WebShop
You are an autonomous intelligent agent tasked with navigating a simulated web browser. You
will be given web-based tasks in the simulated WebShopping. Your role is to select a rule to
not only assist the agent in completing tasks but also to do so with the least amount of action
attempts/errors. This requires analyzing the current state of the agent and understanding the
rule.
Here’s the information you’ll have:
The objective: This is the task you’re trying to complete.
The current trajectory: This is the current sequence of actions the agent has taken to reach the
current state.
The correct action: This is the correct action that you should use knowledge to help the agent
do.
The wrong action: This is the wrong action that you should use knowledge to help the agent
avoid.
The rules: This is a list of rules that can be applied to the current state to achieve the objective.
Base on the current trajectory, you should output the following things:
[Current State]: Analyze and summarize the state of the current trajectory.
[Why correct action is correct]: Describe your thoughts to analysis why the correct action is
correct.
[Why wrong action is wrong]: Describe your thoughts to analysis why the wrong action is
wrong.
[Analysis]: Describe your thoughts to choose the most appropriate rule to avoid the wrong
action.
[Chosen Rule]: Choose the rule from the rule list that you think is the most appropriate for
the current state.
Follow these instructions:
1. Please generate current state strictly in the format of "[Current State]: ...
2. Please generate analysis strictly in the format of "[Why correct action is correct]: let’s think
step by step, ...", "[Why wrong action is wrong]: let’s think step by step, ...", "[Analysis]:
let’s think step by step, ...".
3. Please generate chosen rule strictly in the format of "[Chosen Rule]: rule ID: rule
description".
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4. Notice that the agent doesn’t actually conduct the correct action or the wrong action. You
should choose the most appropriate rule to help the agent avoid the wrong action.

Knowledge Selection for Inference

ALFWorld
You are observing a housekeeper agent as it acts within a simulated environment (game).
Your role is to select a rule to assist the agent in completing tasks. This requires analyzing the
current state of the agent and understanding the rule.
Here’s the information you’ll have:
The objective: This is the task you’re trying to complete.
The current trajectory: This is the current sequence of actions the agent has taken to reach the
current state.
The rules: This is a list of rules that can be applied to the current state to achieve the objective.
Base on the current trajectory, you should output the following things:
[Current State]: Analyze and summarize the state of the current trajectory.
[Analysis]: Describe your thoughts to choose the most appropriate rule.
[Chosen Rule]: Choose the rule from the rule list that you think is the most appropriate for
the current state.
Follow these instructions:
1. Please generate current state strictly in the following format: [Current State]: ... [Analysis]:
let’s think step by step, ... [Chosen Rule]: <rule description>
2. The state you summarize needs to align with the task type. There are some examples:
Put an object on a receptacle: Has found the object, Has taken the object and need to go to
the receptacle, Has reached the receptacle
Examine an object under a desklamp: Has taken the object and need to find the desklamp,
Has found the desklamp and need to use it
Clean an object: Has taken the object and need to find the receptacle to clean it, Has reached
the receptacle and need to clean the object
Heat an object: Has taken the object and need to find the receptacle to heat it, Has reached
the receptacle and need to heat the object
Cool an object: Has taken the object and need to find the receptacle to cool it, Has reached
the receptacle and need to cool the object
Put two objects on a receptacle: Has taken one object and need to go to the receptacle to put
it, Has put one object and need to find another

WebShop
You are observing a web page agent as it acts within a Web environment. Your role is to
select a rule to assist the agent in completing tasks. This requires analyzing the current state
of the agent and understanding the rule.
Here’s the information you’ll have:
The objective: This is the task you’re trying to complete.
The current trajectory: This is the current sequence of actions and environment observations
the agent has taken to reach the current state.
The rules: This is a list of rules that can be applied to the current state to achieve the objective.
Base on the current trajectory, you should output the following things:
[Current State]: Analyze and summarize the state of the current trajectory. Ensure the state
aligns with the task’s progression and includes relevant details about the agent’s current
position (e.g., on a search results page, on a product page and need to click detail options, or
ready to purchase).
[Analysis]: Analyze the task’s progress, and describe your thought process for selecting the
most appropriate rule, considering the current state and the task’s objective.
[Chosen Rule]: Select the rule from the rule list that is most appropriate for the current state.
Follow these instructions:
1. Please generate current state strictly in the following format: [Current State]: Let’s think
step by step, <summary of the current state>. [Analysis]: Let’s think step by step, <detailed
analysis of the task’s progress and rule selection>. [Chosen Rule]: <rule description>
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2. When the agent in the product’s page, and there are "[SEP] <detail option about product>
[SEP]" options to choose, and the agent doesn’t conduct actions like "click [detail option]",
you should select corresponding knowledge to guide the agent to click the detail options one
by one, like color, size options, ensure the agent click all options.
3. The number of actions taken by the agent should be limited to 10 or fewer. You need to
first ensure that the agent is able to purchase the correct product, and then strive to meet as
many task requirements as possible. It is not necessary to strictly fulfill all the requirements
of the task. Some fuzzy matching and minor omissions are tolerable.
4. Avoid selecting the same rule consecutively more than twice. And avoid selecting
knowledge that requires the agent to backtrack or undo actions, unless the task has become
impossible to complete.
5. Please perform a fuzzy match on the product features, for instance, treating baby blue and
blue as the same color.

G.3 REFLECTION

Prompt for Reflection

ALFWorld
There are something wrong with your action. Your action was not actually executed success-
fully. Please reconsider your situation and change another action to complete the task. Please
response strictly in the format:\n\nThought: Let’s think step by step. <your thoughts>\nAction:
<your next action>

WebShop
There are something wrong with your action. Your action was not actually executed success-
fully. Please reconsider your situation and change another action to complete the task.\nNote
that you should align the content you click with the webpage.\nYour previous action is
{previous action}\nPlease response strictly in the format:\n\nThought: Let’s think step by
step. <your thoughts>\nAction: <your next action>

G.4 PROMPT KNOWSELF

Prompt for Prompt Knowself

Interact with a household to solve a task. Imagine you are an intelligent agent in a household
environment and your target is to perform actions to complete the task goal. At the beginning
of your interactions, you will be given the detailed description of the current environment
and your goal to accomplish.
For each of your turn, you will be given the observation of the last turn. And then, remember
that:
You should first consider the current situation. If you believe that you are unable to perform
the correct action, you can output "[Knowledge]" to acquire additional knowledge to help
your thinking. If you think you can perform the correct action, then you can directly output
your think and action.
After you output your think and action, if you think there is an issue with the current action,
you can output "[Reflection]", and then proceed to rethink and re-execute the action.
Your think and action must strictly follow this format:"Thought: your thoughts.\nAction:
your next action".
The available actions are:
1. go to {recep}
2. take {obj} from {recep}
3. put {obj} in/on {recep}
4. open {recep}
5. close {recep}
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6. toggle {obj} {recep}
7. clean {obj} with {recep}
8. heat {obj} with {recep}
9. cool {obj} with {recep}
where {obj} and {recep} correspond to objects and receptacles. You should strictly follow
the format of the actions.
After your each turn, the environment will give you immediate feedback based on which
you plan your next few steps. if the envrionment output "Nothing happened", that means the
previous action is invalid and you should try more options.
Your response should use one of the three following format:
1. Thought: <your thoughts>
Action: <your next action>
2. [Knowledge]<knowledge>...</knowledge>
Thought: <your thoughts>
Action: <your next action>
3. Thought: <your thoughts>
Action: <your next action>
[Reflection]Thought: <your thoughts>
Action: <your next action>
Only one of the three formats should be used in each turn. And you must always contain
both lines in each format. Never omit the Thought line. Never produce only the Action line.
Generating only the Action is not allowed. No other lines or text should be produced. Please
only provide the Thought and Action, do not generate Observation yet. And do not output
multiple actions in one turn or output multiple actions in one line.
Here are two examples:
{example1}
——
{example2}
——
Remember that:
1. When you think you need to acquire additional knowledge, you should output "[Knowl-
edge]" first, and then output your think and action. Only acquire knowledge once in one
turn.
2. If you think there is an issue with the current action, you should output "[Reflection]" first,
and then output your think and action. Only reflect once in one turn.
3. Strictly follow the format of the output. And strictly follow the format of the actions.
4. Plase make your reason and thought concise and clear. Do not output too much information
in one turn. Restrict your total output to 2000 characters.
5. Please conduct only one Action in one line each turn. Do not output multiple actions in
one line or output multiple actions in one turn. Do not generate multiple thoughts or actions
in one turn except for "[Reflection]". And only reflect once in one turn.
Now, it’s your turn!
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