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Abstract: Learning robust visuomotor policies for robotic manipulation remains
a challenge in real-world settings, where visual distractors and clutter can sig-
nificantly degrade performance. In this work, we highlight the challenges that
visual clutter poses to robotic manipulation and propose an effective and scalable
in-context visual scene editing (NICE) strategy based on real-world images. Our
method synthesizes new variations of existing robot demonstration datasets by
programmatically modifying non-target objects directly within the real scenes. This
approach diversifies environmental conditions without requiring additional action
generation, synthetic rendering, or simulator access. Using real-world scenes, we
showcase the capability of our framework in performing realistic object replace-
ment, restyling, and removal. We generate new data using NICE and finetune a
vision-language model (VLM) for spatial affordance and a vision-language-action
(VLA) policy for object manipulation. Our experiments show that using our editing
framework results in more than a 20% increase in both accuracy in affordance
prediction and success rate in manipulation.
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1 Introduction

Generalization across visually diverse environments is fundamental for deploying robotic manipula-
tion policies in the real world. Yet, learned policies, especially those trained via behavior cloning
on demonstration datasets often suffer from significant performance degradation when presented
with visual distractors, background clutter, or other scene variations not encountered during training
[1]. Recent work has attempted to mitigate this problem by exploring model-level solutions, such
as object-centric representations [2, 3] and attention-guided policies [4, 5]. In parallel, large-scale
simulation pipelines have enabled domain randomization and synthetic data generation that diversify
training data [6, 7, 8]. However, such solutions are either dependent on complex perception modules,
computationally expensive simulators, or assume access to large-scale synthetic assets and rendering
infrastructure. In contrast, relatively little attention has been given to simple, scalable, and data
enhancement methods that operate directly on real-world visual scenes.

In this work, we propose a targeted in-context visual scene editing (NICE) strategy. Our method
edits real demonstration scenes by modifying distractor elements, such as objects of varied color,
shape, and texture, and background clutter, directly within real images. These edits simulate the
type of visual variability robots commonly face in everyday real-world environments, but are rarely
exposed to during training. Our framework is compatible with any dataset of visual demonstrations
and does not require modifications to the underlying robot hardware, control policies, or simulator
infrastructure. We conduct evaluations to highlight the realism of our proposed framework for data
editing. This is followed by assessing the impact of our method on two downstream tasks—visual
spatial affordance prediction and object manipulation. We show that our NICE strategy can mitigate
the negative effects of visual distractors on these tasks.



2 Related Works

Distractors in visual scene understanding. In the vision literature, distractors refer to visual
elements that are irrelevant to the task at hand. Distractors have been shown to increase the complexity
of the task by diverting attention or introducing ambiguity [9]. Some distractors share the target’s
visual features (color, shape, texture). Others are visually unrelated but still cause mislocalization or
false positives by diverting attention. The impact of distractors has been widely studied across different
domains. In psychology, numerous studies have investigated how different types of distractors
affect visual search [10, 11], as well as the role of attention mechanisms in mitigating their effects
[12, 13]. In computer vision, techniques have been developed to address distractor-induced challenges,
including category-level confusion in object detection [14, 15], and difficulties in distinguishing
targets from visually similar distractors or handling occlusions in tracking tasks [16, 17].

In robotics, distractors similarly affect performance. For instance, in autonomous driving, recent work
based on the CausalAgents benchmark [18] showed that modifying irrelevant (non-causal) agents
can substantially degrade prediction accuracy, prompting the need for causal reasoning approaches
[19, 20]. In robotic manipulation, distractors in cluttered environments can interfere with object
recognition and grasp pose estimation [21, 22, 23, 24, 25, 26, 27]. In some cases, these distractors
not only obscure the target but also lead to incorrect action generation by causing confusion [28, 1].
For example, [29] report that simply altering context, either by replacing the non-target objects
with visually similar, color-variant lookalikes or entirely different objects, can reduce policy success
rates by as much as 50%. The authors of [1] empirically showed how environmental factors impact
manipulation policies. They found that distractors and contextual elements, such as lighting, camera
pose, and target characteristics can significantly hinder performance. One way to mitigate the negative
impact of distractors is to expose the policy to additional diverse data during training. To achieve
this goal, We propose a novel method that effectively diversifies data in an automated and scalable
manner.

Data augmentation in robotics. Domain randomization [30, 31] has long been used to train visual
policies in simulation by exposing models to randomized textures, lighting, and object appearances.
However, the effectiveness of simulated randomization is limited by sim-to-real transfer. Recent works
remedy this issue by training and augmenting directly on real robot data. RoboSaGA [32] replaces
the background using out-of-domain images to preserve task-relevant content while introducing
variability. ROSIE [33] uses diffusion models to edit scenes by adding or replacing objects (often of
similar category or shape), enhancing generalization to unseen configurations. In [34], the authors
combine generative image editing with 3D object rendering to generate hundreds of diverse distractor
variants per scene. However, using generative models requires significant compute and simulation
assets introduce domain gaps due to lack of realism. In contrast, our method uses direct visual editing
to modify distractors in real images with minimal overhead, achieving high degree of realism and
enabling object modification across different objects categories with varied shape and form. Using
an effective language-guided mechanism, our framework automatically and at scale enhances any
existing datasets while eliminating the need for new demonstrations.

3 Methodology

3.1 Problem Setup

We consider a standard behavioral cloning setup for a visuomotor pick-and-place task, in which
a robot observes RGB images of the scene and outputs corresponding manipulation actions. The
training data consist of demonstrations, where each sample includes an image observation, the robot
arm’s state, the action executed by the expert policy, and an associated task instruction. The objective
is to learn a visuomotor policy that, conditioned on the task instruction, maps observations to actions
that replicate the demonstrated behavior. Our aim is to enhance the robustness of policy learning in
the presence of visual distractors by enriching the training data with diverse and systematically varied
distractor instances while preserving the original task semantics.
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Figure 1: Overview of the proposed in-context visual scene editing (NICE) pipeline. It starts by
parsing and masking the distractor (non-target) objects. Then depending on the enrichment strategy
(removal, restyling, or replacement), the given object is exchanged with a new object or background.

3.2 Overview of NICE

NICE takes real demonstrations and applies diverse scene enhancements to simulate novel visual
clutter, thus extending training data. NICE performs three types of edits: removal, replacement, and
restyling of distractors while keeping the original target object and its relation to the demonstration
unchanged. A key design principle is action-label consistency, meaning that after enhancement, the
image should still correspond to the same grasp or pick-and-place action as before. To this end, we
do not delete or occlude the target object. We further insure that the new instances of the inserted
distractors do not conflict with the recorded trajectory. In other words, the task-relevant causal
features (e.g. the block to pick up) are invariant under the augmentation. In practice, we randomly
perform one of the three edits per image to produce a varied augmented dataset. As shown in Figure
1, the pipeline consists of two stages: Scene decomposition and role assignment, and scene editing.

3.3 Scene Decomposition and Role Assignment

Object Parsing. First, we detect all objects in the scene using Florence-2 [35], a multitask VLM
that operates with or without text prompts. Florence-2 produces bounding boxes and class labels for
each object. The bounding boxes are then passed to the Segment Anything model v2 (SAM-2) [36]
to compute precise segmentation masks, along with confidence scores and labels for each object.

Target and Distractor Identification. It is important to accurately distinguish between the target
and distractors. Given a task instruction (e.g. pick up the blue cube), we identify the target among all
detected objects. Using the predicted classes generated by Florence-2, we exclude the target from
the segmentation operation. In addition, to improve the consistency of the scenes (e.g. avoid major
artifacts in the scene), we exclude very large objects, whose bounding boxes’ dimensions exceed 40%
(set empirically) of the image height or width. All other remaining objects are considered as potential
candidates for editing.

3.4 Scene Editing

For each candidate distractor object, NICE performs one of three edit operations on the copies of the
original images (see Figure 2). The operations are performed as follows:

Object Removal. For a given image, a random set of 0 to n object masks are chosen and combined
into a single mask for removal (where n is the number of objects, excluding large size ones or the
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Figure 2: Examples of data enhancement a) using our pipeline on Bridge [37] and b) real-world
replication used for evaluation of our pipeline.

target). This mask is then dilated with a hyperparameter dil to smooth the edges and cover the
original object’s shadow. Finally, we remove the combined distractor mask and apply LaMa [38]
to fill the region with background content. LaMa is a large-mask image inpainting model based on
Fourier convolutions. It propagates texture from surrounding pixels to plausibly reconstruct the scene.

Object Restyling. Our goal is to change the appearance, texture, or color of an object without
altering its shape or pose. For this, we follow the same masking strategy as in removal, generating n
masks. Then, we sample textures from the Describable Textures Dataset (DTD) [39], which contains
thousands of real texture patches (e.g. dotted, striped, etc.) applicable to object surfaces. We project
the texture onto the object mask by overlaying and adjusting color or by performing stylization. For
example, a wooden block might be recolored with a zebra pattern or a metallic spoon with a rust
texture. The color and appearance of the objects are altered by adjusting their brightness, hue, and
saturation empirically. These transformations are applied to the object masks to introduce controlled
variability in visual attributes.

Object Replacement. Unlike object removal and restyling, for each replacement operation, we
exchange one object at a time. To maintain realism and consistency, we replace each object with a
semantically similar one. More specifically, after masking out the target region of the image along
with dilation, we use the Stable Diffusion inpainting model [40] to generate the recommended object
via a structured prompt containing the name of the new object. For example, caption might say “a
yellow block on a wooden table”, and the diffusion model synthesizes the block with appropriate
lighting. This insertion leverages state-of-the-art generative priors to produce realistic novel objects.

For replacement, we can employ two different strategies. 1- Generate the object with different
features, by passing its name to diffusion model and ask to alter it. 2- Generate a semantically similar
yet visually distinct object variant (e.g. replacing a spoon with a different type of spoon as shown in
Figure 2a). This allows us to generate a novel scene while maintaining the context. For this purpose,
we use Deepseek-r1:7b [41] via the Ollama framework [42] to generate a description of a household
object similar in size to the original one, which is then fed into the Stable Diffusion model [40]. In
our experiments, we found using such a small language model suffices for accurate prompting in
order to generate similar objects.

4 Evaluation

4.1 Background Consistency

A key consideration for scene editing is to maintain background consistency. This is especially
challenging when removing an object, since the background must be reconstructed and secondary
effects, such as shadows, must also be eliminated. Here, we examine the ability of our method to
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Figure 3: a) distribution of SSIM values for removal operation and b) FID score of the three
enhancement strategies on real-world samples.

Table 1: Average prediction accuracy (APA)(%) across e e, e
different clutter levels using RoboPoint.
b t- BT- e
ataset APALC APAMC APAHC 'S [ 4 —
Original 32.64 30.47 20.08 & & ™
+NICE 48.12 45.76 41.44 Figure 4: Samples of scenes with differ-
(+15.48) | (+15.29) | (+21.36) ent level of clutter.

achieve this goal in the case of removal. For this, we create 20 cluttered scenes in real world. We
then capture 5 variations of the scene by removing one object at a time, for a total of 100 real-world
images (see example in Figure 2b). We then replicate these changes using our pipeline and compare
to real images using the SSIM metric [43]. As shown in Figure 3a, our method generally yields a
very high score on generated samples, indicating its accuracy in reconstructing the background.

4.2 Data Generation Realism

Following the similar procedure as in 4.1, we capture real-world images for restyling and replacement.
For the former operation, we swap the objects with the same objects of different color and for latter,
with objects of similar category (e.g. orange with an apple). Samples of real-world data are shown in
Figure 2b. Using our pipeline, we then replicate the scene alterations and compute Fréchet Inception
Distance (FID) [44] between the generated and real-world captured images. As shown in Figure
3b, lower FID scores indicate that our enhanced images perceptually and statistically are close to
the real images. The higher FID value of restyling can be due to the fact that generative models are
more successful at modeling ambient conditions (e.g. lighting) when generating an entire object as
opposed to restyling the texture of an existing object.

4.3 Spatial Affordance for Robotics Manipulation

One of the key issues caused by distractors is visual confusion, which diminishes the ability of
the robot to accurately localize the target object and identify affordance regions for performing
manipulation. We employ RoboPoint [45], a state-of-the-art vision-language-model that predicts
spatial affordance in free space, which then can be used for any downstream robotic task.

For this experiment, as shown in Figure 4, we consider scenes with three levels of clutter: low clutter
with 1-2 objects, medium clutter with 5-8 objects, and high clutter containing 11-15 objects. In every
scene, we insert at least one distractor that is visually or semantically similar to the target, as well
as additional distractors that differ in category, geometry, or appearance. In high clutter scenes, the
objects are densely placed to increase difficulty. Following the protocol in [45], we report the results
using average prediction accuracy (APA), which measures the percentage of predicted points that fall
within the ground-truth target mask.
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Figure 5: (Left) Performance of the manipulation policy 7, finetuned on three data configurations.
(Right) Example experiment scenes with varying numbers of distractors.

As shown in Table 1 our enhancement method can significantly improve the affordance prediction
performance. In low and medium clutter scenes we observe an increase of more than 15% in APA,
reaching up to 21% in high cluttered scenes. This emphasizes the challenge distractors can pose to
robot’s perception as clutter level increases. Scaling the data using NICE can greatly compensate for
such degradation and result in more stable performance across scenes with different levels of clutter.

4.4 Robotic Manipulation in Clutter

To evaluate the benefits of our enhancement pipeline on manipulation data, we choose a pick-and-
place task involving a pink cup (as shown in Figure 5). In the base scenario, the scene only includes
the target. We further populate the scene by adding 1, 2, 4, and 8 distractors to the environment.
For each setup, we vary the target object’s position across 9 uniformly spaced locations within the
operating area and repeat the experiment.

For manipulation, we employ a VLA policy, 7y [46], pre- Table 2: Average performance of the
trained on Open X-Embodiment [47]. We finetune three Ppolicy using different datasets. Direc-
variants of 7y with different data configurations: (1) Base, tion of arrows shows higher or lower
containing only the target object; (2) +Dist, which adds real Values are better.

data with 9 variations of the target object in the presence of “Dataset [ SRT | CR| | oCR]

8 distractors; and (3) +NICE, which incorporates context- ~Base 051 | 038 0.15
enhanced data generated from training samples with distrac-  +Dist 0.65 | 0.09 | 0.07
tors. As shown in Figure 5, using data that includes distrac- +NICE | 0.74 | 0.06 | 0.02
tors improves the success rate (SR) on most cluttered scenes.

However, by enriching data using NICE, we can further boost the performance by 11% on scenes
with 2 distractors and 22% on scenes with 4 distractors.

Besides improvement in success rate, our approach can potentially improve safety. To highlight this
effect, we report on total collision rate (CR), involving contacts with any non-target objects. We also
report on obstacle collision rate (0CR), involving collisions with objects other than currently targeted
one whether it is the intended target object or not. i.e. in oCR we exclude contacts due to target
confusion. According to Table 2, our method not only results in best average SR (+23% compared to
base and +9% compared to Dist), it also lowers collision by 3% and 5% on CR and oCR, respectively.

5 Conclusion

In this work, we presented a novel approach for enhancing robot data without the need for action
generation or human involvement. Our NICE method, relies on a language conditioned generative
model to identify the objects of interest and performs scene editing by either removing, restyling, or
replacing distractors with novel objects or background. Through empirical evaluation on real-world
data, we showed that our pipeline generates realistic scenes that significantly improve robot perception
and, consequently, downstream manipulation tasks.



6 Limitations

In this work we mainly focused on three forms of scene enhancement, namely removal, restyling,
and replacement. We argued that correct selection of novel objects can maintain the realism of
the scenarios, e.g. not obscuring robot movement in the pre-recorded scenes. For data generation,
other forms of enhancement can be considered, such as rearrangement or addition. However, these
operations require better understanding of robot actions in the 3D space to maintain realism. We will
consider such extensions for our future work.

Due to the limited scope of the paper, we only examined the impact of our framework on spatial
affordance prediction and a pick-and-place manipulation task. It is reasonable to assume that visual
confusion or operational confinement caused by distractors can have different degree of impact on
different manipulation tasks. For example, relative to object-picking tasks, object arrangement poses
greater challenges, as it increases the likelihood of confusion. We plan to extend our empirical
evaluation on a large set of robotic skills to both identify challenges posed by distractors and clutter
and determine whether our proposed data enhancement framework can be used to mitigate them as
well.
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