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Abstract

This paper presents a three-stage framework for active learning, encompassing data
collection, model retraining, and deployment phases. The framework’s primary
objective is to optimize data acquisition, data freshness, and model selection
methodologies. To achieve this, we propose an online policy with performance
guarantees, ensuring optimal performance in dynamic environments. Our approach
integrates principles of sequential optimal experimental design and online learning.
Empirical evaluations validate the efficacy of our proposed method in comparison
to existing baselines.

1 Introduction

The development of Machine Learning (ML) models is intrinsically reliant on the availability of
data. Data plays a critical role in various stages of the ML model lifecycle, including parameter
optimization, evaluation of inferential capabilities, and potential refinements to the model architecture.
However, the acquisition of suitable data frequently constitutes a significant bottleneck in the training
pipeline. The process of obtaining relevant data or measurements can be both costly and time-
intensive and is often subject to resource constraints. These constraints may manifest in diverse
forms, including restrictions on sample size, temporal constraints, or computational limitations. The
challenge is further compounded when labels for these datasets are unavailable and are costly to
acquire (e.g., clinical trials [42], drug discovery [5]). In such scenarios, strategic decisions regarding
data collection or experimental design become essential. The selection of the most informative
samples for a given task is known as optimal experimental design (OED) [40, 10] within the field
of statistics. The primary objective in OED is to maximize information gain about an unknown
model within the confines of a limited budget. OED has long been an essential part of statistical
modeling, from the design of clinical trials [42, 14, 46], medical imaging [39], materials science [19],
biological process models [41, 18], networked systems [32], bandits [17, 31], and regression problems
in general [16, 27, 49, 21]. For a comprehensive overview of OED methodologies and applications,
the reader is directed to the following surveys [47, 40, 25].

In many real-world applications of ML, the performance of a model remain unknown until it is
deployed and interacts with its operational environment. This inherent uncertainty necessitates
an iterative approach to experimental design, where subsequent experiments are informed by the
outcomes of previous ones. This adaptive methodology, known as sequential optimal experimental
design (SOED), aims to effectively mitigate uncertainty by dynamically adjusting the experimental
design based on accumulating knowledge. SOED presents a unique challenge in that the optimal
design at any given stage depends on the anticipated sequence of future predictions. A common
suboptimal approach is to employ a greedy strategy, utilizing historical data to determine the seem-
ingly best experiment at each step without explicitly considering the long-term consequences of
this decision [22, 30, 15, 9]. This myopic approach fails to account for the potential impact of
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early design choices on the overall optimization process. Recently, online learning has emerged
as a promising framework for addressing SOED by incorporating feedback mechanisms into the
design process [24, 26, 45]. By learning from past experiences and adapting its strategy accordingly,
online learning offers a more sophisticated approach to sequential decision-making in experimental
design. Furthermore, the deployment of machine learning models often encounters the challenge
of concept drift, which refers to the dynamic nature of the relationship between input features and
the target variable [20, 34, 43, 50, 36]. Significant disruptions, such as the COVID-19 pandemic,
can precipitate substantial alterations in traffic patterns. These alterations subsequently introduce
significant concept drift in traffic forecasting methodologies, thereby challenging the efficacy of
predictive models [33, 35]. Consequently, this necessitates the development of training strategies that
effectively tune data freshness and recency to maintain predictive accuracy. Traditional approaches,
predominantly focused on variance minimization through experimental design, are insufficient in
addressing the bias introduced by concept drift. Consequently, a crucial question arises:

How can we effectively optimize data acquisition, data freshness, and model selection
methodologies in dynamic environments characterized by concept drifts?

To address this challenge, this work introduces a novel active learning framework. This framework
operates in three distinct stages: data collection, model retraining, and deployment. In the initial data
collection phase, a policy guides the selection of informative experiments from a predefined pool of
potential candidates. This selection process aims to maximize the value of acquired labels, thereby
enhancing learning efficiency. The policy can request labels for multiple experiments concurrently,
subject to a constraint on the number of simultaneous queries. These labeled datasets are then
stored in a local repository with a fixed capacity, utilizing an eviction strategy to manage storage
limitations. Periodically, the accumulated labeled data is used to retrain a machine learning model.
This model, updated with an appropriate selection of fresh dataset from the local repository, is then
deployed to predict labels for new, incoming queries. Unlike traditional inductive learning approaches
that focus solely on the initial pool of experiments, this framework adopts a transductive learning
perspective [11, 48, 6, 51, 12]. This means that the policy’s experimental design choices are optimized
not only with respect to the initial pool but also in relation to the sequence of revealed queries. The
policy receives feedback on its predictions in the form of noisy prediction errors, allowing it to adapt
and refine its strategy over time. The ultimate goal of the policy is to minimize its regret, which
quantifies the performance difference between the policy’s predictions and those of an optimal policy
possessing complete information about the underlying data generating process. This minimization
of regret ensures that the active learning framework efficiently learns and adapts to the underlying
phenomenon, even in the presence of noise and uncertainty.

The remainder of this paper is organized as follows. Section 2 presents the problem formulation.
A theoretical analysis of the problem is conducted in Section 3. Finally, the effectiveness of the
proposed approach is numerically demonstrated in Section 4.

2 Problem Formulation

2.1 System Model

The overall system model is illustrated in Figure 1. A list of the notation employed throughout this
paper can be found in the Appendix.

Data Collection. The policy has access to a pool of experiments X ⊂ Rd to collect labels from a
variety of experimental sources, such as sensors, surveys, and databases. A data retention policy is
implemented, periodically purging datasets that exceed a predetermined age threshold τ ∈ N. This
practice adheres to data privacy regulations (e.g., GDPR [13], CCPA/CPRA[1, 38]). At each time
slot t, the policy is allocated a fixed experimental budget of M ∈ N experiments. The set of all
feasible experimental designs is defined as

X ≜
{
πππ ∈ [0, 1]X : ∥πππ∥1 = 1

}
.

For a given continuous design πππ ∈ X , the learner allocates Mπxxx ∈ [0,M ] experiments to type
xxx ∈ X . At time t, the system acquires a dataset Dt of M experiment-labels pairs in X ×R, following
a design πππt ∈ X . A rolling window of τ + 1 datasets is maintained, discarding older ones. The
labels y are related to the experiment xxx according to a noisy linear model y = xxx · βββ⋆

t + n, where
n ∼ N (0, σ2) is a Gaussian noise and βββ⋆

t is the time-varying true model.
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Figure 1: System Model

Model Retraining. To address the chal-
lenge of concept drift during the model
updating phase, we introduce a data-
freshness parameter, denoted as τt ∈ T ≜
{0, 1, . . . , τ}. This parameter dictates the
recency of the data used for model train-
ing. Specifically, at each time slot t, we
employ a least-squares estimator (LSE), de-
noted as β̂ββt, to generate future predictions.
The LSE model is trained exclusively on
the (τt + 1) most recent data points avail-
able at time t. The model is given by β̂̂β̂βt = 1

M (XXX⊺diag (πππt−τt:t)XXX)
−1

XXX⊺yyy (Dt−τt:t), where
XXX = (xxx⊺)xxx∈X ∈ RX×d is the experiments’ matrix, and yyy(D) = (

∑
(xxx,yi)∈Dxxx

yi)xxx∈X ∈ RX is the
labels’ vector.

Model Deployment. During deployment, the trained model β̂ββt is used to predict labels for experi-
ments xxxt ∈ Z ⊂ Rd. User feedback in the form of prediction errors is collected to refine the model.
Specifically, the squared error ξt = (yt − ŷt)

2 is provided, where ŷt = xxxt · β̂t is the predicted label
and yt = xxxt · β⋆

t + n is the label with noise n ∼ N (0, σ2). This feedback signal informs the learner
about the model’s performance and guides future data collection to improve accuracy. Both the
feedback signal ξt and the corresponding query xxxt are used to guide future model selection.

2.2 Policies and Performance Metric

In this section, we provide a formal description of the policy that governs the collection of data
through experimental designs and the freshness of data used to retrain the most recent model.

Prediction Error and Bias–Variance Tradeoff. The accuracy of the model β̂ββt for a query point
xxxt ∈ Z with noisy label yt = xxxt · β⋆

t + n ∼ N (xxxt · β⋆
t , σ

2) is measured by its expected pre-
diction error (EPE). This EPE depends on the experimental designs (πππt−τ , . . . ,πππt) and a data-
freshness parameter τt ∈ T controlling the influence of past data. The EPE is defined as follows:
ft(πππt−τt , . . . ,πππt) ≜ E[ξt] = E[(yt − ŷt)

2
]. In the following Proposition, we clearly delineate the

contributions of experimental design selection and data-freshness selection, by decomposing the EPE
on query xxxt into its variance and bias components.

Proposition 1. Under designs {πππs}ts=t−τ ∈ τ+1
X , the EPE of the LSE on experiment xxxt ∈ Z at

time t under data-freshness window size τ + 1 is

ft(πππt−τ , . . . ,πππt) = σ2 + xxx⊺
t cov(β̂ββt)xxxt +

(
xxxt ·

(
E
[
β̂t̂βt̂βt

]
− βββ⋆

t

))2
, (1)

where E
[
β̂̂β̂βt

]
= VVV −1(πππt−τt:t)

(∑
xxx∈X xxxxxx⊺∑t

s=t−τ πs,xxxβββ
⋆
s

)
and cov(β̂ββt) =

σ2

MVVV −1(πππt−τt:t).

The proof is provided in Appendix B.1. The bias-variance trade-off is evident in the decomposition.
The expected prediction error is divided into three components: (a) irreducible variance due to noise
in the labels, (b) variance related to data-freshness and experimental designs, and (c) bias reflecting
model drift. In the absence of significant drift, a larger data-freshness window is beneficial. However,
under significant drift, a smaller window is preferable, though increasing variance. Minimizing
variance through careful experimental design is always advantageous.

Online Policies. The role of a policy is to select appropriately experimental designs πππt ∈ X and
data-freshness parameter τt ∈ T at every timeslot t, and adapts its decisions upon seeing the query
xxxt and feedback ξt. Formally, at timeslot t, the system adapts its state according to a randomized
policy Pt : ( X × T × Z × R)t → X × T , defined as (πππt+1, τt+1) = Pt

(
{πππs, τs,xxxs, ξt}ts=1

)
.

Performance Metric. We compare the performance of the sequence of designs and data-freshness
parameters w.r.t. the best design in hindsight and data-freshness window size after seeing all the
queries in terms of the EPE. Formally,

RT (PPP) ≜ E
[∑T

t=τ+1 ft(πππt−τt , . . . ,πππt)−
∑T

t=τ+1 ft(πππ
⋆
t−τ⋆

t
, . . . ,πππ⋆

t )
]
, (2)
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where πππ⋆
t and τ⋆t for t ∈ [T ] are the minimizers of the aggregate expected prediction error, and the

expectation is taken with respect to the randomness in the environment and the policy PPP .

If the regret RT (PPP) is sublinear, then the policy asymptotically achieves on average the performance
of a policy that selects the optimal experimental designs and data-freshness parameters in hindsight.

3 Theoretical Analysis

Our theoretical analysis reveals that the optimization of experimental design and data-freshness can
be efficiently decoupled into two interrelated subproblems. We propose a policy utilizing Online
Mirror Descent (OMD) [8, 44, 23] to simultaneously address these subproblems.

3.1 Decoupling of Experimental Design and Data-freshness Decisions

We propose a decoupled approach to experimental design and data-freshness parameter selection.
Firstly, we employ a variance reduction policy within the full-information online learning frame-
work [23, 37] to determine the optimal experimental design. Secondly, we formulate a multi-armed
bandit problem [31] to select the data-freshness parameters, thereby mitigating bias.

Variance Reduction Policy. The variance reduction policy selects a new design at time t according
to a mapping Pv

t that maps the past experimental designs {πππs}ts=1 ∈ t
X , and past experiment

queries {xxxs}ts=1 ∈ Zt to a new design πππt+1 given by πππt+1 = Pv
t ({πππs,xxxs}ts=1). The policy incurs

costs in the form of the xxxt-optimal design objective in Definition 2, and has the following regret:
Rv

T (PPPv) ≜
∑T

t=1 vt(πππt)−min{πππ⋆
t }

T
t=1

∈ T
X

∑T
t=1 vt(πππ

⋆
t ). Note that the cost vt are fully determined

once xxxt is made available.

Bias Reduction Policy. The bias reduction policy operates on top of the variance reduction policy.
In particular, at timeslot t, the data-freshness parameter τt+1 is the output of the mapping Pb

t that
maps the past data-freshness parameters {τs}ts=1 ∈ T t and prediction error feedback {ξs}ts=1 ∈ Rt

according to the mapping τt+1 = Pb
t ({τs, ξs}

t
s=1). Note that the coupling between the variance

reduction policy and bias reduction policy is implicitly encoded in the prediction error ξt as this
error depends on both decisions. The policy incurs the prediction errors, and has the following
regret: Rb

T (PPPb) ≜ E
[∑T

t=τ+1 ξt −min{τ⋆
t }

T
t=1

∈T T

∑T
t=τ⋆

t +1 ft(πππt−τ⋆
t
, . . . ,πππt)

]
. The setup of

bias reduction policy corresponds to a non-stationary setup of the multi-armed bandit problem
where T is the set of the arms [31, 7].

VBR Policy. The variance and bias reduction (VBR) policy denoted by PPPv+b is the policy that
determines experimental designs πππt according to the variance reduction policy PPPv and the data-
freshness parameter τt according to the bias reduction policy PPPb for any t ∈ [T ]. Formally, at
timeslot t, the policy is given by the mapping Pv+b

t : ( X × T × Z × R)t → X × T given by
Pv+b
t ≜ (Pv

t ,Pb
t ). The variance and bias reduction policy enjoys the following regret guarantee:

Theorem 1. Under Assumptions 1–3, let {xxxt}Tt=1 ∈ ZT be the sequence of queries, {πππ⋆
t }

T
t=1 ∈ T

X
be the sequence of optimal experimental designs and {τ⋆t }

T
t=1 ∈ T T is the sequence of data-freshness

windows. The regret (2) of the variance and bias reduction policy PPPv+b satisfies:

RT (PPPv+b) = Rb
T (PPPb) +Rv

T (PPPv) +O
(
P v
T + P ⋆,v

T

)
, (3)

where P ⋆,v
T =

∑T
t=1

∥∥πππ⋆
t − πππ⋆

t+1

∥∥
1

and P v
T =

∑T
t=1 ∥πππt − πππt+1∥1 are the path-lengths of the

OEDs and variance reduction policy.

The proof is provided in Appendix E. In the next section, we provide a specific instantiations of the
variance reduction and bias reduction policies.

3.2 Entropic-VBR Policy

We introduce the Entropic-VBR policy (Appendix C.4), which achieves sublinear regret. Our
approach provides a unified treatment of both full-information and bandit settings. To overcome the
challenges of a non-stationary environment and bias reduction in the bandit setting, we meticulously
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instantiate the OMD framework. This involves carefully constructing gradient estimates and selecting
an appropriate mirror map to ensure simultaneous regret guarantees. Leveraging the results of
Corollary 2, Theorem 4, and Theorem 1, we establish a comprehensive regret guarantee for the
Entropic-VBR policy. Formally,

Corollary 1. Under Assumptions 1–3, let {xxxt}Tt=1 ∈ ZT be the sequence of queries, {πππ⋆
t }

T
t=1 ∈

T
X ,σ be the sequence of optimal experimental designs and {ppp⋆t }

T
t=1 ∈ T

T is the sequence of
comparator data-freshness windows, with path lengths P ⋆,v

T and P ⋆,b
T , respectively. The Entropic-

VBR Policy (Appendix C.4) configured with learning rates ηX = Θ
(
log(1/σ)P ⋆,v

T T−1
)

and ηT =

Θ
(
log(1/σ′)P ⋆,b

T T−1
)

and σ′ = Θ
(
T−1

)
achieves the following regret:

RT (PPPEntropic−VBR) = O
(√

log(1/σ)P ⋆,v
T T +

√
log(T )P ⋆,b

T T + P ⋆,v
T

)
. (4)

The sequences in X ,σ are (1 + σ)-competitive w.r.t. sequences in X (Prop. 2 in the Appendix).

4 Numerical Experiments

Experimental Setup. To evaluate the performance of our proposed methodology, we constructed a
synthetic experimental setting, as illustrated in Figure 2 (a). Full description is in Appendix F.
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Figure 2: Subfig. (a): Query distributions, and true model drift (103 initial iterations). Subfig. (b):
Time-avged prediction error for three intervals: 0 ≤ t ≤ 1
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Discussion. Our evaluation in Figure 2 (b) shows that a uniform experimental design with the
maximum freshness window is the least effective baseline (indexed as β). Optimizing the data-
freshness window improves performance (indexed as γ), and further gains are achieved by optimizing
the experimental design (indexed as δ). Our proposed policy (indexed as α) outperforms the baseline,
demonstrating its ability to identify optimal sequences of designs and freshness windows. Figure 2 (c)
represents how the policy adapts to evolving query distributions. The temporal evolution of the
learned distribution over window sizes in Figure 3 (Appendix) reveals that the optimal window size
under these conditions is not immediately apparent.

5 Conclusion

This work introduced a novel framework that explicitly accounts for the evolving relationship between
data freshness and model performance, encompassing data collection, data freshness decisions, and
model retraining within a limited-capacity cache. A rigorous theoretical analysis revealed the
inherent variance-bias trade-off and motivated a decoupled approach to address this challenge. This
approach involved leveraging OCO for variance reduction in experimental design and formulating a
non-stationary MAB problem for bias mitigation through data freshness parameter selection.

As avenues for future work, extending the inference model to encompass non-linear relationships
is of considerable interest. Reproducing kernel methods [3, 4] present a promising initial direction
for leveraging the proposed framework, as they permit analogous derivations. Additionally, explor-
ing more general noise models beyond the Gaussian noise considered herein would enhance the
framework’s applicability.

5



References
[1] California Consumer Privacy Act. Assembly Bill No. 375, Chapter 55, December 2018.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal discrete optimiza-
tion for experimental design: A regret minimization approach. Mathematical Programming,
186:439–478, 2021.

[3] Mauricio A Alvarez, Lorenzo Rosasco, Neil D Lawrence, et al. Kernels for vector-valued
functions: A review. Foundations and Trends® in Machine Learning, 4(3):195–266, 2012.

[4] Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American mathemati-
cal society, 68(3):337–404, 1950.

[5] Julio R Banga and Eva Balsa-Canto. Parameter estimation and optimal experimental design.
Essays in biochemistry, 45:195–210, 2008.

[6] M Belin, P Niyogi, and V Sindhwani. Manifold regularization: a geometric framework for
learning from examples. Journal of Machine Learning Research, 7:2399–2434, 2006.

[7] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122,
2012.

[8] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

[9] Daniel R Cavagnaro, Jay I Myung, Mark A Pitt, and Janne V Kujala. Adaptive design opti-
mization: A mutual information-based approach to model discrimination in cognitive science.
Neural computation, 22(4):887–905, 2010.

[10] Kathryn Chaloner and Isabella Verdinelli. Bayesian Experimental Design: A Review. Statistical
science, pages 273–304, 1995.

[11] Olivier Chapelle, Vladimir Vapnik, and Jason Weston. Transductive inference for estimating
values of functions. Advances in Neural Information Processing Systems, 12, 1999.

[12] Corinna Cortes and Mehryar Mohri. On transductive regression. Advances in neural information
processing systems, 19, 2006.

[13] Council of European Union. Regulation (eu) 2016/679 of the european parliament and of the
council of 27 april 2016, on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing directive 95/46/ec (general
data protection regulation), 2016.

[14] Meichun Ding, Gary L Rosner, and Peter Müller. Bayesian optimal design for phase ii screening
trials. Biometrics, 64(3):886–894, 2008.

[15] Hovav A Dror and David M Steinberg. Sequential experimental designs for generalized linear
models. Journal of the American Statistical Association, 103(481):288–298, 2008.

[16] Gustav Elfving. Optimum allocation in linear regression theory. The Annals of Mathematical
Statistics, pages 255–262, 1952.

[17] Tanner Fiez, Lalit Jain, Kevin G Jamieson, and Lillian Ratliff. Sequential experimental design
for transductive linear bandits. Advances in neural information processing systems, 32, 2019.

[18] Patrick Flaherty, Adam Arkin, and Michael Jordan. Robust design of biological experiments.
Advances in neural information processing systems, 18, 2005.

[19] Peter I Frazier and Jialei Wang. Bayesian optimization for materials design. Information science
for materials discovery and design, pages 45–75, 2016.
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Technical Appendix

A Formal Assumptions and Definitions

We provide a summary of the notation used in this document.

Table 1: Notation summary
Notational Conventions

[n] Set {1, 2, . . . , n}
SV Set of functions from set V to set S
x,xxx,XXX Scalar, column vector, matrix
∥xxx∥AAA Norm ∥xxx∥AAA =

√
xxx⊺AAAxxx for p.d. matrix AAA

xxxt′:t Summation
∑t

s=t′ xxxs

Dt′:t Union of sets
⋃

s∈{t′,t′+1,...,t} Ds

AAA ≻ (⪰) 0 Positive (semi-)definite matrix satisfying xxx⊺AAAxxx > (≥) 0 for xxx ∈ Rd \ {000}
Experimental Design

X Set of experiments X ⊂ Rd

Z Set of test experiments Z ⊆ Rd

βββ⋆
t True model at time t

β̂ββt Estimation of true model at time t

X Experimental design space X =
{
πππ ∈ [0, 1]X : ∥πππ∥1 = 1

}
X ,σ Restricted experimental design space X ,σ =

{
πππ+ σ

|X|
1+σ : πππ ∈ X

}
πππ Experiemental design
M Number of conducted experiments under a selected design
(xxx, y) Experiment xxx ∈ X and label y ∈ R pair
D Dataset D = {(xi, yi) : i ∈ [M ]}
Dxxx Dataset Dxxx = {(x′, y) ∈ D : xxx′ = xxx}

A.1 Technical Assumptions

We impose the following technical assumptions for our theoretical analysis.
Assumption 1. (Compact Experiments and Query Sets) Experiments xxx ∈ X and xxx′ ∈ Z are
uniformly bounded under the ℓ2 norm by DX and DZ , respectively. Formally, ∥xxx∥2 ≤ DX , ∥xxx′∥2 ≤
DZ for all xxx ∈ X ,xxx′ ∈ Z .
Assumption 2. (Compact Parameter Set) We assume that the true model parameters βββ⋆

t for t ∈ [T ],
are uniformly bounded. Specifically, there exists a positive constant B⋆ such that ∥βββ⋆

t ∥2 ≤ B⋆ for all
t ∈ [T ].
Assumption 3. (Invertible Design Matrices) The matrix

∑
xxx∈X xxxxxx⊺ is non-singular, meaning that

there exists a positive constant ω ∈ R>0 such that the following inequality holds:
∑

xxx∈X xxxxxx⊺ ⪰
|X |ωIII ≻ 0.

Assumptions 1–2 guarantee the compactness of the experimental design space, the query space, and
the model space. This compactness assumption is frequently employed in the analysis of learning
problems [23, 44], facilitating the establishment of various theoretical properties. Furthermore,
Assumption 3 ensures the invertibility of the covariance matrix VVV (πππ), enabling the well-definedness
of the LSE.

A.2 Technical Definitions

We introduce the following key concepts foundational to our theoretical analysis.
Definition 1. Let σ ∈ (0, 1] a positive real number. We define the σ-regularized simplex X ,σ as

follows: X ,σ ≜ {T (πππ) : πππ ∈ X }, where T is a map given by T : πππ ∈ X →
πππ+ σ

|X|111

1+σ and 111

denotes the all-ones vector in RX .
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It is easy to verify that X ,σ ⊆ X . Remark that selecting designs in the above set implicitly
introduces ridge-regularization/Bayesian prior (with parameter λ), which allows the covariance
matrix VVV to be invertible for every design πππ ∈ X ,σ. We define the following xxxt-optimal design
objective (see the discussion in Sec. A.3) determined by the designs πππt−τ , . . . ,πππt ∈ X ,σ and the
experiment xxxt ∈ Z for t ∈ [T ].
Definition 2. Consider Assumptions 1 and 3 hold. Consider xxxt ∈ Z a query experiment at timeslot t
and experimental designs πππt−τ , . . . ,πππt ∈ X ,σ at timeslot t ∈ [T ] . The xxxt-optimal design objective
at time t ∈ [T ] under the LSE estimator is given by vt(πππt−τ , . . . ,πππt) ≜ xxx⊺

tVVV
−1(πππt−τ :t)xxxt.

Restricting the design space to X ,σ from the original design space X provides the following
approximation guarantee:
Proposition 2. (Allen-Zhu et al. [2, Proposition 3.6]) For any σ ∈ (0, 1), it holds for the xxxt-
optimal design objective: vt(πππ⋆) ≤ vt(πππ⋆,σ) ≤ (1 + σ)vt(πππ⋆), where πππ⋆ ∈ argminπππ∈ X

vt(πππ) and
πππ⋆,σ ∈ argminπππ∈ X ,σ

vt(πππ).

The above proposition implies that if the designs πππt ∈ X ,σ selected at timeslots t ∈ [T ] are
competitive with the best design in X ,σ , then they are also competitive with the best design in X ,
penalized by the factor (1 + σ) ≥ 1.

A.3 Experimental Design Landscape

Experimental design deals with the design of experiments in order to maximize the statistical
efficiency of the resulting estimates. The objective is evaluated as a transformation of the covari-
ance matrix of the LSE estimator. Popular choices [40] include: G(lobal)-optimality vG(VVV ) =
maxdiag

(
XXXVVV −1XXX⊺

)
, A(verage)-optimality vA(VVV ) = tr

(
VVV −1

)
/ |X |, D(eterminant)-optimality

vD(VVV ) = (detVVV )−1/|X |, and ccc-optimality vccc(VVV ) = ccc⊺VVV −1ccc. The choice of criterion depends on
the specific goals of the experiment. For example, if the goal is to reduce the maximum estimation
error of the model over all possible experiments, then D-optimality or G-optimality would be a good
choice.1 If the goal is to to reduce the estimation error on average over all possible experiments then
V -optimality is a good choice. If the goal is to estimate the outcome of a specific experiment ccc of
interest with as much precision as possible, then ccc-optimality would be a good choice.

B Technical Lemmas

B.1 Proof of Proposition 3.1

Proof. The EPE can be decomposed to variance and bias term in the following fashion. Given a
query xxxt, the following equality holds:

E
[(

yt − xxxt · β̂̂β̂βt

)2]
= E

[
(yt − xxxt · βββ⋆

t )
2
]
+ E

[(
xxxt ·

(
βββ⋆
t − β̂̂β̂β⋆

t

))2]
= σ2 +

(
xxxt ·

(
βββ⋆
t − E

[
β̂t̂βt̂βt

]))2
+ E

[(
xxxt ·

(
E
[
β̂t̂βt̂βt

]
− β̂̂β̂βt

))2]
= σ2 +

(
xxxt ·

(
E
[
β̂t̂βt̂βt

]
− β̂̂β̂βt

))2
+ xxx⊺

t cov(β̂̂β̂βt)xxxt. (5)

Applying the identity (a + b)2 = a2 + b2 + 2ab twice, we can further analyze the expression.
The first application of this identity is valid due to the properties of the label noise, specifically
E[ηt] = 0 and E[η2t ] = σ2. Subsequently, the second equality is derived by subtracting and adding
the expected value of the estimator E[β̂ββt], to the expression. Note that cov(AAAyyy) = AAAcov (yyy)AAA⊺ for
some deterministic matrix AAA. Take AAA = VVV −1(πππt−τ :t)XXX

⊺. The covariance is given by the following

cov(β̂̂β̂βt) = AAAcov (yyy)AAA⊺ = AAAcov
(

1
M

∑t
s=t−τ

∑
(x,y)∈Ds,xxx

y
)
xxx∈X

AAA⊺ = σ2

MAAAdiag
(
(πππxxx,t−τ :t)xxx∈X

)
AAA⊺

(6)

= σ2
(
VVV −1(πππt−τ :t)XXX

)⊺
diag

(
(πππxxx,t−τ :t)xxx∈X

) (
VVV −1(πππt−τ :t)XXX

⊺)⊺ =
σ2

M
VVV −1(πππt−τ :t), (7)

1Note that D-optimality and G-optimality are interchangeable when X ⊂ Rd is compact and span(X ) =
Rd [28].
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where we used var (a(y1 + y2)) = a2 for two i.i.d. r.v.s with variance 1 in Eq. (6), (AAABBB)
⊺
= BBB⊺AAA⊺

and the symmetry of VVV −1(πππt−τ :t) in Eq. (7). Further note that we just proved xxx⊺
t cov(β̂̂β̂βt)xxxt =

σ2

M ∥xxxt∥VVV −1(πππt−τ:t)
.

We have the following E
[
β̂̂β̂βt

]
= VVV −1(πππt−τ :t)XXX

⊺E [yyy]. We compute the expectation of the vector

of labels yyy: E [yyy] =
(
E
[∑t

s=t−τ

∑
(x,y)∈Ds,xxx

y
])

xxx∈X
=
(∑t

s=t−τ E
[∑

(x,y)∈Ds,xxx
y
])

xxx∈X
=(

xxx⊺∑t
s=t−τ πs,xβββ

⋆
t

)
xxx∈X

. This concludes the proof.

Lemma 1. Consider an invertible square matrix AAA(π) ∈ Rd×d parameterized by π ∈ R. The
derivative of AAA−1(π) w.r.t π is

dAAA−1(π)

dπ
= −AAA−1 dAAA(π)

dπ
AAA−1. (8)

Proof. Matrix AAA(π) is invertible, so AAA−1(π)AAA(π) = III . Let Ai,j and A−1
i,j be the i, j-th entry of the

matrices AAA(π) and its inverse AAA−1(π). This gives the following set of equations:
d∑

j=1

Ai,j(π)A
−1
j,k(π) = 1 (i = k), for i ∈ [d]. (9)

Note that 1 (i = k) is a constant w.r.t. π. Hence,
d∑

j=1

(
dAi,j(π)

dπ
A−1

j,k(π) +
dA−1

j,k(π)

dπ
Ai,j(π)

)
= 0, for i ∈ [d]. (10)

This gives

dAAA−1(π)

dπ
= −AAA−1 dAAA(π)

dπ
AAA−1. (11)

We conclude the proof.

Lemma 2. The xxxt-optimal design objective vt : X ,σ → R is differentiable with gradient at point
πππ ∈ X ,σ given by

∇πππvt(πππ) =

(
−
(
xxx⊺
t (VVV (πππ))

−1
xxx
)2)

xxx∈X
. (12)

Proof. Consider the partial derivative w.r.t. xxx ∈ X
∂vt(πππ)
∂πxxx

= xxx⊺
t

∂(VVV −1(πππ))
∂πxxx

xxxt = −xxx⊺
t

(
VVV −1(πππ)∂V

VV (πππ)
∂πxxx

VVV −1(πππ)
)
xxxt = −xxx⊺

t

(
VVV −1(πππ)xxxxxx⊺VVV −1(πππ)

)
xxxt

(13)

= −
(
xxx⊺
tVVV

−1(πππ)xxx
) (

xxx⊺
tVVV

−1(πππ)xxx
)
= −

(
xxx⊺
tVVV

−1(πππ)xxx
)2

. (14)

The first equality is obtained using Lemma 1 in the Appendix. This concludes the proof.

Theorem 2. Suppose that Assumptions 1 and 3 hold. The xxxt-optimal design objective vt : X ,σ → R
is convex, and Lσ-Lipschitz continuous w.r.t. the norm ∥ · ∥1 for Lσ ≜ 4

D2
XD2

Z
σ2ω2 .

Proof. We first prove the convexity of vt,σ . Let XXX,YYY be positive definite matrices. The inverse of a
p.d. matrix is a convex operation. The following holds

(λXXX + (1− λ)YYY )
−1 ⪯ λXXX−1 + (1− λ)YYY −1 for λ ∈ [0, 1], (15)

where XXX ⪯ YYY denotes that XXX − YYY is positive semi definite. We have by considering λ ∈ [0, 1]

vt(λπππ + (1− λ)πππ′)) = xxx⊺
t (VVV (λπππ + (1− λ)πππ′))

−1
xxxt = xxx⊺

t (VVV (λπππ) + VVV ((1− λ)πππ′))
−1

xxxt (16)

≤ λxxx⊺
t (VVV (πππ))

−1
xxxt + (1− λ)xxx⊺

t (VVV (πππ′))
−1

xxxt = λvt(πππ) + (1− λ)vt(πππ
′).

(17)
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The equality follows from the definitions of vt and VVV (πππ). The inequality holds from the property of
the inverse of positive definite matrices. This concludes the convexity proof.

Secondly, we prove the Lipschitzness of the function vt. Let πππ ∈ (τ+1) X ,σ . We have the following
from the gradient expression

∥∇πππvt(πππ)∥∞ = max
xxx∈X

{(
xxx⊺
tVVV

−1(πππ)xxx
)2} ≤ D2

Z max
xxx∈X

{∥∥VVV −1(πππ)xxx
∥∥2
2

}
≤ D2

ZD
2
X
∥∥VVV −1(πππ)

∥∥2
2

= D2
ZD

2
X
(
λmax(VVV

−1(πππ))
)2

= D2
ZD

2
X
(
λ−1
min(VVV (πππ))

)2 ≤ 4D2
XD2

Z
σ2ω2

=
4D2

XD2
Z

σ2ω2
.

Eq. (1) follows from the gradient expression in Eq. (12). Eq. (2) is obtained using the Cauchy-
Schwarz inequality. Eq. (3) and Eq. (4) follow from the definition of the spectral norm of a matrix.
Eq. (5) uses the fact that the maximum eigenvalue of an invertible matrix is equal to the reciprocal of
the minimum eigenvalue of its inverse. Finally, Eq. (6) follows from VVV (πππ) ⪰ σ

σ+1ωIII ⪰ σω
2 III , i.e.,

λmin (VVV (πππ)) ≥ λmin

(
σω
2 III
)
= σω

2 . This part concludes the proof.

Lemma 3. Let λ1, λ2, . . . , λT be a non-negative sequence of real numbers bounded by some constant,
and let τ be a positive integer bounded by a constant. If the sum

∑T
t=1 λt is O(Tα) for some

α ∈ [0, 1), then the sum
∑T

t=τ+1

(∑t
s=t−τ λs

)2
is O (Tα).

Proof. Consider the upper bound
(∑t

s=t−τ λt

)2
≤ (τ + 1)

∑t
s=t−τ λ

2
t . Apply Cauchy-Schwartz

inequality to obtain(
t∑

s=t−τ

1 · λt

)2

≤ (τ + 1)

t∑
s=t−τ

λ2
t ≤

(
t∑

s=t−τ

1

)
·

(
t∑

s=t−τ

λ2
t

)
. (18)

Thus, it holds

T∑
t=τ+1

(
t∑

s=t−τ

λt

)2

≤ (τ + 1)

T∑
t=τ+1

t∑
s=t−τ

λ2
t ≤ (τ + 1)2

T∑
t=1

λ2
t . (19)

It is sufficient to show that
∑T

t=1 λ
2
t = O (Tα) is true for

∑T
t=τ+1

(∑t
s=t−τ λt

)2
= O (Tα) to be

true.

Consider the following set I = {t ∈ [T ] : λt ≥ 1}. We claim that
∑T

t=1 λt = O (Tα) implies

|I| = O (Tα). Assume that |I| = Ω
(
Tα′
)

and α′ > α, but observe
∑T

t=1 λt ≥
∑

t∈I λt ≥∑
t∈I 1 = |I| by the definition of I. This means that

∑T
t=1 λt = Ω

(
Tα′
)

which contradicts the

assumption that
∑T

t=1 λt = O (Tα). Therefore, we must have |I| = O (Tα).

Consider now the sum
T∑

t=1

λ2
t =

∑
t∈I

λ2
t +

∑
t∈[T ]\I

λ2
t ≤ |I|max

{
λ2
t : t ∈ I

}
+

∑
t∈[T ]\I

λt = O (Tα) . (20)

Since |I| = O (Tα), the first sum is O (Tα). The second sum is bounded by
∑

t∈[T ] λt, which is

O (Tα) by the assumption that
∑T

t=1 λt = O (Tα). Therefore, we have
∑T

t=1 λ
2
t = O (Tα). We

conclude the proof.

Lemma 4. Consider experimental designs πππ1, . . . ,πππT ∈ X . For t ∈ {1, 2, ..., T − 1}, define
λt = ∥πππt − πππt+1∥1. Then, for any τ ∈ {1, 2, ..., T}, the following inequality holds:

t∑
s=t−τ

∥πππs − πππt∥1 ≤ (τ + 1)

t∑
s=t−τ

λs. (21)
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Proof. Use the triangle inequality to obtain the following:

t∑
s=t−τ

∥πππs − πππt∥1 ≤
t∑

s=t−τ

t−1∑
s′=s

∥πππs′+1 − πππs′∥1 =

t∑
s=t−τ

t−1∑
s′=s

λs′ (22)

≤
t∑

s=t−τ

t∑
s′=t−τ

λs′ = (τ + 1)

t∑
t′=t−τ

λt′ . (23)

The proof is concluded.

Lemma 5. Under Assumptions 1–3, a fixed design πππ ∈ X ,σ, and a retention period τ ∈ N, the
expected prediction error at time t of the LSE model on experiment xxxt ∈ Z is

E
[(

yt − xxxt · β̂̂β̂βt

)2]
= σ2 +

σ2xxx⊺
t (XXX

⊺diag (πππ)XXX)
−1

xxxt

M(τ + 1)
+

(
xxxt ·

(
βββ⋆
t −

1

τ + 1

t∑
s=t−τ

βββ⋆
s

))2

.

Proof. We can rewrite Eq. (1) as follows. It is easy to see that xxx⊺
t (XXX

⊺diag ((τ + 1)πππ)XXX)
−1

xxxt =
xxx⊺
tVVV

−1(πππ)xxxt

τ+1 . Also, it holds

1

τ + 1
(XXX⊺diag (πππ)XXX)

−1

(∑
xxx∈X

xxxxxx⊺
t∑

s=t−τ

πxxxβββ
⋆
s

)
(24)

= (XXX⊺diag (πππ)XXX)
−1

(∑
xxx∈X

xxxxxx⊺πππxxx

(
1

τ + 1

t∑
s=t−τ

βββ⋆
s

))
(25)

= (XXX⊺diag (πππ)XXX)
−1

(XXX⊺diag (πππ)XXX)

(
1

τ + 1

t∑
s=t−τ

βββ⋆
s

)
= III

(
1

τ + 1

t∑
s=t−τ

βββ⋆
s

)
(26)

=

(
1

τ + 1

t∑
s=t−τ

βββ⋆
s

)
. (27)

This concludes the proof.

Lemma 6. Under Assumptions 1–3, let {πππs}ts=t−τ ∈ t
X ,σ be a sequence of designs, and let

λt = ∥πππt − πππt+1∥1. Then, the expected prediction error of the LSE model on experiment xxxt ∈ Z at
time t under an inference window size τ is bounded as follows:

|ft(πππt, . . . ,πππt)− ft(πππt−τ , . . . ,πππt)| ≤ ϵλλλ,t,τ , (28)

where ϵλλλ,t,τ = 8
(

|X |DZBX∪ZDX
ωσ

∑t
t′=t−τ λt′

)2
+ 16

|X |DZB2
X∪ZDX

ωσ

∑t
t′=t−τ λt′ +

4D2
XD2

Z
σ2ω2M

∑t
t′=t−τ λt′ .

Proof. The proof is divided into two parts. In the first part we bound the variance term, and in the
second part we bound the bias term.
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Part 1. We bound the quantity |vt(πππt−τ , . . . ,πππt)− vt(πππt, . . . ,πππt)|. Lemma 2 shows that vt is
Lipschitz continuous over X ,σ with parameter Lσ =

4D2
XD2

Z
σ2ω2M(τ+1) . Thus, we have the following:

|vt(πππt−τ , . . . ,πππt)− vt(πππt, . . . ,πππt)| = |vt(πππt−τ :t)− vt((τ + 1)πππt)| (29)
≤ Lσ ∥πππt−τ :t − (τ + 1)πππt∥1 (30)

≤ Lσ

t∑
s=t−τ

∥πππs − πππt∥1 (31)

≤ Lσ(τ + 1)

t∑
t′=t−τ

λt′ (Lemma 4) (32)

=
4D2

XD2
Z

σ2ω2M

(
t∑

t′=t−τ

λt′

)
. (Lemma 2) (33)

Part 2. We bound the quantity |bt(πππt−τ , . . . ,πππt)− bt(111/ |X | , . . . ,111/ |X |)|. Recall that

bt(πππt−τ , . . . ,πππt) =

(
xxxt ·

(
VVV −1(πππt−τ :t)

(∑
xxx∈X

xxxxxx⊺
t∑

s=t−τ

πs,xxxβββ
⋆
s

)
− βββ⋆

t

))2

. (34)

Observe the following:

E
[
xxxt · β̂ββt

]
= xxxt ·

(
VVV −1(πππt−τ :t)

(
M
∑
xxx∈X

xxxxxx⊺
t∑

s=t−τ

πs,xxxβββ
⋆
s

))
(35)

= xxxt · VVV −1(πππt−τ :t)

(
M
∑
xxx∈X

xxxxxx⊺πt−τ :t,xxx

τ + 1

t∑
s=t−τ

βββ⋆
s

)
+ xxxt · (∆∆∆1 +∆∆∆2) , (36)

where

∆∆∆1 = VVV −1(πππt−τ :t)

(
M
∑
xxx∈X

xxxxxx⊺
t∑

s=t−τ

(πs,xxx − πt,xxx)βββ
⋆
s

)
, (37)

∆∆∆2 = VVV −1(πππt−τ :t)

(
M
∑
xxx∈X

xxxxxx⊺ (τ + 1)πt,xxx − πt−τ :τ,xxx

τ + 1

t∑
s=t−τ

βββ⋆
s

)
. (38)

Moreover, note that the first term in Eq. (36) satisfies

xxxt ·

(
VVV −1(πππt−τ :t)

(
M
∑
xxx∈X

xxxxxx⊺πt−τ :t,xxx

τ + 1

t∑
s=t−τ

βββ⋆
s

))
(39)

= xxxt ·

(
VVV −1(πππt−τ :t)VVV (πππt−τ :t)

(
1

τ + 1

t∑
s=t−τ

βββ⋆
s

))
= xxxt ·

(
1

τ + 1

t∑
s=t−τ

βββ⋆
s

)
. (40)

We establish upper bounds on the remaining terms:

|xxxt ·∆∆∆1| ≤
∑
xxx∈X

t∑
s=t−τ

∣∣VVV −1(πππt−τ :t) (Mxxxxxx⊺ ((τ + 1)πt,xxx − πt−τ :τ,xxx)βββ
⋆
s) · xxxt

∣∣ (41)

≤
∑
xxx∈X

t∑
s=t−τ

DZ
∥∥VVV −1(πππt−τ :t) (Mxxxxxx⊺ ((τ + 1)πt,xxx − πt−τ :τ,xxx)βββ

⋆
s)
∥∥
2

(42)

≤ 2
∑
xxx∈X

DZ

ωσ(τ + 1)
BX∪ZDX |(τ + 1)πt,xxx − πt−τ :τ,xxx| (43)

≤ 2 |X |DZBX∪ZDX

ωσ

t∑
t′=t−τ

λt′ . (44)

14



Following the same steps, we obtain

|xxxt ·∆∆∆2| ≤
∑
xxx∈X

t∑
s=t−τ

2DZBX∪ZDX

ωσ(τ + 1)
|πs,xxx − πt,xxx| ≤

2 |X |DZBX∪ZDX

ωσ

t∑
t′=t−τ

λt′ . (45)

Use the simple fact that (x+ y)2 = x2 + y2 + 2xy, and (x+ y)2 ≤ 2x2 + 2y2 to obtain

|bt(πππt−τ , . . . ,πππt)− bt(111/ |X | , . . . ,111/ |X |)| (46)

=

∣∣∣∣∣∣
(
xxxt ·

(
E
[
β̂ββt

]
− βββ⋆

t

))2
−

(
xxxt ·

(
1

τ + 1

t∑
s=t−τ

βββ⋆
s − βββ⋆

t

))2
∣∣∣∣∣∣ (47)

=

∣∣∣∣∣∣
(
xxxt ·

((
1

τ + 1

t∑
s=t−τ

βββ⋆
s +∆∆∆1 +∆∆∆2

)
− βββ⋆

t

))2

−

(
xxxt ·

(
1

τ + 1

t∑
s=t−τ

βββ⋆
s − βββ⋆

t

))2
∣∣∣∣∣∣
(48)

=

∣∣∣∣∣
(
(xxxt · (∆∆∆1 +∆∆∆2))

2
+ 2 (xxxt · (∆∆∆1 +∆∆∆2))

(
xxxt ·

(
1

τ + 1

t∑
s=t−τ

βββ⋆
s

)
− βββ⋆

t

))∣∣∣∣∣ (49)

≤ 8

(
|X |DZBX∪ZDX

ωσ

t∑
t′=t−τ

λt′

)2

+ 16
|X |DZB

2
X∪ZDX

ωσ

t∑
t′=t−τ

λt′ . (50)

Finally, combine Eqs. (33) and (50)

|ft(πππt, . . . ,πππt)− ft(πππt−τ , . . . ,πππt)| (51)

≤ 8

(
|X |DZBX∪ZDX

ωσ

t∑
t′=t−τ

λt′

)2

+ 16
|X |DZB

2
X∪ZDX

ωσ

t∑
t′=t−τ

λt′ +
4D2

XD2
Z

σ2ω2M

(
t∑

t′=t−τ

λt′

)
.

(52)

We conclude the proof.

Proposition 3. Under Assumptions 1–3, let {πππs}ts=t−τ ∈ X ,σ be a sequence of designs, and let
PT =

∑T
t=1 ∥πππt − πππt+1∥1. Then, the EPE of the LSE on sequence of experiments {xxxt}Tt=1 ∈ Z at

time t under an inference window size τ is bounded as follows:∑T
t=τ+1 |ft(πππt, . . . ,πππt)− ft(πππt−τ , . . . ,πππt)| = O (PT ) . (53)

Proof. From Lemma 6 we have

T∑
t=τ+1

|ft(πππt, . . . ,πππt)− ft(πππt−τ , . . . ,πππt)| =
T∑

t=τ+1

ϵλλλ,t,τ = O

 T∑
t=τ+1

λt +

T∑
t=τ+1

(
t∑

st−τ

λs

)2


(54)

= O (PT ) +O

 T∑
t=τ+1

(
t∑

st−τ

λs

)2
 . (55)

Lemma 3 gives O
(∑T

t=τ+1

(∑t
st−τ λs

)2)
= O (PT ). This concludes the proof.

C A Unified Analysis via Mirror Descent Schemes

Mirror Descent Parametrization. We provide the set of assumptions relevant to correct parametriza-
tion of the online mirror descent family of gradient-based policies.

Assumption 4. The map Φ : SΦ → R satisfies the following properties:
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• The domain SΦ of Φ is a convex and open set such that the decision set S is included in its
closure, i.e., S ⊆ closure(D), and their intersection is nonempty S ∩ SΦ ̸= ∅.

• The map Φ is ρ strongly-convex over SΦ w.r.t. a norm ∥ · ∥ and differentiable over SΦ.

• The map ∇Φ(πππ) : SΦ → Rn is surjective.

• The gradient of Φ diverges on the boundary of SΦ, i.e., limπππ→∂SΦ ∥∇Φ(πππ)∥ = +∞, where
∂SΦ = closure(SΦ) \ SΦ.

A map Φ : SΦ → R is said to be a mirror map if it satisfies Assumption 4.

Assumption 5. Consider a decision set S and a mirror map Φ. The dual norm ∥ · ∥⋆ of the gradient
of the mirror map Φ is bounded by LΦ ∈ R≥0, i.e., ∥∇Φ(πππ)∥⋆ ≤ LΦ for every πππ ∈ S.

Assumption 6. Consider a decision set S, a map Φ, and πππ1 = argminSΦ(πππ). The Bregman
divergence DΦ is bounded over S, i.e., there exits DΦ,max s.t. DΦ(πππ,πππ1) ≤ D2

Φ,max < ∞ for any
πππ ∈ S.

Definitions. We present formal definitions that are crucial for our subsequent analysis of regret
bounds associated with mirror descent algorithms.

Definition 3. The Bregman projection [29] associated to a map Φ onto a convex set S is denoted by
ΠΦ

S : Rn → S, is defined as

ΠΦ
S (πππ

′) = argmin
πππ∈S

DΦ(πππ,πππ
′), where DΦ(πππ,πππ

′) = Φ(πππ)− Φ(πππ′)−∇Φ(πππ′) · (πππ − πππ′). (56)

Definition 4. Let Φ : SΦ → R be a mirror map satisfying Assumption 4, and η ∈ R>0 be the
learning rate. At timeslot t ∈ [T ], Online Mirror Descent upon receiving cost function ft it updates
the decision πππt according to the mapping

πππt+1 = ΠS∩SΦ

(
(∇Φ)

−1
(∇Φ(πππt)− η∇πππft(πππt))

)
. (57)

C.1 Technical Lemmas

Lemma 7. (First Order Optimality Condition) Let f : S → R be convex and S a closed convex set
on which f is differentiable. Then

πππ⋆ ∈ argminπππ∈Sf(πππ) ⇐⇒ ∇f(πππ⋆) · (πππ⋆ − πππ′) ,∀πππ′ ∈ S. (58)

Lemma 8. Assume that Φ is ρ-strongly convex w.r.t ∥ · ∥. Let ∥ · ∥⋆ be the dual norm of ∥ · ∥ and
η ∈ R>0, and gggt ∈ Rd be the gradient at time t. The upper bound Λ(πππt, gggt) ≥ DΦ(πππt,zzzt+1)

η2 can be
taken as

Λ(πππt, gggt) =
∥gggt∥2⋆
2ρ

. (59)

Proof. Expand DΦ(πππt, zzzt+1) to obtain

DΦ(πππt, zzzt+1) = Φ(πππt)− Φ(zzzt+1)−∇Φ(zzzt+1) · (πππt − zzzt+1) (60)
= Φ(πππt)− Φ(zzzt+1) +∇Φ(πππt) · (zzzt+1 − πππt) +∇Φ(πππt)−∇Φ(zzzt+1) · (πππt − zzzt+1)

(61)

≤ −ρ

2
∥πππt − zzzt+1∥2 + ηgggt · (πππt − zzzt+1). (62)

By the strong convexity of Φ and the gradient step. Use Cauchy-Schwarz inequality to obtain

DΦ(πππt, zzzt+1) ≤ η ∥gggt∥⋆ ∥πππt − zzzt+1∥ −
ρ

2
∥πππt − zzzt+1∥2 ≤

η2 ∥gggt∥2⋆
2ρ

, (63)

since maxz(az − bz2) = a2/4b. Combine (63) and (62) to conclude the proof.
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Lemma 9. When Φ is the negative entropy, πππ ∈ Rn
>0, and gggt ∈ Rn

≥0. The upper bound Λ(πππt, gggt) ≥
DΦ(πππt,zzzt+1)

η2 can be taken as

Λ(πππt, gggt) =

n∑
i=1

xi (gt,i)
2

2
. (64)

Proof. Expand DΦ(πππt, zzzt+1) to obtain

DΦ(πππt, zzzt+1) =

n∑
i=1

xt,i (exp(−ηgt,i) + ηgt,i − 1) . (65)

Since exp(x) − x − 1 ≤ x2/2 for x ≤ 0, it holds DΦ(πππt, zzzt+1) ≤ η2
∑n

i=1 xt,i(gt,i)
2/2 =

η2Λ(πππt, gggt). We conclude the proof.

Lemma 10. Fix zzz ∈ D, and let πππ = ΠΦ
X (zzz). Then

DΦ(πππ
′, zzz) ≥ DΦ(πππ

′,πππ) ∀πππ′ ∈ X . (66)

Proof. The generalized Pythagorean equality given by

DΦ(πππ,πππ
′) +DΦ(πππ

′′,πππ)−DΦ(πππ
′′,πππ′) = (∇Φ(πππ)−∇Φ(πππ′)) · (πππ − πππ′′) (67)

from the definition of the Bregman divergence, and the first order optimality condition [8], the
following holds

DΦ(πππ,zzz) +DΦ(πππ
′,πππ)−DΦ(πππ

′, zzz) = (∇Φ(πππ)−∇Φ(zzz)) · (πππ − πππ′) ≤ 0. (68)

The proof is concludes by noting that DΦ(πππ
′, zzz) ≥ 0 for any πππ′ ∈ D.

Lemma 11. At time t under a gradient gggt, OMD update rule with state πππt satisfies the following

gggt · (πππt − πππ) ≤ 1

η

(
η2Λ(gggt,πππt) +DΦ(πππ,πππt)−DΦ(πππ,πππt+1)

)
. (69)

Proof. By the gradient step, gggt = (πππt − zzzt+1)/η, so

gggt · (πππt − πππ) = (∇Φ(πππt)−∇Φ(zzzt+1)) (πππt − πππ) (70)

=
1

η
(DΦ(πππt, zzzt+1) +DΦ(πππ,πππt)−DΦ(πππ,zzzt+1)) (71)

≤ 1

η
(DΦ(πππt, zzzt+1) +DΦ(πππ,πππt)−DΦ(πππ,πππt+1)) (72)

(73)

The first equality is obtained using Eq (67). The inequality is obtained using Lemma 10. This
concludes the proof.

C.2 Regret Guarantee

Theorem 3. Consider S ⊆ Rd as the decision set, and a comparator sequence {πππ⋆
t }

T
t=1 ∈ ST

with path-length PT =
∑T

t=1

∥∥πππ⋆
t − πππ⋆

t+1

∥∥
1
. Under Assumptions (4), and (5), Online Mirror

Descent (57) configured with mirror map Φ : SΦ → R and learning rate η ∈ R≥0 has the following
regret guarantee against L-Lipschitz (w.r.t. ∥ · ∥) differentiable convex cost functions f1, . . . , fT :∑T

t=1 ft(πππt)−
∑T

t=1 ft(πππ
⋆
t ) ≤ 1

η

(
D2

Φ,max + 2LΦPT

)
+ η

(
L2T
2ρ

)
. (74)

The policy-induced decisions exhibit a path length of
∑T

t=1 ∥πππt+1 − πππt∥ = O (ηT ).
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Proof. The cost functions ft are convex and differentiable. So, it holds
∑T

t=1 ft(πππt) −∑T
t=1 ft(πππ

⋆
t ) ≤ ∇πππft(πππt) · (πππt − πππ⋆

t ). Lemma 11 gives:∑T
t=1 ft(πππt)−

∑T
t=1 ft(πππ

⋆
t ) ≤

∑T
t=1

1
η (DΦ(πππ,πππt)−DΦ(πππ,πππt+1)) + η

∑T
t=1 Λ (∇πππft(πππt)) .

(75)

Bounding the terms DΦ(πππ,πππt)−DΦ(πππ,πππt+1):∑
t∈[T ]

(DΦ(πππ
⋆
t ,πππt−1)−DΦ(πππ

⋆
t ,πππt)) ≤ DΦ(πππ

⋆
1,πππ0) +

∑
t∈[T ]

(
DΦ(πππ

⋆
t+1,πππt)−DΦ(πππ

⋆
t ,πππt)

)
(76)

≤ D2
Φ,max +

∑
t∈[T ]

(
∇Φ(πππ⋆

t+1)−∇Φ(πππt)
)
·
(
πππ⋆
t+1 − πππ⋆

t

)︸ ︷︷ ︸
Cauchy-Schwarz’s Ineq.

−DΦ(πππ
⋆
t ,πππ

⋆
t+1)︸ ︷︷ ︸

≥ 0

(77)

≤ D2
Φ,max +

∑
t∈[T ]

∥∥∇Φ(πππ⋆
t+1)−∇Φ(πππt)

∥∥
⋆︸ ︷︷ ︸

≤ LΦ

∥∥πππ⋆
t+1 − πππ⋆

t

∥∥ (78)

≤ D2
Φ,max + 2LΦ

∑
t∈[T ]

∥∥πππ⋆
t+1 − πππ⋆

t

∥∥ . (79)

Combine Eq. (75) and (79) to obtain
∑T

t=1 gggt · (πππt − πππ) ≤ 1
η

(
D2

Φ,max + 2LΦPT

)
+

η
∑T

t=1 Λ (∇πππft(πππt),πππt). Consider the bound on Λ (∇πππft(πππt),πππt) in Lemma 8. We obtain

T∑
t=1

gggt · (πππt − πππ) ≤ 1

η

(
D2

Φ,max + 2LΦPT

)
+ η

T∑
t=1

∥gggt∥2⋆
2ρ

≤ 1

η

(
D2

Φ,max + 2LΦPT

)
+ η

(
L2T

2ρ

)
.

(80)

Moreover, the following holds:

∥πππt+1 − πππt∥1 ≤
√

2

ρ
DΦ(πππt,πππt+1) ≤

√
2

ρ
DΦ(πππt, zzzt+1)−

2

ρ
DΦ(πππt+1, zzzt+1) ≤

√
2

ρ
DΦ(πππt, zzzt+1)

(81)

≤

√
2η2

L2

2ρ2
≤ Lη

ρ
. (82)

The above chain of inequalities is obtained through: the strong convexity of Φ, the generalized
Pythagorean equality (67), non-negativity of the Bregman divergence of a convex function, and
Lemma 8, in respective order. Thus, it holds

∑T
t=1 ∥πππt+1 − πππt∥ = O (ηT ). We conclude the

proof.

C.3 Entropic OMD Instantiation

Definition 5. The entropic OMD (57) is defined for the negative entropy mirror map

Φ(πππ) : πππ ∈ RX
>0 →

|X |∑
i=1

πi log(πi). (83)

The Entropic OMD algorithm is an attractive choice for simplex decision sets because its regret
bounds exhibit better dependence on the problem dimension than those of OGD (Online Gradient
Descent) [23]. Additionally, our restriction of the simplex decision set X ,σ ⊆ X allows us to
extend Entropic OMD to the dynamic regret setting while preserving its aforementioned advantage.
Formally,
Proposition 4. The Entropic OMD algorithm initialized with the state πππ1 = 111

|X | and configured over
the decision set X ,σ satisfies Assumptions (4), (5), and (6) with the following quantities:

• The map Φ is 1-strongly convex w.r.t. the ∥ · ∥1 over the |X |-dimensional subset of the
simplex X ,σ .
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• The map Φ has bounded gradient over X ,σ given by LΦ = |log(1/σ) + 1|.

• The Bregman divergence DΦ(πππ,πππ1) associated to Φ is bounded over S by DΦ,max =
log (|X |).

Proof. The negative entropy is 1-strongly convex over the simplex, a result that can be induced from
Pinker’s inequality. The gradient of the mirror map is given by ∇Φ(πππ) = (log(πππxxx) + 1)xxx∈X , which
can take at most a value of LΦ = log(1/σ) under the ∥ · ∥∞ over X ,σ. The Bregman divergence
associated to Φ is given by

DΦ(πππ,πππ1) = Φ(πππ)− Φ(πππ1)−∇Φ(πππ1)(πππ − πππ1) ≤ Φ(πππ)− πππ(πππ1) ≤ −Φ(πππ1) = log (|X |) .
The first inequality is obtained from first order optimality condition combined with the fact that
πππ1 = argminxxx∈ X ,σ

Φ(πππ). The second inequality is obtain considering that the map Φ is non-positive
for every πππ ∈ X ,σ .

The same proposition evidently holds over the set T ,σ′ for σ′ ∈ [0, 1].

C.4 Entropic-VBR Policy

The Entropic-VBR policy is designed to operate in two distinct but interrelated settings, as outlined
in Section 3. This policy is defined by a pair of mirror descent algorithms, each employing distinct
gradients and decision sets. The first decision set, X , constructs distributions over the experiment
space, while the second, T , generates distributions over the data freshness window space. The policy
iteratively updates its decisions, initialized with uniform distributionsπππ1 = 111/|X | and ppp1 = 111/(τ+1).
At time step t, the policy is refined according to the following procedure:

πt+1,xxx = Π X ,σ

(
πxxx exp

(
ηX

(
xxx⊺
t (VVV ((τ + 1)πππt))

−1
xxx
)2))

, for xxx ∈ X (84)

pt+1,τ = Π T ∩[σ′,1]T

(
pt,τ exp

(
−ηT

ξt
pτ
1 (τ = τt)

))
, for τ ∈ T ,

where τt ∼ pppt is sampled at every t, σ is the regularization parameter, and σ′ is a tuneable parameter.

C.5 Entropic Variance Reduction Policy

Given the above proposition we obtain the following regret bound for the variance-reduction policy:

Corollary 2. Under Assumptions 1–3, let X ,σ be the decision set, and let {πππ⋆
t }

T
t=1 ∈ C( T

X ,σ, P
⋆,v
T )

be a comparator sequence. Consider the OMD (57) policy with the negative entropy mirror map (83)
and learning rate ηX = Θ

(√
log(1/σ)P ⋆,v

T T−1
)

. If the Entropic OMD is configured to run as a
variance reduction policy LLLv against the costs v1, . . . , vt, then it has the following regret guarantee:

Rv (LLLv) = O
(√

log(1/σ)P ⋆,v
T T

)
. (85)

The policy-induced decisions exhibit a path length (switching cost) of:
T∑

t=1

∥πππt+1 − πππt∥ = O
(√

P ⋆,v
T T

)
. (86)

This is a direct result from Theorem 3.

C.6 Entropic Bias Reduction Policy

In this section, we show that the bandit setting can be reduced to the full-information setting via
unbiased gradient estimates. In particular, at time t an OMD (57) policy with the negative entropy
mirror map (83) and state pppt, adapts its state according to the gradient estimate

g̃ggt =
ξt,τt
pτt

eeeτt , (87)

where ξt,τt is the feedback for inference window size τt ∈ T . The estimate satisfies the following:
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Lemma 12. The gradient estimate (87) satisfies the following for any ppp ∈ T :

E [g̃ggt] = ξξξt. (88)

Proof. Simply, evaluate the expectation: E [g̃ggt] =
∑

τ∈T pτ
ξt,τ
pτ

eeeτ = ξξξt.

Theorem 4. Under Assumptions 1–3, consider T ,σ′ as the decision set and comparator se-
quence τ⋆t ∈ C

(
T T , P b

T

)
with path-length P b

T . Entropic OMD (83) configured to run as a bias-

reduction policy LLLb for ηT = Θ
(
log(1/σ′)P ⋆,b

T T−1/2
)

and σ′ = Θ
(
T−1/2

)
against the gradients

g̃gg1, . . . , g̃ggT (87) has the following expected regret

Rb
(
LLLb
)
= O

(√
log(T )P ⋆,b

T T

)
. (89)

Proof. Let Ht = {τ1, . . . , τt} be the history of the samples picked by the algorithm. The following
holds

E

[
T∑

t=1

ξt,τt −
T∑

t=1

ξτ⋆
t ,t

]
= E

[
T∑

t=1

ξξξt · pppt −
T∑

t=1

ξt · ppp⋆t

]
(90)

= E

[
T∑

t=1

ξξξt · (pppt − ppp⋆t )

]
(91)

= E

[
T∑

t=1

E
[
g̃ggt · (pppt − ppp⋆t )

∣∣Ht−1

]]
. (92)

Consider the following bound on E
[
g̃ggt · (pppt − ppp⋆t )

∣∣Ht−1

]
from Lemma 11

g̃ggt · (pppt − ppp) ≤ 1

η

(
η2Λ(gggt, pppt) +DΦ(ppp,pppt)−DΦ(ppp,pppt+1)

)
(93)

≤ 1

η
(DΦ(ppp,pppt)−DΦ(ppp,pppt+1)) +

1

2
η
ξ2t,τt
pt,τt

. (Lemma 9) (94)

Evaluate the conditional expectation E
[
·
∣∣Ht−1

]
to obtain the following bound:

E
[
1

2
ηpt,τtξ

2
t,τt

∣∣Ht−1

]
=

1

2
η
∑
τ∈T

pt,τ
ξ2t,τ
pt,τ

=
η

2

∥∥ξξξ2t∥∥1 . (95)

Take L ≥ maxt∈[T ],τ∈T ξt,τ (which we know is O (1) from Asms. 1–3). Note that since the decision
set is restricted T ,σ′ ⊆ T ,, so the policy competes with comparator points on T ,σ′ . However,
we can project the original comparator points that lie inside T to T ,σ′ with a cost difference of at
most L |X |σ′, by utilizing the Lipchitzness of the expected cost ppp · ξξξt with L ≥ maxt ∥ξξξt∥∞. Thus,
we have:

Thus, we have:

E

[
T∑

t=1

ξt,τt −
T∑

t=1

ξτ⋆
t ,t

]
≤ η

|X |L2

2
T +

1

η
E

[
T∑

t=1

(DΦ(ppp
⋆
t , pppt)−DΦ(ppp

⋆
t , pppt+1))

]
+ L |X |σ′T

(96)

≤ η
|X |L2

2
T +

1

η

log2(|X |) + 2 log(1/σ′)
∑
t∈[T ]

∥∥ppp⋆t+1 − ppp⋆t
∥∥
1
)

+ L |X |σ′T

(97)

= η
|X |L2

2
T +

1

η

(
log2(|X |) + 4 log(1/σ′)P b

T )
)
+ L |X |σ′T. (98)

Select η and σ′ as stated in the theorem to obtain the desired bound. We conclude the proof.
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D Proof of Theorem 1

Proof. The theorem follows directly from Theorem 1, Corollary 2, and Theorem 4. By substituting
the respective regret bounds, we obtain the desired result.

E Proof of Theorem 1

Proof. Lemma 6 is applied twice to bound the difference between the time-varying experimental
designs and fixed designs. First, we bound the difference between the designs generated by the policy
and fixed designs. Subsequently, we bound the difference between the dynamic optimal design and
fixed designs.

RT

(
LLLv+b

)
= E

[
T∑

t=τ+1

ft(πππt−τt , . . . ,πππt)−
T∑

t=t=τ+1

ft(πππ
⋆
t−τ⋆

t
, . . . ,πππ⋆

t )

]

= E

 T∑
t=τ+1

ft(πππt−τt , . . . ,πππt)−
T∑

t=τ+1

ft(πππ
⋆
t , . . . ,πππ

⋆
t︸ ︷︷ ︸

τ⋆
t

)

+

T∑
t=1

ϵλλλ⋆,t,τ

= E

[
T∑

t=τ+1

ft(πππt−τt , . . . ,πππt)−
T∑

t=τ+1
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ϵλλλ⋆,t,τ +
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ϵλλλ,t,τ
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(
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T + P ⋆,v

T

)
(Proposition 3). (99)

The final inequality follows from the observation that the EPE of a fixed design has a constant bias
term from Lemma 5, while the variance term is scaled by 1

τt+1 , which is always less than or equal
to 1. We conclude the proof.

F Additional Details on Experimental Setup

We consider the data domain, denoted by X , as a subset of an ellipse centered at the origin. Within
this region, we generated a uniform grid of points, as illustrated in Figure 2 (a) (points covered by
the algorithm’s initial state). We considered a time horizon of T = 3 × 104 query points. These
query points, xxxt, were sampled from a truncated Gaussian distribution characterized by a standard
deviation of σ = 1.5. The distribution’s center was shifted to (5, 0), (−5,−5), and subsequently
back to (5, 0) at times 1

3T and 2
3T , respectively, to simulate a dynamic query distribution pattern.

Figure 2 (c) provides a visual representation of the evolving query distribution. The true underlying
model, β⋆

1 , was initially set to (2, 2). To introduce temporal dynamics, we modeled its evolution as a
random walk

β⋆
t+1 = Π[0,5]2 (β

⋆
t + 0.3ηt) , (100)

21



Figure 3: Evolution of the policy-learned distribution over time, illustrating the non-trivial nature of
the optimal window size.

where Π[0,5]2 is a projection operator that ensures the model parameters remain within the interval
[0, 5], ηt is a Rademacher random variable taking values from {−1, 1}. The evolution of the model
parameters is depicted in Figure 2 (a). For our experiments, we set the experimental budget to
M = 100, the data-freshness window size to τ = 10, and the noise of the labels to a standard
Gaussian scaled by 16.
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