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ABSTRACT

The ability to explain decisions made by machine learning models remains one of
the most significant hurdles towards widespread adoption of AI in highly sensitive
areas such as medicine, cybersecurity or autonomous driving. Great interest exists
in understanding which features of the input data prompt model decision making.
In this contribution, we propose a novel approach to identify relevant features of
the input data, inspired by methods from the energy landscapes field, developed
in the physical sciences. By identifying conserved weights within groups of min-
ima of the loss landscapes, we can identify the drivers of model decision making.
Analogues to this idea exist in the molecular sciences, where coordinate invari-
ants or order parameters are employed to identify critical features of a molecule.
However, no such approach exists for machine learning loss landscapes. We will
demonstrate the applicability of energy landscape methods to machine learning
models and give examples, both synthetic and from the real world, for how these
methods can help to make models more interpretable.

1 INTRODUCTION

Machine learning methods have achieved impressive results in recent years. Besides famous appli-
cations in areas like chess (Silver et al., 2017a) and Go (Silver et al., 2017b), AI plays a critical role
in advances to autonomous driving (Grigorescu et al., 2020), protein structure prediction (Jumper
et al., 2021), cancer identification (Sammut et al., 2022) and in cybersecurity (Dasgupta et al., 2022).
However, in order for AI methods to take the next step and be commonly employed for critical ap-
plications without any humans in the loop, we want to be able to understand the decision making
process. A critical component towards explainable AI is understanding which parts of the input data
are utilised by the model in its decision making. In neural networks, the most popular approach is to
study the outgoing weights and gradients from an individual input node. Larger weights are reason-
ably assumed to indicate a greater significance of the particular input, and indeed, an entire class of
interpretability metrics, namely gradient-based methods, are founded on this idea (Simonyan et al.,
2013; Linardatos et al., 2020). Yet, given the immense complexity of overparameterised, deep neu-
ral networks, current methods are in practice often insufficient to appropriately explain a model.
Using methods from the physical sciences, we propose a novel approach as a next step towards
interpretable neural networks.

1.1 ENERGY LANDSCAPES

In the physical sciences, energy landscapes (ELs) are employed to explore molecular configuration
space (Wales et al., 1998; 2003). Each molecular configuration is associated with an energy value,
and local minima of the energy landscape represent stable isomers. The analogy to machine learning
loss landscapes (ML-LLs) is straightforward, the main difference perhaps being that non-minima are
valid configurations for sets of weights. Due to this similarity between ELs and ML-LLs, various,
well-established methods from the field of energy landscapes can be employed to study ML-LLs.
One key area of interest here is interpretability. Employing well-understood methods from a mature
field, with a solid mathematical basis in the physical world, to move away from black-box machine
learning models may be a helpful step towards interpretable machine learning models.
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1.2 RELATED WORK

Various approaches to interpretability in deep learning for neural networks exist. Below, we are
mostly interested in gradient-based methods due to their applicability to non-image data. Vari-
ous other methods to interpret the output of CNNs on images exist, as for example summarised in
Linardatos et al. (2020), but will not be reviewed below.
Gradient-based methods: All gradient-based methods are concerned with changes in the predic-
tion as the input data is slightly perturbed. For a vector-valued input x ⊂ X ∈ Rd and some
loss function, L, a gradient-based method computes some expression of the form ∂L/∂x, usually
for each input node individually. Gradient-based methods were first introduced for images by Si-
monyan et al. (2013), who used them to compute how changes in the input affect predictions in the
neighbourhood of the input, allowing the computation of a salience map (Kümmerer et al., 2014;
Zhao et al., 2015). More recently, integrated gradient methods (Sundararajan et al., 2017) consider
the derivative of the output (loss) with respect to individual input nodes. If the change in loss is
large with respect to some input feature, that feature is more likely to be relevant to the decision
making. Various other gradient and perturbation based methods exist (Alvarez-Melis & Jaakkola,
2018), yet their usefulness and accuracy is debated, and is generally agreed to be insufficient (Srini-
vas & Fleuret, 2020).
Energy landscapes in machine learning: Energy landscapes methods have been employed to study
machine learning in previous contributions (Ballard et al., 2017; Chitturi et al., 2020). Niroomand
et al. (2022) used energy landscapes to characterise new loss functions, and the landscapes view has
been used more broadly to gain insights into machine learning models (Segura et al., 2022; Verpoort
et al., 2020). Lastly, other applications of energy landscape methods have employed various con-
cepts from physical sciences in machine learning, including the heat capacity (Bradley et al., 2022;
Niroomand et al., 2022), both for characterisation and model improvement.
Interpreting energy landscapes: Due to the associated physical meaning, energy landscapes are
usually more easily interpretable. Only minima represent equilibrium configurations, and each min-
imum is associated with a unique structure. However, for larger, complex molecules, many minima
may exist, and enumerating them may be infeasible. Instead, common features between sets of min-
ima, grouped by their energetic properties, may be identified. For example, in (Röder et al., 2020)
and (Röder & Wales, 2022) a multi-funnelled landscape is analysed to understand which structural
differences of a molecule characterise solutions in a specific funnel.

2 ENERGY LANDSCAPES METHODS

The study of energy landscapes is a well-established field (Wales et al., 1998). Various approaches
exist for constructing a faithful representation of the landscape by optimising the non-convex energy
function, and visualising this landscape. Visualisation is commonly performed using disconnectivity
graphs (Becker & Karplus, 1997; Wales et al., 1998) as described below.

2.1 LANDSCAPE VISUALISATION

A disconnectivity graph is a low-dimensional representation of a complex function landscape, which
reduces the function to key characteristic stationary points, namely minima and transition states. A
transition state is an index-1 saddle point of the funciton. The vertical axis of a disconnectivity graph
represents the energy or loss value, and ordering along the horizontal axis is arbitrary. To identify
distinct groups of minima, usually called funnels, we introduce the notion of levels and nodes.
Levels are cross-sections of the energy at some evenly spaced, discrete heights in the disconnectivity
graph. The highest energy level in the disconnectivity graph is level 1, and the lowest corresponds to
the global minimum. Thus, each minimum belongs to one of evenly spaced intervals. Within each
level, minima are grouped by a shared parent node, located higher up. In the disconnectivity graphs
below, levels and nodes are represented as level node.

In the molecular sciences, a transition state between two minima describes the energy barrier to be
overcome for a molecule to change configuration from one state to the other. This particular notion
does not have a direct meaning in machine learning. However, given the optimisation procedure
required for model training, the concept of a transition state is highly relevant, since it may determine
which minimum basin the optimiser will fall into. Thus, disconnectivity graphs can be employed
as a faithful coarse-grained representation of the loss landscape. In particular, it will be relevant
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below to understand that any group of minima close together, perhaps separated from other groups
of minima via high-lying transition states, may share commonalities. This effect has been observed
in (Röder et al., 2020; Röder & Wales, 2022) for molecular systems, and we find that the same
argument holds for ML-LLs.

3 EXPERIMENTS

We report results for two separate experiments on two datasets. We believe that the underlying
idea applies without loss of generality to any neural network architecture. However, further work
will be required to validate this suggestion. Figures 1and 2 show disconnectivity graphs for (1)
a 2-dimensional synthetic checkerboard dataset (Kluger et al., 2003) and (2) an anonymised, 29-
dimensional credit card fraud detection dataset (Dal Pozzolo et al., 2015), which are binary classi-
fication problems. The lowest lying node in each graph is the global minimum. To identify groups
of minima with conserved weights, we follow a two-step procedure. Firstly, we identify groups of
minima, that are separated from other groups by a higher-lying transition state. This segregation
leads to the notion of nodes and levels described above. Secondly, we identify groups of minima
that share a subset of conserved weights by computing the standard deviation of each weight across
each node in each level. A subset of weights w̃ ⊂ W is conserved if σ(w) < n for any w ∈ W ,
where W denotes the weights of all minima in one node of one level.
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Figure 1: Disconnectivity graph for the checkerboard dataset. The conserved weights for a specific
local minimum are highlighted in the respective colour for the chosen examples.

For visualisation purposes, we employ single-layer neural networks, which is sufficient for our anal-
ysis, with only a few nodes. The AUC of the best solutions is > 0.95 for both problems. Hence,
these networks provide a realistic solutions to the set problems. In both figures, we visualised the
conserved weights for a group of minima in the corresponding colour. In Figure 1, various weights
across the network are conserved, highlighting how this approach identifies relevant weights for the
model. In Figure 2, the funnel containing the global minimum (red) conserves 3 weights, all related
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to one specific input node. Randomly permuting the 3 identified weights for the group of minima
around the global minimum in figure 2 reduces the best AUC from ≈ 0.95 to 0.76. In contrast,
permuting any random set of 3 weights by the same magnitude on average only decreases the best
AUC by 0.05 to an average best AUC of ≈ 0.9. In 2, for group 25 7 (red), weights for only a sin-
gle minimum are conserved, in group 22 6 (blue), weights outgoing from different input nodes are
conserved.

Figure 2: Disconnectivity graph for credit card data. Group 25 7 in red includes the global mini-
mum. Coloured edges indicate that for all minima in the specific group, these particular weights are
conserved, i.e. have a standard deviation < n which has been set to n = 0.01 here.

3.1 PERMUTATIONAL INVARIANCE GROUPS

As discussed in Niroomand et al. (2022), the magnitude of individual weights must always be viewed
with caution due to permutational isomers. For a given neural network of H hidden layers, with
nl nodes in hidden layer l, there exist at least |G| =

∏H
l=1 (nl!× 2nl) sets of weights that are

invariant with respect to the model prediction. This effect must be considered when identifying
conserved weights; for example, a negative inverse could still be valid and conserved (Niroomand
et al., 2022). We account for this effect by identifying permutationally invariant sets of weights and
only considering a single minimum m ∈ G for each G.

4 DISCUSSION AND CONCLUSIONS

Well-established methods from computational chemical physics can be employed to enhance our un-
derstanding of machine learning systems. In this work, we have shown how both concepts and asso-
ciated tools from the study of energy landscapes can be employed for ML-LLs to guide interpretabil-
ity. We have shown that groups of minima share conserved weights and importantly, that these
weights are critical to model performance. Randomly permuting the conserved weights strongly
decreases model performance, much more so than permuting any other random set of weights S of
equivalent cardinality |S|. Figure 2 indicates that all the conserved weights are associated with the
particular input node 6. Since the credit card dataset is anonymised and PCA-reduced (Dal Pozzolo
et al., 2015), we are unable to say which specific feature it is that helps the model in making a deci-
sion, but we can say where it can be found. In Figure 1, we know that both input nodes are relevant,
which is confirmed by studying the conserved weights for the three given examples. Importantly,
different weights are conserved across different examples, highlighting the importance of studying
the loss landscape. Studying the applicability of our method to larger and more complex architec-
tures, and perhaps also to different types of machine leaning models, will provide valuable insights,
and is an interesting direction for future work.
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