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• We propose a new procedure for sparse precision matrix estimation.
• We are among the first to establish the theory of cross validation for this problem.
• The conditions are slightly weaker than an important penalized likelihood method.
• Improved numerical performance is observed in several examples.
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a b s t r a c t

This paper proposes a new method for estimating sparse precision matrices in the high
dimensional setting. It has been popular to study fast computation and adaptive procedures
for this problem. We propose a novel approach, called Sparse Column-wise Inverse
Operator, to address these two issues. We analyze an adaptive procedure based on cross
validation, and establish its convergence rate under the Frobenius norm. The convergence
rates under othermatrix norms are also established. Thismethod also enjoys the advantage
of fast computation for large-scale problems, via a coordinate descent algorithm.Numerical
merits are illustrated using both simulated and real datasets. In particular, it performs
favorably on an HIV brain tissue dataset and an ADHD resting-state fMRI dataset.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Estimating covariance matrices is fundamental in multivariate analysis. It has been popular to estimate the inverse co-
variance (or precision) matrix in the high dimensional setting, where the number of variables p goes to infinity with the
sample size n (more precisely, in this paper, p ≫ n and (log p)/n = o(1)). Inverting the sample covariance matrix has
been known to be unstable for estimating the precision matrix. Recent proposals usually formulate this objective as reg-
ularized/penalized optimization problems, where regularization is employed to control the sparsity of the precision ma-
trix. Besides the challenge of solving such large optimization problems, there is an important issue on how to choose an
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appropriate regularization level that is adaptive to the data. To address these two challenges, we propose a fast and adap-
tive method, and establish the theoretical properties when the regularization level is chosen by cross validation.

Let X = (X1, . . . , Xp)
T be a p-variate random vector with a covariance matrix 6 or its corresponding precision matrix

� := 6−1. Suppose we observe independent and identically distributed random samples {X1, . . . ,Xn} from the distribution
of X . To encourage a sparse and stable estimate for �, regularized/penalized likelihood approaches have been proposed.
Here, sparsity means that most of the entries in � are exactly zero. Popular penalties include the ℓ1 penalty [22] and its
extensions, for example, [24,12,8,20]. In particular, [12] developed an efficient algorithm, glasso, to compute the penalized
likelihood estimator, and its convergence rates were obtained under the Frobenius norm [20] and the elementwise ℓ∞ norm
and spectral norm [19]. Other penaltieswere also studied before. For example, the ℓ1 penaltywas replaced by the nonconvex
SCAD penalty [11,14,10]. Due to the complexity of the penalized likelihood objective, theoretical analysis and computation
are rather involved. Moreover, the theory usually relies on some theoretical assumptions of the penalty, and thus it provides
limited guidance for applications.

Recently, column-wise or neighborhood based procedures have caught much attention, due to the advantages in both
computation and analysis. [18] proposed to recover the support of � using ℓ1 penalized regression, aka LASSO [22],
in a row by row fashion. This can be computed efficiently via path-following coordinate descent [13] for example. A
Dantzig selector proposal, replacing the LASSO approach, was proposed recently by [23], and the computation is based
on standard solvers for linear programming. [5] proposed a procedure, CLIME, which seeks a sparse precision matrix under
a matrix inversion constraint. Their procedure is also solved column by column via linear programming. Compared with the
regularized likelihood approaches, their convergence rates were obtained under several matrix norms mentioned before,
without imposing themutual incoherence condition [19], and were improved when X follows polynomial tail distributions.
However, all these procedures can be computational expensive for very large p, and again these estimators were analyzed
based on theoretical choices of the penalty.

Cross validation on the other hand has gained popularity for choosing the penalty levels or tuning parameters, because
it is adaptive and usually yields superior performance in practice. Unfortunately, the theoretical understanding of cross
validation is sparse. For a related problem on estimating sparse covariance matrices, [1] analyzed the performance of
covariance thresholding where the threshold is based on cross validation. [4] provided a different approach using self-
adaptive thresholding. However, these covariance estimation results cannot be extended to the inverse covariance setting,
partly due to the problem complexity. This paper will provide theoretical justification for cross validation when estimating
the precisionmatrix. This result is made possible becausewe propose a new column-wise procedure that is easy to compute
and analyze. To the best of our knowledge, this paper is among the first to provide theoretical justification of cross validation
for sparse precision matrix estimation.

The contributions of this paper are several folds. First, we propose a novel and penalized column-wise procedure, called
Sparse Columnwise Inverse Operator (SCIO), for estimating the precision matrix �. Second, we establish the theoretical
justification under mild conditions when its penalty is chosen by cross validation. The theory for cross validation is
summarized as follows. A matrix is called sp-sparse if there are at most sp non-zero elements on each row. It is shown

that the error between our cross validated estimator �̂ and � satisfies ∥�̂
1

− �∥
2
F/p = OP(sp(log p)/n), where ∥ · ∥F is

the Frobenius norm. Third, theoretical guarantees for the SCIO estimator are also obtained under other matrix norms, for
example the element-wise ℓ∞ norm which achieves graphical model selection [15]. Fourth, we provide a fast and simple
algorithm for computing the estimator. Because our algorithm exploits the advantages of conjugate gradient and coordinate
descent, and thus it provides superior performance in computational speed and cost. In particular, we reduce two nested
loops in glasso [12] to only one. An R package of our method, scio, has been developed, and is publicly available on CRAN.

The rest of the paper is organized as follows. In Section 2, after basic notations and definitions are introduced, we present
the SCIO estimator. Finite sample convergence rates are establishedwith the penalty level chosen both by theory in Section 3
and by cross validation in Section 4. The algorithm for solving SCIO is introduced in Section 5. Its numerical merits are
illustrated using simulated and real datasets. Further discussions on the connections and differences of our resultswith other
related work are given in Section 6. The supplementary material includes additional results for the numerical examples in
Section 5 and the proof of the main results (see Appendix A).

The notations in this paper are collected here. Throughout, for a vector a = (a1, . . . , ap)T ∈ Rp, define |a|1 =
p

j=1 |aj|

and |a|2 =

p
j=1 a

2
j . All vectors are column vectors. For a matrix A = (aij) ∈ Rp×q, we define the elementwise l∞ norm

|A|∞ = max1≤i≤p,1≤j≤q |aij|, the spectral norm ∥A∥2 = sup|x|2≤1 |Ax|2, the matrix ℓ1 norm ∥A∥L1 = max1≤j≤q
p

i=1 |aij|,

the matrix ∞ norm ∥A∥∞ = max1≤i≤q
p

j=1 |aij|, the Frobenius norm ∥A∥F =


i,j a

2
ij, and the elementwise ℓ1 norm

∥A∥1 =
p

i=1
q

j=1 |aij|. Ai,· and A·,j denote the ith row and jth column respectively. I denotes an identity matrix. 1 {·} is the
indicator function. The transpose of A is denoted by AT . For any two matrices A and B of proper sizes, ⟨A, B⟩ =


i


ATB


ii.

For any two index sets T and T ′ and a matrix A, we use ATT ′ to denote the |T | × |T ′
| matrix with rows and columns of A

indexed by T and T ′ respectively. The notation A ≻ 0 means that A is positive definite. For two real sequences {an} and {bn},
write an = O(bn) if there exists a constant C such that |an| ≤ C |bn| holds for large n, an = o(bn) if limn→∞ an/bn = 0, and
an ≍ bn if an = O(bn) and bn = O(an). Write an = OP(bn) if an = O(bn) holds with the probability going to 1. The constants
C, C0, C1, . . . may represent different values at each appearance.
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2. Methodology

Our estimator is motivated by adding the ℓ1 penalty [22] to a column loss function, which is related to conjugate descent
and a constrained minimization approach CLIME [5]. The technical derivations that lead to the estimator is provided in the
supplementary material (see Appendix A). Denote the sample covariance matrix by 6̂. Let a vector β̂i be the solution to the
following equation:

β̂i = argmin
β∈Rp

1
2
βT 6̂β − eTi β + λni|β|1


, (1)

where β̂i = (β̂i1, . . . , β̂ip)
T , ei is the ith column of a p × p identity matrix, and λni > 0 is a tuning parameter. The tuning

parameter could be different from column to column, adapting to different magnitude and sparsity of each column.
One can formulate a precisionmatrix estimatewhere each column is the corresponding β̂i. However, the resultingmatrix

may not be symmetric. Similar to a symmetrization step employed in CLIME, we define the SCIO estimator �̂ = (ω̂ij)p×p,
using the following symmetrization step,

ω̂ij = ω̂ji = β̂ij1{|β̂ij| < |β̂ji|} + β̂ji1{|β̂ij| ≥ |β̂ji|}. (2)

As wewill establish in Section 3, similar to the results of CLIME, the convergence rates shall not change if the diagonal of the
sample covariance 6̂ is added by a small positive amount, as long as in the order of n−1/2 log1/2 p. With this modification,
(1) is then strictly convex and has a unique solution. In Section 5, we will present an efficient coordinate descent algorithm
to solve it.

The SCIO estimator, like other penalized estimators, depends on the choice ofλni.We allowλni to be different fromcolumn
to column, so that it is possible to adapt to each column’s magnitude and sparsity, as we will illustrate in Section 4. More
importantly, due to the simplified column loss function (1), we are able to establish, in Section 4, the theoretical guarantees
when λni is chosen by cross validation. In comparison, the theory of cross validation for glasso [12] and CLIME [5] has not
been established before, to the best of our knowledge.

3. Theoretical guarantees

3.1. Conditions

Let Si be the support of �·,i, the ith column of � = (ωij)p×p. Define the sp-sparse matrices class

U =


� ≻ 0 : max

1≤j≤p

p
i=1

1{ωij ≠ 0} ≤ sp, ∥�∥L1 ≤ Mp, c−1
0 ≤ Λmin(�) ≤ Λmax(�) ≤ c0


,

where c0 is a positive constant, Λmin(�) and Λmax(�) are the minimum and maximum eigenvalues of � respectively. The
sparsity sp is allowed to grow with p, as long as it satisfies the following condition.
(C1). Suppose that � ∈ U with

sp = o


n
log p


(3)

and

max
1≤i≤p

6Sc
i Si


6SiSi

−1


∞

≤ 1 − α (4)

for some 0 < α < 1.
As we will see from Theorem 1, condition (3) is required for proving the consistency. Condition (4) is in the same spirit

as the mutual incoherence or irrepresentable condition for glasso [19], but it is slightly relaxed, see Remark 2. In general,
this type of conditions is believed to be almost necessary for penalization methods to recover support.

Let Y = (Y1, . . . , Yp)
T

= �X − �µ where µ = EX . The covariance matrix of Y is thus �. The second condition is on the
moments of X and Y .
(C2). (Exponential-type tails) Suppose that log p = o(n). There exist positive numbers η > 0 and K > 0 such that

E exp

η(Xi − µi)

2
≤ K , E exp


ηY 2

i


≤ K for all 1 ≤ i ≤ p.

(C2∗). (Polynomial-type tails) Suppose that for some γ , c1 > 0, p ≤ c1nγ , and for some δ > 0

E|Xi − µi|
4γ+4+δ

≤ K , E|Yi|
4γ+4+δ

≤ K for all i.

We will assume either one of these two types of tails in our main analysis. These two conditions are standard for analyzing
sparse precision matrix estimation, see [5] and references within.
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3.2. Convergence rates of �̂ − �

The first theorem is on the convergence rate under the spectral norm. It implies the convergence rates of eigenvalues
and eigenvectors, which are essential in principle component analysis for example. The convergence rate under the spectral
normmayalso be important for classification, for example linear/quadratic discriminant analysis aswe illustrate in Section5.

Theorem 1. Let λni = C0
√
log p/n with C0 being a sufficiently large number. Under (C1), and (C2) (or (C2∗)), we have�̂ − �


2

≤ CMpsp


log p
n

with probability greater than 1 − O

p−1


(or 1 − O(p−1

+ n−δ/8) under (C2∗)), where C > 0 depends only on c0, η, C0 and K
(or c0, c1, γ , δ, C0 and K under (C2∗)).

Remark 1. IfMpspn−1/2 log1/2 p = o(1), then �̂ is positive definite with probability tending to one. We can also revise �̂ to
�̂τ with

�̂τ = �̂ + τ I,

where τ = (|Λmin(�̂)|+n−1/2)1{Λmin(�̂) ≤ 0}. By Theorem 1, assuming τ ≤ CMpspn−1/2 log1/2 p, we havewith probability
greater than 1 − O(p−1) (or 1 − O(p−1

+ n−δ/8)) that�̂τ − �


2

≤ CMpsp


log p
n

.

Such a simple perturbation will make the revised estimator �̂τ to have a larger minimal eigenvalue, for stability concerns.
The later results on support recovery and other norms will also hold under such a small perturbation.

Remark 2 ([19]). imposed the following irrepresentable condition on glasso: for some 0 < α < 1,0Ψ cΨ (0Ψ Ψ )−1


∞
≤ 1 − α, (5)

where Ψ is the support of �, 0 = 6 ⊗ 6, and ⊗ denotes the Kronecker matrix product. To make things concrete, we now
compare our conditions using the examples given in [19]:

1. In the diamond graph, let p = 4, σii = 1, σ23 = 0, σ14 = 2ρ2 and σij = ρ for all i ≠ j, (i, j) ≠ (2, 3) and (2, 4). For this
matrix, (5) is reduced to 4|ρ|(|ρ| + 1) < 1 and so it requires ρ ∈ (−0.208, 0.208). Our relaxed condition (4) only needs
ρ ∈ (−0.5, 0.5).

2. In the star graph, let p = 4, σii = 1, σ1,j = ρ for j = 2, 3, 4, σij = ρ2 for 1 < i < j ≤ 4. For this model, (5) requires
|ρ|(|ρ| + 2) < 1 (i.e. ρ ∈ (−0.4142, 0.4142)), while our condition (4) holds for all ρ ∈ (−1, 1).

We have the following result on the convergence rates under the element-wise l∞ norm and the Frobenius norm.

Theorem 2. Under the conditions of Theorem 1, we have with probability greater than 1−O(p−1) under (C2) (or 1−O(p−1
+

n−δ/8) under (C2∗))�̂ − �


∞

≤ CMp


log p
n

(6)

and

1
p

�̂ − �

2
F

≤ Csp
log p
n

. (7)

Remark 3. The convergence rate under the Frobenius norm does not depend on Mp. In comparison, [6] obtained the mini-
max lower bound, when X ∼ N(µ, 6),

1
p
min

�̂

max
�∈U

E
�̂ − �

2
F

≥ CM2
p sp

log p
n

. (8)

They also showed that this rate is achieved by sequentially running two CLIME estimators, where the second CLIME estima-
tor uses the first CLIME estimate as input. Though CLIME allows a weaker sparsity condition where our ℓ0 ball bound sp in
U is replaced by an ℓq ball bound (0 ≤ q < 1), our rate in (7) is faster than CLIME, becauseM2

p in (8) could growwith p. The
faster rate is due to the fact that we consider the condition (4). Under a slightly stronger condition (5) (see Remark 2), [19]
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proved that the glasso estimator �̂glasso has the following convergence rate

1
p

�̂glasso − �

2
F

= OP


κ2

Γ sp
log p
n


, (9)

where κΓ =
(0Ψ Ψ )−1


L1
. Our convergence rate is also faster than theirs in (9) if κΓ → ∞.

3.3. Support recovery

As discussed in the introduction, support recovery is related to Gaussian graphical models. The support of � is recovered
by SCIO, with high probability by the following theorem. Recall Ψ = {(i, j) : ωij ≠ 0} be the support of �, and similarly

Ψ̂ = {(i, j) : ω̂ij ≠ 0}.

The next theorem gives the result on support recovery.

Theorem 3. (i). Under the conditions of Theorem 1, we have Ψ̂ ⊆ Ψ with probability greater than 1 − O(p−1) under (C2) (or
1 − O(p−1

+ n−δ/8) under (C2∗)). (ii). In addition, suppose that for a sufficiently large number C > 0,

min
(i,j)∈Ψ

ωij
 ≥ CMp


log p
n

. (10)

Then under the conditions of Theorem 1, we have Ψ̂ = Ψ with probability greater than 1−O(p−1) under (C2) (or 1−O(p−1
+

n−δ/8) under (C2∗)).

The condition (10) on the signal strength is standard for support recovery, see [19,5] for example. We also note that the
CLIME method [5] requires an additional thresholding step for support recovery, while SCIO does not need this step.

4. Theory for data-driven penalty

This section analyzes a cross validation scheme for choosing the tuning parameter λni, and we establish the theoretical
justification of this data-driven procedure.

We consider the following cross validation method for simplicity, similar to the one analyzed in [1]. Divide the sample
{Xk; 1 ≤ k ≤ n} into two subsamples at random. Let n1 and n2 = n − n1 be the two sample sizes of the random splits
satisfying n1 ≍ n2 ≍ n, and let 6̂

l
1, 6̂

l
2 be the sample covariance matrices from the two samples n1 and n2 respectively

in the lth split, for l = 1, . . . ,H , where H is a fixed integer. For each i, let β̂
l
i(λ) be the estimator minimizing the average

out-of-sample SCIO loss, over λ,

R̂i(λ) =
1
H

H
v=1


1
2
(β̂

l
i(λ))T 6̂

l
2β̂

l
i(λ) − eTi β̂

l
i(λ)


(11)

where β̂
l
i(λ) is calculated from the n1 samples with a tuning parameter λ to be determined. For implementation purposes,

instead of searching for continuous λ, we will divide the interval [0, 4] by a grid λ0 < λ1 < · · · < λN , where λi =
4i
N . The

number 4 comes from the CLIME constraint, see the supplementary material (see Appendix A). The tuning parameter on the
grid is chosen by, for each i,

λ̂i = argmin
0≤j≤N

R̂i(λj). (12)

It is important to note that the size N should be sufficiently large but not too large, see the first two conditions on N in The-
orem 4, and the convergence rate will then hold even if we only perform cross validation on a grid. The choice of λ̂i could be
different for estimating each columnof the precisionmatrix using the column loss function (11). This allows the procedure to
adapt to the magnitude and sparsity of each column, compared with the standard glasso estimator with a single choice of λ
for thewholematrix. Though it is possible to specify differentλ for each column (even each entry) in glasso, searching over all
possible combinations ofλ’s over high dimensional grids, using a non-column-wise loss (e.g. the likelihood), is computation-
ally untrackable. Our column loss thus provides a simple and computationally trackable alternative for choosing adaptive λ.

As described before, the complexity of the likelihood function maymake it difficult to analyze the glasso estimator using
cross validation. Though CLIME uses a constrained approach for estimation, its constrained objective function cannot be
directly used for cross validation. [5] proposed to use the likelihood function as the cross validation loss, which makes it
difficult to establish the theory of cross validated CLIME. For a different setting of estimating the covariance matrix, [1]
obtained the convergence rate under the Frobenius norm, using covariance thresholding. The threshold is also based on
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sample splitting like ours. However, to the best of our knowledge, it has been an open problemon establishing the theoretical
justification of cross validation when estimating the precision matrix. Theorem 4 below fills the gap, showing that the
estimator based on λ̂i from (12) attains the optimal rate under the Frobenius norm. For simplicity, we set H = 1 as in [1].

Our theory adopts the following condition on the sub-Gaussian distribution, which was used in [7] for example.
(C3). There exist positive numbers η′ > 0 and K ′ > 0 such that

max
|v|2=1

E exp

η′(vT (X − µ))2


≤ K ′.

This condition is slightly stronger than (C2), because our next theorem adapts to unknown � using cross validation, instead
of the theoretical choice λni. It is easy to see that (C3) holds for the multivariate normal distribution as a special case.

Denote the unsymmetrized �̂
1
1 := (ω̂1

ij1) = (β̂
1
1(λ̂1), . . . , β̂

1
p(λ̂p)) and recall the symmetrized matrix �̂

1
as

ω̂1
ij = ω̂1

ji = ω̂1
ij11{|ω̂

1
ij1| < |ω̂1

ji1|} + ω̂1
ji11{|ω̂

1
ij1| ≥ |ω̂1

ji1|}.

The following theorem shows that the estimator �̂
1

= (ω̂1
ij) attains the minimax optimal rate under the Frobenius norm.

Theorem 4. Under the conditions logN = O(log p),
√
n/ log p = o(N), and (C3), we have as n, p → ∞,

1
p

�̂1
− �

2
F

= OP


sp

log p
n


.

The convergence rate using cross validation is the same as (7) in Theorem 2 with the theoretical choice of λ. Using similar
arguments in Theorem 4 of [1], this result can be extended tomultiple foldsH > 1. To the best of our knowledge, Theorem 4
is the first result on the theoretical justification of cross validation when estimating the sparse precision matrix.

5. Numerical examples

5.1. Algorithm

Recall that the SCIO estimator is obtained by applying symmetrization (2) to the solution from (1), where each column
β̂i is given by the following

β̂i = argmin
βi∈Rp


1
2
βT
i 6̂βi − eTi βi + λ|βi|1


(13)

for any λ > 0. We propose to employ an iterative coordinate descent algorithm to solve (13) for each i. In contrast, the R
package glasso employs an outside loop over the columns of the precisionmatrix, while having another inside loop over the
coordinates of each column. Our algorithm does not need an outside loop because our loss function is column-wise.

The iterative coordinate descent algorithm for each i goes as follows. In each iteration, we fix all but one coordinate
in β, and optimize over that fixed coordinate. Without loss of generality, we consider optimizing over the pth coordinate
βp while all other coordinates of β (denoted by β−p) are fixed. The solution is in an explicit form by the following simple
proposition. The solution when fixing other coordinates is similar, simply by permuting the matrix. We then loop through
the coordinates until the updates are smaller than a user-specified threshold, say 10−4.

Proposition 1. Let the subvector partition β =

β−p, βp


and partition 6̂ accordingly as follows

6̂ =


6̂11 6̂

T
12

6̂12 Σ̂22


.

Fixing β−p, the minimizer of (13) is

βp = T

1 {p = i} − βT

−p6̂12, λ


/Σ̂22

where the soft thresholding rule T (x, λ) = sign(x)max(|x| − λ, 0).

We implement this algorithm in an R package, scio, available on CRAN. All the following computation is performed using
R on an AMD Opteron processor (2.6 GHz) with 32 Gb memory. The glasso and CLIME estimators are computed using its
R packages glasso (version 1.7) and clime (version 0.4.1) respectively. The path-following strategy with warm-starts [13] is
enabled in all methods.

5.2. Simulations

In this section, we compare the performance with glasso and CLIME on several measures using simulated data. In order
to compare the adaptivity of the procedures, the covariance matrices that generate the data all contain two block diagonals
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Table 1
Comparison of average losses of SCIO, SCIOcv, CLIME, and glasso over 100 simulation runs. The best performance is highlighted in bold. All standard errors
of the results are smaller than 0.1.

p Decay Sparse Block
SCIO SCIOcv CLIME glasso SCIO SCIOcv CLIME glasso SCIO SCIOcv CLIME glasso

Spectral norm
50 10.00 11.24 11.62 12.10 2.73 4.03 5.70 3.86 7.24 9.55 8.03 9.61

100 11.89 12.68 12.29 13.11 4.51 5.57 6.54 5.70 9.63 9.78 9.13 9.77
200 12.88 13.46 12.91 13.84 7.93 8.31 8.43 8.48 9.88 9.85 10.05 9.83
400 13.63 13.87 14.09 14.07 10.88 11.60 11.63 11.11 9.92 9.91 10.31 9.87
800 14.13 14.05 14.10 14.71 15.58 15.48 15.60 16.08 9.96 9.95 10.01 10.63

1600 14.15 14.12 14.12 14.83 20.94 20.90 20.94 21.61 9.97 9.96 10.15 10.68
Frobenius norm

50 16.22 18.54 19.25 20.18 6.71 7.95 12.66 8.14 16.10 20.98 17.58 21.68
100 27.48 29.58 28.40 30.92 12.93 14.84 18.48 14.91 30.83 31.02 28.72 31.15
200 42.93 45.12 42.80 47.00 24.34 24.67 26.60 26.11 44.49 44.23 44.92 44.19
400 65.61 66.60 68.65 68.10 36.65 38.99 40.67 37.76 62.91 62.73 65.38 62.54
800 97.52 96.09 97.25 102.67 59.08 57.55 59.97 66.30 88.98 88.78 88.63 96.42

1600 138.09 136.90 137.74 147.11 83.85 82.87 84.50 96.90 125.85 125.64 125.41 137.27

of different magnitude, where the second block is 4 times the first one. Similar examples were used in [4] in comparing
adaptive covariance estimation. The first block is generated from the following models respectively.

1. decay: ωij = 0.6|i−j|.
2. sparse: Let the prototype �0 = O+ δI , where each off-diagonal entry in O is generated independently, and equals to 0.5

with probability 0.1 and 0 with probability 0.9. δ is chosen such that the conditional number (the ratio of maximal and
minimal singular values of a matrix) equals to p. Finally, the block matrix is standardized to have unit diagonals.

3. block: A block diagonal matrix with block size 5 where each block has off-diagonal entries equal to 0.5 and diagonal 1.
The resulting matrix is then randomly permuted.

100 independent and identically distributed observations constituting a training dataset are generated from each
multivariate Gaussian covariance model with mean zero, and 100 additional observations are generated from the same
model as a validating dataset. Using the training data alone, a series of penalized estimators with 50 different tuning
parameters λ is computed. For a fair comparison, we first pick the tuning parameters in glasso, CLIME, and SCIO to produce
the smallest Bregman loss on the validation sample. The Bregman loss is defined by

L(6, �) = ⟨�, 6⟩ − log det(�).

We also compare with our cross validation scheme in Section 4, where the cross validation loss is the column-wise adaptive
loss (11). The resulting estimator is denoted by SCIOcv. We consider different values of p = 50, 100, 200, 400, 800, 1600,
and replicate 100 times.

Table 1 compares the estimation performance of SCIO, SCIOcv, CLIME, and glasso under the spectral norm and the
Frobenius norm. It shows that SCIO and SCIOcv almost uniformly outperform all other methods under both norms. SCIO
has better performance when p ≤ 400, while SCIOcv has better performance when p ≥ 800. The glasso estimator has the
worst performance overall, but it has slightly improved performance than other methods in the block model for p = 200
and 400. The CLIME estimator has slightly worse performance than our estimators overall, except for a few cases.

As discussed before, support recovery carries important consequences for graphical model estimation. The frequencies
of correct zero/nonzero identification are summarized in Table 1 of the supplementary material (see Appendix A). In there,
the SCIO and SCIOcv estimates are sparser than the CLIME and glasso estimates in general. To further illustrate this, we plot
the heatmaps of support recovery in Fig. 1 using p = 100 as a representing example. These heatmaps confirm that the SCIO
estimates usually contain less zeros than glasso and CLIME. By visual inspection, these SCIO estimates also tend to be closer
to the truth, especially under the sparse model. In particular, they adapt to different magnitude. In contrast, glasso yields
some interference patterns and artificial stripes, especially under the sparse model.

5.3. A genetic dataset on HIV-1 associated neurocognitive disorders

Antiretroviral therapy (ART) has greatly reduced mortality and morbidity of HIV patients; however, HIV-1 associated
neurocognitive disorders (HAND) are becoming common, which cause greatly degradation of life quality. We here apply
our graphical models to a gene expression dataset [2] to study how their genetic interactions/pathways are altered between
treated and untreated HAND patients, and compare with other methods using classification. The supplementary material
includes the full description of the dataset, the modeling approach, and additional results (see Appendix A).

Fig. 2(a) compares classification accuracy between treated and untreated HAND. The results comparing HAND and con-
trols are not shown because all methods have a constant area-under-the-curve value 1. Because the number of nonzero
off-diagonal elements may depend on the different scales of the penalization parameters in each method, we plot the clas-
sification accuracy against the average percentages of nonzero off-diagonals of these two classes (treated and untreated),
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Fig. 1. Heatmaps of support recovery over 100 simulation runs (black is 100/100, white is 0/100).

i.e. the average percentages of connected edges in two recovered graphicalmodels for the treated anduntreated respectively.
The SCIOcv estimators (not shown) only differs from SCIO on how to pick λ in a data-drivenway, and thus it has the identical
performance as SCIO under the same λ. This figure shows that in most cases SCIO outperforms glasso and CLIME when both
methods use the same number of connected edges. The SCIO estimators are stable in classification performance even if the
number of connected edges increases.We are not able to plot the performance of glassowithmore than 14% connected edges
(corresponding to small penalization parameters), because the glasso package does not convergewithin 120 h. CLIME shows
decreased performance when the number of connected edges increases. As a comparison with other classification algo-
rithms, we use the same data to comparewith a few other classificationmethods, including random forest [3], AIC penalized
logistic regression, and ℓ1 penalized logistic regressionwith 5-fold cross validation. Their classification accuracies are 78.6%,
90.9% and 45.6% respectively. Our classification rule compares favorably with these competing methods on this dataset.

Fig. 2(b) compares the running times against the percentages of connected edges. Because it is known that path-following
algorithms may compute a sequence of solutions much faster than for a single one, we use 50 log-spaced penalization
parameters from the largest (0% edges) to the designated percentages of edges, including 5%, 10%, 14%, 20%, 30%, 40%, 50%
and 60%. As reported before, we are unable to plot the running times for glasso beyond 14% due to nonconvergence. SCIO
takes about 2 smore than glassowhen computing for 5% edges, but ismuch faster than glasso for 10% andmore. For example,
it compares favorably in the 14% case where SCIO takes only a quarter of the time of glasso. In general, the running time
of SCIO grows linearly with the number of connected edges, while glasso shows exponential growth in computation time.
CLIME is the slowest among all methods.

Fig. 1 of the supplementary material compares the performance of support recovery, and it shows similar advantages of
SCIO as in the simulations (see Appendix A).

5.4. An fMRI dataset on attention deficit hyperactivity disorders

Attention Deficit Hyperactivity Disorder (ADHD) causes substantial impairment among about 10% of school-age children
in United States. A neuroimaging study showed that the correlations between brain regions are different between typically
developed children and children with such disorders [9]. The description of the data and additional results are provided
in the supplementary material (see Appendix A). In there, we compare the performance of support recovery using the data
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(a) Classification accuracy. (b) Running times.

Fig. 2. Comparison of classification accuracy and running times using SCIO, CLIME and glasso for the HIV dataset. Red solid lines are SCIO, green dash lines
are CLIME, and blue dotted lines are glasso.

Fig. 3. Comparison of average (±1 SE) running times for the ADHD dataset. The red solid line with circle marks is SCIO, the green dashed line with crosses
is CLIME, and the blue dotted line with triangles is glasso.

from each subject, and the results suggest that SCIO has competitive performancewith CLIME and glasso in recovering brain
connectivities for both healthy and ADHD children.

Fig. 3 compares the running times of SCIO, CLIME, and glasso. Similar to the procedure described before, for each subject,
we use path following algorithms in all methods up to the designated edge percentages, including 10%, 20%, 30%, 40%, 50%
and 60%. This plot shows that the running times of SCIO grows almost linearly, and it is about 2 times faster than glasso with
60% connected edges. CLIME again is the slowest among all methods.

6. Discussion

It is possible to achieve adaptive estimation via other approaches. During the preparation of this paper, it comes to our
attention that recently [21] applied a new adaptive penalized regression procedure, Scale Lasso, to the inverse covariance
matrix estimation. [6] proposed an improved CLIME estimator, which runs the CLIME estimation sequentially twice. We
instead analyzed cross validation as an alternative approach for this goal because cross validation remains to be popular
among practitioners. It would be interesting to study the theory of cross validation for these other estimators, and to study
if these adaptive approaches can also be applied to our loss.

Choosing the tuning parameters is an important problem in the practice of penalization procedures, though most of the
prior theoretical results are based on some theoretical assumptions of the tuning parameters. This paper is among the first
to demonstrate that a cross validated estimator for the problem of precision matrix estimation achieves the n−1/2 log1/2 p
rate under the Frobenius norm. This rate may not be improved in general, because it should beminimax optimal [6], though
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a rigorous justification is needed. We also note that the distribution condition (C3) in Theorem 4 is slightly stronger than
(C2) and (C2∗). It is an interesting problem to study if the result in Theorem 4 can be extended tomore general distributions.
Moreover, it would be interesting to study whether minimax rates can also be achieved under other matrix norms, such as
the operator norm, using cross validation.

The rate for support recovery in Theorem 3 also coincides with the minimax optimal rate in [6]. However, U together
with (4) is actually a smaller class than theirs. It would be interesting to explore if their minimax rate can be improved in
this important sub-class. It would also be interesting to study if our results can be extended to their general matrix class.

We employ the ℓ1 norm to enforce sparsity due to computational concerns. It has been pointed out before that the ℓ1
penalty inheritably introduces biases, and thus it would be interesting to replace the ℓ1 norm by other penalty forms, such
as Adaptive Lasso [25] or SCAD [10]. Such extensions should be easy to implement because our loss is column-wise, similar
to penalized regression. We are currently implementing these variants for future releases of our R package.

There are several other interesting directions. It would be interesting to study the precision matrix estimation under the
setting that the data are generated from statistical models, while the covariance estimation problem under this setting was
studied by [17]. It is also of interest to consider extending SCIO to the nonparanormal family distributions [16].

Finally, this paper only considers the setting that all the data are observed. It is an interesting problem to study the inverse
covariancematrix estimationwhen someobservations aremissing. It turns out that the SCIOprocedure can also be applied to
the missing data setting, with additional modifications. Due to the space limitation, we will report these results elsewhere.
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Appendix A. Supplementary data

Supplementary material online includes the motivation of our estimator, additional descriptions of the numerical
examples, and proof of the main results.

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jmva.2014.11.005.
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