
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GLOCAL HYPERGRADIENT ESTIMATION WITH KOOP-
MAN OPERATOR

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradient-based hyperparameter optimization methods update hyperparameters
using hypergradients, gradients of a meta criterion with respect to hyperparameters.
Previous research used two distinct update strategies: optimizing hyperparameters
using global hypergradients obtained after completing model training or local
hypergradients derived after every few model updates. While global hypergra-
dients offer reliability, their computational cost is significant; conversely, local
hypergradients provide speed but are often suboptimal. In this paper, we propose
glocal hypergradient estimation, blending “global” quality with “local” efficiency.
To this end, we use the Koopman operator theory to linearize the dynamics of
hypergradients so that the global hypergradients can be efficiently approximated
only by using a trajectory of local hypergradients. Consequently, we can optimize
hyperparameters greedily using estimated global hypergradients, achieving both
reliability and efficiency simultaneously. Through numerical experiments of hyper-
parameter optimization, including optimization of optimizers, we demonstrate the
effectiveness of the glocal hypergradient estimation.

1 INTRODUCTION

A bi-level optimization problem is a nested problem consisting of two problems for the model
parameters θ ∈ Rp and the meta-level parameters called hyperparameters ϕ ∈ Rq as

ϕ∗ ∈ argmin
ϕ

ℓ̃(θ∗(ϕ); D̃) (1)

such that θ∗(ϕ) ∈ argmin
θ

ℓ(θ,ϕ;D). (2)

Its inner-level problem (Equation (2)) is to minimize an inner objective ℓ(θ,ϕ;D) with respect
to θ on data D. The outer-level or meta-level problem (Equation (1)) aims to minimize a meta
objective ℓ̃(θ,ϕ; D̃) with respect to ϕ on data D̃, and usually D ∩ D̃ = ∅. A typical problem is
hyperparameter optimization (Hutter et al., 2019), where ℓ and ℓ̃ are training and validation objectives,
and D and D̃ are training and validation datasets. Another example is meta learning (Hospedales
et al., 2021), where ℓ and ℓ̃ correspond to meta-training and meta-testing objectives. In the deep
learning context, which is the main focus of this paper, θ corresponds to neural network parameters,
which are optimized by gradient-based optimizers, such as SGD or Adam (Kingma & Ba, 2015),
using gradient∇θℓ(θ,ϕ).

Similarly, gradient-based bi-level optimization aims to optimize the hyperparameters with gradient-
based optimizers by using hypergradient∇ϕℓ̃(θ(ϕ)) (Bengio, 2000; Larsen et al., 1996). Although
this hypergradient is not always available, when it can be obtained or estimated, gradient-based
optimization is efficient and scalable to even millions of hyperparameters (Lorraine et al., 2020),
surpassing the black-box counterparts scaling up to few hundreds (Bergstra et al., 2011; 2013). As
a result, gradient-based approaches are applied in practical problems that demand efficiency (Choe
et al., 2023), such as neural architecture search (Liu et al., 2019; Zhang et al., 2021; Sakamoto et al.,
2023), optimization of data augmentation (Hataya et al., 2022), and balancing several loss terms (Shu
et al., 2019; Li et al., 2021).

Hypergradients in previous works can be grouped into two categories: global hypergradients and local
hypergradients. Gradient-based bi-level optimization with global hypergradients uses the gradient

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

θ0 θ1 θ(s−1)τ θ(s−1)τ+1 θ(s−1)τ+2 θsτ θsτ+1 θT Parameters

ϕ0 ϕs−1 ϕs Hyperparameters

h1
h(s−1)τ h(s−1)τ+1 h(s−1)τ+2 hsτ hsτ+1 hT Hypergradients

local hypergradient global hypergradient

Θ(θ,ϕ) Θ(θ,ϕ) Θ(θ,ϕ) Θ(θ,ϕ) Θ(θ,ϕ) Θ(θ,ϕ) Optimizer

glocal hypergradient estimation

Figure 1: The schematic view of hypergradients. We want to use global hypergradient hT to update
hyperparameters, but it needs to wait for the completion of the entire training process. Updating
hyperparameters ϕs with a local hypergradient hsτ is efficient but may lead to suboptimal solutions.
To leverage both advantages, we propose glocal hypergradient estimation that approximates global
hypergradient hT using a local hypergradient trajectory ht for t ∈ [(s− 1)τ + 1, . . . , sτ], enabling
to update ϕs using hT efficiently.

of the meta criterion value after the entire model training completes with respect to hyperparame-
ters (Maclaurin et al., 2015; Micaelli & Storkey, 2021; Domke, 2012). This optimization can find
hyperparameters to minimize the final meta criterion, but it is computationally expensive because
the entire training loop needs to be repeatedly executed. Contrarily, gradient-based hyperparameter
optimization with local hypergradient leverages hypergradients of the loss values after every few
iterations of training and updates hyperparameters on-the-fly (Franceschi et al., 2017; Luketina et al.,
2016). This strategy can optimize model parameters and hyperparameters alternately and achieve
efficient hyperparameter optimization, although the obtained hypergradients are often degenerated
because of “short-horizon bias” (Wu et al., 2018; Micaelli & Storkey, 2021).

In this paper, we propose glocal hypergradient that leverages the advantages and avoids shortcomings
of global and local hypergradients. This method estimates global hypergradients using a trajectory of
local hypergradients, which are used to update hyperparameters greedily (see Figure 1). This leap
can be achieved by the Koopman operator theory (Koopman, 1931; Mezić, 2005; Brunton et al.,
2022), which linearizes a nonlinear dynamical system, to compute desired global hypergradients as
the steady state from local information. As a result, gradient-based bi-level optimization with glocal
hypergradients can greedily optimize hyperparameters using approximated global hypergradients. We
verify its effectiveness in numerical experiments, namely, hyperparameter optimization of optimizers
and data reweighting.

Our specific contributions are as follows:

1. We propose the glocal hypergradient estimation that combines the advantages of global and local
hypergradient techniques. Specifically, it leverages the Koopman operator theory to predict the
global hypergradients from local information, thereby retaining the efficiency of local methods
while capturing global information.

2. We provide a comprehensive theoretical analysis of the computational complexities involved
in the glocal approach, revealing its computational efficiency compared to the global method.
Additionally, we present an error bound quantifying the accuracy of the proposed glocal estimation
relative to the actual global hypergradient.

3. We numerically demonstrate that the proposed glocal hypergradient estimation achieves perfor-
mance comparable to global approach while maintaining the efficiency of the local method.

2 BACKGROUND

2.1 GRADIENT-BASED BI-LEVEL OPTIMIZATION

Gradient-based bi-level optimization solves the outer-level problem, Equation (1), using gradient-
based optimization methods by obtaining hypergradient∇ϕℓ̃(θ

∗(ϕ)).

When the inner-level problem (Equation (2)) involves the training of neural networks, which is our
main focus in this paper, computing its minima is infeasible. Thus, we instead truncate the original

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

inner problem to the following T -step optimization process:

ϕ∗ ∈ argmin
ϕ

ℓ̃(θT (ϕ); D̃) (3)

such that θt+1(ϕ) = Θ(θt,ϕ;D), (4)

for t = 0, 1, . . . , T − 1 and θ0 is randomly initialized neural network parameters. Θ is a gradient-
based optimization algorithm, such as Θ(θt,ϕ;D) = θt − η∇θℓ(θt,ϕ;D) in the case of vanilla
gradient descent, where η is a learning rate and can be an element of ϕ.

Similarly, we focus on the case that Equation (3) is also optimized by iterative gradient-based
optimization

ϕs+1 = Φ(θT ,ϕs; D̃) such that θt+1(ϕ) = Θ(θt,ϕs;D). (5)

where s = 0, 1, . . . , S − 1. The optimization algorithm Φ in Equation (5) adopts hypergradient
∇ϕℓ̃(θT (ϕ)), which is referred to as global hypergradient (Maclaurin et al., 2015; Micaelli & Storkey,
2021; Domke, 2012). This design requires T -iteration model training S times, which is called non-
greedy (Micaelli & Storkey, 2021). A greedy approach that alternately updates model parameters
and hyperparameters is also possible: hyperparameters are updated every τ (< T) iteration by
hypergradients obtained by a playout until the T -th model update ∇ϕs ℓ̃(θT (ϕs)). In both cases,
gradient-based bi-level optimization using global hypergradients requires a computational cost of
O(ST), which is computationally challenging for a large T .

Instead of waiting for the completion of model training to compute global hypergradient, local
hypergradient ∇ϕs−1 ℓ̃(θsτ (ϕs−1)) obtained every τ iteration can also be used to greedily update
ϕ (Franceschi et al., 2017; Luketina et al., 2016; Wu et al., 2018). This relaxation replaces Equa-
tions (3) and (4) as

ϕs+1 = Φ(θ(s+1)τ ,ϕs; D̃) such that θt+1(ϕ) = Θ(θt,ϕs;D), (6)

for t ∈ Is = [(s − 1)τ, (s − 1)τ + 1, . . . , sτ − 1]. By setting τ ≈ T/S, that is, S ≈ T/τ , this
approach approximately optimizes ϕ in an O(T) computational cost. A downside of this approach
is that the local hypergradients may be biased, especially when the inner optimization involves
stochastic gradient descent (Wu et al., 2018; Micaelli & Storkey, 2021).

2.2 COMPUTATION OF HYPERGRADIENTS

To compute such global or local hypergradients, a straightforward approach is to differentiate through
the T - or τ - step optimization process (Finn et al., 2017; Grefenstette et al., 2019; Domke, 2012).
This unrolling approach is applicable to any differentiable hyperparameters. Yet, it suffers from large
memory requirements, O(Tp) for the global one, when reverse-mode automatic differentiation is
used. This challenge may be alleviated using forward-mode automatic differentiation (Micaelli &
Storkey, 2021; Franceschi et al., 2017; Deleu et al., 2022) or truncated backpropagation (Shaban
et al., 2019). Moreover, differentiating through long unrolled computational graphs suffers from
gradient vanishing/explosion, limiting its applications.

Alternatively, implicit differentiation can also be used with an assumption that θT reaches close
enough to a local optimum. The main bottleneck of this approach is the computation of inverse
Hessian with respect to model parameters (Bengio, 2000), which can be bypassed by iterative linear
system solvers (Pedregosa, 2016; Rajeswaran et al., 2019; Blondel et al., 2021), the Neumann series
approximation (Lorraine et al., 2020), and the Nyström method (Hataya & Yamada, 2023) along with
matrix-vector products. Although this approach is efficient and used in large-scale problems (Choe
et al., 2023; Hataya et al., 2022; Zhang et al., 2021), its application is limited to hyperparameters
that directly change inner-level loss functions. In other words, the implicit-differentiation approach
cannot be used for other hyperparameters, such as the learning rate of the inner-level optimizer Θ.

The proposed glocal hypergradient estimation can rely on the unrolling approach but differentiating
through only τ (≪ T) iterations like the local unrolling approach; thus, this approach is applicable to
various hyperparameters as the unrolling approach.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 KOOPMAN OPERATOR THEORY

Here, we roughly introduce the Koopman operator theory. For a complete introduction, refer to, for
example, Brunton et al. (2022); Kutz et al. (2016).

Consider a discrete-time dynamical system on Rm represented by f : Rm → Rm such that xt+1 =
f(xt) for t ∈ Z. Then, given a measurement function g : Rm → R in some function space G, the
Koopman operator is defined as an infinite-dimensional linear operator K such that Kg = g ◦ f . In
other words, the Koopman operator advances via an observable g the dynamical system one step
forward: Kg(xt) = g(f(xt)) = g(xt+1).

Let K’s eigenfunctions and eigenvalues be φi : Rm → C and λi ∈ C. We suppose that K is invariant
in G = span{ψ1, . . . , }, i.e., Kg ∈ G for any g ∈ G. Then, g can be decomposed as g =

∑
j vjψj ,

where vj = ⟨ψj , g⟩ ∈ C is often referred to as a Koopman mode. Consequently, an observation at
any time t can be represented as

g(xt) = Kt−1g(x0) = Kt−1
∑
j

φj(x0)vj =
∑
j

λt−1
j φj(x0)vj . (7)

For sufficiently large t, terms with |λj | ≠ 1 diverge or disappear. As a result, if the dynamics involve
no diverging modes, the steady state of g(xt) can be written as

g(x∞) ≈
∑

j:|λj |=1

λt−1
j φj(x0)vj . (8)

Terms with |λj | = 1 but λj ̸= 1 will oscillate in the state space, and those with λj = 1 will converge
to a fixed point.

Numerically, we need to use a finite-dimensional matrix K to represent the operator K. To do so,
a set of measurement functions g := [g1, . . . , gn]

T (gi ∈ G) such that g = cHg (c ∈ Cn) is used
so that Kg ≈ cHKg for any g. Such a matrix K is obtained by using (extended) dynamic mode
decomposition (DMD, Kutz et al. 2016) that solves

K := argmin
A∈Cn×n

t−1∑
t′=0

∥Ag(xt′)− g(xt′+1)∥22 . (9)

The Koopman operator theory has demonstrated its effectiveness in the deep learning litera-
ture (Hashimoto et al., 2024; Konishi & Kawahara, 2023; Naiman & Azencot, 2023) and the analysis
of optimization algorithms (Redman et al., 2022a; Dietrich et al., 2020). In particular, some works
used it in the optimization of neural networks (Dogra & Redman, 2020; Manojlović et al., 2020;
Šimánek et al., 2022) and network pruning (Redman et al., 2022b). However, these methods require
DMD on the high-dimensional neural network parameter space, making its applications to large-scale
problems difficult. Our method also relies on the Koopman operator theory, but we used DMD for
the lower-dimensional hypergradients to indirectly advance the dynamics of neural network training,
allowing more scalability.

3 GLOCAL HYPERGRADIENT ESTIMATION

As explained in Section 2.1, both global and local hypergradient have pros and cons. Specifically,
global hypergradient can optimize the desired objective (Equation (3)), but it is computationally
demanding. On the other hand, local gradient can be obtained efficiently, but it may diverge from the
final objective.

This paper proposes glocal hypergradient that leverages the virtues of these contrastive approaches.
Namely, glocal hypergradient approximates the global hypergradient from a trajectory local hypergra-
dients using the Koopman operator theory to achieve

ϕs+1 = Φ(θ̂(s)
∞ ,ϕs; D̃) such that θt(ϕ) = Θ(θt−1,ϕs;D). (10)

for t ∈ Is. θ̂
(s)
∞ is the estimate of the model parameter after the model training θT so that

∇ϕℓ̃(θ̂
(s)
∞ (ϕ)) ≈ ∇ϕℓ̃(θT (ϕ)) only by using local hypergradients obtained in Is. In the remaining

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

text, the superscript indicating the outer time step ((s)) is sometimes omitted for brevity. Figure 1
schematically illustrates the proposed glocal hypergradient estimation with global and local hypergra-
dients.

To approximate global hypergradient from a trajectory of local hypergradients, we use the Koopman
operator theory. We regard the transition of local hypergradients during Is as

ht := ∇ϕs
ℓ̃(θt) = ∇θ ℓ̃(θt)

dθt
dϕs

, (11)

as a nonlinear dynamical system in terms of t. When using forward-mode automatic differentiation
that computes Jacobian-matrix product Jf : (x,V) 7→ ∂f(x)V , where f : Rn′×m′

, x ∈ Rn′
, and

V ∈ Rn′×k′
for some n′,m′, k′ ∈ N, the right-hand side can be computed iteratively as

dθt
dϕs︸︷︷︸
=:Zt

=
∂Θ(θt−1,ϕs)

∂θt−1

dθt−1

dϕs︸ ︷︷ ︸
=Zt−1

+
∂Θ(θt−1,ϕs)

∂ϕs
= JΘ(·,ϕs)(θt−1,Zt−1) + JΘ(θt−1,·)(ϕs, Iq)

where Z1 ∈ Rp×q is zero.

Following the literature of data-driven Koopman operator theory, we suppose that there exists a
Koopman operator K and an observable g that forwards this dynamical system one step as in
Section 2.3, i.e., Kg(∇ϕℓ̃(θt)) = Kg(ht) = g(ht+1) = g(∇ϕℓ̃(θt+1)) and K can be approximated
by a finite-dimensional matrix K ∈ Cn×n using DMD with a set of measurement functions g
(Mezić, 2005; Brunton et al., 2022). In the following discussion, we suppose g : Rq → Rn, (q ≤ n)
be left invertible, that is, there exists g† such that g†g(x) = x for any x ∈ Rq .

Then, we can estimate the global hypergradient from local hypergradients:

g(hT) ≈KT−t
n∑

j=1

bjuj =

n∑
j=1

bjλj
T−tuj , (12)

where t ∈ Is, uj ∈ Cn is the j-th eigenvector with respect to the eigenvalue λj ∈ C of K, and
bj = uH

j g(ht) ∈ C, c.f ., Equation (7).

If the spectral radius, the maximum norm of eigenvalues, is larger than 1, the global hypergradient
will diverge, suggesting the current hyperparameters are in inappropriate ranges. Also, if there exists
k such that |λk| = 1 but λk ̸= 1, the global hypergradient oscillates, suggesting the instability of
the current hyperparameter choices. Thus, we need to assume that the spectral radius is not greater
than 1 for the stability of hypergradient trajectories. Then, terms with λj < 1 can be ignored, as they
will disappear for sufficiently large τ . Indeed, this assumption holds in practical cases as shown in
Section 4.3. Subsequently, we obtain glocal hypergradient

ĥ∞ := ∇ϕℓ̃(θ̂∞) = g†(
∑

j:λj=1

bjuj), (13)

which approximates global hypergradients only from local information. We use this estimated
hypergradient for updating hyperparameters using a gradient-based optimizer, such as vanilla gradient
descent ϕs+1 = Φ(θ̂

(s)
∞ ,ϕs; D̃) = ϕs − η̃ĥ(s)

∞ , where η̃ is a learning rate.

In summary, Algorithm 1 shows the pseudocode of the glocal hypergradient estimation with the
setting that vanilla gradient descent is used for both inner and outer optimization.

3.1 COMPUTATIONAL COST

Remind that p and q are the numbers of model parameters and hyperparameters, respectively. Training
neural networks for τ steps, as the function TRAINING in Algorithm 1, requires time complexity of
O(τp) and space complexity of O(p) using the standard reverse-mode automatic differentiation. To
compute the hypergradients, we have two options, i.e., forward-mode automatic differentiation and
reverse-mode automatic differentiation (Baydin et al., 2018). The first approach needs the evaluation
of the Jacobian-matrix product in Line 5, resulting in timeO(q ·τp) and spaceO(p+τq) complexities
by repeating Jacobian-vector product. On the other hand, the reverse-mode approach involves τ

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Pseudocode of the glocal hypergradient estimation

input Initialize θ,ϕ and set Z = Op×q

1: %Model training for τ iterations
2: def TRAINING(θ, ϕ)
3: for t in 1, 2, . . . , τ :
4: θ ← θ − η∇θℓ(θ,ϕ;D)
5: Z ← JΘ(·,ϕs)(θ,Z) + JΘ(θ,·)(ϕs, Iq)

6: ht ← ∇θ ℓ̃(θ, D̃)Z
return [h1, . . . ,hτ]

7: %Hyperparamter update
8: for s in 1, 2, . . . , S :
9: [h1, . . . ,hτ]← TRAINING(θ,ϕ)

10: Compute ĥ∞ from [h1, . . . ,hτ] using Equations (9) and (13)
11: ϕ← ϕ− η̃ĥ∞

Table 1: Time and space complexities of gradient-based hyperparameter optimization with global,
local, and glocal hypergradients using forward-mode automatic differentiation to compute hypergra-
dients.

Global Local Glocal

Time O(STpq) O(Sτpq) O(Sτpq +min(n2τ, nτ2) + min(n, τ)3)
Space O(p+ q) O(p+ q) O(p+ τq + n2)

evaluations of TRAINING, computed in time O(τ · (τp+q)) and space O(τ(p+q)) (Franceschi et al.,
2017). In the experiments, we adopt forward-mode automatic differentiation to avoid reverse-mode’s
quadratic complexities with respect to τ . However, when the number of hyperparameters q is large,
and τ is limited, reverse-mode automatic differentiation would be preferred. Additionally, the DMD
algorithm at Line 10 requires space O(n2) and time O(min(n2τ, nτ2) + min(n, τ)3) complexities,
where n is the number of observation functions and is O(q) in most cases. Each term comes from
singular value decomposition (SVD) to solve Equation (9) and eigendecomposition of K.

Table 1 shows the complexities of gradient-based hyperparameter optimization with global, local, and
glocal hypergradients, when forward-mode automatic differentiation is adopted for the outer-level
problem. Because the computation of global hypergradients corresponds to the case where τ = T ,
and it is used S times, its time complexity is O(STpq). Compared with the cost to evaluate the
Jacobian, the additional cost by DMD is usually ignorable as it is independent of p. Thus, the
proposed estimation is as efficient as computing a local hypergradient.

3.2 THEORETICAL PROPERTY

The error of the proposed glocal hypergradient from the actual global hypergradient is bounded as
follows.
Theorem 3.1. Assume that the dynamics of hypergradients in each Is, [ht]t∈Is

, is governed by
a finite-dimensional Koopman operator K̄ ∈ Cn×n, and this operator can be approximated with
K ∈ Cn×n using DMD, and the spectral radii of K̄ and K are 1. Then,

∥hT − ĥ∞∥2 ≤ ∥U−1∥F {∥eτ∥2 + (T − sτ)ετ}+
∑

j:|λj |<1

|bj ||λj |τ∥uj∥2, (14)

where U = [u1, . . . ,uq] consists of eigenvectors of K, eτ = hsτ − g† (Kg(hsτ−1)), and ετ is a
constant only depends on the number of local hypergradients τ .

Proof. The left hand side of Equation (14) can be decomposed as ∥hT − ĥ∞∥2 ≤ ∥hT − ĥT ∥2 +
∥ĥT − ĥ∞∥2, where ĥT is obtained from the DMD algorithm as ĥT =

∑
j bjλ

T−sτ
j uj . Then, we

get
∥hT − ĥT ∥2 ≤ ∥U−1∥F {∥eτ∥2 + (T − sτ)ετ} (15)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

by using Theorem 3.6 of Lu & Tartakovsky (2020) and

∥ĥT − ĥ∞∥2 = ∥(
∑
j

−
∑

j:|λj |=1

)bjλj
T−sτuj∥2 = ∥

∑
j:|λj |<1

bjλj
T−sτuj∥2 ≤

∑
j:|λj |<1

|bj ||λj |τ∥uj∥2,

(16)

since T − sτ ≥ τ .
Remark 3.2. The first term of Equation (14) decreases as the outer optimization step s proceeds.
In this term, ∥eτ∥ is minimized by the DMD algorithm (Equation (9)). ετ and the second term
of Equation (14) decrease as we use more local hypergradradients τ for estimation, because K
converges to K̄ as τ increases (Korda & Mezić, 2018). When T is constant, increasing τ improves
the quality of the glocal hypergradient estimation while decreasing the number of the outer step, and
we need to take their trade-off in practice.

4 EXPERIMENTS

This section empirically demonstrates the effectiveness of the glocal hypergradient estimation. The
source code to reproduce the experiments will be publicly released upon publication.

Implementation We implemented neural network models and algorithms, including DMD, using
JAX (v0.4.28) (Bradbury et al., 2018), optax (DeepMind et al., 2020), and equinox (Kidger
& Garcia, 2021). Reverse-mode automatic differentiation is used for model gradient computation.
Forward-mode automatic differentiation is adopted for hypergradient computation.
In the following experiments, we adopt Hankel DMD (Arbabi & Mezic, 2017), whose observation
function g can be defined using time-delayed coordinates as g(ht) = [ht;ht+1; . . . ;ht+m−1] ∈
Rmq and t = sτ, . . . , sτ −m + 1 for some positive integer m for each Is. Such a function g is
obviously left-invertible.
Setup For DMD, we use the last σ hypergradients out of τ hypergradients in each Is because the
dynamics immediately after updating hyperparameters may be unstable. Throughout the experiments,
we optimize model parameters 10k times and hyperparameters every 100 model updates, i.e., τ = 100,
using Adam optimizer with a learning rate of 0.1 (Kingma & Ba, 2015). We set m = 10 and σ = 80,
except for the analysis in Section 4.3. When computing hypergradients, we use hold-out validation
data D̃ from the original training data, following Micaelli & Storkey (2021). To minimize the effect
of stochasticity, we use as large a minibatch size as possible for the validation. Average performance
on test data over three different random seeds is reported. Further experimental details can be found
in Appendix B.
Baselines We adopt local and global baselines that greedily update hyperparameters using global
and local hypergradients, respectively. As the global baseline is prone to diverge and computationally
expensive, we can only present its results on MNIST-sized datasets.

4.1 OPTIMIZING OPTIMIZER HYPERPARAMETERS

Appropriately selecting and scheduling hyperparameters of optimizers, in particular, learning rates,
is essential to the success of training machine learning models (Bergstra et al., 2011). Here, we
demonstrate the validity of the glocal hypergradient estimation in optimizing such hyperparameters.
Unlike (Micaelli & Storkey, 2021), we adopt forward-mode automatic differentiation to differentiate
through the optimization steps, which allows to use any differentiable optimizers, including SGD and
Adam, for the inner optimization without requiring any manual reimplementation.

LeNet on MNIST variants First, we train LeNet (LeCun et al., 2012) using SGD with learnable
learning rate, momentum, and weight-decay rate hyperparameters, and Adam (Kingma & Ba, 2015)
with learnable learning rate and betas. The logistic sigmoid function is applied to these hyperpa-
rameters to limit their ranges in (0, 1). MNIST variants, namely, MNIST (Le Cun et al., 1998),
Kuzushiji-MNIST (KMNIST, Clanuwat et al. (2018)) and Fashion-MNIST (FMNIST, Xiao et al.
(2017)) are used as datasets. The LeNet has 15k parameters and is trained for 10k iterations.
Figures 2 and C.3 shows learning curves with the transition of hyperparameters of optimizers on the
FMNIST dataset. We can observe that the development of hyperparameters of the glocal approach
exhibits similar trends with the global baseline, and the glocal and global approaches show nearly
identical performance. Contrarily, the local baseline changes hyperparameters aggressively, resulting

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100

Outer iterations

0.2

0.4

0.6

0.8

T
es

t
ac

cu
ra

cy

SGD

80 90 100

0.85

0.90

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

10−4

10−3

10−2

10−1

L
ea

rn
in

g
ra

te

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

10−2

10−1

100

M
om

en
tu

m

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

10−6

10−5

10−4

10−3

W
ei

gh
t

de
ca

y

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

0.6

0.7

0.8

0.9

T
es

t
ac

cu
ra

cy

Adam

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

10−5

10−4

10−3

10−2

10−1

L
ea

rn
in

g
ra

te

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

100

6× 10−1

7× 10−1

8× 10−1

9× 10−1

b
et

a
1

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

100

9.965× 10−1

9.97× 10−1

9.975× 10−1

9.98× 10−1

9.985× 10−1

9.99× 10−1

9.995× 10−1

b
et

a
2 Global

Local

Glocal

Figure 2: Test accuracy and the transition of the hyperparameters of SGD and Adam. The proposed
local approach shows similar hyperparameter development to the global baseline.

0 25 50 75 100

Outer iterations

0.2

0.4

0.6

0.8

T
es

t
ac

cu
ra

cy

Local

Glocal

0 25 50 75 100

Outer iterations

10−3

10−2

10−1

L
ea

rn
in

g
ra

te

Local

Glocal

0 25 50 75 100

Outer iterations

10−2

10−1

100

M
om

en
tu

m

Local

Glocal

0 25 50 75 100

Outer iterations

10−5

10−4

10−3

10−2

10−1

W
ei

gh
t

de
ca

y

Local

Glocal

Figure 3: Test accuracy curves and the transition of SGD’s hyperparameters of WideResNet 28-2 on
CIFAR-10.

in suboptimal performance. The glocal approach successfully avoids the short-horizon bias of the
local approach. Additionally, the global baseline shows performance degeneration at the end of
the training, which may be attributed to gradient explosion/vanishing. The proposed method can
circumvent this issue. Other results can be found in Appendix C.
WideResNet on CIFAR-10/100 and SVHN Next, we train WideResNet 28-2 (Zagoruyko & Ko-
modakis, 2016) on CIFAR-10/100 Krizhevsky et al. (2009) and SVHN Netzer et al. (2011) using
SGD with learnable learning rate and weight-decay rate hyperparameters. The used model has 1.5M
parameters and is trained for 10k iterations. The results are presented in Figures 3, C.4 and C.5
Contrarily to the local baseline drastically changing hyperparameters, the glocal estimation adjusts
the hyperparameters gradually and yields better performance, partially because it can predict the
future state.

4.2 DATA REWEIGHTING

Data reweighting task trains a meta module µϕ to reweight a loss value to each example to alleviate
the effect of class imbalanceLi et al. (2021); Shu et al. (2019). µϕ : R→ (0, 1) is an MLP, and the
inner loss function of the task is ℓ(θ;D) =∑(x,y)∈D L(x, y;θ) ·µϕ(L(x, y;θ)), where L : D → R
is cross-entropy loss. ϕ is trained on balanced validation data.

We train WideResNet 28-2 on imbalanced CIFAR-10 and CIFAR-100 Cui et al. (2019), which
simulate class imbalance. Specifically, the imbalanced data with an imbalance factor of f reduces
the number of data in the c-th class to ⌊ 1

fc/C ⌋, where C is the number of categories, e.g., 10 for
CIFAR-10. As the meta module, we adopt a two-layer MLP with a hidden size of 128, consisting of
385 parameters. Table 2 demonstrates that the glocal approach surpasses the local baseline, indicating
its effectiveness to a wide range of problems.

4.3 ANALYSIS

Below, we analyze the factors of the glocal hypergradient estimation using the task in Section 4.1 on
the FMNIST dataset.

Eigenvalues of DMD In Section 3, the existence of eigenpairs whose eigenvalues equal to one was
assumed for efficient approximation of a global hypergradient. To see whether it holds in practice, the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Test accuracy of WideResNet 28-2 trained on imbalanced datasets.

Dataset / Imbalance Factor Local Glocal

CIFAR-10 / 50 0.520 0.715
CIFAR-10 / 100 0.445 0.595
CIFAR-100 / 50 0.315 0.350

−1 0 1

Real part

−1

0

1

Im
ag

in
ar

y
pa

rt

0 25 50 75 100

Iteration

−3

−2

−1

0

1

2

3

R
ea

l
m

ag
ni

tu
de

×10−6

0 20 40 60 80 100

Outer iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

T
es

t
ac

cu
ra

cy

80 90 100
0.88

0.90

Step=20

Step=40

Step=60

Step=80

Step=100

Figure 4: Left: The eigenvalues obtained by the Hankel DMD for a hypergradient trajectory. Eigen-
values nearly close to 1 are highlighted in orange. Middle: The magnitude of modes of the estimated
hypergradient corresponding to the learning rate bjλtjuj for j : λj ̸= 1 over 100 iterations of
t. Right: The comparison of validation performance of the proposed estimation with different
configurations. LeNet is trained on FMNIST with an initial learning rate of 0.1.

Table 3: Runtime comparison of optimizing optimizer hyperparameters with LeNet in second. “w/o
HPO” indicates training without hyperparameter optimization process.

w/o HPO Local Global Glocal

11.4 58.2 2891.2 58.3

left panel of Figure 4 shows the eigenvalues obtained by the Hankel DMD at s = 1. We can observe
two eigenvalues nearly close to 1 (highlighted in orange). Additionally, the middle panel of Figure 4
illustrates that modes with other eigenvalues decay rapidly. Because the magnitudes of the modes
associated with the eigenvalue of 1 is an order of 10−3, other modes can be ignored, numerically
supporting the validity of our assumption.

DMD Configurations We compare the proposed method with different configurations to see how the
configurations of the Hankel DMD algorithm, specifically, the number of hypergradients (σ, the right
panel of Figure 4) and the number of stacks per column (m, Figure C.7), affect the estimation. We
can observe that it performs better when DMD uses the last 80 hypergradients out of 100. Although
the estimation is expected to improve as more hypergradients are used, they may be unstable after the
change of hyperparameters, which degenerates the quality of the prediction; discarding the first 20
hypergradients may avoid such an issue.

Runtime Table 3 compares runtime on a machine equipped with an AMD EPYC 7543P 32-Core
CPU and an NVIDIA RTX 6000 Ada GPU with CUDA 12.3. Note that because of the limitation of
JAX that eigen decomposition for asymmetric matrices on GPU is not yet supported, the computation
of the adopted DMD algorithm is suboptimal. Nevertheless, the proposed method achieves significant
speedup compared with the global baseline, revealing its empirical efficiency.

5 DISCUSSION AND CONCLUSION

This paper introduced glocal hypergradient estimation, which leverages the virtues of global and
local hypergradients simultaneously. To this end, we adopted the Koopman operator theory to approx-
imate a global hypergradient from a trajectory of local hypergradients. The numerical experiments
demonstrated the validity of gradient-based hyperparameter optimization using glocal hypergradients.

Limitations In this work, we have implicitly assumed that the meta criterion converges after enough
iterations, and so do hypergradients. This assumption may be strong when a certain minibatch
drastically changes the value of the meta criterion, such as adversarial learning. Luckily, we did

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

not suffer from such a problem, probably because we focused our experiments only on supervised
learning with sufficiently sized datasets and used full-batch validation data. Introducing stochasticity
by the Perron-Frobenius operator (Korda & Mezić, 2018; Hashimoto et al., 2020), an adjoint of the
Koopman operator, would alleviate this limitation, which we leave for future research.

REFERENCES

Hassan Arbabi and Igor Mezic. Ergodic theory, dynamic mode decomposition, and computation of
spectral properties of the koopman operator. SIAM Journal on Applied Dynamical Systems, 16(4):
2096–2126, 2017.

Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. 18(153):1–43, 2018.

Yoshua Bengio. Gradient-based optimization of hyperparameters. 12(8):1889–1900, 2000.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. NeurIPS, 2011.

James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In ICML, 2013.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López,
Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. 2021.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Steven L. Brunton, Marko Budišić, Eurika Kaiser, and J. Nathan Kutz. Modern koopman theory for
dynamical systems. SIAM Review, 64(2):229–340, 2022.

Sang Keun Choe, Sanket Vaibhav Mehta, Hwijeen Ahn, Willie Neiswanger, Pengtao Xie, Emma
Strubell, and Eric Xing. Making scalable meta learning practical. In NeurIPS, 2023.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature. arXiv, 2018.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
effective number of samples. In CVPR, 2019.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,
Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,
Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider,
Eren Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec,
Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL
http://github.com/deepmind.

Tristan Deleu, David Kanaa, Leo Feng, Giancarlo Kerg, Yoshua Bengio, Guillaume Lajoie, and
Pierre-Luc Bacon. Continuous-time meta-learning with forward mode differentiation. In ICLR,
2022. URL https://openreview.net/forum?id=57PipS27Km.

Felix Dietrich, Thomas N Thiem, and Ioannis G Kevrekidis. On the koopman operator of algorithms.
SIAM Journal on Applied Dynamical Systems, 19(2):860–885, 2020.

Akshunna S Dogra and William Redman. Optimizing neural networks via koopman operator theory.
In NeurIPS, volume 33, pp. 2087–2097, 2020.

Justin Domke. Generic methods for optimization-based modeling. 22:318–326, 2012.

10

http://github.com/google/jax
http://github.com/deepmind
https://openreview.net/forum?id=57PipS27Km

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adaptation
of Deep Networks. In ICML, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In ICML, 2017.

Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska
Meier, Douwe Kiela, Kyunghyun Cho, and Soumith Chintala. Generalized inner loop meta-learning.
2019.

Yuka Hashimoto, Isao Ishikawa, Masahiro Ikeda, Yoichi Matsuo, and Yoshinobu Kawahara. Krylov
subspace method for nonlinear dynamical systems with random noise. The Journal of Machine
Learning Research, 21(1):6954–6982, 2020.

Yuka Hashimoto, Sho Sonoda, Isao Ishikawa, Atsushi Nitanda, and Taiji Suzuki. Koopman-based
generalization bound: New aspect for full-rank weights. In ICLR, 2024. URL https://
openreview.net/forum?id=JN7TcCm9LF.

Ryuichiro Hataya and Makoto Yamada. Nyström method for accurate and scalable implicit differenti-
ation. In AISTATS, pp. 4643–4654. PMLR, 2023.

Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Meta Approach for Data
Augmentation Optimization. In WACV, 2022.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. 44(9):5149–5169, 2021.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (eds.). Automatic Machine Learning: Methods,
Systems, Challenges. Springer, 2019.

Patrick Kidger and Cristian Garcia. Equinox: neural networks in JAX via callable PyTrees and
filtered transformations. Differentiable Programming workshop at Neural Information Processing
Systems 2021, 2021.

Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic Optimization. In ICLR,
2015.

Takuya Konishi and Yoshinobu Kawahara. Stable invariant models via koopman spectra. Neural
Networks, 165:393–405, 2023.

Bernard O Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the
National Academy of Sciences, 17(5):315–318, 1931.

Milan Korda and Igor Mezić. On convergence of extended dynamic mode decomposition to the
koopman operator. Journal of Nonlinear Science, 28:687–710, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

J. Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, and Joshua L. Proctor. Dynamic Mode
Decomposition. Society for Industrial and Applied Mathematics, 2016.

Jacob Larsen, Lars Kai Hansen, Claus Svarer, and Mattias Ohlsson. Design and regularization of
neural networks: the optimal use of a validation set. In Neural Networks for Signal Processing VI.
Proceedings of the 1996 IEEE Signal Processing Society Workshop, 1996.

Yann Le Cun, Léon Bottou, Yoshua Bengio, and Patrij Haffner. Gradient-based learning applied to
document recognition. 86(11):2278–2324, 1998.

Yann LeCun, Léon Bottou, Genevieve Orr, and Klaus-Robert Müller. Efficient BackProp, pp. 9–48.
Springer Berlin Heidelberg, 2012.

Mingchen Li, Xuechen Zhang, Christos Thrampoulidis, Jiasi Chen, and Samet Oymak. AutoBalance:
Optimized Loss Functions for Imbalanced Data. In NeurIPS, 2021.

11

https://openreview.net/forum?id=JN7TcCm9LF
https://openreview.net/forum?id=JN7TcCm9LF

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
ICLR, 2019.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In AISTATS, 2020.

Hannah Lu and Daniel M Tartakovsky. Prediction accuracy of dynamic mode decomposition. SIAM
Journal on Scientific Computing, 42(3):A1639–A1662, 2020.

Jelena Luketina, Mathias Berglund, Klaus Greff, and Tapani Raiko. Scalable gradient-based tuning
of continuous regularization hyperparameters. In ICML, 2016.

Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based Hyperparameter Optimiza-
tion through Reversible Learning. In ICML, 2015.

Iva Manojlović, Maria Fonoberova, Ryan Mohr, Aleksandr Andrejčuk, Zlatko Drmač, Yannis
Kevrekidis, and Igor Mezić. Applications of koopman mode analysis to neural networks. arXiv,
2020.

Igor Mezić. Spectral properties of dynamical systems, model reduction and decompositions. Nonlin-
ear Dynamics, 41:309–325, 2005.

Paul Micaelli and Amos Storkey. Gradient-based hyperparameter optimization over long horizons.
In NeurIPS, 2021.

Ilan Naiman and Omri Azencot. An operator theoretic approach for analyzing sequence neural
networks. In AAAI, volume 37, pp. 9268–9276, 2023.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011. URL http://ufldl.stanford.edu/
housenumbers/nips2011_housenumbers.pdf.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In ICML, 2016.

Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and Sergey Levine. Meta-Learning with Implicit
Gradients. In NeurIPS, 2019.

William T Redman, Maria Fonoberova, Ryan Mohr, Ioannis G Kevrekidis, and Igor Mezić. Algorith-
mic (semi-) conjugacy via koopman operator theory. In 2022 IEEE 61st Conference on Decision
and Control (CDC), pp. 6006–6011. IEEE, 2022a.

William T Redman, Maria Fonoberova, Ryan Mohr, Yannis Kevrekidis, and Igor Mezić. An operator
theoretic view on pruning deep neural networks. In ICLR, 2022b.

Kotaro Sakamoto, Hideaki Ishibashi, Rei Sato, Shinichi Shirakawa, Youhei Akimoto, and Hideitsu
Hino. Atnas: Automatic termination for neural architecture search. Neural Networks, 166:446–458,
2023.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation
for bilevel optimization. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 1723–1732. PMLR, 2019.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-weight-
net: Learning an explicit mapping for sample weighting. In NeurIPS, 2019.

Petr Šimánek, Daniel Vašata, and Pavel Kordı́k. Learning to optimize with dynamic mode decom-
position. In 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE,
2022.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. In ICLR, 2018.

Yuxin Wu and Kaiming He. Group normalization. In ECCV, 2018.

12

http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. In BMVC, 2016.

Miao Zhang, Steven W. Su, Shirui Pan, Xiaojun Chang, Ehsan M Abbasnejad, and Reza Haffari.
idarts: Differentiable architecture search with stochastic implicit gradients. In ICML, 2021.

A ADDITIONAL DISCUSSION ON THEOREM 3.1

The first half of the proof of Theorem 3.1 depends on the theorem 3.6 of Lu & Tartakovsky (2020),
which shows Equation (15) without equality holds if K̄’s spectral radius ρ(K̄) < 1. This condition
can be relaxed to ρ(K̄) ≤ 1, and then Equation (15) holds. ετ in Theorem 3.1 can be given as

ετ =

{
cτ

(
∥h1∥22 +

τ∑
t=1

∥ft∥22

)}1/2

, (17)

where ft = K̄g(ht)− g(ht+1) and cτ ≥ ∥K̄ −K∥22 depends on the number of hypergradients.

B DETAILED EXPERIMENTAL SETTINGS

Throughout the experiments, the batch size of training data was set to 128.

B.1 OPTIMIZING OPTIMIZER HYPERPARAMETERS

LeNet We set the number of filters in each convolutional layer to 16 and the dimension of the
following linear layers to 32. The leaky ReLU is used as its activation.
WideResNet We modified the original WideResNet 28-2 in Zagoruyko & Komodakis (2016) as
follows: replacing the batch normalization with group normalization Wu & He (2018) and adopting
the leaky ReLU as the activation function.
Validation data We separated 10% of the original training data as validation data.

B.2 DATA REWEIGHTING

WideResNet We modified the original WideResNet 28-2 in Zagoruyko & Komodakis (2016) as
follows: replacing the batch normalization with group normalization and adopting the leaky ReLU as
the activation function. The model was trained with an inner optimizer of SGD with a learning rate
of 0.01, momentum of 0.9, and weight decay rate of 0.
Valiation data We separated 1000 data points from the original training dataset to construct a
validation set.

C ADDITIONAL EXPERIMENTAL RESULTS

Figures C.1 and C.2 present the test accuracy curves and the transition of SGD’s hyperparameters of
KMNIST and MNIST. As the results presented in the main text in Section 4.1, the proposed glocal
approach yields similar behaviors as the global one, while maintaining the efficiency of the local
approach. As can be seen from Figures C.2 and C.3, the global method often fails because of loss
explosion, as discussed in the literature (Micaelli & Storkey, 2021). Similarly, Figure C.4 shows the
results on the CIFAR-100 dataset and SVHN.

Figure C.7 shows test accuracy and the transition of SGD hyperparameters (learning rate, momentum,
weight decay) with different numbers of stacks of the Hankel DMD (m). When m = 1, equivalent to
the case when g is identity, the estimated hyperparameters yield much higher variances. This can be
explained as the error of approximating the nonlinear dynamical system of hypergradients with a
linear dynamical system in the space of hypergradients. Contrarily, the hyperparameters obtained
with Hankel DMD with m > 1 show limited variances, indicating that Hankel DMD could more
appropriately capture the nonlinear dynamics with lower variances.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100

Outer iterations

0.2

0.4

0.6

0.8

1.0

T
es

t
ac

cu
ra

cy

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

10−3

10−2

10−1

L
ea

rn
in

g
ra

te

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

10−2

10−1

100

M
om

en
tu

m

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

10−5

10−4

10−3

W
ei

gh
t

de
ca

y

Global

Local

Glocal

Figure C.1: The transition of the SGD’s hyperparameters and test accuracy curves of LeNet on
MNIST with an initial learning rate of 0.01.

0 20 40 60 80 100

Outer iterations

0.0

0.2

0.4

0.6

0.8

1.0

T
es

t
ac

cu
ra

cy

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

10−3

10−2

10−1

L
ea

rn
in

g
ra

te

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

10−2

10−1

100

M
om

en
tu

m

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

10−5

10−4

10−3

10−2

10−1

W
ei

gh
t

de
ca

y

Global

Local

Glocal

Figure C.2: The transition of the SGD’s hyperparameters and test accuracy curves of LeNet on
KMNIST with an initial learning rate of 0.01.

0 20 40 60 80 100

Outer iterations

0.0

0.2

0.4

0.6

0.8

1.0

T
es

t
ac

cu
ra

cy

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

10−4

10−3

10−2

10−1

L
ea

rn
in

g
ra

te

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

10−3

10−2

10−1
M

om
en

tu
m

Global

Local

Glocal

0 20 40 60 80 100

Outer iterations

10−4

10−3

10−2

W
ei

gh
t

de
ca

y

Global

Local

Glocal

Figure C.3: The transition of the SGD’s hyperparameters and test accuracy curves of LeNet on
FMNIST with an initial learning rate of 0.1.

0 25 50 75 100

Outer iterations

0.0

0.1

0.2

0.3

0.4

0.5

T
es

t
ac

cu
ra

cy

Local

Glocal

0 25 50 75 100

Outer iterations

10−3

10−2

10−1

L
ea

rn
in

g
ra

te

Local

Glocal

0 25 50 75 100

Outer iterations

10−1

100

M
om

en
tu

m

Local

Glocal

0 25 50 75 100

Outer iterations

10−5

10−4

10−3

10−2

10−1

W
ei

gh
t

de
ca

y
Local

Glocal

Figure C.4: The transition of the SGD’s hyperparameters and test accuracy curves of WideResNet
28-2 on CIFAR-100.

0 25 50 75 100

Outer iterations

0.2

0.4

0.6

0.8

T
es

t
ac

cu
ra

cy

80 90 100
0.940

0.945

0.950

Local

Glocal

0 25 50 75 100

Outer iterations

10−3

10−2

10−1

L
ea

rn
in

g
ra

te

Local

Glocal

0 25 50 75 100

Outer iterations

10−2

10−1

M
om

en
tu

m

Local

Glocal

0 25 50 75 100

Outer iterations

10−4

10−3

10−2

10−1

W
ei

gh
t

de
ca

y

Local

Glocal

Figure C.5: The transition of the SGD’s hyperparameters and test accuracy curves of WideResNet
28-2 on SVHN.

Figure C.7 shows the test accuracy curves and the transition of SGD’s hyperparameters of FMNIST
with the global baseline method, its truncated approximation, and the proposed method. Specifically,
the approximation method truncates the computation of the global baseline after 100 iterations. We
can observe that the proposed glocal method shows trends that are more similar to the global one
than the truncated approximation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100

Outer iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

T
es

t
ac

cu
ra

cy

80 90 100
0.88

0.90

m = 1

m = 5

m = 10

0 20 40 60 80 100

Outer iterations

10−1

9× 10−2

2× 10−1

L
ea

rn
in

g
ra

te

m = 1

m = 5

m = 10

0 20 40 60 80 100

Outer iterations

10−1

2× 10−1

M
om

en
tu

m

m = 1

m = 5

m = 10

0 20 40 60 80 100

Outer iterations

10−4

10−3

W
ei

gh
t

de
ca

y

m = 1

m = 5

m = 10

Figure C.6: Test accuracy and the transition of hyperparameters of SGD with different numbers of
stacks of the Hankel DMD (m). m = 1 corresponds to the vanilla DMD.

0 20 40 60 80 100

Outer iterations

0.2

0.4

0.6

0.8

T
es

t
ac

cu
ra

cy

Global

Truncated

Glocal (ours)

0 20 40 60 80 100

Outer iterations

10−2

10−1

L
ea

rn
in

g
ra

te

Global

Truncated

Glocal (ours)

0 20 40 60 80 100

Outer iterations

10−1

100

M
om

en
tu

m

Global

Truncated

Glocal (ours)

0 20 40 60 80 100

Outer iterations

10−4

10−3

W
ei

gh
t

de
ca

y

Global

Truncated

Glocal (ours)

Figure C.7: Test accuracy and the transition of hyperparameters of SGD with the global method, its
truncated approximation, and the proposed method.

15

	Introduction
	Background
	Gradient-based Bi-level Optimization
	Computation of Hypergradients
	Koopman Operator Theory

	Glocal Hypergradient Estimation
	Computational Cost
	Theoretical Property

	Experiments
	Optimizing Optimizer Hyperparameters
	Data Reweighting
	Analysis

	Discussion and Conclusion
	Additional Discussion on thm:error
	Detailed Experimental Settings
	Optimizing Optimizer Hyperparameters
	Data reweighting

	Additional Experimental Results

