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Abstract

Empirically, large-scale deep learning models often satisfy a neural scaling law:
the test error of the trained model improves polynomially as the model size and
data size grow. However, conventional wisdom suggests the test error consists of
approximation, bias, and variance errors, where the variance error increases with
model size. This disagrees with the general form of neural scaling laws, which
predict that increasing model size monotonically improves performance.
We study the theory of scaling laws in an infinite dimensional linear regression
setup. Specifically, we consider a model with M parameters as a linear function of
sketched covariates. The model is trained by one-pass stochastic gradient descent
(SGD) using N data. Assuming the optimal parameter satisfies a Gaussian prior
and the data covariance matrix has a power-law spectrum of degree a > 1, we show
that the reducible part of the test error is Θ(M−(a−1) +N−(a−1)/a). The variance
error, which increases with M , is dominated by the other errors due to the implicit
regularization of SGD, thus disappearing from the bound. Our theory is consistent
with the empirical neural scaling laws and verified by numerical simulation.

1 Introduction

Deep learning models, particularly those on a large scale, are pivotal in advancing the state-of-the-
art across various fields. Recent empirical studies have shed light on the so-called neural scaling
laws [see 26, 21, for example], which suggest that the generalization performance of these models
improves polynomially as both model size, denoted by M , and data size, denoted by N , increase.
The neural scaling law quantitatively describes the population risk as:

R(M,N) ≈ R∗ +
c1

Ma1
+

c2
Na2

, (1)

where R∗ is a positive irreducible risk and c1, c2, a1, a2 are positive constants independent of M and
N . For instance, by fitting the above formula with empirical measurements in standard large-scale
language benchmarks, Hoffmann et al. [21] estimated a1 ≈ 0.34 and a2 ≈ 0.28, while Besiroglu
et al. [7] estimated that a1 ≈ 0.35 and a2 ≈ 0.37. Though the exact exponents depend on the tasks,
neural scaling laws in (1) are observed consistently in practice and are used as principled guidance to
build state-of-the-art models, especially under a compute budget [21].

From the perspective of statistical learning theory, (1) is rather intriguing. Standard statistical learning
bounds [see 30, 41, for example] often decompose the population risk into the sum of irreducible
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Figure 1: The expected risk (Risk) of the last iterate of (SGD) versus the effective sample size Neff and
the model size M for different power-law degrees a. The expected risk is computed by averaging over 1000
independent samples of (w∗,S). We fit the expected risk using the formula Risk ∼ σ2 + c1/M

a1 + c2/N
a2

via minimizing the Huber loss as in [21]. Parameters: σ = 1, γ = 0.1. Left: For a = 1.5, d = 20000, the fitted
exponents are (a1, a2) = (0.54, 0.34) ≈ (0.5, 0.33). Right: For a = 2, d = 2000, the fitted exponents are
(a1, a2) = (1.07, 0.49) ≈ (1.0, 0.5). Note that the values of (a1, a2) are close to our theoretical predictions
(a−1, 1−1/a) in both cases, verifying the sharpness of our risk bounds. More details can be found in Sections 4
and 5.

error, approximation error, bias error, and variance error (some theory replaces bias and variance
errors by optimization and generalization errors, respectively) as in the form of

R(M,N) = R∗ +O
(

1

Ma1

)
︸ ︷︷ ︸
approximation

+O
(

1

Na2

)
︸ ︷︷ ︸

bias

+O
(
c(M)

Na3

)
︸ ︷︷ ︸

variance

, (2)

where a1, a2, a3 are positive constants and c(M) is a measure of model complexity that typically
increases with the model size M . In (2), the approximation error is induced by the mismatch of the
best-in-class predictor and the best possible predictor, hence decreasing with the model size M . The
bias error is induced by the mismatch of the expected algorithm output and the best-in-class predictor,
hence decreasing with the data size N . The variance error measures the uncertainty of the algorithm
output, which decreases with the data size N but increases with the model size M (since the model
complexity c(M) increases).

A mystery. The empirical neural scaling law (1) is incompatible with the typical statistical learning
theory bound (2). While the two error terms in the neural scaling law (1) can be explained by
the approximation and bias errors in the theoretical bound (2) respectively, it is not clear why the
variance error is unobservable when fitting the neural scaling law empirically. This difference must
be reconciled, otherwise, the statistical learning theory and the empirical scaling law make conflict
predictions: as the model size M increases, the theoretical bound (2) predicts an increase of variance
error that eventually causes an increase of the population risk, but the neural scaling law (1) predicts
a decrease of the population risk. In other words, it remains unclear when to follow the prediction of
the empirical scaling law (1) and when to follow that of the statistical learning bound (2).

Certain prior works provided risk upper bounds that do not grow with model size [see for example
36, 12]. Still, their results are insufficient for studying scaling law as those bounds require a large
model size such that the approximation error is ignorable. Moreover, they do not provide instance-
wise matching lower bounds to verify the tightness of the upper bounds. See a detailed discussion in
Section 2.

Our explanation. We investigate this issue in an infinite dimensional linear regression setup. We
only assume access to M -dimensional sketched covariates given by a fixed Gaussian sketch and
their responses. We consider a linear predictor with M trainable parameters, which is trained by
one-pass stochastic gradient descent (SGD) with geometrically decaying stepsizes using N sketched
data. Assuming that the spectrum of the data covariance matrix satisfies a power-law of degree a > 1
and that the optimal model parameters satisfy a Gaussian prior, we derive matching upper and lower
bounds on the population risk achieved by the SGD output (see Theorem 4.1). Specifically, we show
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that

R(M,N) = R∗ + Θ

(
1

Ma−1

)
+ Θ̃

(
1

(Nγ)(a−1)/a

)
︸ ︷︷ ︸

leading order given by the sum of Approx and Bias

, Var = Θ̃

(
min{M, (Nγ)1/a}

N

)
︸ ︷︷ ︸

higher order, thus unobservable

,

where γ = O(1) is the initial stepsize used in SGD and Θ̃(·) hides log(N) factors. In our bound, the
sum of the approximation and bias errors determines the order of the excess risk, while the variance
error is of a strictly higher order and is therefore nearly unobservable when fitting R(M,N) as a
function of M and N empirically. In addition, our analysis reveals that the small variance error is
due to the implicit regularization effect of one-pass SGD [47]. Our theory suggests that the empirical
neural scaling law (1) is a simplification of the statistical learning bound (2) in a special regime when
strong regularization (either implicit or explicit) is employed.

Moreover, we generalize the above scaling law to (1) constant stepsize SGD with iterate average
(see Theorem F.6), (2) cases where the optimal model parameter satisfies an anisotropic prior (see
Theorem 4.2), and (3) where the spectrum of the data covariance matrix satisfies a logarithmic power
law (see Theorem 4.3).

Emprical evidence. Based on our theoretical results, we conjecture that the clean neural scaling law
(1) observed in practice is due to the disappearance of variance error caused by strong regularization.
Two pieces of empirical evidence to support our understanding. First, large language models that
follow the scaling law (1) are often underfitted, as the models are trained over a single pass or a
few passes over the data [27, 31, 9, 39]. When models are underfitted, the variance error tends
to be smaller. Second, when language models are trained with multiple passes (up to 7 passes),
Muennighoff et al. [31] found that the clean scaling law in (1) no longer holds and they proposed
a more sophisticated scaling law to explain their data. This can be explained by a relatively large
variance error caused by multiple passes.

Notation. For two positive-valued functions f(x) and g(x), we write f(x) ≲ g(x) (and f(x) =
O(g(x))) or f(x) ≳ g(x) (and f(x) = Ω(g(x))) if f(x) ≤ cg(x) or f(x) ≥ cg(x) holds for
some absolute (if not otherwise specified) constant c > 0 respectively. We write f(x) ≂ g(x) (and
f(x) = Θ(g(x))) if f(x) ≲ g(x) ≲ f(x). For two vectors u and v in a Hilbert space, we denote
their inner product by ⟨u,v⟩ or u⊤v. For two matrices A and B of appropriate dimensions, we
define their inner product by⟨A,B⟩ := tr(A⊤B). We use ∥ · ∥ to denote the operator norm for
matrices and ℓ2-norm for vectors. For a positive semi-definite (PSD) matrix A and a vector v of
appropriate dimension, we write ∥v∥2A := v⊤Av. For a symmetric matrix A, we use µj(A) to refer
to the j-th eigenvalue of A and r(A) to refer to its rank. Finally, log(·) refers to logarithm base 2.

2 Related work

Empirical scaling laws. In recent years, the scaling laws of deep neural networks in compute,
sample size, and model size have been widely studied across different models and domains [20, 35,
26, 19, 21, 46, 31]. The early work by Kaplan et al. [26] first proposed the neural scaling laws of
transformer-based models. They observed that the test loss exhibits a power-law decay in quantities
including the amount of compute, sample size, and model size, and provided joint formulas in these
quantities to predict the test loss. The proposed formulas were later generalized and refined in
subsequent works [19, 21, 1, 10, 31]. Notably, Hoffmann et al. [21] proposed the Chinchilla law, that
is, (1) with a1 ≈ 0.34 and a2 ≈ 0.28. The empirical observation guided them to allocate data and
model size under a given compute budget. The Chinchilla law is further revised by Besiroglu et al.
[7]. Motivated by the Chinchilla law, Muennighoff et al. [31] considered the effect of multiple passes
over training data and empirically fitted a more sophisticated scaling law that takes account of the
effect of data reusing.

Theory of scaling laws. Although neural scaling laws have been empirically observed over a broad
spectrum of problems, there is a relatively limited literature on understanding these scaling laws
from a theoretical perspective [37, 4, 28, 22, 42, 29, 23, 8, 2, 32, 17]. Among these works, [37]
showed that the test loss scales as N4/d for regression on data with intrinsic dimension d. Hutter [22]
studied a toy problem under which a non-trivial power of N arises in the test loss. Jain et al. [23]
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considered scaling laws in data selection. Bahri et al. [4] considered a linear teacher-student model
under a power-law spectrum assumption on the covariates, and they showed that the test loss of the
ordinary least square estimator decreases following a power law in sample size N (resp. model size
M ) when the model size M (resp. sample size N ) is infinite. Bordelon et al. [8] considered a linear
random feature model and analyzed the test loss of the solution found by (batch) gradient flow. They
focused on the bottleneck regimes where two of the quantities N,M , T (training steps) are infinite
and showed that the risk has a power-law decay in the remaining quantity. The problem in Bahri
et al. [4], Bordelon et al. [8] can be viewed as a sketched linear regression model similar to ours.
It should be noted that both Bahri et al. [4] and Bordelon et al. [8] only derived the dependence of
population risk on one of the data size, model size, or training steps in the asymptotic regime where
the remaining quantities go to infinity, and their derivations are based on statistical physics heuristics.
In comparison, we prove matching (ignoring constant factors) upper and lower risk bounds jointly
depending on the finite model size M and data size N .

Implicit regularization of SGD. One-pass SGD in linear regression has been extensively studied
in both the classical finite-dimensional setting [34, 3, 14, 16, 25, 24, 18] and the modern high-
dimensional setting [15, 6, 48, 47, 44, 45, 40]. In particular, Zou et al. [47] showed that SGD induces
an implicit regularization effect that is comparable to, and in certain cases even more preferable than,
the explicit regularization effect induced by ridge regression. This is one of the key motivations of
our scaling law interpretation. From a technical perspective, we utilize the sharp finite-sample and
dimension-free analysis of SGD developed by Zou et al. [48], Wu et al. [44, 45]. Different from
them, we consider a sequence of linear regression models with an increasing number of trainable
parameters given by data sketch. Our main technical innovation is to sharply control the effect of data
sketch. Some of our intermediate results, for example, tight bounds on the spectrum of the sketched
data covariance under the power law (see Lemma 6.2), might be of independent interest.

Prior works investigated linear regression with random features [36, 12], which can be viewed as
a kind of sketched features via random coordinate selection. They mainly focused on the small
approximation error regime, where the model size (or the number of features) is much larger than
the data size. In comparison, we treat both model size and data size as free variables. Moreover,
we provide matching upper and lower bounds while prior works mainly focused on upper bounds.
These two innovations are crucial for studying scaling laws that predict test error as a function of
both model size and data size. Finally, in the comparable regimes with small or zero approximation
error, our excess risk bounds recover the bounds in prior works [36, 12, 33, 15, 13].

3 Setup

We use x ∈ H to denote a feature vector, where H is a finite d-dimensional or countably infinite
dimensional Hilbert space, and y ∈ R to denote its label. In linear regression, we measure the
population risk of a parameter w ∈ H by the mean squared error,

R(w) := E
(
⟨x,w⟩ − y

)2
, w ∈ H,

where the expectation is over (x, y) ∼ P for some distribution P on H× R.
Definition 1 (Data covariance and optimal parameter). Let H := E[xx⊤] be the data covariance.
Assume that tr(H) and all entries of H are finite. Let (λi)i≥0 be the eigenvalues of H sorted in
non-increasing order. Let w∗ ∈ argminw R(w) be the optimal model parameter1. Assume that
∥w∗∥2H := (w∗)⊤Hw∗ is finite.

We only assume access to M -dimensional sketched covariates and their responses, that is, (Sx, y),
where S ∈ RM × H is a fixed sketch matrix. We focus on the Gaussian sketch matrix2, that is,
entries of S are independently sampled from N

(
0, 1/M

)
. We then consider linear predictors with M

trainable parameters given by
fv : H → R, x 7→ ⟨v,Sx⟩,

where v ∈ RM are the trainable parameters. Varying M should be viewed as a linear analog of
varying the neural network model size. Our sketched linear regression setting is comparable to the
teacher-student setting considered by Bahri et al. [4], Bordelon et al. [8].

1If argminR(·) is not unique, we choose w∗ to be the minimizer with minimal H-norm.
2Our results can be extended to other sketching methods [see 43, for example].
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We consider the training of fv via one-pass stochastic gradient descent (SGD), that is,

vt := vt−1 − γt
(
fvt−1

(xt)− yt
)
∇vfvt−1

(xt)

:= vt−1 − γt
(
x⊤
t S

⊤vt−1 − yt
)
Sxt, t = 1, . . . , N,

(SGD)

where (xt, yt)
N
t=1 are independent samples from P and (γt)

N
t=1 are the stepsizes. We consider a

popular geometric decaying stepsize scheduler [18, 44],

for t = 1, . . . , N, γt := γ/2ℓ, where ℓ = ⌊t/(N/ log(N))⌋. (3)

Here, the initial stepsize γ is a hyperparameter for the SGD algorithm. Without loss of generality, we
assume the initial parameter is v0 = 0. The output of the SGD algorithm is the last iterate vN . Our
proof techniques apply to other stepsize schedulers (e.g., polynomial decay) as well, but we focus on
geometric decay as it is known to achieve near minimax-optimal excess risk for the last iterate of
SGD [18].

Conditioning on a sketch matrix S ∈ RM ×H, each parameter v ∈ RM induces a sketched predictor
through x 7→ ⟨S⊤v,x⟩, and we denote its risk by

RM (v) := R(S⊤v) = E
(
⟨Sx,v⟩ − y

)2
, v ∈ RM .

By increasing M and N , we have a sequence of datasets and trainable parameters of increasing sizes,
respectively. This prepares us to study the scaling law (1) in the sketched linear regression problem,
that is, to understand RM (vN ) as a function of both M and N .

Risk decomposition. In a standard way, we decompose the risk achieved by vN , the last iterate of
(SGD), to the sum of irreducible risk, approximization error, and excess risk as follows,

RM (vN ) = minR(·)︸ ︷︷ ︸
Irreducible

+minRM (·)−minR(·)︸ ︷︷ ︸
Approx

+RM (vN )−minRM (·)︸ ︷︷ ︸
Excess

. (4)

We emphasize that the irreducible risk is independent of M and N and thus can be viewed as a
constant; the approximation error is determined by the sketch matrix S, thus depends on M but is
independent of N ; the excess risk depends on both M and N as it is determined by the algorithm.

4 Scaling laws

We first demonstrate a scaling-law behavior when the data spectrum satisfies a power law.
Assumption 1 (Distributional conditions). Assume the following about the data distribution.

A. Gaussian design. Assume that x ∼ N (0,H).

B. Well-specified model. Assume that E[y|x] = x⊤w∗. Define σ2 := E(y − x⊤w∗)2.

C. Parameter prior. Assume that w∗ satisfies a prior such that E(w∗)⊗2 = I.

Assumption 2 (Power-law spectrum). There exists a > 1 such that the eigenvalues of H satisfy
λi ≂ i−a, i > 0.

Theorem 4.1 (Scaling law). Suppose that Assumptions 1 and 2 hold. Consider an M -dimensional
sketched predictor trained by (SGD) with N samples. Let Neff := N/ log(N) and recall the risk
decomposition in (4). Then there exists some a-dependent constant c > 0 such that when the initial
stepsize γ ≤ c, with probability at least 1− e−Ω(M) over the randomness of the sketch matrix S, we
have

1. Irreducible := R(w∗) = σ2.

2. Ew∗Approx ≂ M1−a.

3. Suppose in addition σ2 ≳ 1. The expected excess risk (Excess) can be decomposed into a bias
error (Bias) and a variance error (Var), namely,

EExcess ≂ Bias+ σ2Var,
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where the expectation is over the randomness of w∗ and (xi, yi)
N
i=1. Moreover, Bias and Var

satisfy

Bias ≲ max
{
M1−a, (Neffγ)

1/a−1
}
,

Bias ≳ (Neffγ)
1/a−1 when (Neffγ)

1/a ≤ M/c for some constant c > 0,

Var ≂ min
{
M, (Neffγ)

1/a
}
/Neff.

In all results, the hidden constants only depend on the power-law degree a. As a direct consequence,
when σ2 ≂ 1, it holds with probability at least 1− e−Ω(M) over the randomness of the sketch matrix
S that

ERM (vN ) = σ2 +Θ

(
1

Ma−1

)
+Θ

(
1

(Neffγ)(a−1)/a

)
,

where the expectation is over the randomness of w∗ and (xi, yi)
N
i=1.

Theorem 4.1 shows a sharp (up to constant factors) scaling law risk bound under an isotroptic prior
assumption and the power-law spectrum assumption. We emphasize that the scaling law bound in
Theorem 4.1 holds for every M,N ≥ 1. We also remark that the sum of approximization and bias
errors dominates ERM (vN ) − σ2, whereas the variance error is of strict higher order in terms of
both M and N , and is thus disappeared in the population risk bound.

Optimal stepsize. Based on the tight scaling law in Theorem 4.1, we can calculate the optimal
stepsize that minimizes the risk. Specifically, the optimal stepsize is γ ≂ 1 when Neff ≲ Ma and
can be anything such that Ma/Neff ≲ γ ≲ 1 when Neff ≳ Ma. In both cases, choosing γ ≂ 1 is
optimal. When the sample size is large such that Neff ≳ Ma, the optimal stepsize is relatively robust
and can be chosen from a range.

Allocation of data and model sizes. Following Hoffmann et al. [21], we measure the compute
complexity by MN as (SGD) queries M -dimensional gradients for N times. Given a total compute
budget of MN = C, from Theorem 6.1 and Neff := N/ log(N), we see that the best population risk
is achieved by setting γ = Θ(1), M = Θ̃(C1/(a+1)), and N = Θ̃(Ca/(a+1)). Our theory suggests
setting a data size slightly larger than the model size when the compute budget is the bottleneck.

Comparison with [8]. The work by Bordelon et al. [8] considered the scaling law of batch gradient
descent (or gradient flow) on a teacher-student model (see their equation (14)). Their teacher-student
model can be viewed as our sketched linear regression model. However, we consider one-pass
SGD, therefore in our setting the number of gradient steps is equivalent to the data size. When we
equalize the number of gradient steps and the data size in their equation (14) and set the parameter
prior as Assumption 1C, their prediction is consistent with ours. However, our analysis shows the
computational advantage of SGD over batch GD since each iteration requires only 1/N the compute.
Bordelon et al. [8] obtained the limit of the population risk as two out of the data size, model size, and
the number of gradient steps go to infinity based on statistical physics heuristics. In comparison, we
obtain upper and lower risk bounds that hold for any finite M and N and match ignoring a constant
factor depending only on the spectrum power-law degree a.

Average of the SGD iterates Results similar to Theorem 4.1 can also be established for the average
of the iterates of online SGD with constant stepsize [34, 16, 25, 24, 48]. All results will be the same
once replacing the effective sample size Neff in Theorem 4.1 to the sample size N . For more details
see Theorem F.6 in Appendix F.

4.1 Scaling law under source condition

The isotropic parameter prior condition (Assumption 1C) in Theorem 4.1 can be generalized to the
following anisotropic version [11].
Assumption 3 (Source condition). Let (λi,vi)i>0 be the eigenvalues and eigenvectors of H with
(λi)i>0 in non-increasing order. Assume w∗ satisfies a prior such that

for i ̸= j, E⟨vi,w
∗⟩⟨vj ,w

∗⟩ = 0; and for i > 0, Eλi⟨vi,w
∗⟩2 ≂ i−b, for some b > 1.
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A larger exponent b implies a faster decay of signal w∗ and thus corresponds to a simpler task [11].
Note that Assumption 1C satisfies Assumption 3 with b = a.
Theorem 4.2 (Scaling law under source condition). In Theorem 4.1, suppose Assumption 1C is
replaced by Assumption 3 with 1 < b < a+ 1. Then there exists some a-dependent constant c > 0
such that when γ ≤ c, with probability at least 1− e−Ω(M) over the randomness of the sketch matrix
S, we have

ERM (vN ) = σ2 +Θ

(
1

M b−1

)
+Θ

(
1

(Neffγ)(b−1)/a

)
︸ ︷︷ ︸

Approx+Bias

+Θ

(
min

{
M, (Neffγ)

1/a
}

Neff

)
︸ ︷︷ ︸

Var

.

where the expectation is over the randomness of w∗ and (xi, yi)
N
i=1, and Θ(·) hides constants that

may depend on (a, b).

When 1 < b ≤ a, the tasks are relatively hard (compared to when b = a), and the variance error is
dominated by the sum of approximation and bias errors for all choices of M , N , and γ ≲ 1. In this
case, Theorem 4.2 gives the same prediction about optimal stepsize and optimal allocation of data
and model sizes under compute budget as Theorem 4.1.

When a < b < a+ 1, the tasks are relatively easy (compared to when b = a), and variance remains
dominated by the sum of approximation and bias error if the stepsize is optimally tuned. Recall that
γ ≲ 1, thus we can rewrite the risk bound in Theorem 4.2 as

ERM (vN )− σ2 ≂
1

min
{
M, (Neffγ)1/a

}b−1
+

min
{
M, (Neffγ)

1/a
}

Neff

≂

{
min

{
M, (Neffγ)

1/a
}
/Neff M ≳ N

1/b
eff and N

a/b−1
eff ≲ γ ≲ 1,

min
{
M, (Neffγ)

1/a
}1−b

M ≲ N
1/b
eff or γ ≲ N

a/b−1
eff .

Therefore the optimal stepsize and the risk under the optimal stepsize is

γ ≂ N
a/b−1
eff if M ≳ N

1/b
eff , and Ma/Neff ≲ γ ≲ 1 if M ≲ N

1/b
eff .

Under the optimally tuned stepsize, the population risk is in the form of

minγ ERM (vN ) = σ2 +Θ(N
(1−b)/b
eff ) + Θ(M1−b),

which is again in the scaling law form (1). This is expected since an optimally tuned stepsize controls
the variance error by adjusting the strength of the implicit bias of SGD. Under a fixed compute budget
C = MN , our theory suggests to assign M = Θ̃(C1/(b+1)) and N = Θ̃(Cb/(b+1)), and set the
stepsize to γ ≂ Θ̃(C(a−b)/(b+1)).

When b ≥ a+ 1, the tasks are even simpler. We provide upper and lower bounds in Appendix D.3.
However, there exists a gap between the bounds, fixing which is left for future work.

Moreover, we note that in the comparable regimes where M is large, the results in Theorem 4.2
match existing bounds on the risk of SGD iterates and ridge estimators [33, 36].

4.2 Scaling law under logarithmic power law

We also derive the risk formula when the data covariance has a logarithmic power-law spectrum [5].
Assumption 4 (Logarithmic power-law spectrum). There exists a > 1 such that the eigenvalues of
H satisfy λi ≂ i−1 log−a(i+ 1), i > 0.
Theorem 4.3 (Scaling law under logarithmic power spectrum). In Theorem 4.1, suppose Assumption 2
is replaced by Assumption 4. Then with probability at least 1− e−Ω(M) over the randomness of the
sketch matrix S, we have

ERM (vN ) = σ2 +Θ

(
1

loga−1(M)

)
+Θ

(
1

loga−1(Neffγ)

)
, Var ≂

min
{
M, Neffγ

loga(Neffγ)

}
Neff

,

where the expectation is over the randomness of w∗ and (xi, yi)
N
i=1.
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Figure 2: The expected risk of the last iterate of (SGD) minus the irreducible risk versus the effective sample
size and model size. Parameters σ = 1, γ = 0.1. (a), (b): a = 1.5, d = 10000; (c), (d): a = 2, d = 1000. The
error bars denote the ±1 standard deviation of estimating the expected risk using 100 independent samples of
(w∗,S). We use linear functions to fit the expected risk under the log-log scale and report the slope of the fitted
lines (denoted by k).

Theorem 4.3 provides a scaling law under the logarithmic power-law spectrum. Similar to Theo-
rem 4.1, the variance error is dominated by the approximation and bias errors for all choices of M ,
N , and γ, and thus disappeared from the risk bound. Different from Theorem 4.1, here the population
risk is a polynomial of log(M) and log(Neffγ).

5 Experiments

In this section, we examine the relation between the expected risk of the (SGD) output, the data size
N , and the model size M when the covariates satisfy a power-law covariance spectrum. Although
our results in Section 4 hold with high probability over S, for simplicity, we assume the expectation
of the risk is taken over both w∗ and S in our simulations. We adopt the model in Section 3 and
train it using one-pass (SGD) with geometric decaying stepsize (3). We choose the dimension d
sufficiently large to approximate the infinite-dimensional case, and the data are generated so that
Assumption 1 is satisfied. Moreover, we choose the covariance H ∈ Rd×d to be diagonal with
Hii ∝ ia and tr(H) = 1 for some a > 1. From Figure 1, we observe that the risk indeed follows a
power-law formula jointly in the number of samples and the number of parameters. In addition, the
fitted exponents are aligned with our theoretical predictions (a−1, 1−1/a) in Theorem 4.1. Figure 2
shows the scaling of the expected risk in data size (or model size) when the model size (or data size)
is relatively large. We see that the expected risk also satisfies a power-law decay with exponents
matching our predictions. It is noteworthy that our simulations demonstrate stronger observations
than the theoretical results in Theorem 4.1, which only establishes matching upper and lower bounds
up to a constant factor. Additional simulation results on the risk of the average of (SGD) iterates can
be found in Appendix F.

6 Risk bounds under a general spectrum

In this section, we present some general results on the upper and lower bounds of the risk of the
output of (SGD). Due to the rotational invariance of the sketched matrix S, without loss of generality,
we assume the covariance H is diagonal with non-increasing diagonal entries. Our main results in
Section 4 are directly built on the general bounds introduced here.

Assumption 5 (General distributional conditions). Assume the following about the data distribution.

A. Hypercontractivity. There exists α ≥ 1 such that for every PSD matrix A it holds that

Exx⊤Axx⊤ ⪯ α tr(HA)H.

B. Misspecified model. There exists σ2 > 0 such that E(y − x⊤w∗)2xx⊤ ⪯ σ2H.

It is clear that Assumption 1 implies Assumption 5 with α = 3.

Excess risk decomposition. Conditioning on the sketch matrix S, the training of the sketched
linear predictor can be viewed as an M -dimensional linear regression problem. We can therefore
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invoke existing SGD analysis [44, 45] to sharply control the excess risk by controlling the bias and
variance errors. Specifically, let us define the (w∗-dependent) bias error as

Bias(w∗) :=

∥∥∥∥ N∏
t=1

(
I− γtSHS⊤)v∗

∥∥∥∥2
SHS⊤

, where v∗ := (SHS⊤)−1SHw∗, (5)

and the variance error as

Var :=
#{λ̃j ≥ 1/(Neffγ)}+ (Neffγ)

2
∑

λ̃j<1/(Neffγ)
λ̃2
j

Neff

, Neff := N/ log(N), (6)

where
(
λ̃j

)M
j=1

are eigenvalues of SHS⊤. We also let Bias := EBias(w∗), where the expectation is
over the prior of w∗. Using the existing results on the output of (SGD) in Wu et al. [44, 45], we show
that the excess risk in (4) can be exactly decomposed as the sum of bias and variance errors under
weak conditions.
Theorem 6.1 (Excess risk decomposition). Conditioning on the sketch matrix S, consider the excess
risk in (4) induced by the output of (SGD). Assume v0 = 0. Then for any w∗ ∈ H,

1. Under Assumptions 5A and 5B and suppose γ ≤ 1/
(
cα tr(SHS⊤)

)
for some constant c > 0, we

have
EExcess ≲ Bias(w∗) +

(
α∥w∗∥2H + σ2

)
Var.

2. Under the stronger Assumptions 1A and 1B and suppose γ ≤ 1/
(
cα tr(SHS⊤)) for some constant

c > 0, we have
EExcess ≳ Bias(w∗) + σ2Var.

In both results, the expectations of Excess are taken over (xt, yt)
N
t=1.

Assuming that the signal-to-noise ratio is upper bounded, that is, ∥w∗∥2H/σ2 ≲ 1, then the bias-
variance decomposition of the excess risk is sharp up to constant factors.

The variance error is in a nice form and can be computed using the following important lemma on the
spectrum of SHS⊤. Similar results for logarithmic power-law are also established in Lemma G.6 in
Appendix G.

Lemma 6.2 (Power law). Under Assumption 2, it holds with probability at least 1− e−Ω(M) that

µj(SHS⊤) ≂ µj(H) ≂ j−a, j = 1, . . . ,M.

For any 0 ≤ k∗ ≤ k† ≤ ∞, let Sk∗:k† ∈ RM×(k†−k∗) denote the matrix formed by the k∗+1−k†-th
columns of S. We also abuse the notation k† : ∞ for k† : d when d is finite. We let Hk∗:k† ∈
R(k†−k∗)×(k†−k∗) be the submatrix of H formed by the k∗ + 1 − k†-th eigenvalues. For the
approximation and bias error, we use the following upper and lower bounds to compute their values.
Theorem 6.3 (A general upper bound). Suppose Assumption 5 holds. Assume v0 = 0, r(H) ≥ 2M
and the initial stepsize satisfies γ < 1/(cα tr(SHS⊤)) for some constant c > 0. Then for any
k1, k2 ≤ M/3, with probability at least 1− e−Ω(M)

Approx ≲ ∥w∗
k1:∞∥2Hk1:∞

+

(∑
i>k1

λi

M
+ λk1+1 +

√∑
i>k1

λ2
i

M

)
∥w∗

0:k1
∥2,

Bias(w∗) ≲
∥w∗

0:k2
∥22

Neffγ
·

[
µM/2(Sk2:∞Hk2:∞S⊤

k2:∞)

µM (Sk2:∞Hk2:∞S⊤
k2:∞)

]2
+ ∥w∗

k2:∞∥2Hk2:∞
.

Theorem 6.4 (A general lower bound). Suppose Assumption 1 holds. Assume v0 = 0, r(H) ≥ M
and the initial stepsize γ < 1/

(
c tr(SHS⊤)

)
for some constant c > 0. Then

Ew∗Approx ≳
d∑

i=M

λi, Ew∗Bias(w∗) ≳
∑

i:λ̃i<1/(Neffγ)

µi(SH
2S⊤)

µi(SHS⊤)

almost surely, where (λi)
d
i=1 are eigenvalues of H in non-increasing order, (λ̃i)

d
i=1 are eigenvalues

of SHS⊤ in non-increasing order.
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7 Conclusion

We analyze neural scaling laws in infinite-dimensional linear regression. We consider a linear
predictor with M trainable parameters on the sketched covariates, which is trained by one-pass
stochastic gradient descent with N data. Under a Gaussian prior assumption on the optimal model
parameter and a power law (of degree a > 1) assumption on the spectrum of the data covariance, we
derive matching upper and lower bounds on the population risk minus the irreducible error, that is,
Θ(M−(a−1) +N−(a−1)/a). In particular, we show that the variance error, which increases with M ,
is of strictly higher order compared to the other errors, thus disappearing from the risk bound. We
attribute the nice empirical formula of the neural scaling law to the non-domination of the variance
error, which ultimately is an effect of the implicit regularization of SGD.

Many directions remain open for future study. First, our work is limited to the linear model; it
would be interesting to see whether similar scaling laws can be derived in more complex models,
such as random feature models or two-layer networks. Second, we focus on one-pass SGD training,
and it is unclear if similar results hold for other optimization methods like accelerated SGD or
Adam. Additionally, from a technical perspective, many results in our work depend on the Gaussian
assumption and the source condition of the data. Investigating how these assumptions can be relaxed
would also be valuable.
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A Preliminary

In this section, we provide some preliminary discussions and a proof of Theorem 6.1. Concretely, in
Section A.1 we discuss our data assumptions and introduce additional notations. In Section A.2, A.3
we derive intermediate results that contribute to the proof of Theorem 6.1. Finally, a complete proof
of Theorem 6.1 is contained in Section A.4.

A.1 Additional notations and comments on data assumptions

Tensors. For matrices A, B, C, D, and X of appropriate shape, it holds that

(B⊤ ⊗A) ◦X = AXB,

and that

(D⊤ ⊗C) ◦ (B⊤ ⊗A) ◦X =
(
(D⊤B⊤)⊗ (CA)

)
◦X

14



= CAXBD.

For simplicity, we denote
A⊗2 := A⊗A.

Comments on Assumption 2, 3 and 4 Due to the rotational invariance of the Gaussian sketched
matrix S, throughout the appendix, we assume w.l.o.g. that the covariance of the input covariates
H is diagonal with the (i, i)-th entry being the i-th eigenvalue. Specifically, Assumption 3 can be
rewritten as
Assumption 6 (Source condition). Assume H = (hij)i,j≥1 is a diagonal matrix with diagonal
entries in non-increasing order, and w∗ satisfies a prior such that

for i ̸= j, Ew∗
iw

∗
j = 0; and for i > 0, Eλiw

∗2
i ≂ i−b, for some b > 1.

Now that we assume H is diagonal. We make the following notations. Define

Hk∗:k† := diag(λk∗+1, . . . , λk†) ∈ R(k†−k∗)2 ,

where 0 ≤ k∗ ≤ k† are two integers, and we allow k† = ∞. For example,

H0:k = diag(λ1, . . . , λi), Hk:∞ = diag(λk+1, . . . ).

Similarly, for a vector w ∈ H, we have

wk∗:k† := (wk∗+1, . . . ,w
∗
k†)

⊤ ∈ Rk†−k∗
.

A.2 Approximation error

Recall the risk decomposition in (4),

RM (vN ) = minR(·)︸ ︷︷ ︸
Irreducible

+minRM (·)−minR(·)︸ ︷︷ ︸
Approx

+RM (vN )−minRM (·)︸ ︷︷ ︸
Excess

.

Lemma A.1 (Approximization error). Conditional on the sketch matrix S, the minimizer of RM (v)
is given by

v∗ := (SHS⊤)−1SHw∗,

and the approximation error in (4) is

Approx := minRM (·)−minR(·)

=
∥∥∥(I−H

1
2S⊤(SHS⊤)−1

SH
1
2

)
H

1
2w∗

∥∥∥2. (7)

Moreover, Approx ≤ ∥w∗∥2H almost surely over the randomness of S.

Proof of Lemma A.1. Recall that the risk

R(w) := E
(
⟨x,w⟩ − y

)2
is a quadratic function and that w∗ is the minimizer of R(·), so we have(

Ex⊗2
)
w∗ = Exy ⇔ Hw∗ = Exy,

and

R(w) = E
(
⟨x,w⟩ − ⟨x,w∗⟩

)2
+R(w∗)

= ∥H 1
2 (w −w∗)∥2 +R(w∗).

Recall that the risk in a restricted subspace

RM (v) := R(S⊤v) = E
(
⟨Sx,v⟩ − y

)2
is also a quadratic function, so its minimizer is given by

v∗ =
(
E(Sx)⊗2

)−1ESxy
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=
(
SHS⊤)−1

SHw∗.

Therefore, the approximation error is

Approx := RM (v∗)−R(w∗)

= R(S⊤v∗)−R(w∗)

= ∥H 1
2 (S⊤v∗ −w∗)∥2

= ∥H 1
2 (S⊤(SHS⊤)−1

SHw∗ −w∗)∥2

=
∥∥∥(I−H

1
2S⊤(SHS⊤)−1

SH
1
2

)
H

1
2w∗

∥∥∥2.
Finally, since (

I−H
1
2S⊤(SHS⊤)−1

SH
1
2

)2
= I−H

1
2S⊤(SHS⊤)−1

SH
1
2 ⪯ I,

it follows that Approx ≤ ∥w∗∥2H.

A.3 Bias-variance decomposition

The excess risk in (4) can be viewed as the SGD excess risk in an M -dimensional (misspecified)
linear regression problem. We will utilize Corollary 3.4 in [45] to get a bias-variance decomposition
of the excess risk. The following two lemmas check the related assumptions for Corollary 3.4 in [45]
in our setup.
Lemma A.2 (Hypercontractivity and the misspecified noise under sketched feature). Suppose that
Assumptions 5A and 5B hold. Conditioning on the sketch matrix S, for every PSD matrix A ∈ RM×M ,
we have

E(Sx)⊗2A(Sx)⊗2 ⪯ α tr
(
SHS⊤A

)
SHS⊤.

Moreover, for the minimizer of RM (v), that is, v∗ defined in Lemma A.1, we have

E
(
y − ⟨v∗,Sx⟩

)2
(Sx)⊗2 ⪯ 2(σ2 + α∥w∗∥2H)SHS⊤.

The expectation in the above is over (x, y).

Proof of Lemma A.2. The first part is a direct application of Assumption 5A:

E(Sx)⊗2A(Sx)⊗2 = S
(
Exx⊤(S⊤AS)xx⊤)S⊤

⪯ S
(
α tr

(
HS⊤AS

)
H
)
S⊤

= α tr
(
SHS⊤A

)
SHS⊤.

For the second part, we first show that

E
(
y − ⟨v∗,Sx⟩

)2
x⊗2 ⪯ 2E

(
y − ⟨w∗,x⟩

)2
x⊗2 + 2E⟨w∗ − S⊤v∗,x⟩2x⊗2

⪯ 2σ2H+ 2α⟨H, (w∗ − S⊤v∗)⊗2⟩H,

where the last inequality is by Assumptions 5A and 5B. From the proof of Lemma A.1, we know that

⟨H, (w∗ − S⊤v∗)⊗2⟩ = Approx ≤ ∥w∗∥2H, almost surely.

So we have

E
(
y − ⟨v∗,Sx⟩

)2
x⊗2 ⪯ 2(σ2 + α∥w∗∥2H)H.

Left and right multiplying both sides with S and S⊤, we obtain the second claim.

Lemma A.3 (Gaussianity and well-specified noise under sketched features). Suppose that Assump-
tions 1A and 1B hold. Conditional on the sketch matrix S, we have

Sx ∼ N (0,SHS⊤).

Moreover, for the minimizer of RM (v), that is, v∗ defined in Lemma A.1, we have

E[y|Sx] = ⟨Sx,v∗⟩, E(y − ⟨Sx,v∗⟩)2 = σ2 + Approx ≥ σ2.
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Proof of Lemma A.3. The first claim is a direct consequence of Assumption 1A.

For the second claim, by Assumption 1A and Lemma A.1, we have

E[y|x] = ⟨x,w∗⟩
= ⟨x,S⊤v∗⟩+ ⟨x,w∗ − S⊤v∗⟩
= ⟨x,S⊤v∗⟩+ ⟨x,

[
I− (SHS⊤)−1SH

]
w∗⟩

= ⟨H− 1
2x,H

1
2S⊤v∗⟩+ ⟨H− 1

2x,
[
I−H

1
2S⊤(SHS⊤)−1SH

1
2

]
H

1
2w∗⟩

= ⟨SH 1
2H− 1

2x,v∗⟩+ ⟨
[
I−H

1
2S⊤(SHS⊤)−1SH

1
2

]
H− 1

2x,H
1
2w∗⟩. (8)

Notice that
H− 1

2x ∼ N (0, I),

by Assumption 1A and that

SH
1
2

[
I−H

1
2S⊤(SHS⊤)−1SH

1
2

]
= 0,

therefore

Sx = SH
1
2H− 1

2x is independent of
[
I−H

1
2S⊤(SHS⊤)−1SH

1
2

]
H− 1

2x.

Taking expectation over the second random vector in (8), we find

E[y|Sx] = EE[y|x] = ⟨SH 1
2H− 1

2x,v∗⟩ = ⟨Sx,v∗⟩.

It remains to show
E(y − ⟨Sx,v∗⟩)2 = σ2 + Approx.

This follows from the proof of Lemma A.1. Specifically,

E(y − ⟨Sx,v∗⟩)2 = R(S⊤v∗)

= Approx+R(w∗)

= Approx+ σ2

≥ σ2,

where the second equality is by the definition of Approx and the third equality is by Assumption 1B.
We have completed the proof.

A.4 Proof of Theorem 6.1

We now use the results in [44, 45] for SGD to obtain the following bias-variance decomposition on
the excess risk.
Theorem A.4 (Excess risk bounds). Consider the excess risk in (4) induced by the output of (SGD).
Let

Neff := N/ log(N), SNR := (∥w∗∥2H + ∥v0∥2SHS⊤)/σ
2.

Then conditioning on the sketch matrix S, for any w∗ ∈ H

1. Under Assumptions 5A and 5B, we have

EExcess ≲
∥∥∥∥ N∏

t=1

(
I− γtSHS⊤)(v0 − v∗)

∥∥∥∥2
SHS⊤

+ (1 + αSNR)σ2 · Deff

Neff

when γ ≲ 1
cα tr(SHS⊤)

for some constant c > 0.

2. Under Assumptions 1A and 1B, we have

EExcess ≳
∥∥∥∥ N∏

t=1

(
I− γtSHS⊤)(v0 − v∗)

∥∥∥∥2
SHS⊤

+ σ2 · Deff

Neff

when γ ≲ 1
c tr(SHS⊤)

for some constant c > 0.
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In both results, the expectation is over (xt, yt)
N
t=1, and

Deff := #{λ̃j ≥ 1/(Neffγ)}+ (Neffγ)
2

∑
λ̃j<1/(Neffγ)

λ̃2
j ,

where (λ̃j)
M
j=1 are eigenvalue of SHS⊤.

Theorem 6.1 follows immediately by Lemma A.1 and by setting v0 = 0 and plugging the definition
of Bias(w∗) and Var into Theorem A.4.

Proof of Theorem A.4. This follows from Corollary 3.4 in [45] for a linear regression problem with
population data given by (Sx, y). Note that the data covariance becomes SHS⊤ and the optimal
model parameter becomes v∗.

For the upper bound, Lemma A.2 verifies Assumptions 1A and 2 in [45], with the noise level being
σ̃2 = 2(σ2 + α∥w∗∥2H).

Then we can apply the upper bound in Corollary 3.4 in [45] (setting their index set K = ∅) to get

EExcess ≲
∥∥∥∥ N∏

t=1

(
I− γtSHS⊤)(v0 − v∗)

∥∥∥∥2
SHS⊤

+ (∥v∗ − v0∥2SHS⊤ + σ̃2)
Deff

Neff

.

We verify that

∥v∗ − v0∥2SHS⊤ ≤ 2∥H 1
2S⊤v∗∥2 + 2∥v0∥2SHS⊤

= 2∥H 1
2S⊤(SHS⊤)−1SHw∗∥2 + 2∥v0∥2SHS⊤

≤ 2∥H 1
2w∗∥2 + 2∥v0∥2SHS⊤

= 2∥w∗∥2H + 2∥v0∥2SHS⊤ ,

which implies that
(∥v∗ − v0∥2SHS⊤ + σ̃2) ≤ 2∥w∗∥2H + 2∥v0∥2SHS⊤ + 2(σ2 + α∥w∗∥2H)

≲ (1 + αSNR)σ2.

Substituting, we get the upper bound.

For the lower bound, Lemma A.3 shows Sx is Gaussian, therefore it satisfies Assumption 1B in Wu
et al. [45] with β = 1. Besides, Lemma A.3 shows that the linear regression problem is well-specified,
with the noise level being

σ̃2 = σ2 + Approx ≥ σ2.
Although the lower bound in Corollary 3.4 in Wu et al. [45] is stated for Gaussian additive noise (see
their Assumption 2’), it is easy to check that the lower bound holds for any well-specified noise as
described by Lemma A.3. Using the lower bound in Corollary 3.4 in Wu et al. [45], we obtain

EExcess ≳
∥∥∥∥ N∏

t=1

(
I− γtSHS⊤)(v0 − v∗)

∥∥∥∥2
SHS⊤

+ σ̃2Deff

Neff

.

Plugging in σ̃2 ≥ σ2 gives the desired lower bound.

A.5 Proofs of Lemma 6.2, Theorem 6.3 and 6.4

Lemma 6.2 is proved in Lemma G.4. Theorem 6.3 follows from Lemma C.1 and D.1. Theorem 6.4
follows from Lemma C.2 and D.2.

B Proofs in Section 4

B.1 Proof of Theorem 4.1

Proof of part 1. By Assumption 1B and the definition of R(·), we have
R(w) = E(⟨x,w⟩ − y)2 = E(⟨x,w⟩ − E[y | x])2 + E(y − E[y | x])2

= E(⟨x,w⟩ − ⟨x,w∗⟩)2 + σ2 ≥ σ2.

Note that the equality holds if and only if w = w∗. Therefore we have minR(·) = R(w∗) = σ2.
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Proof of part 2. Part 2 of Theorem 4.1 follows immediately from Lemma C.2.

Proof of part 3. We choose Bias(w∗),Var as defined in Eq. (5) and (6) and let Bias :=
Ew∗Bias(w∗). Part 3 of Theorem 4.1 follows directly from the decomposition of the excess risk in
Theorem 6.1 (note that E∥w∗∥2H/σ2 ≲ 1), and the matching bounds in Lemma D.3 and E.1.

It remains to verify the stepsize assumption required in Lemma D.3. Since we have from Lemma G.4
that

1

tr(SHS⊤)
=

1∑M
i=1 λ̃i

≥ c1∑M
i=1 λi

≥ c2∑M
i=1 i

−a
≥ c3

for some a-dependent constants c1, c2, c3 > 0 with probability at least 1− e−Ω(M), it follows that
for any constant c > 1, we can choose γ ≤ c0 for some a-dependent c0 such that γ ≤ 1

c tr(SHS⊤)
.

Therefore, we have verified the stepsize assumption.

Finally, the last claim in Theorem 4.1 follows directly from combining the previous three parts and
Theorem 6.1, noting σ2 ≲ 1. and

Var ≂
min{M, (Neffγ)

1/a}
Neff

≲
(Neffγ)

1/a

Neff

≲ (Neffγ)
1/a−1 ≲ Bias+ Approx

under the stepsize assumption γ ≲ 1. Here the hidden constants may depend on a.

B.2 Proof of Theorem 4.2

Similar to the proof of Theorem 4.1, we have minR(·) = σ2 under Assumption 1B. Moreover, by
Lemma C.5, D.4 and E.1, we have with probability at least 1− e−Ω(M) that

Ew∗Approx ≂ M1−b,

Bias ≲ max
{
M1−b, (Neffγ)

(1−b)/a
}
,

Bias ≳ (Neffγ)
(1−b)/a when (Neffγ)

1/a ≤ M/3,

Var ≂ min
{
M, (Neffγ)

1/a
}
/Neff,

when the stepsize γ ≤ c for some a-dependent constant c > 0. Here the hidden constants in the
bounds may depend only on (a, b). Combining the bounds on Approx,Bias,Var and noting

Var ≂
min{M, (Neffγ)

1/a}
Neff

≲
(Neffγ)

1/a

Neff

≲ (Neffγ)
(1−b)/a ≲ Bias+ Approx

yields Theorem 4.2. Here in the second inequality, we use the assumption b ≤ a.

B.3 Proof of Theorem 4.3

Similar to the proof of Theorem 4.1, we have minR(·) = σ2 under Assumption 1B. Notice that we
have γ ≲ 1 implies γ ≲ 1/(tr(SHS⊤)) with probability at least 1 − e−Ω(M) by Lemma G.6. It
follows from Lemma C.6, D.5 and E.2 that

Ew∗Approx ≂ log1−a M,

Bias ≲ max
{
log1−a M, log1−a(Neffγ)

}
,

Bias ≳ log1−a(Neffγ) when (Neffγ)
1/a ≤ M c for some small constant c > 0,

Var ≂
min{M, (Neffγ)/ log

a(Neffγ)}
Neff

≲
(Neffγ)/ log

a(Neffγ)

Neffγ
= log−a(Neffγ)

with probability at least 1− e−Ω(M) when the stepsize γ ≤ c for some a-dependent constant c > 0.
Since Var ≲ Bias and log1−a(Neffγ) ≲ log1−a M when (Neffγ)

1/a ≳ M c, putting the bounds
together gives Theorem 4.3.

C Approximation error

In this section, we derive upper and lower bounds for the approximation error in (4) (and 7). We will
also show that the upper and lower bounds match up to constant factors in several examples.
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C.1 An upper bound

Lemma C.1 (An upper bound on the approximation error). Given any k ≤ d such that r(H) ≥ k+M ,
the approximation error in (4) (and 7) satisfies

Approx ≲ ∥w∗
k:∞∥2Hk:∞

+ ⟨[H−1
0:k + S⊤

0:kA
−1
k S0:k]

−1,w∗
0:kw

∗
0:k

⊤⟩

almost surely, where Ak := Sk:∞Hk:∞S⊤
k:∞. If in addition k ≤ M/2, then with probability

1− e−Ω(M)

Approx ≲ ∥w∗
k:∞∥2Hk:∞

+
(∑

i>k λi

M
+ λk+1 +

√∑
i>k λ

2
i

M

)
∥w∗

0:k∥2,

where (λi)
p
i=1 are eigenvalues of H in non-increasing order.

Proof of Lemma C.1. Write the singular value decomposition H = UΛU⊤, where Λ :=
diag{λ1, λ2, . . .} with λ1 ≥ λ2 ≥ . . . ≥ 0 and UU⊤ = I. Define S̃ := SU, w̃∗ := U⊤w∗.
Then by Lemma A.1 the approximation error Approx = Approx(S,H,w∗) satisfies

Approx(S,H,w∗) =
∥∥∥(I−H

1
2S⊤(SHS⊤)−1

SH
1
2

)
H

1
2w∗

∥∥∥2
=
∥∥∥(I−UΛ

1
2 S̃⊤(S̃ΛS̃⊤)−1

SΛ
1
2U⊤

)
UΛ

1
2U⊤w∗

∥∥∥2
=
∥∥∥U(I−Λ

1
2 S̃⊤(S̃ΛS̃⊤)−1

SΛ
1
2

)
Λ

1
2U⊤w∗

∥∥∥2
=
∥∥∥(I−Λ

1
2 S̃⊤(S̃ΛS̃⊤)−1

SΛ
1
2

)
Λ

1
2 w̃∗

∥∥∥2 = Approx(S̃,Λ, w̃∗).

Since S̃
d
= S by rotational invariance of standard gaussian variables, it suffices to analyze the case

where H = Λ is a diagonal matrix, as the results may transfer to general H by replacing w̃∗ with
w∗.

Therefore, from now on we assume w.l.o.g. that H is a diagonal matrix with non-increasing diagonal
entries. Define A := SHS⊤.

By definition of Approx, we have

Approx =
∥∥∥(I−H

1
2S⊤(SHS⊤)−1

SH
1
2

)
H

1
2w∗

∥∥∥2
=
〈
[H1/2S⊤A−1SH1/2 − Ip]

⊗2,H1/2w∗w∗⊤H1/2
〉
.

Moreover, for any k ∈ [p]

H1/2S⊤A−1SH1/2 − Ip =

(
H

1/2
0:k S

⊤
0:k

H
1/2
k:∞S⊤

k:∞

)
A−1

(
Sk:∞H

1/2
k:∞ Sk:∞H

1/2
k:∞

)
− Ip

=

(
H

1/2
0:k S

⊤
0:kA

−1S0:kH
1/2
0:k − Ik H

1/2
0:k S

⊤
0:kA

−1Sk:∞H
1/2
k:∞

H
1/2
k:∞S⊤

k:∞A−1S0:kH
1/2
0:k H

1/2
k:∞S⊤

k:∞A−1Sk:∞H
1/2
k:∞ − Id−k

)

=:

(
U V
V⊤ W

)
(9)

Therefore

[H1/2S⊤A−1SH1/2 − Ip]
⊗2 =

(
U2 + VV⊤ UV + VW

V⊤U+WV⊤ W2 + V⊤V

)
⪯ 2

(
U2 + VV⊤ 0

0 W2 + V⊤V

)
,

and hence

Approx ≤ 2

〈(
U2 + VV⊤ 0

0 W2 + V⊤V

)
,H1/2w∗w∗⊤H1/2

〉
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= 2
〈
U2 + VV⊤,H

1/2
0:kw∗,0:kw

⊤
∗,0:kH

1/2
0:k

〉
+ 2
〈
W2 + V⊤V,H

1/2
k:∞w∗,k:∞w⊤

∗,k:∞H
1/2
k:∞
〉
.

We claim the following results which we will prove at the end of the proof.〈
W2 + V⊤V,H

1/2
k:∞w∗,k:∞w⊤

∗,k:∞H
1/2
k:∞
〉
≤ ∥w∗

k:∞∥2Hk:∞
, (10)〈

U2 + VV⊤,H
1/2
0:kw∗,0:kw

⊤
∗,0:kH

1/2
0:k

〉
= ⟨[H−1

0:k + S⊤
0:kA

−1
k S0:k]

−1,w∗
0:kw

∗
0:k

⊤⟩. (11)

Note that in claim (11) the inverse A−1
k exists almost surely since r(Hk:∞) ≥ r(H) − k ≥ M

by our assumption and Sk:∞ ∈ RM×(d−k) is a random gaussian projection onto RM . First part of
Lemma C.1 follows immediately from combining claim (10) and (11).

To prove the second part of Lemma C.1, first note that with probability 1− e−Ω(M) we have

µmin(A
−1
k ) = ∥Ak∥−1 ≥ c/

(∑
i>k λi

M
+ λk+1 +

√∑
i>k λ

2
i

M

)
forc some constant c > 0 by Lemma G.2. Moreover, by the concentration of the Gaussian variance
matrix (see e.g., Theorem 6.1 in [41]), we have S⊤

0:kS0:k ⪰ Ik/5 with probability 1− e−Ω(M) when
M/k ≥ 2. Combining the last two arguments, we obtain

S⊤
0:kA

−1
k S0:k ⪰ cS⊤

0:kS0:k/
(∑

i>k λi

M
+ λk+1 +

√∑
i>k λ

2
i

M

)
≳ Ik/

(∑
i>k λi

M
+ λk+1 +

√∑
i>k λ

2
i

M

)
,

and therefore
⟨[H−1

0:k + S⊤
0:kA

−1
k S0:k]

−1,w∗
0:kw

∗
0:k

⊤⟩ ≤ ⟨[S⊤
0:kA

−1
k S0:k]

−1,w∗
0:kw

∗
0:k

⊤⟩
≤ ∥[H−1

0:k + S⊤
0:kA

−1
k S0:k]

−1∥∥w∗
0:k∥2

≲
(∑

i>k λi

M
+ λk+1 +

√∑
i>k λ

2
i

M

)
∥w∗

0:k∥2 (12)

with probability 1− e−Ω(M). Combining Eq. (12) with the first part of Lemma C.1 completes the
proof.

Proof of claim (10) Note that

−Id−k ⪯ W = H
1/2
k:∞S⊤

k:∞A−1Sk:∞H
1/2
k:∞ − Id−k

= H
1/2
k:∞S⊤

k:∞(S0:kH0:kS
⊤
0:k + Sk:∞Hk:∞S⊤

k:∞)−1Sk:∞H
1/2
k:∞ − Id−k

⪯ H
1/2
k:∞S⊤

k:∞(Sk:∞Hk:∞S⊤
k:∞)−1Sk:∞H

1/2
k:∞ − Id−k ⪯ 0d−k,

where the last inequality uses the fact that the norm of projection matrices is no greater than one.
Therefore, we have ∥W∥2 ≤ 1. Now, it remains to show

W2 + V⊤V = −W, (13)
as claim (10) is a direct consequence of Eq. (13) and the fact that ∥W∥ ≤ 1.

By definition of W in Eq. (9), we have

W2 = (H
1/2
k:∞S⊤

k:∞A−1Sk:∞H
1/2
k:∞ − Id−k)

2

= Id−k − 2H
1/2
k:∞S⊤

k:∞A−1Sk:∞H
1/2
k:∞ +H

1/2
k:∞S⊤

k:∞A−1Sk:∞Hk:∞S⊤
k:∞A−1Sk:∞H

1/2
k:∞

= Id−k − 2H
1/2
k:∞S⊤

k:∞A−1Sk:∞H
1/2
k:∞ +H

1/2
k:∞S⊤

k:∞A−1AkA
−1Sk:∞H

1/2
k:∞.

By definition of V in Eq. (9), we have

V⊤V = H
1/2
k:∞S⊤

k:∞A−1(S0:kH0:kS
⊤
0:k)A

−1Sk:∞H
1/2
k:∞.

Since S0:kH0:kS
⊤
0:k +Ak = A, it follows that

W2 + V⊤V = Id−k − 2H
1/2
k:∞S⊤

k:∞A−1Sk:∞H
1/2
k:∞ +H

1/2
k:∞S⊤

k:∞A−1AA−1Sk:∞H
1/2
k:∞

= Id−k −H
1/2
k:∞S⊤

k:∞A−1Sk:∞H
1/2
k:∞ = −W.
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Proof of claim (11) It suffices to show U2+V⊤V = [H−1
0:k+S⊤

0:kA
−1
k S0:k]

−1. Using the definition
of U in Eq. (9), we obtain

U = H
1/2
0:k S

⊤
0:kA

−1S0:kH
1/2
0:k − Ik

= H
1/2
0:k S

⊤
0:kA

−1
k S0:kH

1/2
0:k −H

1/2
0:k S

⊤
0:kA

−1
k S0:k[H

−1
0:k + S⊤

0:kA
−1
k S0:k]

−1S⊤
0:kA

−1
k S0:kH

1/2
0:k − Ik

= H
1/2
0:k S

⊤
0:kA

−1
k S0:k[H

−1
0:k + S⊤

0:kA
−1
k S0:k]

−1H−1
0:kH

1/2
0:k − Ik,

where the second line uses Woodbury’s matrix identity, namely

A−1 = [S0:kH0:kS
⊤
0:k +Ak]

−1 = A−1
k −A−1

k S0:k[H
−1
0:k + S⊤

0:kA
−1
k S0:k]

−1S⊤
0:kA

−1
k .

Continuing the calculation of U, we have

U = H
1/2
0:k S

⊤
0:kA

−1
k S0:k[H

−1
0:k + S⊤

0:kA
−1
k S0:k]

−1H
−1/2
0:k − Ik

= H
1/2
0:k (S

⊤
0:kA

−1
k S0:k[H

−1
0:k + S⊤

0:kA
−1
k S0:k]

−1 − Ik)H
−1/2
0:k

= −H
−1/2
0:k [H−1

0:k + S⊤
0:kA

−1
k S0:k]

−1H
−1/2
0:k .

Therefore,

U2 = H
−1/2
0:k [H−1

0:k + S⊤
0:kA

−1
k S0:k]

−1H−1
0:k[H

−1
0:k + S⊤

0:kA
−1
k S0:k]

−1H
−1/2
0:k . (14)

Since

H
1/2
0:k S

⊤
0:kA

−1 = H
1/2
0:k S

⊤
0:kA

−1
k −H

1/2
0:k S

⊤
0:kA

−1
k S0:k[H

−1
0:k + S⊤

0:kA
−1
k S0:k]

−1S⊤
0:kA

−1
k

= H
−1/2
0:k [H−1

0:k + S⊤
0:kA

−1
k S0:k]

−1S⊤
0:kA

−1
k

by Woodbury’s matrix indentity, it follows from the definition of V in Eq. (9) that

VV⊤ = H
1/2
0:k S

⊤
0:kA

−1Sk:∞Hk:∞S⊤
k:∞A−1S0:kH

1/2
0:k

= H
−1/2
0:k [H−1

0:k + S⊤
0:kA

−1
k S0:k]

−1S⊤
0:kA

−1
k (Sk:∞Hk:∞S⊤

k:∞)A−1
k S0:k[H

−1
0:k + S⊤

0:kA
−1
k S0:k]

−1H
−1/2
0:k

= H
−1/2
0:k [H−1

0:k + S⊤
0:kA

−1
k S0:k]

−1S⊤
0:kA

−1
k S0:k[H

−1
0:k + S⊤

0:kA
−1
k S0:k]

−1H
−1/2
0:k . (15)

Combining Eq. (14) and (15) yields

U2 + VV⊤ = H
−1/2
0:k [H−1

0:k + S⊤
0:kA

−1
k S0:k]

−1H
−1/2
0:k , (16)

and therefore〈
U2 + VV⊤,H

1/2
0:kw∗,0:kw

⊤
∗,0:kH

1/2
0:k

〉
= ⟨[H−1

0:k + S⊤
0:kA

−1
k S0:k]

−1,w∗
0:kw

∗
0:k

⊤⟩.

C.2 A lower bound

For the approximation error Approx, we have the following result.
Lemma C.2 (Lower bound on the approximation error). When r(H) ≥ M , under Assumption 1C,
the approximation error in (4) (and 7) satisfies

Ew∗Approx ≳
d∑

i=M

λi,

where (λi)
d
i=1 are eigenvalues of H in non-increasing order.

Proof of Lemma C.2. For any k ≤ d, following the proof of Lemma C.1, we have

Approx =
〈
[H1/2S⊤A−1SH1/2 − Id]

⊗2,H1/2w∗(w∗)⊤H1/2
〉

and

H1/2S⊤A−1SH1/2 − Id =

(
H

1/2
0:k S

⊤
0:kA

−1S0:kH
1/2
0:k − Ik H

1/2
0:k S

⊤
0:kA

−1Sk:∞H
1/2
k:∞

H
1/2
k:∞S⊤

k:∞A−1S0:kH
1/2
0:k H

1/2
k:∞S⊤

k:∞A−1Sk:∞H
1/2
k:∞ − Id−k

)
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=:

(
U V
V⊤ W

)
. (17)

Therefore

[H1/2S⊤A−1SH1/2 − Id]
⊗2 =

(
U2 + VV⊤ UV + VW

V⊤U+WV⊤ W2 + V⊤V

)
and

Ew∗Approx = Ew∗
〈
U2 + VV⊤,H

1/2
0:kw

∗
0:kw

∗
0:kH

1/2
0:k

〉
+ Ew∗

〈
W2 + V⊤V,H

1/2
0:kw

∗
k:∞w∗

k:∞H
1/2
k:∞
〉

+ 2Ew∗
〈
UV + VW,H

1/2
0:kw

∗
0:kw

∗
k:∞H

1/2
k:∞
〉

= tr((U2 + VV⊤)H0:k) + tr((W2 + V⊤V)Hk:∞),

where the last line uses the fact that Ew∗(w∗)⊗2 = Id. Using Eq. (13) and (16) in the proof of
Lemma C.1, we further obtain

Ew∗Approx = tr(H
−1/2
0:k [H−1

0:k + S⊤
0:kA

−1
k S0:k]

−1H
−1/2
0:k H0:k)− tr(WHk:∞)

= tr([H−1
0:k + S⊤

0:kA
−1
k S0:k]

−1)− tr(WHk:∞)

≥ − tr(WHk:∞) =: T3.

where Ak := Sk:∞Hk:∞S⊤
k:∞. For T3, we further have

T3 = tr(H
1/2
k:∞[Id−k −H

1/2
k:∞S⊤

k:∞A−1Sk:∞H
1/2
k:∞]H

1/2
k:∞)

≥ tr(H
1/2
k:∞[Id−k −H

1/2
k:∞S⊤

k:∞A−1
k Sk:∞H

1/2
k:∞]H

1/2
k:∞)

≥
d−k∑
i=1

µi(Id−k −H
1/2
k:∞S⊤

k:∞A−1
k Sk:∞H

1/2
k:∞) · µd+1−k−i(Hk:∞),

where the second line is due to A ⪰ Ak (and hence −A−1 ⪰ −A−1
k ), the third line follows from

Von-Neuman’s inequality. Since M := Id−k −H
1/2
k:∞S⊤

k:∞A−1
k Sk:∞H

1/2
k:∞ is a projection matrix

such that M2 = M and tr(Id−k −M) = M , it follows that M has M eigenvalues 0 and d− k−M
eigenvalues 1. Therefore, we further have

T3 ≥
d−k∑
i=1

µi(M) · µd+1−k−i(Hk:∞) ≥
d∑

i=k+M

λi

for any k ≤ d. Letting k = 0 maximizes the lower bound and concludes the proof.

C.3 A lower bound under Assumption 3

Lemma C.3 (Lower bound on the approximation error under Assumption 3). Under Assumption 3,
the approximation error in (4) (and 7) satisfies

Ew∗Approx ≳
d∑

i=M

λii
a−b,

where (λi)
d
i=1 are eigenvalues of H in non-increasing order and the inequality hides some (a, b)-

dependent constant.

Proof of Lemma C.3. The proof is essentially the same as the proof of Lemma C.2 but we include it
here for completeness. Let Hw := E[w∗w∗⊤] be the covariance of the prior on w∗. Following the
proof of Lemma C.2, we have

Ew∗Approx = Ew∗
〈
U2 + VV⊤,H

1/2
0:kw

∗
0:kw

∗
0:kH

1/2
0:k

〉
+ Ew∗

〈
W2 + V⊤V,H

1/2
0:kw

∗
k:∞w∗

k:∞H
1/2
k:∞
〉

+ 2Ew∗
〈
UV + VW,H

1/2
0:kw

∗
0:kw

∗
k:∞H

1/2
k:∞
〉

= tr((U2 + VV⊤)H0:kH
w
0:k) + tr((W2 + V⊤V)Hk:∞Hw

k:∞),
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where the last line uses Assumption 3 and notice that H,Hw are both diagonal. Next, similar to the
proof of Lemma C.2, using Eq. (13) and (16), we derive

Ew∗Approx = tr(H
−1/2
0:k [H−1

0:k + S⊤
0:kA

−1
k S0:k]

−1H
−1/2
0:k H0:kH

w
0:k)− tr(WHk:∞Hw

k:∞)

= tr([H−1
0:k + S⊤

0:kA
−1
k S0:k]

−1Hw
0:k)− tr(WHk:∞Hw

k:∞)

≥ − tr(WHk:∞Hw
k:∞) =: T̃3

where Ak := Sk:∞Hk:∞S⊤
k:∞. For T̃3, following the same argument for T3 in the proof of

Lemma C.2, we have

T̃3 ≥
d−k∑
i=1

µi(Id−k −H
1/2
k:∞S⊤

k:∞A−1
k Sk:∞H

1/2
k:∞) · µd+1−k−i(Hk:∞Hw

k:∞)

≥
d∑

i=k+M

µi(HHw) ≳
d∑

i=k+M

ia−bλi,

for any k ≤ d where the last inequality uses Assumption 3. Setting k = 0 maximizes the lower bound
and concludes the proof.

C.4 Examples on matching bounds for Approx

In this section, we derive matching upper and lower bounds for Approx (defined in Eq. 4 and 7)
in three concrete examples: power-law spectrum (Lemma C.4), power-law spectrum with source
condition (Lemma C.5) and logarithmic power-law spectrum (Lemma D.5).
Lemma C.4 (Bounds on Approx under the power-law spectrum). Suppose Assumption 1C and 2
hold. Then with probability at least 1− e−Ω(M) over the randomness of S

M1−a ≲ Ew∗Approx ≲ M1−a.

Here, the hidden constants only depend on the power-law degree a.

Proof of Lemma C.4. For the upper bound, by Lemma C.1 and noting Ew∗2
i = 1 for all i, we have

with probability at least 1− e−Ω(M)

Ew∗Approx ≲
∑
k>k1

λi +

(∑
i>k1

λi

M
+ λk1+1 +

√∑
i>k1

λ2
i

M

)
· k1

≲ k1−a
1 +

(
k1−a
1

M
+ k−a

1 +

√
k1−2a
1

M

)
k1

≲

(
k1
M

+ 1

)
k1−a
1

for any given k1 ≤ M/2. Here the hidden constants depend on a. Therefore, letting k1 = M/2 in
the upper bound yields

Ew∗Approx ≲ M1−a

with probability at least 1− e−Ω(M).

For the lower bound, we have from Lemma C.2 that

Ew∗Approx ≳
∞∑

i=M

i−a ≳ M1−a.

This completes the proof.

Lemma C.5 (Bounds on Approx under the source condition). Suppose Assumption 3 hold. Then with
probability at least 1− e−Ω(M) over the randomness of S

M1−b ≲ Ew∗Approx ≲ M1−b.

Here, the hidden constants only depend on the power-law degrees a, b.
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Proof of Lemma C.5. For the upper bound, by Lemma C.1 and noting Ew∗2
i ≂ ia−b for all i, we

have with probability at least 1− e−Ω(M)

Approx ≲
∑
k>k1

λii
a−b +

(∑
i>k1

λi

M
+ λk1+1 +

√∑
i>k1

λ2
i

M

)
· k1+a−b

1

≲ k1−b
1 +

(
k1−a
1

M
+ k−a

1 +

√
k1−2a
1

M

)
k1+a−b
1

≲

(
k1
M

+ 1

)
k1−b
1

for any given k1 ≤ M/2. Here the hidden constants depend on a, b. Moreover, choosing k1 = M/2
in the upper bound gives

Ew∗Approx ≲ M1−b

with probability at least 1− e−Ω(M).

For the lower bound, we have from Lemma C.3 that

Ew∗Approx ≳
∞∑

i=M

i−a · ia−b ≳ M1−b.

This completes the proof.

Lemma C.6 (Bounds on Approx under the logarithmic power-law spectrum). Suppose Assumption 4
hold. Then with probability at least 1− e−Ω(M) over the randomness of S

log1−a M ≲ Ew∗Approx ≲ log1−a M.

Here, the hidden constants only depend on the power-law degree a.

Proof of Lemma C.6. For the upper bound, by Lemma C.1 and noting Ew∗2
i = 1 for all i, we have

with probability at least 1− e−Ω(M)

Approx ≲
∑
k>k1

λi +

(∑
i>k1

λi

M
+ λk1+1 +

√∑
i>k1

λ2
i

M

)
k1

≲ log1−a k1 +

(
log1−a k1

M
+ k−1

1 log−a k1 +

√
k1−2a
1

M

)
k1

≲

(
1 +

k1
M

+
1

log k1
+

1

log k1

√
k1
M

)
log1−a k1

≲ log1−a k1

for any given k1 ≤ M/2, where the third line uses
∑

i>k1
λ2
i ≲ 1/(k1 log

2a k1). Choosing k1 =

M/2, we obtain

Ew∗Approx ≲ log1−a M

with probability at least 1− e−Ω(M). Here the hidden constants depend on a, b.

For the lower bound, we have from Lemma C.2 that

Ew∗Approx ≳
∞∑

i=M

λi ≳
∞∑

i=M

i−1 log−a i ≳ log1−a M.

Therefore, we have established matching upper and lower bounds for Approx.
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D Bias error

In this section, we derive upper and lower bounds for Bias(w∗) defined in Eq. (5). Moreover, we
show that the upper and lower bounds match up to constant factors in concrete examples.

D.1 An upper bound

Lemma D.1 (Upper bound on the bias term). Suppose the initial stepsize γ ≤ 1
c tr(SHS⊤)

for some
constant c > 1. Then for any w∗ ∈ H and k ∈ [d] such that r(H) ≥ k +M , the bias term in (5)
satisfies

Bias(w∗) ≲
1

Neffγ
∥v∗∥22.

Moreover, for any k ≤ M/3 such that r(H) ≥ k +M , the bias term satisfies

Bias(w∗) ≲
∥w∗

0:k∥22
Neffγ

·

[
µM/2(Ak)

µM (Ak)

]2
+ ∥w∗

k:∞∥2Hk:∞

with probability 1− e−Ω(M), where Ak := Sk:∞Hk:∞S⊤
k:∞, {µi(Ak)}Mi=1 denote the eigenvalues

of Ak in non-increasing order for some constant c > 1.

Proof of Lemma D.1. Similar to the proof of Lemma C.1, we can without loss of generality assume
the covariance matrix H = diag{λ1, λ2, . . . , λd} where λi ≥ λj for any i ≥ j. Let SH1/2 =

Ũ
(
Λ̃1/2 0

)
Ṽ⊤ be the singular value decomposition of SHS⊤, where Λ̃ := diag{λ̃1, λ̃2, . . . , λ̃d}

is a diagonal matrix diagonal entries in non-increasing order. Define Ak := Sk:∞Hk:∞S⊤
k:∞. Then

it follows from similar arguments as in Lemma C.1 that Ak is invertible.

Since

∥γtSHS⊤∥2 = γtλ̃1 ≤ γλ̃1 ≤ λ̃1

c
∑M

i=1 λ̃i

≤ 1

for some constant c > 1 by the stepsize assumption, it follows that IM − γtSHS⊤ ≻ 0M for all
t ∈ [N ]. Therefore, it can be verified that

N∏
t=1

(IM − γtSHS⊤)SHS⊤
N∏
t=1

(IM − γtSHS⊤) ⪯ (IM − γSHS⊤)NeffSHS⊤(IM − γSHS⊤)Neff =: M,

and by definition of Bias(w∗) in Eq. (5), we have

Bias(w∗) ≂
∥∥∥∥ N∏

t=1

(
I− γtSHS⊤)v∗

∥∥∥∥2
SHS⊤

≤
∥∥∥∥(I− γSHS⊤)Neff

v∗
∥∥∥∥2
SHS⊤

= ⟨M,v∗⊗2⟩. (18)

Note that the eigenvalues of M are {λ̃i(1−γλ̃i)
2Neff}Mi=1. Since the function f(x) = x(1−γx)2Neff

is maximized at x0 = 1/[(2Neff + 1)γ] for x ∈ [0, 1/γ] with f(x0) ≲ 1/(Neffγ), it follows that

∥M∥2 ≤ c/(Neffγ) (19)

for some constant c > 0. The first part of Lemma D.1 follows immediately.

Now we prove the second part of Lemma D.1. Recall that v∗ =
(
SHS⊤)−1

SHw∗. Substituting
SH = (S0:kH0:k Sk:∞Hk:∞) into v∗, we obtain

⟨M,v∗⊗2⟩ = ⟨M, ((SHS⊤)−1SHw∗)⊗2⟩
= w∗⊤HS⊤(SHS⊤)−1M(SHS⊤)−1SHw∗

≤ 2T1 + 2T2,
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where

T1 := (w∗
0:k)

⊤H0:kS
⊤
0:k(SHS⊤)−1M(SHS⊤)−1S0:kH0:kw

∗
0:k, (20)

T2 := (w∗
k:∞)⊤Hk:∞S⊤

k:∞(SHS⊤)−1M(SHS⊤)−1Sk:∞Hk:∞w∗
k:∞. (21)

We claim the following results which we prove later. With probability 1− e−Ω(M)

T1 ≤ c∥w∗
0:k∥22

Neffγ
·

[
µM/2(Ak)

µM (Ak)

]2
(22a)

for some constant c > 0.

T2 ≤ ∥w∗
k:∞∥2Hk:∞

. (22b)

Combining Eq. (22a), (22b) gives the second part of Lemma D.1.

Proof of claim (22a) By definition of T1, we have

T1 ≤ ∥H0:kS
⊤
0:k(SHS⊤)−1M(SHS⊤)−1S0:kH0:k∥2 · ∥w∗

0:k∥22.

Moreover,

∥H0:kS
⊤
0:k(SHS⊤)−1M(SHS⊤)−1S0:kH0:k∥2

≤ ∥M∥2 · ∥(SHS⊤)−1S0:kH0:k∥22
≤ c

Neffγ
∥(SHS⊤)−1S0:kH0:k∥22

for some constant c > 0, where the last line uses Eq. (19).

It remains to show

∥(SHS⊤)−1S0:kH0:k∥2 ≤ c ·
µM/2(Ak)

µM (Ak)
(23)

for some constant c > 0 with probability 1− e−Ω(M). Since SHS⊤ = S0:kH0:kS
⊤
0:k +Ak, we have

(SHS⊤)−1S0:kH0:k = (A−1
k −A−1

k S0:k[H
−1
0:k + S⊤

0:kA
−1
k S0:k]

−1S⊤
0:kA

−1
k )S0:kH0:k

= A−1
k S0:kH0:k −A−1

k S0:k[H
−1
0:k + S⊤

0:kA
−1
k S0:k]

−1S⊤
0:kA

−1
k S0:kH0:k

= A−1
k S0:k[H

−1
0:k + S⊤

0:kA
−1
k S0:k]

−1H−1
0:kH0:k

= A−1
k S0:k[H

−1
0:k + S⊤

0:kA
−1
k S0:k]

−1, (24)

where the second line uses Woodbury’s identity. Since

H−1
0:k + S⊤

0:kA
−1
k S0:k ⪰ S⊤

0:kA
−1
k S0:k,

it follows that

∥[H−1
0:k + S⊤

0:kA
−1
k S0:k]

−1∥2 ≤ ∥[S⊤
0:kA

−1
k S0:k]

−1∥2.

Therefore, with probability at least 1− e−Ω(M)

∥A−1
k S0:k[H

−1
0:k + S⊤

0:kA
−1
k S0:k]

−1∥2 ≤ ∥A−1
k ∥2 · ∥S0:k∥2 · ∥[H−1

0:k + S⊤
0:kA

−1
k S0:k]

−1∥2
≤ ∥A−1

k ∥2 · ∥S0:k∥2 · ∥[S⊤
0:kA

−1
k S0:k]

−1∥2

≤
∥A−1

k ∥2 · ∥S0:k∥2
µmin(S⊤

0:kA
−1
k S0:k)

≲
∥A−1

k ∥2
µmin(S⊤

0:kA
−1
k S0:k)

where the last inequality follows from the fact that ∥S0:k∥2 =
√
∥S⊤

0:kS0:k∥2 ≤ c for some constant

c > 0 when k ≤ M/2 with probability at least 1 − e−Ω(M). Since S0:k is independent of Ak and
the distribution of S0:k is rotationally invariant, we may write S⊤

0:kA
−1
k S0:k =

∑M
i=1

1
λ̂M−i

s̃is̃
⊤
i ,
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where s̃i
iid∼ N (0, Ik/M) and (λ̂i)

M
i=1 are eigenvalues of Ak in non-increasing order. Therefore, for

k ≤ M/3

S⊤
0:kA

−1
k S0:k =

M∑
i=1

1

λ̂M−i

s̃is̃
⊤
i ⪰

M/2∑
i=1

1

λ̂M−i

s̃is̃
⊤
i ⪰ 1

λ̂M/2

M/2∑
i=1

s̃is̃
⊤
i ⪰ cIk

λ̂M/2

(25)

for some constant c > 0 with probability at least 1− e−Ω(M), where in the last line we again use the
concentration properties of gaussian covariance matrices (see e.g., Theorem 6.1 in [41]). As a direct
consequence, we have

∥A−1
k S0:k[H

−1
0:k + S⊤

0:kA
−1
k S0:k]

−1∥2 ≤ c ·
µM/2(Ak)

µM (Ak)

with probability at least 1− e−Ω(M) for some constant c > 0. This concludes the proof.

Proof of claim (22b) By definition of T2 in Eq. (21), we have

T2 = w∗
k:∞

⊤Hk:∞S⊤
k:∞(SHS⊤)−1/2(IM − γSHS⊤)2Neff(SHS⊤)−1/2Sk:∞Hk:∞w∗

k:∞

≤ w∗
k:∞

⊤Hk:∞S⊤
k:∞(SHS⊤)−1Sk:∞Hk:∞w∗

k:∞

≤ ∥H1/2
k:∞S⊤

k:∞(SHS⊤)−1Sk:∞H
1/2
k:∞∥ · ∥w∗

k:∞∥2Hk:∞

≤ ∥w∗
k:∞∥2Hk:∞

,

where the last line follows from

∥H1/2
k:∞S⊤

k:∞(SHS⊤)−1Sk:∞H
1/2
k:∞∥2 = ∥H1/2

k:∞S⊤
k:∞(S0:kH0:kS

⊤
0:k + Sk:∞Hk:∞S⊤

k:∞)−1Sk:∞H
1/2
k:∞∥2

≤ ∥H1/2
k:∞S⊤

k:∞A−1
k Sk:∞H

1/2
k:∞∥2 ≤ 1.

D.2 A lower bound

Lemma D.2 (Lower bound on the bias term). Suppose w∗ follows some prior distribution and the
initial stepsize γ ≤ 1

c tr(SHS⊤)
for some constant c > 2. Let Hw := Ew∗w∗⊤. Then the bias term

in Eq. (5) satisfies

Ew∗Bias(w∗) ≳
∑

i:λ̃i<1/(γNeff)

µi(SHHwHS⊤)

µi(SHS⊤)

almost surely, where MN := SHS⊤(I− 2γSHS⊤)2Neff .

Proof of Lemma D.2. Adopt the notations in the proof of Lemma D.1. By definition of the bias term,
we have

Bias(w∗) ≂
∥∥∥∥ N∏

t=1

(
I− γtSHS⊤)v∗

∥∥∥∥2
SHS⊤

= ⟨SHS⊤
N∏
t=1

(I− γtSHS⊤)2Neff
,v∗⊗2⟩

≥ ⟨SHS⊤(I−
N∑
t=1

γtSHS⊤)2Neff
,v∗⊗2⟩

≥ ⟨SHS⊤(I− 2γSHS⊤)2Neff
,v∗⊗2⟩ =: ⟨MN,v

∗⊗2⟩, (26)

where the third line uses IM−2γtSHS⊤ ≻ 0M for all t ∈ [N ] established in the proof of Lemma D.1,∑N
i=1 γi ≤ 2γNeff, and the fact that (1 − w)(1 − v) ≥ 1 − w − v for w, v > 0. Substituting the

definition of v∗ in Eq. (5) into the expression, we obtain

Ew∗Bias(w∗) ≳ Ew∗⟨MN,v
∗⊗2⟩ = Ew∗⟨MN, ((SHS⊤)−1SHw∗)⊗2⟩
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= tr(HS⊤(SHS⊤)−1MN(SHS⊤)−1SHHw)

= tr((SHS⊤)−1MN(SHS⊤)−1SHHwHS⊤)

≥
M∑
i=1

µM−i+1((SHS⊤)−1MN(SHS⊤)−1) · µi(SHHwHS⊤),

where the last line uses Von Neumann’s trace inequality. Continuing the calculation, we have

Ew∗Bias(w∗) ≳
M∑
i=1

µi(SHHwHS⊤)

µi((SHS⊤)2MN
−1)

=

M∑
i=1

µi(SHHwHS⊤)

µi

(
(SHS⊤)(I− 2γSHS⊤

)−2Neff

)
≳

∑
i:λ̃i<1/(γNeff)

µi(SHHwHS⊤)

µi(SHS⊤)
,

where the first inequality uses µM+i−1(A) = µ−1
i (A−1) for any positive definite matrix A ∈ RM×M ,

and the second line follows from the definition of MN and the fact that (1 − λγNeff)
−2Neff ≲ 1

when λ < 1/(γNeff).

D.3 Examples on matching bounds for Bias(w∗)

In this section, we derive matching upper and lower bounds for Bias(w∗) in (5) in three scenarios:
power-law spectrum (Lemma D.3), power-law spectrum with source condition (Lemma D.4) and
logarithmic power-law spectrum (Lemma D.5). Recall that we define Bias := Ew∗Bias(w∗).
Lemma D.3 (Bounds on Bias under the power-law spectrum). Suppose Assumption 1C and 2 hold
and the initial stepsize γ ≤ 1

c tr(SHS⊤)
for some constant c > 2. Then with probability at least

1− e−Ω(M) over the randomness of S

Ew∗Bias(w∗) ≲ max
{
(Neffγ)

1/a−1, M1−a
}
,

and

Ew∗Bias(w∗) ≳ (Neffγ)
1/a−1

when (Neffγ)
1/a ≤ M/c for some constant c > 0. Here, all the (hidden) constants depend only on

the power-law degree a.

Proof of Lemma D.3. For the upper bound, using Lemma G.5, D.1 and the assumption that Ew∗2
i = 1

for all i > 0, with probability at least 1− e−Ω(M), we have

Ew∗Bias(w∗) ≲ Ew∗

[
∥w∗

0:k2
∥22

Neffγ
+ ∥w∗

k2:∞∥2Hk2:∞

]

≲
k2

Neffγ
+
∑
k>k2

λi

≂
k2

Neffγ
+ k1−a

2

≲ max
{
(Neffγ)

1/a−1, M1−a
}
,

where in the last inequality, we choose k2 = [M/3] ∧ (Neffγ)
1/a to minimize the upper bound.

When (Neffγ)
1/a ≤ M/3, combining Lemma D.2 and G.4 gives the lower bound

Ew∗Bias(w∗) ≳
∑

i:λ̃i<1/(Neffγ)

µi(SHHwHS⊤)

µi(SHS⊤)
=

∑
i:λ̃i<1/(Neffγ)

µi(SH
2S⊤)

µi(SHS⊤)
,
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≳
∑

λ̃i<1/(Neffγ),i≤M

i−2a

i−a
=

∑
λi<1/(Neffγ),i≤M

i−a ≳ (Neffγ)
1/a−1

with probability at least 1− e−Ω(M). Here, the hidden constants depend only on a.

Lemma D.4 (Bounds on Bias under the source condition). Suppose Assumption 3 hold and the initial
stepsize γ ≤ 1

c tr(SHS⊤)
for some constant c > 2. Then with probability at least 1− e−Ω(M) over the

randomness of S

Ew∗Bias(w∗) ≲ max
{
(Neffγ)

(1−b)/a, M1−b
}
,

and

Ew∗Bias(w∗) ≳ (Neffγ)
(1−b)/a

when (Neffγ)
1/a ≤ M/c for some constant c > 0. In both results, the hidden constants depend only

on a, b.

Proof of Lemma D.4. For the upper bound, using Lemma G.5, D.1 and the assumption that (w.l.o.g.)
Ew∗2

i ≂ ia−b for all i > 0, with probability at least 1− e−Ω(M), we have

Ew∗Bias(w∗) ≲ Ew∗

[
∥w∗

0:k2
∥22

Neffγ
+ ∥w∗

k2:∞∥2Hk2:∞

]

≲
k1+a−b
2

Neffγ
+
∑
k>k2

λi · ia−b

≲
k1+a−b
2

Neffγ
+ k1−b

2

≲ max
{
(Neffγ)

(1−b)/a, M1−b
}

when b < a+ 1, where in the last inequality, we choose k2 = [M/3] ∧ (Neffγ)
1/a to minimize the

upper bound.

When (Neffγ)
1/a ≤ M/c for some large constant c > 0, combining Lemma D.2 and G.4 yields the

lower bound

Ew∗Bias(w∗) ≳
∑

i:λ̃i<1/(Neffγ)

µi(SHHwHS⊤)

µi(SHS⊤)
≂

∑
i:λ̃i<1/(Neffγ)

µi(SH
(a+b)/aS⊤)

µi(SHS⊤)
,

≳
∑

λ̃i<1/(Neffγ),i≤M

i−(a+b)

i−a
=

∑
λi<1/(Neffγ),i≤M

i−b ≳ (Neffγ)
(1−b)/a

with probability at least 1− e−Ω(M). Here, the hidden constants depend only on a, b.

Upper bound when b ≥ a+ 1. Following the previous derivations, when b = a+ 1, we have with
probability at least 1− e−Ω(M)

Ew∗Bias(w∗) ≲ Ew∗

[
∥w∗

0:k2
∥22

Neffγ
+ ∥w∗

k2:∞∥2Hk2:∞

]

≲
log k2
Neffγ

+ k1−b
2

≲
log(Neffγ)

Neffγ
+M1−b

where the last line follows by setting k2 = [M/3] ∧ (Neffγ)
1/a. When b > a + 1, we have with

probability at least 1− e−Ω(M)

Ew∗Bias(w∗) ≲ Ew∗

[
∥w∗

0:k2
∥22

Neffγ
+ ∥w∗

k2:∞∥2Hk2:∞

]
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≲
1

Neffγ
+ k1−b

2

≲
1

Neffγ
+M1−b,

where the last follows by chooing k2 = M/3 to minimize the upper bound.

Note that there exist non-constant gaps between the upper and lower bounds on the bias term in the
simple regime where b ≥ a+ 1. We leave a more precise analysis of the bias term for future work.

Lemma D.5 (Bounds on Bias under the logarithmic power-law spectrum). Suppose Assumption 4 hold
and the initial stepsize γ ≤ 1

c tr(SHS⊤)
for some constant c > 2. Let k̄ := inf{k : k loga k ≥ Neffγ}.

Then with probability at least 1− e−Ω(M) over the randomness of S

Ew∗Bias(w∗) ≲ max
{
log1−a(Neffγ), log

1−a M
}
,

and

Ew∗Bias(w∗) ≳ log1−a(Neffγ)

when (Neffγ) ≤ M c for some sufficiently small constant c > 0. Here, all constants depend only on
the power-law degree a.

Proof of Lemma D.5. For the upper bound, using Lemma G.7, D.1 and the assumption that Ew∗2
i = 1

for all i > 0, with probability at least 1− e−Ω(M), we have

Ew∗Bias(w∗) ≲ Ew∗

[
∥w∗

0:k2
∥22

Neffγ
+ ∥w∗

k2:∞∥2Hk2:∞

]

≲
k2

Neffγ
+
∑
k>k2

λi

≂
k2

Neffγ
+ log1−a k2

≲ max
{
log1−a(Neffγ), log

1−a M
}
,

where in the last inequality, we choose k2 = [M/3]∧
[
(Neffγ)/ log

a(Neffγ)
]

to minimize the upper
bound.

Recall k∗ ≂ M/ logM (for example we may define k∗ = inf{k : k log k ≥ M}) in Lemma G.6.
Combining Lemma D.2 and G.6 gives the lower bound

Ew∗Bias(w∗) ≳
∑

i:λ̃i<1/(Neffγ)

µi(SHHwHS⊤)

µi(SHS⊤)
≂

∑
i:λ̃i<1/(Neffγ)

µi(SH
2S⊤)

µi(SHS⊤)
,

≳
∑

λ̃i<1/(Neffγ),i≤k∗

i−2 log−2a i

i−1 log−a i
=

∑
λi<1/(Neffγ),i≤k∗

i−1 log−a i

≳
k∗∑

i=Neffγ

i−1 log−a i

≳ log1−a(Neffγ)− log1−a(k∗)

≳ log1−a(Neffγ)− c1 log
1−a(M)

with probability at least 1− e−Ω(M) for some constant c1 > 0. Here, the (hidden) constants depend
only on a. Therefore, when (Neffγ)

1/a ≤ M c for some sufficiently small constant c > 0, we have

Ew∗Bias(w∗) ≳ log1−a(Neffγ)− c1 log
1−a(M) ≳ log1−a(Neffγ).

with probability at least 1− e−Ω(M).
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E Variance error

In this section, we present matching upper and lower bounds on the variance term Var defined in (6)
under the power-law or logarithmic power-law spectrum.
Lemma E.1 (Matching bounds on Var under power-law spectrum). Under Assumption 2, Var defined
in Eq. (6) satisfies

Var ≂
min{M, (Neffγ)

1/a}
Neff

with probability at least 1 − e−Ω(M) over the randomness of S. Here, the hidden constants only
depend on a.

Proof of Lemma E.1. By the definition of Var in Eq. (6) and Lemma G.4, we have

Var =
#{λ̃j ≥ 1/(Neffγ)}+ (Neffγ)

2
∑

λ̃j<1/(Neffγ)
λ̃2
j

Neff

≂
min

{
M, (Neffγ)

1/a + (Neffγ)
2 · (Neffγ)

(1−2a)/a
}

Neff

≂
min{M, (Neffγ)

1/a}
Neff

with probability at least 1 − e−Ω(M) over the randomness of S. Here the hidden constants may
depend on a.

Lemma E.2 (Matching bounds on Var under logarithmic power-law spectrum). Under Assumption 4,
Var defined in Eq. (6) satisfies

Var ≂
min{M, k̄}

Neff

≂
min{M, (Neffγ)/ log

a(Neffγ)}
Neff

with probability at least 1 − e−Ω(M) over the randomness of S, where k̄ := inf{k : k loga k ≥
(Neffγ)} and ≂ hides constants that only depend on a.

Proof of Lemma E.2. Define k∗ = inf{k : k log k ≥ M} and let D̃ := #{λ̃j ≥ 1/(Neffγ)} +

(Neffγ)
2
∑

λ̃j<1/(Neffγ)
λ̃2
j . By the definition of Var in Eq. (6) and Lemma G.6, we have

Var =
#{λ̃j ≥ 1/(Neffγ)}+ (Neffγ)

2
∑

λ̃j<1/(Neffγ)
λ̃2
j

Neff

=
D̃

Neff

≂
min{M, k̄}

Neff

with probability at least 1− e−Ω(M) over the randomness of S, where the second line follows from

D̃ ≳ #{λ̃j ≥ 1/(Neffγ)} ≂
Neffγ

loga(Neffγ)
, and

D̃ ≲
Neffγ

loga(Neffγ)
+

(Neffγ)
2

log2a(Neffγ)
·

∑
j:λ̃j<1/(Neffγ)

1

j2
≲

Neffγ

loga(Neffγ)

when k̄ ≲ M.

F Expected risk of the average of (SGD) iterates

In this section, we study the expected risk of the average of (SGD) iterates. Namely, we consider
a fixed stepsize (SGD) procedure where γt = γ and define v̄N :=

∑N−1
i=0 vi/N . Our goal is to

derive matching upper and lower bounds R(v̄N ) in terms of the sample size N and model size M.
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Compared with the last iterate of (SGD) with geometrically decaying stepsizes, we show that the
average of (SGD) iterates with a fixed stepsize achieves a better risk, in the sense that the effective
sample size Neff is replaced by N in the bounds (c.f. Theorem 4.1). This may give improvement up
to logarithmic factors.

We start with invoking the following result in [48].
Theorem F.1 (A variant of Theorem 2.1 and 2.2 in [48]). Suppose Assumption 1 hold. Consider
an M -dimensional sketched predictor trained by fixed stepsize (SGD) with N samples. Let v̄N :=∑N−1

i=0 vi/N be the average of the iterations of SGD. Assume v0 = 0 and σ2 ≳ 1. Conditional
on S and suppose the stepsize γ < 1/(c tr(SHS⊤)) for some constant c > 0, then there exist
Approx,Bias,Var such that

ERM (v̄N )− σ2 ≂ Ew∗Approx+ Bias+ σ2Var,

where the expectation of RM is over w∗ and (xi, yi)
N
i=1 and

Approx := Eξ2

=
∥∥∥(I−H

1
2S⊤(SHS⊤)−1

SH
1
2

)
H

1
2w∗

∥∥∥2,
Ew∗(T1 + T3) ≲ Bias ≲ Ew∗(T2 + T4),

Var ≂
Deff,N

N
,

and

T1 :=
1

γ2N2
tr
((

I− (I− γSHS⊤)N/4
)2

(SHS⊤)−1B0

)
, (27a)

T2 :=
1

γ2N2
tr
((

I− (I− γSHS⊤)N
)2

(SHS⊤)−1B0

)
, (27b)

T3 :=
1

γN2
tr
((

I− (I− γSHS⊤)N/4
)
B0

)
· tr
((

I− (I− γSHS⊤)N/4
)2)

, (27c)

T4 :=
1

γN
tr
(
B0 − (I− γSHS⊤)NB0(I− γSHS⊤)N

)
· Deff,N

N
, (27d)

B0 := v∗v∗⊤, (27e)

Deff,N := #{λ̃j ≥ 1/(Nγ)}+ (Nγ)2
∑

λ̃j<1/(Nγ)

λ̃2
j , (27f)

where (λ̃j)
M
j=1 are eigenvalue of SHS⊤.

See Section F.2.1 for the proof.

For Ti(i = 1, 2, 3, 4), we also have the following upper (and lower) bounds.
Lemma F.2 (Lower bound on T1). Under the assumptions and notations in Theorem F.1, we have

Ew∗T1 ≳
∑

i:λ̃i<1/(γN)

µi(SH
2S⊤)

µi(SHS⊤)

almost surely, where (λ̃i)
N
i=1 are eigenvalues of SHS⊤ in non-increasing order.

See the proof in Section F.2.2.
Lemma F.3 (Upper bound on T2). Under the assumptions and notations in Theorem F.1, for any
k ≤ M/3 such that r(H) ≥ k +M , we have with probability at least 1− e−Ω(M) that

T2 ≲
1

Nγ

[µM/2(Ak)

µM (Ak)

]2
· ∥w∗

0:k∥2 + ∥w∗
k:∞∥2Hk:∞

,

where Ak := Sk:∞Hk:∞S⊤
k:∞.
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See the proof in Section F.2.3.
Lemma F.4 (Lower bound on T3). Under the assumptions and notations in Theorem F.1, we have

Ew∗T3 ≳
Deff,N

N
·

∑
i:λ̃i<1/(γN)

µi(SH
2S⊤)

µi(SHS⊤)

almost surely, where (λ̃i)
M
i=1 are eigenvalues of SHS⊤ in non-increasing order.

See the proof in Section F.2.4.
Lemma F.5 (Upper bound on T4). Under the assumptions and notations in Theorem F.1 and assume
r(H) ≥ M , we have

T4 ≲ ∥w∗∥2H · Deff,N

N

almost surely, where Ak := Sk:∞Hk:∞S⊤
k:∞.

See the proof in Section F.2.5.

With these results at hand, we are ready to derive upper and lower bounds for the risk of the average
of (SGD) iterates.

F.1 Matching bounds for the average of (SGD) iterates under power-law spectrum

In this section, we derive upper and lower bounds for the expected risk under the power-law spectrum.
Our main result (Theorem F.6) follows directly from Theorem F.1 and the bounds on Ti(i = 1, 2, 3, 4)
in Lemmas F.2 to F.5.
Theorem F.6 (Scaling law for average iterates of SGD). Suppose Assumption 1 and 2 hold and
σ2 ≲ 1. Then there exists some a-dependent constant c > 0 such that when γ ≤ c, with probability
at least 1− e−Ω(M) over the randomness of the sketch matrix S, we have

ERM (v̄N ) = σ2 +Θ
(
M1−a

)
+Θ

(
(Nγ)1/a−1

)
,

where the expectation is over the randomness of w∗ and (xi, yi)
N
i=1, and Θ(·) hides constants that

may depend on a.

See the proof in Section F.2.6.

Compared with Theorem 4.1, Theorem F.6 suggests that the average of (SGD) achieves a smaller
risk in the sketched linear model—the (Neffγ)

1/a is replaced by (Nγ)1/a in the bound for the bias
term. This is intuitive since the sum of stepsizes

∑
t γt ≂ Neffγ for the geometrically decaying

stepsize scheduler while
∑

t γt ≂ Nγ for the fixed stepsize scheduler.

We also verify the observations in Theorem F.6 via simulations. We adopt the same model and
setup as in Section 5 but use the average of iterates of fixed stepsize (SGD) (denoted by v̄N ) as
the predictor. From Figure 3 and 4 we see that the expected risk ER(v̄N ) also scales following a
power-law relation in both sample size N and model size M . Moreover, the fitted exponents match
our theoretical predictions in Theorem F.6.

F.2 Proofs

F.2.1 Proof of Theorem F.1

Similar to the proof of Theorem A.4, we have the decomposition

R(v̄N ) = σ2 + Approx+ ∥v̄N − v∗∥2SHS⊤ .

Note that (vt)
N
t=1 can also be viewed as the SGD iterates on the model y = ⟨Sx,v∗⟩+ ξ + ϵ, where

the noise satisfies

E(ξ + ϵ)2 = R(v∗) = Eξ2 + σ2.

Therefore, the upper and lower bounds on Bias,Var follow directly from the proof of Theorem 2.1, 2.2
and related lemmas (Lemma B.6, B.11, C.3, C.5) in [48].
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Figure 3: The expected risk (Risk) of the average of iterates of (SGD) versus the sample size
N and the model size M for different power-law degrees a. The expected risk is computed by
averaging over 1000 independent samples of (w∗,S). We fit the expected risk using the formula
Risk ∼ σ2+c1/M

a1+c2/N
a2 via minimizing the Huber loss as in [21]. Parameters: σ = 1, γ = 0.1.

Left: For a = 1.5, d = 20000, the fitted exponents are (a1, a2) = (0.59, 0.33) ≈ (0.5, 0.33). Right:
For a = 2, d = 2000, the fitted exponents are (a1, a2) = (1.09, 0.49) ≈ (1.0, 0.5). Note that the
values of (a1, a2) are close to our theoretical predictions (a− 1, 1− 1/a) in both cases.
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Figure 4: The expected risk of the average of iterates of (SGD) minus the irreducible risk versus
the effective sample size and model size. Parameters σ = 1, γ = 0.1. (a), (b): a = 1.5, d = 10000;
(c), (d): a = 2, d = 1000. The errobars denotes the ±1 standard deviation of estimating the expected
risk using 100 independent samples of (w∗,S). We use linear functions to fit the expected risk under
log-log scale and report the slope of the fitted lines (denoted by k).

F.2.2 Proof of Lemma F.2

Let f1(A) := (I − (I − γA)N/4)2A−1/γ2/N2 for any positive definite matrix A ∈ RM×M .
Since γ ≤ 1/(c tr(SHS⊤)), we have f1(SHS⊤) ⪰ 0. By definition of T1 and recalling v∗ =
(SHS⊤)−1SHw∗, we have with probability at least 1− e−Ω(M) that

Ew∗T1 = Ew∗ [w∗⊤HS⊤(SHS⊤)−1f1(SHS⊤)(SHS⊤)−1SHw∗]

= tr
(
[(SHS⊤)−1f1(SHS⊤)(SHS⊤)−1](SH2S⊤)

)
.

Following the proof of Lemma D.2 (by Von Neumann’s trace inequality), we have

Ew∗T1 ≥
M∑
i=1

µi(SH
2S⊤)

µi

(
(SHS⊤)2f1(SHS⊤)−1

)
≥

∑
i:λ̃i<1/(γN)

µi(SH
2S⊤)

µi

(
(SHS⊤)2f1(SHS⊤)−1

)
≳

∑
i:λ̃i<1/(γN)

µi(SH
2S⊤)

µi(SHS⊤)
,
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where the third inequality is due to

λ/f1(λ) ≲
λ2γ2N2

(1− (1− γλ)N/4)2
≲

N2

(
∑N/4−1

i=0 (1− γλ)i)2
≲

1

(1− γλ)2N
≲ 1

when λ < 1/(Nγ).

F.2.3 Proof of Lemma F.3

By definition of T2, the fact that 1−xN = (1−x)
∑N−1

i=0 xi, and recalling v∗ = (SHS⊤)−1SHw∗,
we have

T2 = w∗⊤HS⊤f2(SHS⊤)SHw∗,

≤ 2[w∗
0:k

⊤H0:kS
⊤
0:kf2(SHS⊤)S0:kH0:kw

∗
0:k︸ ︷︷ ︸

T21

+w∗
k:∞

⊤Hk:∞S⊤
k:∞f2(SHS⊤)Sk:∞Hk:∞w∗

k:∞︸ ︷︷ ︸
T22

],

where f2(A) := [
∑N−1

i=0 (I− γA)i]2/A/N2 for any symmetric matrix A ∈ RM×M . Moreover, we
have

T21 = w∗
0:k

⊤H0:kS
⊤
0:kf2(SHS⊤)S0:kH0:kw

∗
0:k

≤ ∥f2(SHS⊤)(SHS⊤)2∥ · ∥(SHS⊤)−1S0:kH0:kw
∗
0:k∥2.

Using the assumption on the stepsize that γ ≤ 1/(c tr(SHS⊤)), we have

∥f2(SHS⊤)(SHS⊤)2∥ ≤ max
λ∈[0,1/γ]

1

N2

[N−1∑
i=0

(1− γλ)i
]2
λ

= max
λ∈[0,1/γ]

1

N2γ

[N−1∑
i=0

(1− γλ)i
]
· (1− (1− γλ)N )

≤ 1

N2γ
·N · 1 =

1

Nγ
. (28)

Combining Eq. (28) with Eq. (23) in the proof of Lemma D.1 (note that we assume k ≤ M/3), we
obtain

T21 ≤ c
1

Nγ

[µM/2(Ak)

µM (Ak)

]2
· ∥w∗

0:k∥2

for some constant c > 0 with probability at least 1− e−Ω(M). For T22, we have

T22 = w∗
k:∞

⊤Hk:∞S⊤
k:∞f2(SHS⊤)Sk:∞Hk:∞w∗

k:∞

≤ ∥f2(SHS⊤)SHS⊤∥ · ∥(SHS⊤)−1/2(Sk:∞H
1/2
k:∞)H

1/2
k:∞w∗

k:∞∥2

≤ ∥f2(SHS⊤)SHS⊤∥ · ∥(SHS⊤)−1/2Sk:∞H
1/2
k:∞∥2 · ∥w∗

k:∞∥2Hk:∞
.

Since ∥f2(SHS⊤)SHS⊤∥ = ∥[
∑N−1

i=0 (I − γSHS⊤)i]2/N2∥ ≤ 1 by the assumption γ ≤
1/(c tr(SHS⊤)), and

∥(SHS⊤)−1/2Sk:∞H
1/2
k:∞∥2 = ∥H1/2

k:∞S⊤
k:∞(SHS⊤)−1Sk:∞H

1/2
k:∞∥

= ∥H1/2
k:∞S⊤

k:∞(S0:kH0:kS
⊤
0:k + Sk:∞Hk:∞S⊤

k:∞)−1Sk:∞H
1/2
k:∞∥

≤ ∥H1/2
k:∞S⊤

k:∞(Sk:∞Hk:∞S⊤
k:∞)−1Sk:∞H

1/2
k:∞∥ = 1,

it follows that T22 ≤ ∥w∗
k:∞∥2Hk:∞

. Combining the bounds on T21, T22 completes the proof.

F.2.4 Proof of Lemma F.4

Let f3(A) := (I− (I− γA)N/4)/γ/N2 for any positive definite matrix A ∈ RM×M . Following the
same arguments as in the proof of Lemma F.2, we have f3(SHS⊤) ⪰ 0 and

Ew∗

[ 1

γN2
tr
((

I− (I− γSHS⊤)N/4
)
B0

)]
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= Ew∗ [w∗⊤HS⊤(SHS⊤)−1f3(SHS⊤)(SHS⊤)−1SHw∗]

= tr((SHS⊤)−1f3(SHS⊤)(SHS⊤)−1SH2S⊤).

Moreover,

Ew∗T1 ≥
M∑
i=1

µi(SH
2S⊤)

µi

(
(SHS⊤)2f3(SHS⊤)−1

)
≥

∑
i:λ̃i<1/(γN)

µi(SH
2S⊤)

µi

(
(SHS⊤)2f3(SHS⊤)−1

)
≳

1

N

∑
i:λ̃i<1/(γN)

µi(SH
2S⊤)

µi(SHS⊤)
, (29)

where the third inequality is due to

λ/f3(λ) ≲
λγN2

1− (1− γλ)N/4
≲

N2∑N/4−1
i=0 (1− γλ)i

≲
N

(1− γλ)N
≲ N

when λ < 1/(Nγ). Note that

1− (1− γλ̃i)
N
4 ≥

{
1− (1− 1

N )
N
4 ≥ 1− e−

1
4 ≥ 1

5 , λ̃i ≥ 1
γN ,

N
4 · γλ̃i − N(N−4)

32 · γ2λ̃2
i ≥ N

5 · γλ̃i, λ̃i <
1

γN ,
≥ 1

5
min{Nγλ̃i, 1}.

(30)
We thus have

tr
((

I− (I− γSHS⊤)N/4
)2)

=

M∑
i=1

[1− (1− γλ̃i)
N
4 ]2 ≳

M∑
i=1

min{(Nγλ̃i)
2, 1}

= #{λ̃i ≥
1

Nγ
}+N2γ2

∑
λ̃i<1/(Nγ)

λ̃2
i = Deff,N . (31)

Combining Eq. (31) and (29) completes the proof.

F.2.5 Proof of Lemma F.5

Substituting v∗ = (SHS⊤)−1SHw∗ in the expression of T4 and noting v0 = 0, we have

T4 =
1

γN
tr
(
B0 − (I− γSHS⊤)NB0(I− γSHS⊤)N

)
· Deff,N

N

=
1

γN
tr
(
w∗⊤HS⊤(SHS⊤)−1

[
I− (I− γSHS⊤)2N

]
(SHS⊤)−1SHw∗) · Deff,N

N

=: tr
(
w∗⊤HS⊤f4(SHS⊤)SHw∗) · Deff,N

N
, (32)

where f4(A) := A−1
[
I−(I−γA)2N

]
A−1/(Nγ) for any symmetric matrix A ∈ RM×M . Moreover,

tr
(
w∗⊤HS⊤f4(SHS⊤)SHw∗)

≤ ∥f4(SHS⊤)SHS⊤∥ · ∥(SHS⊤)−1/2SH1/2∥2 · ∥w∗∥2H
≤ ∥f4(SHS⊤)SHS⊤∥ · ∥w∗∥2H.

Since

∥f4(SHS⊤)SHS⊤∥ =
1

N
∥
2N−1∑
i=0

(I− γSHS⊤)i∥ ≤ 2

by our assumption on the stepsize, it follows that

tr
(
w∗⊤HS⊤f4(SHS⊤)SHw∗) ≲ ∥w∗∥2H. (33)

Combining Eq. (32) and (33) we find

T4 ≲ ∥w∗∥2H · Deff,N

N
.
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F.2.6 Proof of Theorem F.6

First, by Lemma G.4 we have 1/ tr(SHS⊤) ≳ c1 for some a-dependent c1 > 0 with probability
at least 1 − e−Ω(M). Therefore we may choose c sufficiently small so that γ ≤ c implies γ ≲
1/ tr(SHS⊤) with probability at least 1 − e−Ω(M). Now, suppose we have γ ≲ 1/ tr(SHS⊤).
Following the notations in Theorem F.1, we claim the following bounds on Approx,Bias,Var:

EApprox ≂ M1−a (34a)

Var ≂ min
{
M, (Nγ)1/a

}
/N. (34b)

Bias ≲ max
{
M1−a, (Nγ)1/a−1

}
, (34c)

Bias ≳ (Nγ)1/a−1 when (Nγ)1/a ≤ M/c for some constant c > 0, (34d)

with probability at least 1− e−Ω(M). Putting the bounds together yields Theorem F.6.

Proof of claim (34a) Note that our definition of Approx in Thereom F.1 is the same as that in
Eq. (4) (and 7). Therefore the claim follows immediately from Lemma C.4.

Proof of claim (34b) This follows from the proof of Lemma E.1 with Neff replaced by N.

Proof of claim (34c) By Theorem F.1, Lemma F.3 and F.5, we have

Bias ≲ Ew∗
∥w∗

0:k2
∥22

Nγ
·

[
µM/2(Sk2:∞Hk2:∞S⊤

k2:∞)

µM (Sk2:∞Hk2:∞S⊤
k2:∞)

]2
+ Ew∗∥w∗

k2:∞∥2Hk2:∞
+ σ2Deff,N

N
,

≲
k2
Nγ

[
µM/2(Sk2:∞Hk2:∞S⊤

k2:∞)

µM (Sk2:∞Hk2:∞S⊤
k2:∞)

]2
+ k1−a

2 +
Deff,N

N

with probability at least 1− e−Ω(M) for any k2 ≤ M/3. Choosing k2 = min{M/3, (Nγ)1/a} and
using Lemma G.4 and claim (34b), we obtain

Bias ≲ max
{
M1−a, (Nγ)1/a−1

}
+

min
{
M, (Nγ)1/a

}
N

≲ max
{
M1−a, (Nγ)1/a−1

}
+ (Nγ)1/a−1

≲ max
{
M1−a, (Nγ)1/a−1

}
with probability at least 1− e−Ω(M).

Proof of claim (34d) By Theorem F.1 and Lemma F.2, we have

Ew∗Bias ≳
∑

i:λ̃i<1/(γN)

µi(SH
2S⊤)

µi(SHS⊤)
.

When (Nγ)1/a ≤ M/c for some large constant c > 0, we have from Lemma G.4 that

Ew∗Bias ≳
∑

i:λ̃i<1/(γN)

i−2a

i−a
=

∑
i:λ̃i<1/(γN)

i−a ≳ [(Nγ)1/a]1−a = (Nγ)1/a−1

with probability at least 1− e−Ω(M).

G Concentration lemmas

G.1 General concentration results

Lemma G.1. Suppose that S ∈ RM×d is such that 3

Sij ∼ N (0, 1/M).

3We allow d = ∞.
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Let (λi)i≥1 be the eigenvalues of H in non-increasing order. Let (λ̃i)
M
i=1 be the eigenvalues of SHS⊤

in non-increasing order. Then there exists a constant c > 1 such that for every M ≥ 0 and every
0 ≤ k ≤ M , with probability ≥ 1− e−Ω(M), we have

for every j ≤ M,

∣∣∣∣λ̃j −
(
λj +

∑
i>k λi

M

)∣∣∣∣ ≤ c ·

(√
k

M
· λj + λk+1 +

√∑
i>k λ

2
i

M

)
.

As a direct consequence, for k ≤ M/c2, we have

for every j ≤ M,

∣∣∣∣λ̃j −
(
λj +

∑
i>k λi

M

)∣∣∣∣ ≤ 1

2
·
(
λj +

∑
i>k λi

M

)
+ c1 · λk+1,

where c1 = c+ 2c2.

Proof of Lemma G.1. We have the following decomposition motivated by Swartworth and Woodruff
[38] (see their Section 3.4, Proof of Theorem 1).

SHS⊤ = S0:kH0:kS
⊤
0:k + Sk:∞Hk:∞S⊤

k:∞

= S0:kH0:kS
⊤
0:k +

∑
i>k λi

M
· IM + Sk:∞Hk:∞S⊤

k:∞ −
∑

i>k λi

M
· IM .

We remark that this decomposition idea has been implicitly used in Bartlett et al. [5] to control the
eigenvalues of a Gram matrix. In fact, we will use techniques from Bartlett et al. [5] to obtain a
sharper bound than that presented in Swartworth and Woodruff [38].

For the upper bound, we have

µj

(
SHS⊤) ≤ µj

(
S0:kH0:kS

⊤
0:k +

∑
i>k λi

M
· IM

)
+

∥∥∥∥Sk:∞Hk:∞S⊤
k:∞ −

∑
i>k λi

M
· IM

∥∥∥∥
2

= µj

(
S0:kH0:kS

⊤
0:k

)
+

∑
i>k λi

M
· IM +

∥∥∥∥Sk:∞Hk:∞S⊤
k:∞ −

∑
i>k λi

M
· IM

∥∥∥∥
2

≤ µj

(
S0:kH0:kS

⊤
0:k

)
+

∑
i>k λi

M
· IM + c1 ·

(
λk+1 +

√∑
i>k λ

2
i

M

)
,

where the last inequality is by Lemma G.2. For j ≤ k, using Lemma G.3, we have

µj

(
S0:kH0:kS

⊤
0:k

)
≤ λj + c2 ·

√
k

M
· λj .

For k < j ≤ M , we have

µj

(
S0:kH0:kS

⊤
0:k

)
= 0 ≤ λj + c2 ·

√
k

M
· λj .

Putting these together, we have the following for every j = 1, . . . ,M :

µj

(
SHS⊤) ≤ µj

(
S0:kH0:kS

⊤
0:k

)
+

∑
i>k λi

M
· IM + c1 ·

(
λk+1 +

√∑
i>k λ

2
i

M

)

≤ λj +

∑
i>k λi

M
· IM + c ·

(√
k

M
· λj + λk+1 +

√∑
i>k λ

2
i

M

)
.

Similarly, we can show the lower bound. By the decomposition, we have

µj

(
SHS⊤) ≥ µj

(
S0:kH0:kS

⊤
0:k +

∑
i>k λi

M
· IM

)
−
∥∥∥∥Sk:∞Hk:∞S⊤

k:∞ −
∑

i>k λi

M
· IM

∥∥∥∥
= µj

(
S0:kH0:kS

⊤
0:k

)
+

∑
i>k λi

M
· IM −

∥∥∥∥Sk:∞Hk:∞S⊤
k:∞ −

∑
i>k λi

M
· IM

∥∥∥∥
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≥ µj

(
S0:kH0:kS

⊤
0:k

)
+

∑
i>k λi

M
· IM − c1 ·

(
λk+1 +

√∑
i>k λ

2
i

M

)
,

where the last inequality is by Lemma G.2. For j ≤ k, using Lemma G.3, we have

µj

(
S0:kH0:kS

⊤
0:k

)
≥ λj − c2 ·

√
k

M
· λj .

For k < j ≤ M , we have

µj

(
S0:kH0:kS

⊤
0:k

)
= 0 ≥ λj − λk+1 − c2 ·

√
k

M
· λj ,

where the last inequality is due to λj ≤ λk for j ≥ k. Putting these together, we have

µj

(
SHS⊤) ≥ µj

(
S0:kH0:kS

⊤
0:k

)
+

∑
i>k λi

M
· IM − c1 ·

(
λk+1 +

√∑
i>k λ

2
i

M

)

≥ λj +

∑
i>k λi

M
· IM − c ·

(√
k

M
· λj + λk+1 +

√∑
i>k λ

2
i

M

)
.

So far, we have proved the first claim. To show the second claim, we simply apply

c ·
√

k

M
≤ 1

2
for k ≤ M/c2,

and

c ·

√∑
i>k λ

2
i

M
≤ c ·

√∑
i>k λi

M
· λk+1

≤ 1

2
·
∑

i>k λi

M
+ 2c2 · λk+1,

in the first claim.

Lemma G.2 (Tail concentration, Lemma 26 in Bartlett et al. [5]). For any k ≥ 1, with probability at
least 1− e−Ω(M), we have∥∥∥∥Sk:∞Hk:∞S⊤

k:∞ −
∑

i>k λi

M
· IM

∥∥∥∥
2

≲ λk+1 +

√∑
i>k λ

2
i

M
.

Moreover, the minimum eigenvalue of Sk:∞Hk:∞S⊤
k:∞ satisfies

µmin(Sk:∞Hk:∞S⊤
k:∞) ≳ λk+2M

with probability at least 1− e−Ω(M).

Proof of Lemma G.2. The first part of Lemma G.2 is a version of Lemma 26 in [5] (see their proof).
We provide proof here for completeness.

We write S ∈ RM×p as

S = (s1 . . . sp) , si ∼ N
(
0,

1

M
· IM

)
, i ≥ 1.

Since Gaussian distribution is rotational invariance, without loss of generality, we may assume

H = diag{λ1, . . . , λp}.

Then we have
Sk:∞Hk:∞S⊤

k:∞ =
∑
i>k

λisis
⊤
i .
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Fixing a unit vector v ∈ RM , then

v⊤Sk:∞Hk:∞S⊤
k:∞v =

∑
i>k

λi

(
s⊤i v

)2
,

where each s⊤i v is (1/M)-subGaussian. By Bernstein’s inequality, we have, with probability ≥ 1−δ,∣∣∣∣∑
i>k

λi

(
s⊤i v

)2 − ∑
i>k λi

M

∣∣∣∣ ≲ 1

M
·
(
λk+1 · log

1

δ
+

√∑
i>k

λ2
i · log

1

δ

)
.

By a union bound and net argument on SM−1, we have, with probability ≥ 1 − δ, for every unit
vector v ∈ RM ,∣∣∣∣∑

i>k

λi

(
s⊤i v

)2 − ∑
i>k λi

M

∣∣∣∣ ≲ 1

M
·

(
λk+1 ·

(
M + log

1

δ

)
+

√∑
i>k

λ2
i ·
(
M + log

1

δ

))
.

So with probability at least 1− e−Ω(M), we have∥∥∥∥Sk:∞Hk:∞S⊤
k:∞ −

∑
i>k λi

M
· IM

∥∥∥∥
2

≲
1

M
·

(
λk+1 ·M +

√∑
i>k

λ2
i ·M

)

≂ λk+1 +

√∑
i>k λ

2
i

M
,

which completes the proof of the first part of Lemma G.2.

To prove the second part of Lemma G.2, it suffices to note that

Sk:∞Hk:∞S⊤
k:∞ ⪰

2M+k∑
i=k+1

λisis
⊤
i ⪰ λ2M+k ·

2M+k∑
i=k+1

sis
⊤
i ⪰ cλ2M+k · IM

for some constant c > 1 with probability at least 1 − e−Ω(M), where the last line follows from
concentration properties of Gaussian covariance matrices (see e.g., Thereom 6.1 [41]).

Lemma G.3 (Head concentration). With probability at least 1− e−Ω(M), we have

for every j ≤ k, |µj(S0:kH0:kS
⊤
0:k)− λj | ≲

√
k

M
· λj .

Proof of Lemma G.3. Note that the spectrum of S0:kH0:kS
⊤
0:k is indentical to the spectrum of

H
1/2
0:k S

⊤
0:kS0:kH

1/2
0:k . We will bound the latter. We start with bounding the spectrum of S0:kS

⊤
0:k. To

this end, we write S⊤
0:k ∈ Rk×M as

S⊤
0:k = (s1 . . . sM ) , si ∼ N

(
0,

1

M
· Ik
)
, i = 1, . . . ,M.

Then repeating the argument in Lemma G.2, we have, with probability ≥ 1− δ, for every unit vector
v ∈ Rk, ∣∣v⊤S⊤

0:kS0:kv − 1
∣∣ = ∣∣∣∣ M∑

i=1

(
s⊤i v

)2 − 1

∣∣∣∣
≲

1

M
·

(
1 ·
(
k + log

1

δ

)
+

√
M ·

(
k + log

1

δ

))

≲

√
k + log(1/δ))

M
.

So we have, with probability ≥ 1− e−Ω(M),∥∥S⊤
0:kS0:k − Ik

∥∥
2
≲

√
k

M
.
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This implies that

µj

(
H

1/2
0:k S

⊤
0:kS0:kH

1/2
0:k

)
≤ µj

(
H

1/2
0:kH

1/2
0:k

)
+ c1 ·

√
k

M
· µj

(
H

1/2
0:kH

1/2
0:k

)
= λj + c1 ·

√
k

M
· λj ,

and that

µj

(
H

1/2
0:k S

⊤
0:kS0:kH

1/2
0:k

)
≥ µj

(
H

1/2
0:kH

1/2
0:k

)
− c1 ·

√
k

M
· µj

(
H

1/2
0:kH

1/2
0:k

)
= λj − c1 ·

√
k

M
· λj .

We have completed the proof.

G.2 Concentration results under power-law spectrum

Lemma G.4 (Eigenvalues of SHS⊤ under power-law spectrum). Suppose Assumption 2 hold. There
exist a-dependent constants c2 > c1 > 0 such that

c1j
−a ≤ µj(SHS⊤) ≤ c2j

−a

with probability at least 1− e−Ω(M).

Proof of Lemma G.4. Let (λ̃i)
M
i=1 denote the eigenvalues of SHS⊤ in an non-increasing order. Using

Lemma G.1 with k = M/c for some sufficiently large constant c and noting that
∑

i>k i
−a ≂ k1−a,

we have

1

2
· (j−a + c̃1M

−a)− c̃2 ·M−a ≤ λ̃j ≤
3

2
· (j−a + c̃1M

−a) + c̃2 ·M−a

for every j ∈ [M ] for some constants c̃i, i ∈ [2] with probability at least 1− e−Ω(M). Therefore, for
all j ≤ M/c̃ for some sufficiently large constant c̃ > 1, we have

λ̃j ∈ [c̃3j
−a, c̃4j

−a]

with probability at least 1 − e−Ω(M) for some constants c̃3, c̃4 > 0. For j ∈ [M/c̃,M ], by mono-
tonicity of the eigenvalues, we have

λ̃j ≤ λ̃⌊M/c̃⌋ ≤ c̃4

(⌊M
c̃

⌋)−a

≤ c̃5M
−a ≤ c̃5j

−a

for some sufficiently large constant c̃5 > c̃4 with probability at least 1− e−Ω(M). Moreover, using
Lemma G.2 with k = 0, we obtain

λ̃j ≥ λ̃M ≥ µmin(Sk:∞Hk:∞S⊤
k:∞) ≥ c̃6λ̃2M ≥ c̃7(M/c̃)−a ≥ c̃8j

−a

with probability at least 1− e−Ω(M) for some constants c̃6, c̃7, c̃8 > 0. Combining the bounds for
j ≤ M/c̃ and j ∈ [M/c̃,M ] completes the proof.

Lemma G.5 (Ratio of eigenvalues of Sk:∞Hk:∞S⊤
k:∞ under power-law spectrum). Suppose As-

sumption 2 hold. There exists some a-dependent constant c > 0 such that for any k ≥ 1, the ratio
between the M/2-th and M -th eigenvalues

µM/2(Sk:∞Hk:∞S⊤
k:∞)

µM (Sk:∞Hk:∞S⊤
k:∞)

≤ c

with probability at least 1− e−Ω(M).
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Proof of Lemma G.5. We prove the lemma under two scenarios where k is relatively small (or large)
compared with M .

Let c > 0 be some sufficiently large constant. Applying Lemma G.1 with Hk:∞ replacing H, for
k0 = M/c, we have

µM/2(Sk:∞Hk:∞S⊤
k:∞) ≤ 3

2
·
(
λM/2+k +

∑
i>k0

λi+k

M

)
+ c1 · λk0+1+k,

≲
(M
2

+ k
)−a

+
(k0 + k)1−a

M
+ (k0 + 1 + k)−a

≲ (k ∨M)−a + (k ∨M)−a
(
1 ∨ k

M

)
+ (k ∨M)−a

≲ (k ∨M)−a
(
1 ∨ k

M

)
(35)

with probability at least 1− e−Ω(M) for some constant c1 > 0.

Case 1: k ≲ M From Lemma G.2, we have

µmin(Sk:∞Hk:∞S⊤
k:∞) ≳ λk+2M ≳ (k ∨M)−a.

with probability at least 1− e−Ω(M). Therefore

µM/2(Sk:∞Hk:∞S⊤
k:∞)

µM (Sk:∞Hk:∞S⊤
k:∞)

≲ 1

with probability at least 1− e−Ω(M) when k/M ≲ 1.

Case 2: k ≳ M On the other hand, when k is relatively large, using Lemma G.1 with Hk:∞
replacing H again, we obtain

µM (Sk:∞Hk:∞S⊤
k:∞) ≥ 1

2
·
(
λM+k +

∑
i>k0

λi+k

M

)
− c1 · λk0+1+k,

≥ c2

[(
M + k

)−a
+

(k0 + k)1−a

M

]
− c3 · (k0 + 1 + k)−a

with probability at least 1− e−Ω(M), where c1, c2, c3 > 0 are some universal constants. Choosing
k0 = M/c2 for some sufficiently large constant c > 0, we further obtain

µM (Sk:∞Hk:∞S⊤
k:∞) ≥ c4

(
M + k

)−a
[
1 +

k

M

]
− c5(M + k)−a

≥ c6
(
M ∨ k

)−a
[
1 ∨ k

M

]
− c7(M ∨ k)−a (36)

with probability at least 1− e−Ω(M), where (ci)
7
i=4 are a-dependent constants. Since

c6
(
M ∨ k

)−a
[
1 ∨ k

M

]
− c7(M ∨ k)−a ≥ c6

2
(k ∨M)−a

(
1 ∨ k

M

)
when k is large, i.e., k/M > c̃ for some sufficiently large a-dependent constant c̃ > 0 that may
depend on (ci)

7
i=1, we have from Eq. (35) and (36) that

µM/2(Sk:∞Hk:∞S⊤
k:∞)

µM (Sk:∞Hk:∞S⊤
k:∞)

≲
(k ∨M)−a

(
1 ∨ k

M

)
(k ∨M)−a

(
1 ∨ k

M

) ≲ 1

with probability at least 1− e−Ω(M).

G.3 Concentration results under logarithmic power-law spectrum

Lemma G.6 (Proof of Theorem 6 in [5]). Suppose Assumption 4 hold. Then there exist some
a-dependent constants c, c̃ > 0 such that, with probability at least 1− e−Ω(M)

µj(SHS⊤) ∈

{
[c · j−1 log−a(j + 1), c̃ · j−1 log−a(j + 1)] j ≤ k∗,

[c ·M−1 log1−a(M), c̃ ·M−1 log1−a(M)] k∗ < j ≤ M,
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where k∗ ≂ M/ log(M). Also, there exists some a-dependent constants c1, c2 > 0 such that
c1

j log2a(j + 1)
≤ µj(SH

2S⊤) ≤ c2

j log2a(j + 1)

with probability at least 1− e−Ω(M).

Proof of Lemma G.6. The proof is adapted from the proof of Theorem 6 in [5]. We include it here
for completeness.

First part of Lemma G.6. In Lemma G.1, for some constant c > 1, choose

k∗ := min

{
k ≥ 0 :

∑
i>k

λi ≥ c ·M · λk+1

}
.

Then with probability ≥ 1− e−Ω(M), we have:

for every 1 ≤ j ≤ M,
1

c1
·
(
λj +

∑
i>k∗ λi

M

)
≤ λ̃j ≤ c1 ·

(
λj +

∑
i>k∗ λi

M

)
,

where c1 > 1 is a constant.

When λj ≂ j−1 log−a(j + 1), we have

k∗ ≂ M/ log(M),

and ∑
i>k∗

λi ≂ log1−a(k∗) ≂ log1−a(M).

Therefore, we have

λ̃j ≂ λj +

∑
i>k∗ λi

M

≂

{
j−1 log−a(j + 1) j ≤ k∗,

M−1 log1−a(M) k∗ < j ≤ M,

where k∗ ≂ M/ log(M).

Second part of Lemma G.6. Let λ̄i denote the i-th eigenvalue of SH2S⊤ for i ∈ [M ]. Using
Lemma G.1 with k = M/c for some sufficiently large constant c0 and noting that

∑
i>k λ

2
i ≂∑

i>k i
−2 log−2a(i+ 1) ≲ k−1 log−2a k, we have

1

2
· j−2 log−2a(j + 1)− c̃2 ·M−2 log−2a M

≤ λ̄j ≤
3

2
· (j−2 log−2a(j + 1) + c̃1M

−2 log−2a M) + c̃2 ·M−2 log−2a M

for every j ∈ [M ] for some constants c̃i, i ∈ [2] with probability at least 1− e−Ω(M). Therefore, for
all j ≤ M/c̃ for some sufficiently large constant c̃ > 1, we have

λ̄j ∈ [c̃3 · j−2 log−2a(j + 1), c̃4 · j−2 log−2a(j + 1)]

with probability at least 1 − e−Ω(M) for some constants c̃3, c̃4 > 0. For j ∈ [M/c̃,M ], by mono-
tonicity of the eigenvalues, we have

λ̄j ≤ λ̄⌊M/c̃⌋ ≤ c̃4

(⌊M
c̃

⌋)−2

log−2a
(⌊M

c̃

⌋)
≤ c̃5M

−2 log−2a M ≤ c̃6 · j−2 log−2a(j + 1)

for some constants c5, c6 > 0 with probability at least 1 − e−Ω(M). Moreover, using Lemma G.2
with k = 0, we obtain

λ̄j ≥ λ̄M ≥ µmin(Sk:∞H2
k:∞S⊤

k:∞) ≥ c̃7λ̄2M ≥ c̃8 · j−2 log−2a(j + 1)

with probability at least 1− e−Ω(M) for some constants c̃7, c̃8 > 0 when j ∈ [M/c̃,M ]. Combining
the bounds for j ≤ M/c̃ and j ∈ [M/c̃,M ] completes the proof.
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Lemma G.7 (Ratio of eigenvalues of Sk:∞Hk:∞S⊤
k:∞ under logarithmic power-law spectrum).

Suppose Assumption 4 hold. There exists some a-dependent constant c > 0 such that for any k ≥ 1,
the ratio between the M/2-th and M -th eigenvalues

µM/2(Sk:∞Hk:∞S⊤
k:∞)

µM (Sk:∞Hk:∞S⊤
k:∞)

≤ c

with probability at least 1− e−Ω(M).

Proof of Lemma G.7. Similar to the proof of Lemma G.5, we prove the lemma under two scenarios
where k is relatively small (or large) compared with M .

Let c > 0 be some sufficiently large constant. Applying Lemma G.1 with Hk:∞ replacing H, for
k0 = M/c, we have

µM/2(Sk:∞Hk:∞S⊤
k:∞) ≤ 3

2
·
(
λM/2+k +

∑
i>k0

λi+k

M

)
+ c1 · λk0+1+k,

≲
(M
2

+ k
)−1

log−a
(M
2

+ k
)
+

log1−a(k0 + k)

M
+

log−a(k0 + 1 + k)

k0 + 1 + k

≲
log−a(M + k)

(M + k)
+

log1−a(M + k)

M
≲

log1−a(M + k)

M
(37)

with probability at least 1− e−Ω(M) for some constant c1 > 0.

Case 1: k ≲ M . Applying Lemma G.1 with Hk:∞ replacing H, for k0 = M/c, we have

µM (Sk:∞Hk:∞S⊤
k:∞) ≳

1

2
·
(
λM+k +

∑
i>k0

λi+k

M

)
− c1 · λk0+1+k,

≳
(
M + k

)−1
log−a

(
M + k

)
+

log1−a(k0 + k)

M
− c

log−a(k0 + 1 + k)

k0 + 1 + k

≳
log−a(M + k)

(M + k)
+

log1−a(M + k)

M
− c̃

log−a(M)

M

≳
log1−a M

M

with probability at least 1− e−Ω(M). Therefore,
µM/2(Sk:∞Hk:∞S⊤

k:∞)

µM (Sk:∞Hk:∞S⊤
k:∞)

≲
[ log1−a(M + k)

M

]/[ log1−a M

M

]
≲ 1

with probability at least 1− e−Ω(M) when k/M ≲ 1.

Case 2: k ≳ M . On the other hand, when k is relatively large, using Lemma G.1 with Hk:∞
replacing H and k0 = M/c again, we obtain

µM (Sk:∞Hk:∞S⊤
k:∞) ≥ 1

2
·
(
λM+k +

∑
i>k0

λi+k

M

)
− c1 · λk0+1+k,

≳
(
M + k

)−1
log−a

(
M + k

)
+

log1−a(k0 + k)

M
− c2

log−a(k0 + 1 + k)

k0 + 1 + k

≳ k−1 log−a
(
k
)
+

log1−a(M + k)

M
− c3

log−a(M + k)

M + k

≳
log1−a(M + k)

M

with probability at least 1−e−Ω(M), where c1, c2, c3 > 0 are some a-dependent constants. Therefore,
µM/2(Sk:∞Hk:∞S⊤

k:∞)

µM (Sk:∞Hk:∞S⊤
k:∞)

≲
[ log1−a(M + k)

M

]/[ log1−a(M + k)

M

]
≲ 1

with probability at least 1− e−Ω(M) when k/M ≳ 1.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims are accurate and reflect the contributions and scope of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our results.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide all the details for our theorems.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the details for our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: Our experiments are numerical simulations and easy to reproduce.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the details for our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our experiments are numerical simulations and can run with light compute
resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper is theoretical and we do not expect direct societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper is theoretical and we do not expect risk of such.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our paper is theoretical and does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper is theoretical and does not create new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper is theoretical and does not involve crowdsourcing nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper is theoretical and does not involve crowdsourcing nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

51


	Introduction
	Related work
	Setup
	Scaling laws
	Scaling law under source condition
	Scaling law under logarithmic power law

	Experiments
	Risk bounds under a general spectrum
	Conclusion
	Bibliography
	Appendix
	 Appendix
	Preliminary
	Additional notations and comments on data assumptions
	Approximation error
	Bias-variance decomposition
	Proof of Theorem 6.1
	Proofs of Lemma 6.2, Theorem 6.3 and 6.4

	Proofs in Section 4
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Approximation error
	An upper bound
	A lower bound
	A lower bound under Assumption 3
	Examples on matching bounds for Approx

	Bias error
	An upper bound
	A lower bound
	Examples on matching bounds for Bias

	Variance error
	Expected risk of the average of (SGD) iterates
	Matching bounds for the average of (SGD) iterates under power-law spectrum
	Proofs
	Proof of Theorem F.1
	Proof of Lemma F.2
	Proof of Lemma F.3
	Proof of Lemma F.4
	Proof of Lemma F.5
	Proof of Theorem F.6


	Concentration lemmas
	General concentration results
	Concentration results under power-law spectrum
	Concentration results under logarithmic power-law spectrum



