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Abstract

In this paper, we explore the potential of snapshot com-
pressive imaging (SCI) for dynamic 3D scene reconstruc-
tion from a single temporal compressed image. SCI is a
low-cost imaging technique that captures high-dimensional
information-such as temporal data—using 2D sensors and
coded masks, significantly reducing data bandwidth while
offering inherent privacy advantages. While recent ad-
vances in Neural Radiance Fields (NeRF) and 3D Gaussian
Splatting (3DGS) have enabled 3D reconstruction from SCI
measurements, these methods are fundamentally limited to
static scenes and fail to generalize to dynamic content. To
address this, we propose SCIGaussian-D, a novel frame-
work that enables dynamic 3D reconstruction from a single
SCI image. Our method represents the scene with 3D Gaus-
sians defined in a canonical space and models motion us-
ing learnable deformation fields. By incorporating the SCI
imaging model into the training loop, SCIGaussian-D di-
rectly reconstructs the dynamic 3D scene and recovers the
corresponding camera motion from a single SCI. We eval-
uate our method on both synthetic and real SCI datasets,
demonstrating significant improvements in reconstruction
quality over existing baselines. Our results establish a new
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Figure 1. Given a single snapshot compressed image, our method is able to recover the underlying dynamic 3D scene representation.
Leveraging the fast deformable radiance field representation of 3D Gaussian Splatting, we can render high-quality images of a dynamic
scene from a single measurement in real-time.

state of the art for dynamic scene reconstruction within the
SCI framework, paving the way for practical applications
in high-speed imaging and real-time scene rendering.

1. Introduction

Reconstructing dynamic 3D scenes from a single image re-
mains a fundamental and unresolved challenge in computa-
tional imaging. To tackle this problem, we propose a prac-
tical method for recovering dynamic 3D scene geometry
from a single snapshot compressive image. Our approach
builds upon the video Snapshot Compressive Imaging (SCI)
framework [53], a computational imaging paradigm origi-
nally developed for high-speed video acquisition [24]. Tra-
ditional high-speed imaging systems often entail substantial
hardware costs and storage demands. Motivated by the the-
ory of compressive sensing (CS) [3, 9], video SCI aims to
alleviate these limitations. A typical SCI system comprises
a hardware encoder and a software decoder. During image
acquisition, the encoder employs a sequence of random bi-
nary 2D masks to modulate the incoming light over time,
resulting in a single compressed measurement. This design
enables low-cost 2D sensors such as CCD and CMOS cam-
eras to capture high-speed events efficiently, reducing both
acquisition costs and data volume. Subsequently, the de-
coder reconstructs high frame-rate video frames by leverag-



ing the encoded measurement along with the corresponding
binary masks.

In recent years, significant progress has been made on
SCI reconstruction algorithms, spanning model-based tech-
niques [21, 23, 51] and deep learning-based approaches [5,
7,8, 26, 36, 43, 44]. While these methods demonstrate im-
pressive image and video reconstruction quality, they typi-
cally disregard the 3D structure underlying the scene, which
is critical for achieving multi-view consistency. To ad-
dress these limitations, Li et al.[20] proposed SCINeRF,
which integrates Neural Radiance Fields (NeRF)[30] into
the SCI framework, enabling 3D scene representation re-
covery within the exposure window. Building on this,
SCISplat [19] employs 3D Gaussian Splatting (3DGS) [16]
to improve rendering fidelity and computational efficiency.
However, both SCINeRF and SCISplat are restricted by the
static scene assumptions inherent to NeRF and 3DGS, and
thus encounter significant limitations when applied to dy-
namic 3D scenes captured via SCI.

To overcome these challenges, we propose
SCIGaussian-D, a novel dynamic 3D scene represen-
tation framework for SCI. SCIGaussian-D employs a
deformable 3DGS framework, where 3D Gaussians are
learned in a canonical space and subsequently conditioned
on time through implicit deformation fields. Training
SCIGaussian-D on a single SCI measurement involves
performing differentiable Gaussian rasterization, followed
by simulating the physical SCI imaging model to generate
a synthesized SCI measurement. To stabilize the training
of SClGaussian-D, we employ a two-stage optimization
strategy. In the first warm-up stage, the camera poses
and canonical Gaussians are jointly optimized while
deliberately excluding the deformation fields, allowing
the model to obtain a stable scene representation and
poses. In the second stage, the camera poses are fixed, and
both Gaussians and deformation fields are optimized to
capture scene motions across different time stamps. With
the help of SCIGaussian-D, we can recover dynamic 3D
scene structures captured by a fast-moving camera within
extremely short exposure durations, e.g., less than 20ms or
even less than 10ms.

To comprehensively evaluate the performance of our
method, we build a real hardware platform to capture SCI
images. Additionally, we conduct quantitative evaluations
using synthetic datasets generated via Blender. Experimen-
tal results on both synthetic and real-world datasets demon-
strate that SCIGaussian-D effectively reconstructs dynamic
3D scenes from a single SCI image. In terms of image
restoration and rendering quality, our method outperforms
previous state-of-the-art (SOTA) methods.

In summary, our key contributions are listed as follows:

* We present a novel method to restore dynamic 3D scenes,
with 3D aware multi-view images of the captured scenes,

from a single snapshot compressive image.

* We experimentally validate that our approach is able
to synthesize high-quality multi-view images from rep-
resented dynamic 3D scenes, surpassing existing state-
of-the-art SCI image/video reconstruction methods and
static NeRF and 3DGS-based methods.

* Our method also presents alternative approach for effi-
cient 3D scene storage/transmission, privacy protection,
and enables the practical deployment of SCI systems in
real-world scenarios involving the capture of dynamic,
high-speed 3D scenes.

2. Related Works
2.1. NeRF and 3DGS

Neural Radiance Fields (NeRF) [30] have significantly
advanced novel-view synthesis by enabling high-fidelity
3D scene representation. However, NeRF requires accu-
rate camera poses as input, which are often unavailable
or unreliable in real-world datasets. Most NeRF-based
pipelines depend on Structure-from-Motion (SfM) tools
such as COLMAP [38] to estimate poses, but these can pro-
duce noisy results or fail altogether. To address this, sev-
eral pose-free or jointly optimized variants have emerged.
NeRF- [46] estimates camera intrinsics and extrinsics dur-
ing training; Jeong [15] introduces a self-calibration ap-
proach; iMAP [40] integrates NeRF with SLAM to esti-
mate camera poses; and GNeRF [28] leverages GANs [13]
for more robust pose and NeRF optimization. Other meth-
ods, such as BARF [22] and BAD-NeRF [45], refine poses
via coarse-to-fine strategies and simulate motion blur to
enhance reconstruction quality. Another key limitation of
NeReF is its low computational efficiency. The implicit rep-
resentation based on multi-layer perceptron (MLP) and vol-
umetric rendering incur high training and inference costs,
often requiring hours or days. To improve efficiency, grid-
based models like TensoRF [6], Plenoxels [11], and Hex-
Plane [4], as well as hash-based methods such as Instant-
NGP [31], have been proposed. Despite these advances,
real-time rendering with high quality remains challenging.
3D Gaussian Splatting (3DGS) [16] offers a compelling al-
ternative by replacing implicit fields with an explicit, point-
based scene representation. Using a tile-based rasterization
of 3D Gaussians, 3DGS achieves real-time rendering with
high visual fidelity. However, like NeRF, it requires ac-
curate camera poses and sparse geometry—typically from
COLMAP—for initialization, limiting its applicability in
pose-unknown settings.

2.2. Snapshot Compressive Imaging

Early SCI image reconstruction methods primarily rely
on regularized optimization frameworks [21, 23, 51, 52],
where compressed measurements are recovered by solving



inverse problems with handcrafted priors. Common reg-
ularizers include sparsity constraints [49] and total varia-
tion (TV) [51], often solved using the alternating direction
method of multipliers (ADMM) [2] for improved stability
and flexibility across imaging setups. Representative meth-
ods such as DeSCI [8] and GAP-TV [51] have achieved
notable performance improvements, but their iterative na-
ture leads to high computational costs, limiting scalability
to high-resolution or real-time applications.

With the rise of deep learning, recent SCI reconstruc-
tion methods increasingly leverage neural networks. Archi-
tectures such as U-Net [37] and GANSs [13] have been em-
ployed to learn end-to-end mappings from compressed mea-
surements to full images. Due to the scarcity of large-scale
real SCI datasets, models are typically trained on synthetic
data with simulated measurements and masks. For example,
Qiao et al. [36] proposed an end-to-end CNN (E2E-CNN),
while Cheng et al. [7] introduced BIRNAT, a bi-directional
RNN-based model for video SCI. To address scalability,
RevSCI designed a multi-group reversible 3D CNN to re-
duce training memory and computation. Hybrid approaches
like PnP-FFDNet [52] and FastDVDNet [54] combined
learned denoisers with traditional solvers for improved
speed and flexibility. More recently, Wang et al. [5, 44]
introduced spatial-temporal Transformers (STFormer) and
EfficientSCI to better capture correlations across time and
space, which lead to SOTA results.

While deep models achieve high-quality reconstructions,
they are typically constrained to 2D outputs aligned with
specific masks, and often generalize poorly to real-world
data due to reliance on synthetic pretraining. To address
this, Li et al. [20] proposed SCINeRF, which jointly op-
timizes NeRF and camera poses to recover the 3D scene
from a single SCI image. Building on this, SCISplat [19]
employs 3D Gaussian Splatting (3DGS) for improved ren-
dering quality and efficiency. Both methods leverage test-
time optimization (TTO) to mitigate generalization issues
and enable novel-view synthesis with high temporal resolu-
tion. However, they assume static scenes and cannot handle
dynamic motion from a single SCI snapshot, limiting their
applicability in real-world dynamic settings.

2.3. Dynamic 3D Scene Representation

Conventional NeRF and 3DGS methods assume static
scenes during multi-view image capture, which limits their
applicability to dynamic environments such as human mo-
tion capture and autonomous driving. A central challenge in
modeling dynamic 3D scenes lies in incorporating temporal
information while maintaining spatiotemporal consistency.
Early works extend NeRF by conditioning the radiance field
on time. However, naively treating time as an additional in-
put often fails to disentangle spatial deformation from ap-
pearance, leading to degraded rendering quality. To address

this, later approaches decouple geometry and appearance by
learning radiance fields in a static canonical space, paired
with an implicit deformation field to model scene motion.
D-NeRF [35] introduces a deformation MLP to model tem-
poral displacements of points along rays. HyperNeRF [33]
constructs a 5D radiance field, treating each image as a slice
through this space. Nerfies [32] improves robustness via
elastic regularization of the deformation field. Other meth-
ods incorporate motion segmentation [39, 41], depth priors
[1], or 2D hex-plane encodings [12] to better capture scene
dynamics.

With the rise of 3D Gaussian Splatting (3DGS), atten-
tion has shifted toward explicit representations for dynamic
scenes. Compared to NeRF’s implicit formulation, 3DGS-
based methods achieve higher rendering quality and effi-
ciency. Wu et al. [47] combine 4D point clouds with K-
Planes [12] for dynamic modeling. Grid4D [48] enhances
plane-based representations with hash encoding and atten-
tion modules. Duan et al. [10] introduce 4D rotors to
capture Gaussian motion, while Luiten et al. [25] model
trajectories via per-frame transformations. Although effec-
tive for tracking, the latter suffers from rendering artifacts.
Inspired by deformation-based NeRF methods, Yang et al.
[50] propose a deformable 3DGS framework using an MLP-
based deformation field to modulate canonical Gaussians.
Building on this implicit-explicit paradigm, our method also
leverages deformation fields to estimate motion, while op-
timizing the Gaussians in canonical space to ensure consis-
tent scene representation across time.

3. Method

In this paper, we consider the input SCI image as the com-
pressed multi-view monocular images of a dynamic scene.
Our proposed method takes a single SCI image and encod-
ing masks as input and recovers the underlying dynamic 3D
scene structure, as well as camera poses. Then, we can ren-
der compressed multi-view images from the reconstructed
3D scene. To achieve this, we first employ an initializa-
tion protocol to estimate point clouds and poses from a sin-
gle SCI measurement to start the training procedure. Then
we decouple the scene structure and motion by learning the
scene represented by 3D Gaussians in the canonical space,
and applying implicit deformation fields to model the scene
motion. We follow the image formation model of video
SCI to synthesize snapshot compressive images from Gaus-
sians. By maximizing the photometric consistency between
the synthesized image and the actual SCI measurement, we
optimize Gaussian-based 3D scene representation, camera
poses and deformation fields. An overview of our method
is shown in Figure 2.
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Figure 2. Overview of the proposed SCIGaussian-D. Our method takes a single snapshot compressive image and corresponding encoding
masks as input, and recovers the underlying dynamic 3D scene representation as well as the camera motion trajectory within a single
exposure time. A set of degraded frames are first reconstructed from the input real SCI measurement and modulation masks using pixel
interpolation. These frames are then fed into a learning-based SfM module to initialize Gaussian parameters. To decouple the dynamic
scene representation, we apply an implicit deformation field apart from canonical 3D Gaussians. When training SCIGaussian-D, we first
take a warm-up phase to jointly optimize canonical 3D Gaussians and camera poses without deformation fields. Subsequently, we lock
on camera poses and jointly optimize deformation fields and and canonical Gaussians. The canonical Gaussians, deformation fields and
camera poses are optimized by minimizing the photometric loss between the synthesized measurement (from the rendered multi-view
images via differential Gaussian rasterization) and the captured SCI measurement.

3.1. Image Formation Model of Video SCI

The formation process of a video SCI system is similar to
that of a blurry image. The difference is that the captured
images X = {X; € RT*W}N1 of a video SCI system are
modulated by N; binary masks M = {M,; € RF*W 1N
throughout the exposure time, where both H and W are
image height and width, respectively. For practical hard-
ware implementation, those masks are achieved by display-
ing different 2D patterns on the digital micro-mirror device
(DMD) or a spatial light modulator, e.g., liquid crystal on
silicon. The image sensor then accumulates the modulated
photons across exposure time to a compressed/coded im-
age. The number of masks or different patterns on the DMD
within the exposure time determines the number of coded
frames, i.e. the temporal compression ratio (CR). Due to
mask modulation, the N virtual images can be recovered
from a single compressed image alone by solving an ill-
posed inverse problem.

Mathematically, the imaging process can be described as

follows:
Ny

Y =) X;oMi+Z (1)

i=1

where Y, X; € RE*W are the compressed captured image

and the i*" virtual image within exposure time, respectively,
N7 is the temporal CR, ® denotes element-wise multiplica-
tion, and Z € RE*W is the measurement noise. The indi-
vidual pixel value in the binary mask is generated randomly.
For masks N throughout the exposure time, the probability
of assigning 1 to the same pixel location is fixed and defined
as overlapping ratio.

3.2. 3D Gaussian Splatting

3DGS leverages 3D Gaussian as a more efficient scene rep-
resentation. A set of 3D Gaussians G = {g;}},, param-
eterized by their mean position x; € R3, 3D covariance
3, € R3%3, opacity o; € R, and color ¢; € R3, is intro-
duced to faithfully represent the 3D scene. The distribution
of each Gaussian g; is defined as:

gi(p) = exp (—;(p -x;) 57 (p— Xi)) , (2

To ensure that the 3D covariance 3; remains positive
semi-definite, which is physically meaningful, and to re-
duce optimization difficulty, 3DGS represents covariance
matrix using a rotation quaternion r and a 3D scaling vector
s, which can be transformed into the corresponding scale
matrix S; € R3*3 (diagonal matrix) and rotation matrix
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The input to 3DGS also consists of a series of multi-view
images X = {X; € REXW}IN | of the target 3D scene,
along with their corresponding intrinsic and camera poses.
Additionally, at the beginning of 3DGS training, a sparse
point cloud Q = {Q; € R3}M, of the target 3D scene, typ-
ically obtained through Structure-from-Motion (SfM) soft-
ware COLMAP, is used to initialize the Gaussians g.

To render multi-view images, 3DGS employs a differen-
tiable Gaussian rasterization process. In this process, 3D
Gaussians are projected onto the 2D image plane based on
a given camera pose T; = {R., t.;}, where R, ; € R3*3
is the camera rotation matrix and t.; € R3 is the transla-
tion vector. The projection is described by the following
equation:

> =JR., SRS

(RAS ]

where X/ € R2*2 is the 2D covariance matrix, J; € R2*3
is the Jacobian matrix of the affine approximation of the
projective transformation.

Then, the image pixels are rendered by rasterizing these
sorted 2D Gaussians based on their depths:

C =M e [TZ0 (1 - ay), )

where C represents the pixel in the rendered multi-view im-
ages, and «; denotes the alpha value computed by evalu-
ating the 2D covariance E; multiplied with the learnable
Gaussian opacity o;:

1 ,
a; = o0;exp(—0;), o0;= §AZTEZ-_1A¢, 5)

where A; € R? is the offset between the pixel center and
the projected 2D Gaussian center. Finally, the 3D Gaussians
g are updated by minimizing the photometric loss computed
between rendered images and real captured images.

3.3. Proposed Framework

To initialize the training of Gaussians, we need both camera
poses and sparse point clouds as a coarse estimation of 3D
scenes. Since the SCI measurement contains compressed
frames in the form of a single 2D image, it is unrealistic to
estimate camera poses and point clouds using COLMAP, as
in most of the 3DGS-based methods.

To deal with the initialization problem, in this paper, we
employ the pre-trained SfM models to initialize the Gaus-
sians. Specifically, inspired by Wang et al. [44] and SCIS-
plat [19], we first normalize the real SCI measurement Y
using the sum of modulation masks M.

Y-vYo) M (©)

where Y is the normalized measurement, and %) denotes

element-wise division. Then, degraded frames I = {fl S

RIXWINI can be obtained by interpolating the normal-

ized measurement after modulated by a filtered version of
each mask C; ® B;,

I, = Interp (Y © (M; © B;)), )

1, if (My);p > 1
B' ; - ’ 7 ’ 8
(Bi)six {0, otherwise ®

where B; is a selection matrix that only preserve the value
of C; positioned at (7, k) if its value exceeds 7. For syn-
thetic data = 1, since modulation masks are binary, with
only 0 and 1 values. For real data, we follow the SCIS-
plat [19] to set  as 0.8. These degraded frames contain
significant amount of noise, thus cannot be processed by
COLMAP. However, the recent progress on deep learning-
based MVS methods provide decent guesses from these
noise frames. Specifically, we use VGGSfM [42], one of the
current state-of-the-art deep learning-based 3D scene recon-
struction frameworks, to estimate camera poses T and point
cloud 9, i.e., _
T, Q = fo(I), ©)
After initialization, we conduct a two-stage training
strategy to train our SCIGaussian-D framework. In the first
stage, we bypass the deformation fields and perform the
joint optimization strategy applied by Li et al. [20], where
the canonical 3D Gaussians and camera poses are jointly
optimized. This warm-up stage is done to optimize the cam-
era poses using the static parts (usually backgrounds) while
also provide a good initial value in the next stage of training.
In second stage, we keep the optimized poses locked and
let the model focus on optimizing the deformation field.
The deformation field contains an MLP, which takes the
center positions of the 3D Gaussians x and current time ¢
as input and transforms the canonical Gaussians in the de-
formed space:

(6%, dr, 8s) = MLPgetorm (7(s9(x)), (%)), (10)

where MLP jeform denotes deformation MLP, sg(-) indi-
cates the stop-gradient operation, and 7y represents posi-
tional encoding. Then the deformed Gaussian of current
time ¢ can be obtained by adding deformation to the canon-
ical Gaussian:

G(t) = G(x + dx,r + or,s + Js), (11)

where G(t) denotes deformed Gaussians at time stamp
t. With deformed Gaussians at different gme stamps,
we can render multi-view dynamic images X = {X; €
R XW}§V=11 by differential Gaussian rasterization proce-
dure described in Eq. 4.



Conventional 3DGS-based methods compute loss on
multi-view images, while we only have one SCI image as
input. To train our framework on a single SCI image, we
follow the physical image formation model of SCI as de-
scribed in Eq. 1 to transfer the rendered multi-view im-
ages from differentiable Gaussian rasterization process into
a synthesized SCI measurement:

Y=Y X,oM, (12)

where Y € R7>W represents the synthesized SCI mea-
surement, and X; is the i-th rendered image. Here, we omit
the measurement noise term Z in Eq. 1 to facilitate the re-
covery of the originally captured image. Finally, we com-
pute and back-propagate the photometric loss between the
synthesized SCI measurement and real SCI measurement as
in original 3DGS framework:

Lonoto = (1=A)- L1 (Y, Y)+X-Lp_ssru(Y,Y), (13)

Additionally, we introduce two regularization terms, in-
cluding a scale term £, and an opacity term L,. These two
terms minimize the scale and opacity of the current Gaus-
sians to encourage a lower number of effective Gaussians.
Therefore, the complete loss function £ includes the photo-
metric loss in Eq. 13 and two regularization terms:

L = Lohoto + Ao - Lo(G) + As - Ls(G). (14)

During 3DGS training, Gaussian primitives are progres-
sively refined to capture scene details. The original adap-
tive density control (ADC) mechanism [16] introduces new
Gaussians in regions with high reconstruction error. How-
ever, ADC often increases opacity after cloning or splitting
Gaussians, leading to brightness inconsistencies and unsta-
ble gradients from the photometric loss. This instability
can cause pose drift and reconstruction collapse, particu-
larly under the ambiguous pixel mappings in SCI measure-
ments. To address this, we adopt an MCMC-based strat-
egy [17], which recalculates opacity after densification to
avoid abrupt changes. This results in more stable optimiza-
tion dynamics and mitigates noise artifacts caused by local
optima in the ill-posed SCI imaging process.

4. Experiment
4.1. Datasets

We generate synthetic datasets using the software Blender.
Each scene in synthetic datasets contains dynamic ob-
jects with a static background. These scenes come from
DeblurNeRF [27], HDR-NeRF [14] and D-NeRF [35]
datasets. There are five virtual scenes in the synthetic
datasets, including Clock, Lego, Jump, Punch and Tank.

For these Blender-generated datasets, we use 600 x 400
resolution. The compression ratio of the dataset is 8. In
this paper, we refer to the ablation study conducted by Li
et al. [19] and set the mask overlapping rate to be 0.25.
Furthermore, we also tested our proposed method on static
SCINeRF synthetic datasets, which include 6 scenes Air-
plants, Hotdog, Cozy2room, Tanbata, Factory, Vender de-
rived from LLFF [29], NeRF Synthetic 360 [30], and De-
blurNeRF [27] datasets. For real dataset, we collect the SCI
measurement from a real video SCI setup. The setup con-
sists of an iRAYPLE A5402MU90 camera and a FLDIS-
COVERY F4110 DMD. The compression ratio of the real
datasets is 8, with the resolution of SCI measurement as
1024 x 750.

4.2. Baseline methods and evaluation metrics.

Since our SCIGaussian-D can render high-quality images
from the represented dynamic 3D scene, we compare our
method with prior SOTA SCI image reconstruction meth-
ods, including GAP-TV [51], PnP-FFDNet [52], PnP-
FastDVDNet [54], and EfficientSCI [44]. We also com-
pared our methods with existing NeRF and 3DGS-based
SCI 3D reconstruction methods, including SCINeRF [20]
and SCISplat [19]. For fair comparisons, we fine-tuned Ef-
ficientSCI using our datasets. For evaluation metrics, we
adopt widely-used structural similarity index (SSIM), peak
signal-to-noise ratio (PSNR), and learned perceptual image
patch similarity (LPIPS) [55].

4.3. Implementation details.

We implement our framework using PyTorch [34] on a sin-
gle NVIDIA RTX4090 GPU. The training process, includ-
ing first stage (i.e., warm-up stage) and the second stage,
takes around 20K iterations. For optimization, we ap-
ply individual Adam [18] optimizers for pose optimization,
canonical Gaussian and deformation field optimization. The
pose learning rate decays from 1 x 1073 to 1 x 10~°, and the
learning rate of deformation MLP decays from 1 x 1073 to
1.6 x 10~°. The learning rate of canonical Gaussians are the
same as original 3DGS paper [16]. Adam’s 3 value range
is set to (0.9, 0.999). When initializing the Gaussians, the
number of points are downsampled to 10,000. Both of the
additional regularization terms A, and A are set to be 0.01.

4.4. Results.

The experimental results on the synthetic dataset provides
empirical evidence on the efficacy of our SCIGaussian-D
in estimating and representing high-quality dynamic 3D
scenes from a single SCI measurement, as shown in Figure
3 and Table 1. We notice that compared to static 3D scene
representation algorithms such as SCINeRF and SCISplat,
our method exhibits superior performance by better recov-
ering dynamic part of the scene. When comparing with con-
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Figure 3. Qualitative evaluations of our method against SOTA SCI image restoration methods on synthetic datasets Top to bottom
shows the results for different scenes, including Clock and Tank. The experimental results demonstrate that our method achieves superior
performance on image restoration from a single compressed image (the far-left column). Our method effectively restores the dynamic part
of the scenes while maintaining high rendering quality in static regions of the scenes.

Clock Lego Jump Punch Tank

PSNRT SSIM?T LPIPS||PSNRt SSIM1T LPIPS||PSNR{ SSIM1 LPIPS||PSNR1 SSIM1 LPIPS||PSNR1 SSIM?1 LPIPS|
GAP-TV [51] 18.74 0435 0568 | 17.71 0.518 0.581 | 19.59 0436 0.611 | 20.55 0437 0.490 | 22.62 0.650 0.397
PnP-FFDNet [52] | 26.65 0.887 0.083 | 26.02 0.942 0.120 | 30.38 0.962 0.146 | 28.65 0.885 0.143 | 29.51 0.913 0.085
PnP-FastDVDNet [54]| 26.76 0.884 0.082 | 26.21 0.956 0.111 | 31.72 0.962 0.117 | 30.72 0.916 0.099 | 31.26 0.929 0.073
EfficientSCI [44] 3235 0943 0.036 | 3096 0972 0.047 | 36.43 0.986 0.046 | 32.20 0.942 0.065 | 33.16 0.958 0.051
SCINeRF [20] 31.99 0936 0.051 | 29.56 0.965 0.069 | 33.46 0.956 0.096 | 31.55 0.940 0.083 | 32.69 0.940 0.071
SCISplat [19] 3240 0948 0.023 | 31.11 0978 0.025 | 36.23 0.955 0.023 | 32.25 0.942 0.082 | 3245 0.965 0.045
ours 34.76  0.970 0.014 | 33.73 0.987 0.015 | 37.24 0.991 0.013 | 33.74 0.962 0.024 | 34.66 0.980 0.022

Table 1. Quantitative SCI image reconstruction comparisons on the synthetic datasets The results are computed from the rendered
images from estimated scenes via our proposed method, recovered images from SOTA SCI image restoration methods, and rendered images
from prior SOTA static 3D scene representation methods SCINeRF and SCISplat. The experimental results demonstrate that our proposed
method can render images with higher quality than those from existing methods.

ventional 2D SCI image recovery approaches, our method
performs higher in scenes with rich textures and charac-
ters, where these existing methods fail to retrieve these de-
tails as shown in Figure 3. For static SCINeRF datasets,
our method realizes comparable performance with SCIS-
plat (please see supplementary materials for more details).
The comparative results on both static and dynamic syn-
thetic datasets prove that our method realizes superior per-
formance against prior SCI image recovery methods such as
SCINeRF and SCISplat on dynamic regions of the scenes,
and preserves high reconstruction quality for static regions

of the scenes.

Furthermore, we evaluate the computational efficiency
of various SCI reconstruction algorithms by comparing
their training times (if applicable) and inference speeds. For
SOTA methods that output 2D frames directly from SCI im-
ages, we compare their inference speed with the rendering
speed (in FPS) of our approach, which first reconstructs a
3D scene and then renders 2D images. Our method achieves
less than 2.5 hours for training with 56 FPS on render-
ing speed, which remains real-time rendering capabilities.
More details are available in supplementary materials.



EfficientSCI [44] SCINeRF [20]

SCISplat [19]

Original Scene

Measurement

Figure 4. Qualitative evaluations of our method against SOTA SCI image restoration methods on the real dataset captured by our
system. After capturing the snapshot compressed measurement, we capture separate scene images used for reference since the compressed
ground truth images in real datasets are unavailable. The results demonstrate that our proposed method surpasses existing image restoration
methods on real datasets by effectively retrieving dynamic regions of the scene and avoiding introducing noise defects which appear in

existing methods.

Synthetic Dataset
Model PSNR1 SSIM1 LPIPS|

Ours w/o PO | 33.57 0.951 0.033
Ours w/o MCMC| 32.16 0.950 0.035
Ours w/o L,, L4 | 32.85 0.940 0.049

Ours (full) 34.83 0.978 0.017

Table 2. Quantitative ablation studies results on the synthetic
dataset. The results demonstrate that the effectiveness of pose
optimization (PO), MCMC strategy and additional loss regular-
ization terms in our framework.

To evaluate the performance of SCIGaussian-D on real
datasets, we also conduct qualitative comparisons against
SOTA methods. Figure 4 illustrates the experimental re-
sults, depicting the outcomes for real datasets. Notably, ex-
isting SOTA techniques either fail to model the dynamic
parts of the scenes, or introduce additional noisy artifacts
in returned images. In contrast, our proposed method sur-
passes these methods on real datasets by effectively recov-
ering scenes with fine details, thereby achieving superior
performance.

4.5. Ablation Study

To prove the effectiveness of the components of our
SCIGaussian-D, including pose optimization (PO), MCMC
strategy, and additional loss regularization terms £, and L
presented in Eq. 14, we conducted an ablation study of our
model on the synthetic datasets, as is shown in Table 2. It
has been verified that PO, MCMC and loss regularization
terms are effective and all of them contribute to improving
the quality of reconstructed dynamic 3D scenes.

5. Conclusion

In this work, we proposed SCIGaussian-D, a novel frame-
work for dynamic 3D scene reconstruction from a single
snapshot compressive image. By decoupling the scene
into canonical 3D Gaussians and an implicit deformation
field, our method effectively models both scene structure
and motion. The physical image formation process of
SCI is integrated into the training objective, and a two-
stage optimization strategy is adopted—initially optimizing
both Gaussians and camera poses, followed by deforma-
tion field learning with fixed poses—to stabilize training.
Extensive experiments on synthetic and real-world datasets
demonstrate that SCIGaussian-D achieves superior recon-
struction quality compared to existing methods, enabling
high-fidelity recovery of dynamic 3D scenes from a sin-
gle SCI image. This opens the door for practical deploy-
ment of SCI systems in real-world scenarios such as au-
tonomous driving, VR/AR, and high-speed imaging. Future
work includes extending our framework to capture complex
dynamic phenomena, including physical and chemical re-
actions.
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