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Abstract

The ability to predict an NLP model’s accu-001
racy on unseen, potentially out-of-distribution002
data is a prerequisite for trustworthiness. We003
present a novel model that establishes upper004
and lower bounds on the accuracy, without re-005
quiring gold labels for the unseen data. We006
achieve this by training a discriminator which007
predicts whether the output of a given sequence-008
to-sequence model is correct or not. We show009
across a variety of tagging, parsing, and se-010
mantic parsing tasks that the gold accuracy is011
reliably between the predicted upper and lower012
bounds, and that these bounds are remarkably013
close together.014

1 Introduction015

In order for a user to trust that an NLP system per-016

forms its task with sufficient reliability, the user017

must be able to judge the system’s accuracy on018

real-world tasks of interest. This ability is growing019

in importance with the rapidly increasing promi-020

nence of NLP technology in users’ daily lives and021

the growing capability of this technology to solve022

high-level tasks, e.g. by orchestrating the use of023

external tools (Yao et al., 2023; Shinn et al., 2023).024

At the same time, even the best available models025

still struggle on out-of-distribution (OOD) test sets026

(Lake and Baroni, 2018; Li et al., 2023) and com-027

plex tasks on unseen domains (Zhou et al., 2024;028

Jimenez et al., 2024).029

In realistic settings, the accuracy of an NLP030

model M needs to be estimated on unlabeled test031

data; it is plausible that the estimator has access032

to the user’s inputs, but not to gold annotations033

that would capture the behavior the user intended.034

There is some previous work on estimating the ac-035

curacy of M on unlabeled test data, primarily for036

text or image classification tasks and based on M ’s037

confidence (Garg et al., 2022; Guillory et al., 2021).038

However, existing accuracy estimation models pro-039

vide only point estimates for the accuracy of M ,040

Sentences

a) James rolled Paula

b) A poet baked the cake

c) Noah gave Elizabeth Lina 

Predictions Confidences

roll(agent=James, theme=Paula) 0.99

bake(agent=poet, theme=*cake) 0.99

give(agent=Noah, recipient=Elizabeth Lina ) 0.98

Previous
methods

estimation=100%

Discriminators

Upperbound = 100%
Lowerbound = 67%

Unlabeled test set Gold Accuracy = 67%

Discriminator1 Discriminator2

a) ✔ ✔

b) ✔ ✔

c) ✔ ✘

✔

✔

✘

Parser

Figure 1: Comparison of our discriminators and
confidence-based methods. Our method provides upper
and lower bounds which can capture gold accuracy.

which hides their own uncertainty; a user cannot 041

judge whether the accuracy estimator is confident 042

about its estimates or whether they should be cau- 043

tious about trusting them. Ultimately, there is an 044

infinite hierarchy of accuracies: the true accuracy 045

of M ; the accuracy of the accuracy estimator; esti- 046

mates of that accuracy; and so on. 047

In this paper, we take the first step up this hierar- 048

chy by offering a method for capturing the accuracy 049

predictor’s uncertainty about the estimation of M ’s 050

accuracy. Instead of directly calculating a point es- 051

timate for M ’s accuracy, our method predicts upper 052

and lower bounds for this accuracy, from unlabeled 053

test data. We focus on estimating the accuracy of 054

sequence-to-sequence models, applied to parsing, 055

semantic parsing, and tagging tasks; these tasks 056

have the advantage over other sequence generation 057

tasks that there is a unique correct answer, which 058

allows us to talk about accuracies. 059

We first train a discriminator to predict whether 060

M ’s output on a given input is correct or not; we 061

show that this can be done with remarkable ac- 062

curacy across a range of tasks. We then run an 063

ensemble of discriminators on M ’s predictions on 064

the unlabeled test data and obtain upper and lower 065

bounds through a voting mechanism (Figure 1). We 066
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show across a variety of in-distribution and OOD067

tasks that M ’s true accuracy is reliably between068

the upper and lower bounds, and that these bounds069

are quite tight. Finally, if forced to predict point070

estimates of the true accuracy, our model provides071

more precise estimates than earlier work on most072

datasets, by taking the mean of the upper and lower073

bounds.074

2 Related work075

Calibration. A neural model is called well-076

calibrated if its predicted probability (e.g. con-077

fidence) for its decision (e.g. label or sequence)078

aligns to the probability of the prediction correct-079

ness. Much prior work has attempted to improve080

the calibration of systems, often through either081

modifying training objectives or posthoc methods:082

Kong et al. (2020) add a regularization term into083

training objective to address in-distribution calibra-084

tion and out-of-distribution detection for text clas-085

sification; Desai and Durrett (2020) exploit temper-086

ature scaling (Guo et al., 2017) to normalize output087

logits with a scalar temperature parameter; Dong088

et al. (2018); Kamath et al. (2020) train an addi-089

tional regressor to estimate the model confidence090

with designed features for semantic parsing; Jiang091

et al. (2021b) investigate all these methods and find092

that posthoc-based methods are universally helpful093

for question answering tasks.094

Most calibration works above focus on in-095

distribution (ID) tasks and assume a development096

set as given, which allows them to estimate param-097

eters (e.g. temperature) to yield the optimal confi-098

dence. However, according to Kamath et al. (2020),099

the predicted model confidence is an unreliable es-100

timate of the correctness on OOD generalization101

tasks. Compared to such calibration works, our102

method applies just as easily to OOD as to ID tasks.103

Further, development sets from OOD distributions104

are usually difficult to access, which introduces ad-105

ditional challenges of applying calibration-based106

methods. Kamath et al. (2020) also consider dis-107

tribution shift, but their calibrator requires a small108

amount of data from a known OOD distribution.109

Predicting test accuracy from unlabeled data.110

Previous works have investigated predicting the111

model performance on an unannotated OOD test112

set for other tasks: Guillory et al. (2021) exploit the113

difference of confidences between training distribu-114

tion and the OOD distribution as a useful feature;115

Jiang et al. (2021a) show that the test error of deep116

networks can be estimated by the disagreement of 117

two models trained with the same architecture on 118

the same training set but with two different runs; 119

Yu et al. (2022) exploits the euclidean distance 120

between model parameters trained on differently 121

distributed data to predict generalization errors; 122

Garg et al. (2022) estimate a threshold of model 123

confidence from training data and predict the cor- 124

rectness of OOD data based on it; Fu et al. (2023) 125

train an additional model to predict the accuracy 126

of large language models on question answering 127

tasks, which takes as input confidence scores and 128

outputs the overall accuracy of the test set. 129

Works introduced above estimate the accuracy 130

as a scalar value between 0 and 1. In contrast, 131

our method explicitly judges the uncertainty of 132

the estimated accuracy, providing upper and lower 133

bounds for the estimated accuracy. Besides, previ- 134

ous works only consider image classification and 135

natural language inference tasks. Our work shows 136

that for sequence generation tasks like semantic 137

parsing, the predicted sequence can serve as a good- 138

enough feature to determine the prediction correct- 139

ness on OOD data. 140

Quality estimation in NLP tasks. Automatic 141

accuracy prediction has also been investigated for 142

NLP tasks: Van Asch and Daelemans (2010) ex- 143

ploit similarity metrics between the training and 144

test set to estimate POS tagger performances; Chat- 145

terjee et al. (2018) train regressors to predict BLEU 146

(Papineni et al., 2002) scores of a machine transla- 147

tion system with given features; Opitz and Frank 148

(2019) train regressors to predict F1 scores for sub- 149

tasks of AMR (Banarescu et al., 2013). Compared 150

to these works, our method does not require manu- 151

ally designed features and thus is easy to be adapted 152

to any sequence generation tasks. Varshney and 153

Baral (2023) also train a correctness discriminator 154

to improve the coverage of a selective prediction 155

system for question answering. In contrast to this 156

work, we use discriminators to predict accuracies, 157

and more specifically upper and lower bounds. 158

3 Correctness discriminator 159

The core of our approach is to construct and train a 160

correctness discriminator model, which judges the 161

correctness of a model prediction on unseen data. 162

In this section, we first introduce how we design 163

the discriminator model and collect training data 164

(Section 3.1), and then describe how to predict the 165

upper bound and lower bounds accuracy (Section 166
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IN: A butterfly grew Emma . | 

OUT: grow ( agent = butterfly , recipient = Emma )

IN: A butterfly grew Emma . | 

OUT: grow ( agent = butterfly , theme = Emma )

Incorrect

Correct

COGS

IN: What Swedish actor founded M1 | 

OUT: SELECT DISTINCT ?x0 WHERE { 
?x0 a film.actor .
?x0 organizations_founded M1 

}

IN: What Swedish actor founded M1 | 

OUT: SELECT DISTINCT ?x0 WHERE { 
?x0 a film.actor .
?x0 organizations_founded M1 .
?x0 people.person.nationality m_0d0vqn

}

CFQ

Incorrect

Correct

Figure 2: Examples of COGS and CFQ training data
for the discriminator. IN refers to the input sentence
and OUT refers to the predicted output sequence (e.g.
logical form for COGS and SPARQL query for CFQ).

3.2). To avoid confusion, we call the model for167

the original parsing or tagging tasks a parser and168

the model for predicting the parser performance a169

discriminator. Note that here we only assume that170

the parser solves a sequence-to-sequence task, but171

the task output can be any sequence – not just a172

linearized parse.173

3.1 Discriminator design174

The discriminator is designed as a binary classifier175

whose task is to determine whether a given pre-176

dicted sequence is the correct output for a given177

natural language sentence. Formally, given a nat-178

ural language sentence X ∈ X and a predicted179

symbolic sequence (e.g. meaning representation180

for semantic parsing tasks) Y ∈ Y , the discrimi-181

nator F : X × Y → {Correct, Incorrect} maps182

them to a Correct or Incorrect label to represent its183

correctness.184

In this paper, we explore different model ar-185

chitectures as the discriminators: encoder-only,186

encoder-decoder, and decoder-only. All three mod-187

els take as input the concatenation of the input188

natural language sentence with the predicted se-189

quence. For each architecture, we finetune an exist-190

ing pretrained language model as the discriminator.191

For encoder-only (e.g. Roberta) discriminators, the192

input is first encoded into hidden representations193

and then fed into an additional multi-layer percep-194

tron classifier, which determines the Correct or195

Incorrect label. For encoder-decoder (e.g. T5) and 196

decoder-only (e.g. LLaMA) discriminators, the de- 197

coder directly generates the label. 198

Now we discuss how to collect training data for 199

our discriminator. In principle, the training data 200

should contain both positive and negative exam- 201

ples. For positive examples, we can always exploit 202

the training set of the parser. However, it is non- 203

trivial to obtain negative examples. Such examples 204

can be synthesized by applying noise functions 205

(e.g. replacement or deletion) to positive examples 206

(Kim et al., 2021), but this requires prior knowledge 207

about errors a parser tends to make. Another op- 208

tion is to collect errors a trained parser made on its 209

training set, which is still challenging since parsers 210

yield near-perfect accuracies on their training sets. 211

We therefore generate negative examples from 212

intermediate checkpoints of our parser during its 213

training. Specifically, we run the parser checkpoint 214

on its training data. We take incorrect predictions 215

from the decoder beam as the negative training data 216

for the discriminator. Figure 2 gives examples of 217

our training data. 218

Given the described discriminator, we can es- 219

timate the accuracy of our parser on any unseen 220

test sets. Assuming a parser makes predictions on 221

|Dt| instances and the discriminator labels |Dc| of 222

predictions as Correct, the predicted accuracy can 223

be calculated as Eq 1. 224

Accpred =
|Dc|
|Dt|

(1) 225

3.2 Bounds prediction 226

We now introduce how to predict upper and lower 227

bounds for accuracy with the discriminator de- 228

scribed above. This is implemented by two vot- 229

ing mechanisms, Ensemble_correct and Ensem- 230

ble_incorrect. These mechanisms aggregate out- 231

puts from multiple trained discriminators. 232

• Ensemble_correct predicts Correct if at least 233

one discriminator predicts Correct; if all dis- 234

criminators predict Incorrect, it also predicts 235

Incorrect. This yields the most optimistic es- 236

timation, assuming correctness if at least one 237

discriminator agrees. 238

• Conversely, Ensemble_incorrect predicts In- 239

correct if at least one discriminator predicts 240

Incorrect; otherwise Correct. This mecha- 241

nism is more cautious, predicting an instance 242

as incorrect if any discriminator disagrees. 243
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instance 1

Ensemble_Correct

Lowerbound =  50% Upperbound = 100%

Discriminator 1

Discriminator 2

Discriminator 3

instance 2

Discriminator 1

Discriminator 2

Discriminator 3

Ensemble_Incorrect Ensemble_Correct Ensemble_Incorrect

Figure 3: Example of calculating upper and lower
bounds from discriminators. Green blocks mean the
instance is predicted as Correct by the discriminator
and Red blocks refer to Incorrect. Ensemble_incorrect
predicts Incorrect for instance 1 and Correct for in-
stance 2. Hence, the lower bound is 1/2 = 50%.

We calculate the upper bound of the accuracy as244

Accpred in Eq. 1, with |Dc| determined by the out-245

put of the Ensemble_correct mechanism instead of246

a single discriminator. Similarly, the lower bound247

is calculated with |Dc| determined by the output of248

Ensemble_incorrect. Figure 3 illustrates how the249

ensembles compute bounds.250

Ensembles of neural networks have been shown251

effective for uncertainty quantification (Lakshmi-252

narayanan et al., 2017; Lukovnikov et al., 2021) by253

averaging confidence scores of individual models.254

Here we use voting mechanisms to calculate the255

upper and lower accuracy bounds.256

4 Experiments257

We introduce our datasets, model setup, evaluation258

metrics and experimental results in this section.259

4.1 Datasets260

We experiment with three tasks: semantic parsing,261

part-of-speech tagging and constituency parsing.262

For semantic parsing, we consider two OOD gen-263

eralization scenarios: compositional generalization264

and low-resource domain adaptation. We use the265

COGS (Kim and Linzen, 2020) and CFQ (Keysers266

et al., 2020) datasets to evaluate compositional gen-267

eralization. For CFQ, we use its MCD1 and MCD2268

splits. For low-resource domain adaptation, we use269

the TOPv2 (Chen et al., 2020) dataset. We also270

evaluate our method on in-distribution task with271

the AMR 2.0 dataset (Banarescu et al., 2013).272

For part-of-speech (POS) tagging and con-273

stituency parsing tasks, we use the Penn Treebank274

3 (PTB) dataset (Marcus et al., 1993). We train275

our parser on the WSJ training set and evaluate its276

in-domain performance on the WSJ test set and277

cross-domain performance on the Brown corpus.278

We predict the generalization performance for both 279

the WSJ test set (i.e. in-distribution test set) and the 280

Brown corpus (i.e. OOD test set), which we call 281

Syn-WSJ, Syn-Brown (for parsing) and POS-WSJ, 282

POS-Brown (for tagging) in this paper. In addition, 283

we experiment with POS-COGS, a POS tagging 284

dataset generated based on COGS (Yao and Koller, 285

2022), to evaluate compositional generalization in 286

the POS tagging task. Details of our datasets are in 287

Appendix A. 288

4.2 Setup 289

Parser. We finetune T5-base (Raffel et al., 2020) 290

as the parser for all tasks described above. To 291

do this, we convert all of our tasks into sequence 292

generation tasks, where the output sequence can 293

be a semantic meaning representation, POS tag 294

sequence or linearized parse tree. All our parsers 295

achieve the same or close performance as those 296

reported in previous works using T5. 297

Discriminator. We experiment with three ar- 298

chitectures as discriminators: (1) An encoder-only 299

architecture consisting of a Roberta-base encoder 300

(Liu et al., 2019) and an MLP classifier (2) An 301

encoder-decoder architecture using T5-base (Raf- 302

fel et al., 2020) and (3) A decoder-only architecture 303

using Vicuna-7B (Zheng et al., 2023). We report 304

results of the T5 and RoBERTa discriminators in 305

Section 4.4, since the T5 discriminators share the 306

same architecture as our parsers, and the RoBERTa 307

discriminators have the fewest parameters. Results 308

for the Vicuna discriminators in Appendix C. All 309

three discriminators perform well across corpora. 310

To collect negative training examples, we val- 311

idate the parser checkpoint every K steps on its 312

training set, where K is a hyperparameter. Since 313

our parser is an encoder-decoder model, we ran- 314

domly sample incorrect predictions from the de- 315

coded beam predictions. For each task we train an 316

ensemble of 5 discriminators with different random 317

seeds. See Appendix B for more training details. 318

Comparable baseline. We also compare our 319

methods with several previous methods. 320

MaxProb. Maxprob is a strong baseline shown 321

in Kamath et al. (2020). Assuming we are given 322

a threshold γ on the maximal prediction probabil- 323

ity (e.g. confidence) of a parser, we can predict 324

an instance as Correct if the parser confidence on 325

this instance is higher than γ, otherwise Incorrect. 326

Since we have no prior knowledge about the OOD 327

distribution, we set γ = 0.5 in our experiments. 328

Average Confidence (AC). We take the average 329
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T5 Roberta

Single Upper Lower Single Upper Lower

CR IR CR IR CR IR CR IR CR IR CR IR

OOD

MCD1 97.0 83.1 99.2 69.8 92.9 94.5 97.0 90.0 98.5 80.8 92.5 97.3
MCD2 80.6 83.7 83.4 77.9 71.7 92.2 78.3 85.0 84.7 79.4 70.6 90.6
COGS 98.5 96.6 99.8 89.4 98.5 96.9 98.9 87.7 99.8 86.6 97.8 90.8
TOP 87.4 57.9 92.2 44.7 82.5 78.9 85.4 65.8 91.3 42.1 77.7 78.9
POS-Brown 81.3 54.7 94.0 26.0 52.2 84.7 62.1 67.4 95.2 23.3 44.4 88.0
POS-COGS 98.8 86.3 99.9 84.4 98.7 89.2 99.9 90.9 100 86.7 99.5 94.9
Syn-Brown 33.8 90.0 69.3 73.9 29.7 96.0 17.5 74.3 70.6 38.4 4.2 96.3

ID
AMR 2.0 37.0 98.3 70.9 84.1 29.1 99.1 38.9 96.1 59.1 80.2 37.3 97.4
POS-WSJ 80.2 53.6 93.0 26.5 52.4 84.8 64.5 65.2 96.0 21.7 49.6 87.6
Syn-WSJ 44.5 89.2 66.2 73.1 20.5 97.0 27.1 66.0 74.3 34.6 6.5 94.7

Table 1: Results of our discriminators on different datasets. For each dataset, we report Correct-Recall (CR) and
Incorrect-Recall (IR). Single refers to the results with predictions from a single discriminator. Upper refers to the
results with discriminator predictions using ensemble_incorrect; Lower to ensemble_correct.

confidence across the test set as the predicted accu-330

racy. Different from previous works where the con-331

fidence is defined as the maximal softmax probabil-332

ity of the classifier, here we define the confidence333

as the probability of the most probable sequence334

in the beam, which is calculated by the product of335

softmax probabilities of each word in the sequence.336

Difference Of Confidence (DOC). We also es-337

timate the accuracy using DOC (Guillory et al.,338

2021). We start with a development set that fol-339

lows the same distribution as the training data. We340

then subtract the difference in average confidence341

between the development set and the test set from342

the gold accuracy on the development set. The343

result is the estimated accuracy on the test set.344

Average Thresholded Confidence (ATC) is a345

strong method recently proposed by Garg et al.346

(2022), which has been shown to be more effective347

than previous methods. Applying ATC consists348

of two steps. First, we estimate a threshold γ on349

parser confidence scores to make the number of350

errors made by the parser match the number of in-351

stances where the parser confidence is lower than352

γ; then we can obtain the predicted accuracy on353

the test set by calculating the fraction of unlabeled354

instances that obtain a score below γ.355

Maxprob (Oracle). To compare with our pre-356

dicted bounds, we calculate bounds based on Max-357

prob, where estimate γ such that the Correct-Recall358

calculated based on γ is equal to the one from the359

predicted upper bound calculated by our discrimi-360

nators. This measures the reliability of the parser’s361

confidence in recognizing correct instances com-362

pared to discriminators. Similarly, we calculate a363

lower bound by matching Incorrect-Recall scores.364

Note that this method requires annotated test sets, 365

which are impractical for real-world applications. 366

4.3 Evaluation metrics 367

For all parsing tasks, we evaluate the exact match 368

accuracy of our parser. 369

For discriminators, we need a metric to quantify 370

the quality of the predicted upper and lower bounds. 371

Intuitively, such a metric should reflect whether the 372

gold accuracy is within the bounds (i.e. reliability) 373

and whether the bounds are tight (i.e. tightness). 374

Previous work predicts point estimations for 375

OOD test sets and evaluates their method with 376

mean absolute estimation error (MAE) by calculat- 377

ing average absolute difference between the true 378

accuracy on the target data and the estimated accu- 379

racy on the same unlabeled examples. Their results 380

are averaged over multiple test sets for each clas- 381

sifier (e.g. parser in our tasks). In our setup, most 382

tasks only have one OOD or ID test set, and thus 383

we calculate the absolute estimation error (AE) to 384

compare with previous works. Equation 2 defines 385

the metric, where Accgold denotes the gold accu- 386

racy and Accpred denotes the predicted accuracy. 387

|Accgold −Accpred| (2) 388

We calculate Accpred with two methods: (1) cal- 389

culating the mean of estimated accuracies by all 390

discriminators and (2) calculating the mean of es- 391

timated upper and lower bounds. Despite their 392

simplicity, both methods perform well across tasks. 393

In addition, we report the Recall of our discrim- 394

inators. Specifically, we report the score for the 395

Correct and Incorrect labels individually. We de- 396

fine True Correct (TC) as instances with an an- 397
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OOD ID

MCD1 MCD2 COGS TOP AMR 2.0

Acc AE ↓ Acc AE ↓ Acc AE ↓ Acc AE ↓ Acc AE ↓

Maxprob 84.5 26.7 78.0 55.1 97.1 5.7 92.2 19.2 40.6 26.3
AC 82.5 24.7 74.0 51.1 96.6 5.2 85.9 12.9 38.0 23.7
DOC 82.9 25.1 74.3 51.4 96.6 5.2 89.3 16.3 32.8 18.5
ATC 73.0 15.2 56.9 34.0 100.0 8.6 66.0 7.0 15.0 0.7

Maxprob (Oracle)

Upper. 86.4 - 51.3 - 96.7 - 85.8 - 17.9 -
Lower. 43.7 - 17.2 - 44.3 - 65.2 - 5.8 -
Mean 65.1 7.3 34.3 11.4 70.5 20.9 75.5 2.5 11.8 2.5

Ours (T5)

Meandiscrim 63.0 5.2 28.8 5.9 91.4 0.0 75.3 2.3 8.6 5.7
Upper. 70.0 - 36.1 - 92.1 - 82.3 - 18.3 -
Lower. 56.0 - 22.4 - 90.2 - 66.0 - 3.4 -
Meanbounds 63.0 5.2 29.3 6.4 91.2 0.3 74.2 1.2 10.9 3.4

Ours (Roberta)

Meandiscrim 59.5 1.7 28.9 6.0 91.5 0.1 73.0 0.0 14.1 0.2
Upper. 65.0 - 35.3 - 92.3 - 82.3 - 25.5 -
Lower. 54.6 - 23.4 - 90.2 - 62.4 - 7.6 -
Meanbounds 59.8 2.0 29.3 6.4 91.3 0.2 72.3 0.7 16.6 2.3

Gold 57.8 0.0 22.9 0.0 91.4 0.0 73.0 0.0 14.3 0.0

Table 2: Predicted test-set accuracy on semantic parsing tasks. Upper. and Lower. in the leftmost column refer to
predicted upper bound and lower bound. Meandiscrim refers to a point estimate obtained as the mean of estimated
accuracies by all discriminators. Meanbounds refers to the mean of estimated upper and lower bounds as the point
estimate. Gold refers to the accuracy evaluated with gold annotations. Green numbers refer to valid bounds that
capture the gold accuracy, and Red numbers refer to invalid bounds.

notation being Correct and the prediction being398

Correct, False Correct (FC) as instances with an399

annotation being incorrect and the prediction being400

correct. Similarly, we can define True Incorrect401

(TI) and False Incorrect (FI). The Correct-Recall402

is calculated by Equation 3; the Incorrect-Recall is403

analogous.404

CR =
Count(TC)

Count(TC) + Count(FI)
(3)405

These recall scores indicate how many correct406

or incorrect instances can be discriminated, but407

are not studied by previous works. We propose408

these metrics as a side contribution, which can be409

beneficial for downstream uses of the discriminator.410

4.4 Results411

Correctness of bounds prediction. We first re-412

port recall scores of our discriminators in Table 1.413

For both T5 and RoBERTa discriminators, we can414

observe that the upper bound achieves the highest415

Correct-Recall score, and the lower bound achieves416

the highest Incorrect-Recall score. This is because417

these bounds are based on voting mechanisms418

specifically designed to find correct or incorrect 419

predictions. On many of our datasets, these recall 420

scores approach 100%, which indicates the strong 421

ability of our method to discriminate correctness. 422

Accuracy of bounds prediction. We then com- 423

pare the predicted accuracy of our bounds in Table 424

2 (e.g. semantic parsing), Table 3 (e.g. tagging) and 425

Table 4 (e.g. parsing). We can observe that our 426

predicted upper and lower bounds accurately cap- 427

ture the gold accuracy (i.e. high reliability). This 428

pattern holds for 9 of 10 datasets with T5 discrim- 429

inators, and for 8 of 10 datasets with RoBERTa 430

discriminators. Even for POS-COGS and MCD2, 431

where this conclusion is not true, the gold accu- 432

racy only violates the bounds predicted by a small 433

amount (i.e. 0.4% on POS-COGS and 0.5% on 434

MCD2). Meanwhile, the predicted upper and lower 435

bounds are usually close (i.e. high tightness). Com- 436

paring our predicted bounds with Maxprob (Ora- 437

cle), our bounds are more tight on OOD general- 438

ization tasks (e.g. MCD splits and COGS). Note 439

that Maxprob (Oracle) can access gold annotations 440

to find a proper bound, which is implausible in 441

practice. Nonetheless, our method still provides 442
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OOD ID

POS-Brown POS-COGS POS-WSJ

Acc AE Acc AE Acc AE

Maxprob 87.4 26.4 99.8 14.1 84.7 19.4
AC 80.5 19.5 100.0 14.3 77.4 12.1
DOC 88.0 27.0 98.8 13.1 85.0 19.7
ATC 68.0 7.0 100.0 14.3 61.6 3.7

Maxprob (Oracle)

Upper. 83.6 - 99.6 - 82.4 -
Lower. 44.5 - 83.3 - 47.9 -
Mean 64.0 3.0 91.4 5.7 65.2 0.1

Ours (T5)

Meandiscrim 64.1 3.1 87.1 1.4 65.6 0.3
Upper. 86.2 - 87.9 - 86.2 -
Lower. 37.8 - 86.2 - 39.5 -
Meanbounds 62.0 1.0 87.1 1.4 62.9 2.4

Ours (Roberta)

Meandiscrim 62.6 1.6 86.8 1.1 65.8 0.5
Upper. 88.0 - 87.6 - 89.9 -
Lower. 31.8 - 86.1 - 36.7 -
Meanbounds 59.9 1.1 86.8 1.1 63.3 2.0

Gold 61.0 0.0 85.7 0.0 65.3 0.0

Table 3: Predicted accuracy on POS tagging tasks.

better bounds than this oracle method, indicating443

the effectiveness of our method on OOD tasks.444

Obtaining point estimates. We also com-445

pare our method with other point estimation meth-446

ods with two heuristics (e.g. Meandiscrim and447

Meanbounds rows in Ours). Although our methods448

are not specifically designed for point estimation,449

these estimates substantially outperform previous450

methods and achieve very low AE scores across all451

tasks. Our method is especially useful for OOD452

test sets, where confidence-based methods yield a453

much larger AE.454

5 Discussion455

Low performance on constituency parsing. Our456

method predicts loose bounds on PTB parsing tasks457

and sometimes yields high AE scores. We conjec-458

ture that this is because the PTB training set con-459

tains many long output sequences (e.g. linearized460

parse trees), whose lengths are much larger than461

the maximal encoding length (e.g. 512) of our lan-462

guage model discriminators. Encoding sequences463

longer than observed during pretraining has been464

shown challenging for transformer-based language465

models (Dai et al., 2019), which leads to an addi-466

tional challenge for our discriminators. Nonethe-467

less, the gold accuracy is still robustly between the468

predicted bounds.469

OOD ID

Syn-Brown Syn-WSJ

Acc AE Acc AE

Maxprob 48.3 14.5 50.8 13.2
AC 50.8 17.0 52.4 14.8
DOC 48.5 14.7 50.2 12.6
ATC 34.7 0.9 34.0 3.6

Maxprob (Oracle)

Upper. 32.9 - 33.4 -
Lower. 17.7 - 16.5 -
Mean 25.3 8.5 24.9 12.7

Ours (T5)

Meandiscrim 36.3 2.5 43.8 6.2
Upper. 57.5 - 64.2 -
Lower. 17.9 - 24.6 -
Meanbounds 37.7 3.9 44.4 6.8

Ours (Roberta)

Meandiscrim 40.2 6.4 34.8 2.8
Upper. 64.6 - 68.8 -
Lower. 3.8 - 5.8 -
Meanbounds 34.2 0.4 37.3 0.3

Gold 33.8 0.0 37.6 0.0

Table 4: Predicted accuracy on parsing tasks.

The robustness of discriminators. We have 470

seen that our predicted upper and lower bounds can 471

capture the gold accuracy. However, this may not 472

be enough to show the robustness of our method, 473

since we only evaluated it on one overall test set 474

for each parser, while previous works (Garg et al., 475

2022) collect multiple test sets for each classifier. 476

To investigate the robustness of our method, we 477

create multiple test sets by randomly sampling sub- 478

sets from the original test set and plot the accuracy 479

of T5 discriminators on OOD test sets in Figure 480

4. See Appendix D for full results of both T5 and 481

RoBERTa discriminators. 482

According to the results, we can observe that 483

our predicted bounds robustly capture the gold ac- 484

curacy with regard to different sizes of randomly 485

sampled test sets. On COGS, POS-COGS and TOP, 486

a small test set gives a large confidence interval. We 487

consider this is because their test sets contain some 488

extremely difficult examples for the parser, which 489

could result in a challenging subset and yield a low 490

accuracy. Despite this, our discriminators capture 491

the difficulty of such challenging subsets and shares 492

similar confidence intervals as the gold accuracy. 493

Training models to predict another model’s 494

accuracy. The main idea of our method is to train 495

one model (i.e. discriminator) to predict a base 496

model’s accuracy (i.e. parser). Previous work esti- 497
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(a) MCD1 (b) MCD2 (c) COGS

(d) TOP (e) POS-COGS (f) POS-Brown

Figure 4: Predicted accuracy w.r.t. the number of test-set instances. For each subset we randomly sample 50 times
and show its confidence interval with 95% confidence.

mates model accuracy using the parser’s confidence498

scores, which can be misleading in OOD tasks due499

to overconfidence, as shown in Section 4.4. On500

the other hand, Kim et al. (2021) find that despite501

the parser’s poor performance on OOD data, cate-502

gorizing the parsing task into a classification task503

enables their classifier to generalize to OOD data504

to some extents. Hence, we directly train a clas-505

sifier (i.e. discriminator) to assess correctness of506

the prediction. Training discriminators to evaluate507

another model’s prediction has been studied in vari-508

ous fields, including adversarial learning (Goodfel-509

low et al., 2014), error detection (Chen et al., 2023)510

and reranking (Yin and Neubig, 2019), where dis-511

criminators are used to improve the base model’s512

accuracy. Our work differs in using discriminators513

to predict bounds of the base model’s accuracy.514

Despite the impressive performance of our dis-515

criminators, training them relies on incorrect parser516

outputs (i.e. errors) on the parser’s training set. This517

raises concerns about the generalization of discrim-518

inators to errors made in OOD data by the parser.519

Our results empirically show that discriminators520

can generalize to such errors, but further investiga-521

tion is needed to understand the specific scenarios522

where this method fails and the underlying reasons.523

Since the discriminators’ performance still lags524

behind on particular tasks, it is worth exploring525

discriminators’ confidence scores to improve the526

estimated accuracy. We leave this for future study.527

6 Conclusion 528

We propose a method to predict upper and lower 529

bounds for the accuracy of a model on unlabeled 530

and possibly OOD data. To do this, we first train 531

multiple correctness discriminators by finetuning 532

pretrained language models, and then ensemble 533

discriminator predictions through a special voting 534

mechanism. Our experiments show that our pre- 535

dicted bounds reliably capture gold accuracy across 536

a variety of in-distribution and out-of-distribution 537

tasks including semantic parsing, tagging and con- 538

stituency parsing tasks, and the upper and lower 539

bounds are usually tight. Although our method 540

is not specifically designed for point estimation, 541

simple heuristics (e.g. using the mean of bounds 542

as estimated accuracy) based on our method can 543

substantially outperform previous methods, which 544

indicates the effectiveness of our method. 545

For the future, we will explore the use of our 546

discriminators to improve model performance on 547

tasks evaluated in this paper. For example, given 548

unlabeled OOD sentences and a parser, our lower 549

bound can be used to detect instances with a high 550

Correct-Precision, as training data to improve the 551

parser. It would be interesting to expand our predic- 552

tion of hard upper and lower bounds to a Bayesian 553

model that predicts a probability distribution over 554

accuracies. Finally, it would be useful to extend 555

our method to predicting accuracy in terms of other 556

metrics (e.g. parsing f-score or SMATCH). 557
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Limitations558

In order to train the discriminators, we extract neg-559

ative training instances from the beam of a partially560

finetuned T5 model. Our method is therefore not561

applicable in situations where we cannot easily ac-562

cess the beam, e.g. when trying to estimate the563

accuracy of a closed language model.564

Training the discriminators incurs a computa-565

tional overhead, compared to training only the566

parser. In the experiments reported above, with567

five discriminators per ensemble, the training time568

is increased roughly by a factor of ten. However,569

once an ensemble has been trained, it can be ap-570

plied across many unlabeled test sets for the same571

task.572

Finally, the discriminator ensembles in our ap-573

proach currently vote only at the level of entire574

test instances, which means that we can only use575

instance-level evaluation measures such as exact576

match. As we discussed in the conclusion, ex-577

tending our approach to other evaluation measures578

seems like a very useful topic for future research.579
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A Dataset details 835

We introduce details of our used datasets here. 836

Statistics of datasets are reported in Table 5. The 837

license of datasets are reported in Table 6. 838

COGS (Kim and Linzen, 2020) is a synthetic 839

English semantic parsing task. The task in- 840

put is a sentence and the output is a logical 841

form (e.g. The baby on a tray in the house 842

screamed. → scream(agent=*baby(nmod.on= 843

tray(nmod.in=*house)))). It provides a training 844

set generated by a probabilistic context-free gram- 845

mar (PCFG) and a OOD test set with 21-typed data, 846

which are generated by different PCFGs to test the 847

different generalization abilities of the parser. 848

POS-COGS (Yao and Koller, 2022) is a syn- 849

thetic English part-of-speech tagging task gener- 850

ated based on COGS. The task input is a sentence 851

and the output is the POS tag sequence (e.g. The 852

baby on a tray in the house screamed. → Det N P 853

Det N P Det N V). POS-COGS shares the same 854

split of train and test sets as COGS. 855

CFQ (Keysers et al., 2020) is a synthetic English 856

semantic parsing task. The task input is a sentence 857

and the output is a SPARQL query (e.g. Did M0 858

’ s writer write M1 and M2 → SELECT count(*) 859

WHERE {?x0 film.writer.film M0...}). We 860

use the MCD1 and MCD2 splits of CFQ, where the 861

test set is designed to compositionally diverge from 862

the training set but share similar atom distributions. 863

TOPv2 (Chen et al., 2020) is a natural English 864

semantic parsing task. The task input is a sen- 865

tence and the output is a hierarchical semantic rep- 866

resentation (Gupta et al., 2018) (e.g. Will there be 867

snowfall this week? → [in:get_weather will 868

there be [sl:weather_attribute snowfall] 869

[sl:date_time this week] ?]). The TOPv2 870

training set consists of data from multiple domains 871

including two low-resource domains (e.g. reminder 872

and weather), and the test set consists of data 873

from the two domains to test low-resource domain 874

adaptation ability of the parser. We focused on 875

theweather domain in our experiments. 876

AMR 2.0 (Banarescu et al., 2013) is an 877

English semantic parsing task. The input is 878

a sentence and output is an abstract mean- 879

ing representation (e.g. I will stick around 880

until the end→(stick-around-03 :ARG0(i) 881

:time(until :op1(end-01)))). 882

Penn Treebank 3 (PTB) (Marcus et al., 1993) 883

is an English constituency parsing task. The input 884

is a sentence and the output is the constituency 885
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Dataset Split # train # dev. # test # gen Vocab. size Train len. Test len. Gen len.

COGS - 24155 3000 3000 21000 809 22/48 19/40 61/144

CFQ MCD1 95743 11968 11968 - 171 29/133 30/103 -
MCD2 95743 11968 11968 - 171 29/133 30/103 -

TOP weather 84372 - 484 - 29462 51/82 21/60 -
AMR 2 - 36251 1368 1371 - 79651 216/615 159/583 -
POS-WSJ - 39832 1700 2416 - 46378 141/141 67/67 -
POS-Brown - - - 24243 - 29564 - 172/172 -
POS-COGS - 24155 3000 3000 21000 753 22/21 22/21 61/60
Syn-WSJ - 39832 1700 2416 - 46404 141/903 67/429 -
Syn-Brown - - - 24243 - 29596 - 172/1135 -

Table 5: Statistics for all our datasets. # denotes the number of instances in the dataset. Vocab.size denotes the size
of vocabulary for the dataset, which consists of input tokens and output tokens. Train.len denotes the maximum
length of the input tokens and output tokens in the train set. Test.len and Gen.len denote the maximum length in the
test and generalization set.

Dataset License

COGS MIT
CFQ CC-BY
TOP CC-BY-SA
AMR 2 LDC
PTB LDC
POS-COGS MIT

Table 6: Licenses for used datasets.

parse tree (e.g. Vice President → (TOP(NP(NNP886

Vice)(NNP President)))).887

B Training details888

B.1 Hyperparameters889

Parser. We finetune t5-base1 (220M parameters)890

as our parser for all tasks. We use Adam (Kingma891

and Ba, 2015) as the optimizer. For most tasks,892

the learning rate is set to 1e-5. For CFQ, AMR,893

PennTreebank tasks, the learning rate is set to 1e-4894

to make the training faster. For tasks that provide895

a development set, early stopping is used and the896

best checkpoint is selected based on the evaluation897

metrics on the development set. Otherwise, the898

checkpoint at the end of training is used to report899

results. For AMR, the evaluation metric is Smatch900

F1 score. For syntactic parsing, the evaluation901

metric is EVALB F1 score2. For other tasks, exact902

match accuracy is used as the evaluation metric.903

We use weight decay 1e-3 for all datasets. No904

learning rate scheduler is used for all experiments.905

During evaluation, we use beam search with beam906

size 4.907

Discriminator. We finetune t5-base (220M pa-908

rameters), roberta-base (125M parameters) and909

1https://huggingface.co/t5-base
2https://nlp.cs.nyu.edu/evalb/

Vicuna-7b-v1.53 (7B parameters) as our discrimi- 910

nators. To collect training data, we use the first 5 911

checkpoints of the parser and validate them on the 912

parser’s training set. We select negative examples 913

from beam predictions of these checkpoints as the 914

training data of the discriminator. If a task provides 915

an in-distribution development set for the parser, 916

we use the same method to create the development 917

set for the discriminator. 918

For T5, we follow the same hyperparameter set- 919

tings described for T5 parser. For RoBERTa, we 920

adopt learning rate 1e-5 for all tasks except PTB. 921

On PTB tasks, the learning rate is set to 5e-5. For 922

both T5 and RoBERTa, we validate the AUC score 923

on the development set to select the best checkpoint 924

of the discriminator when a development set is 925

available. Otherwise, we train the discriminator un- 926

til its training loss converges with fixed steps. Note 927

that although CFQ provides an out-of-distribution 928

development set, we did not use it since we assume 929

we do not have the access to the OOD data. 930

We use QLoRA (Dettmers et al., 2023) to fine- 931

tune Vicuna discriminators. For datasets except 932

POS-COGS, the learning rate is set to 3e-4. For 933

POS-COGS dataset, the learning rate is set to 2e-5. 934

We use linear scheduler with warmup as our learn- 935

ing rate scheduler. We use weight decay 1e-3 for 936

all datasets. For LoRA, we set the rank value to 8, 937

the alpha value to 32 and the dropout value to 0.1. 938

B.2 Other details 939

We use AllenNLP (Gardner et al., 2018) to imple- 940

ment T5 and RoBERTa finetuning and Huggingface 941

(Wolf et al., 2020) to implement Vicuna finetuning. 942

Experiments are run on Tesla A100 GPU cards 943

3https://huggingface.co/lmsys/vicuna-7b-v1.5
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OOD ID

MCD1 MCD2 COGS TOP AMR 2.0

Acc AE ↓ Acc AE ↓ Acc AE ↓ Acc AE ↓ Acc AE ↓

Ours (Vicuna)

Meandiscrim 56.4 1.4 23.6 0.7 93.0 1.6 76.2 3.2 18.3 4.0
Upper. 60.0 - 28.1 - 94.7 - 87.9 - 28.0 -
Lower. 51.5 - 18.4 - 87.8 - 57.4 - 4.2 -
Meanbounds 55.8 2.0 23.3 0.4 91.3 0.2 72.7 0.3 16.1 1.8

Gold 57.8 0.0 22.9 0.0 91.4 0.0 73.0 0.0 14.3 0.0

Table 7: Predicted test-set accuracy with Vicuna-based discriminators on semantic parsing tasks.

Time (hours)
Dataset T5 Roberta Vicuna

MCD1 10 8 12
MCD2 10 8 12
COGS 3 3 5
Top 2 5 2
AMR 16 18 50
POS-WSJ 16 16 100
POS-COGS 2 3 5
Syn-WSj 15 10 100

Table 8: Training time for our model on each dataset (1
run) in our experiments.

(80GB). Table 8 shows the training time cost to944

train a single discriminator on one GPU.945

Single Upperbound Lowerbound

CR IR CR IR CR IR

OOD

MCD1 94.3 96.7 98.7 93.0 88.4 98.9
MCD2 81.3 94.7 95.9 92.0 68.1 96.4
COGS 98.8 78.0 99.9 60.2 95.6 95.5
TOP 82.5 71.1 97.1 36.8 72.8 84.2
POS-Brown 68.6 60.5 92.1 26.5 24.7 94.6
POS-COGS 97.9 86.4 98.9 72.6 96.3 91.5
Syn-Brown 56.9 59.3 88.0 27.5 25.3 75.0

ID
AMR 2.0 51.3 89.9 57.5 76.9 26.4 99.5
POS-WSJ 70.4 58.2 91.2 26.6 33.6 93.0
Syn-WSJ 63.9 52.4 91.7 23.8 32.2 68.1

Table 9: Correct recall and incorrect recall scores of
Vicuna-based discriminators.

OOD ID

POS-Brown POS-COGS POS-WSJ

Acc AE Acc AE Acc AE

Ours (Vicuna)

Meandiscrim 51.5 9.5 86.8 1.1 55.2 10.1
Single 57.3 3.7 85.3 0.4 60.5 4.8
Upper. 84.8 - 86.6 - 85.0 -
Lower. 17.2 - 83.8 - 24.4 -
Meanbounds 51.0 10.0 85.2 0.5 54.7 10.6

Gold 61.0 0.0 85.7 0.0 65.3 0.0

Table 10: Predicted accuracy on POS tagging tasks.

OOD ID

Syn-Brown Syn-WSJ

Acc AE Acc AE

Ours (Vicuna)

Meandiscrim 51.5 17.7 56.7 19.1
Upper. 77.8 - 82.1 -
Lower. 25.1 - 31.2 -
Meanbounds 51.5 17.7 56.7 19.1

Gold 33.8 0.0 37.6 0.0

Table 11: Predicted accuracy on parsing tasks.

C Results of Vicuna-based discriminators 946

Here we report the results of Vicuna discriminators 947

in Table 9. In this setting, we finetune Vicuna-7B 948

on the same datasets we used in Section 4.1. 949

Similar to the observation in Section 4, Vicuna- 950

based discriminators achieve high recall scores on 951

most datasets, indicating that they can still make 952

correct judgements for most instances. We also re- 953

port estimation errors of this discriminator in Table 954

7, 10, 11. According to the results, we can ob- 955

serve that Vicuna-based discriminators still achieve 956

very low estimation errors across different datasets. 957

The predicted upper and lower bounds captures 958

the gold accuracy on all datasets. These results 959

are consistent with our observations when using 960

T5 and RoBERTa discriminators, which suggests 961

that our method is robust with regard to different 962

discriminator architectures. 963

D Results of discriminators on subsets of 964

test sets 965

We report results of T5 and RoBERTa discrimina- 966

tors on different subsets of the test set in Figure 967

5, 6. Both discriminators predict lower and up- 968

per bounds that capture the gold accuracy robustly, 969

which is consistent with our observation in Section 970

5. 971
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(a) MCD1 (b) MCD2 (c) COGS (d) TOP

(e) POS-COGS (f) POS-Brown (g) POS-WSJ (h) POS-COGS

(i) Syn-Brown (j) Syn-WSJ

Figure 5: Predicted accuracy by T5 discriminators w.r.t. the number of test-set instances. For each subset we
randomly sample 50 times and show its confidence interval with 95% confidence.
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Figure 6: Predicted accuracy by RoBERTa discriminators w.r.t. the number of test-set instances. For each subset we
randomly sample 50 times and show its confidence interval with 95% confidence.
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