
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SEQUENCE-TO-SEQUENCE MODELING FOR TEMPORAL
RECONSTRUCTION OF CELLULAR EVENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Single-cell omics technologies capture molecular snapshots of cells, while most
biological processes unfold over time. Accurately predicting single-cell gene ex-
pression at unmeasured time points enhances our understanding of these processes,
reducing costs and experimental effort by enabling the interpolation and extrap-
olation of observed data. This helps study continuous development, response to
perturbations, and disease progression. To address this problem, we propose an
encoder-decoder transformer architecture for Temporal Reconstruction of Cellular
Events (TRACE). TRACE models gene expression generation as a sequence-to-
sequence generation task by learning to transform a sequence of genes from a
source condition (e.g., previous time) into a sequence of genes in a target condition
(e.g., next time point). TRACE decoder learns to generate gene tokens of the target
condition by iteratively unmaking tokens in the target sequence, overcoming the dis-
cordance between autoregressive modeling and the non-sequential nature of gene
expression data. We evaluate TRACE both quantitatively and qualitatively on three
datasets, covering a range of tasks and biological scenarios. TRACE outperforms
existing models in generalizing across in-distribution and out-of-distribution tasks
for temporal prediction. Furthermore, we demonstrate the biological relevance of
the cell embeddings learned by TRACE by delineating activation-dependent cell
stages in immune cells, measured across multiple time points. Our findings suggest
that TRACE can enhance in silico hypothesis generation, improving our under-
standing and prediction of cellular changes over time. This ultimately facilitates
disease understanding and supports the design of cost-effective experiments for
biological discovery.

1 INTRODUCTION

Investigating how cells and tissues respond to external perturbations (i.e., interventions) such as drugs,
biochemical stimuli, or gene editing is central to understanding (patho-)physiology and developing
efficient therapeutics. In this context, single-cell RNA sequencing (scRNA-seq) provides a pivotal
tool for transcriptomic profiling of cells at unparalleled resolution and scale (Svensson et al., 2020).
However, scRNA-seq experiments are expensive and complex (Huang et al., 2024). Additionally, the
destructive nature of the technology prevents repeated sampling from the same cell, which poses a
challenge for studying continuous biological processes. Thus far, time-resolved single-cell studies are
limited in the number of sampled time points and throughput due to the associated cost and logistical
overhead (i.e. performing 24h time course experiments, limited availability of clinical samples).
Generative machine learning methods have emerged as a promising avenue for inferring perturbation
responses across time. Such in silico temporal predictions can support experimental design, scientific
discovery and ultimately drug development.

Multiple computational frameworks have been developed to predict single-cell condition-specific
gene expression. For example, generative modeling using variational auto-encoders (VAEs)(Kingma
& Welling, 2014) combined with vector arithmetics (Lotfollahi et al., 2019) or disentanglement
learning (Hetzel et al., 2022; Lopez et al., 2023). Optimal transport(Bunne et al., 2023; Huguet et al.,
2022; Tong et al., 2024; Schiebinger et al., 2019; Klein et al., 2023a) and dynamical modeling (Tong
et al., 2024; Huguet et al., 2022; Yeo et al., 2021) based methods have also yielded promising results.
More broadly, these models predict single cell gene expression counts for missing conditions in time-
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series prediction settings, or in response to perturbations such as drugs, diseases, and endogenous
physiological stimuli (e.g., cytokines).

In parallel, large-scale masked language modeling (Devlin et al., 2018b; Achiam et al., 2023; Raffel
et al., 2020a) has been applied to train single-cell foundation models (Cui et al., 2024; Theodoris
et al., 2023). By analogy to natural language processing, cells (sentences) are treated as sequences
of genes (words). In terms of perturbation response prediction, Geneformer examines the impact of
removing genes from the cell sequence (analogous to an experimental knock-out) on cell embeddings
(Theodoris et al., 2023; Chen et al., 2024) while scGPT has been specifically fine-tuned to predict
unseen multi-gene perturbations (Cui et al., 2024).

In this work, we propose TRACE, the first sequence-to-sequence (seq2seq) encoder-decoder single-
cell generative model designed to predict temporal changes in cells (Fig. 1), inspired by advances in
seq2seq modeling in language and multi-modal learning (Raffel et al., 2020b; Yu et al., 2022; Chang
et al., 2022). TRACE addresses the challenging task of predicting temporal changes in single-cell
data. The model takes a sequence of gene tokens from a source condition (e.g., time point t) as
input and generates a transformed sequence for a target condition (e.g., time point t′). This differs
from existing methods (Bunne et al., 2023; Huguet et al., 2022; Tong et al., 2024; Schiebinger et al.,
2019; Klein et al., 2023a), which rely on low-dimensional cell embeddings (e.g., PCA of the data)
to directly generate gene-level embeddings for unseen time points. TRACE, on the other hand,
generates gene-level embeddings, which allow for gene space analysis or easy conversion back to
the original count space. More importantly, operating at the gene level enables the model to directly
learn gene-gene relationships across time points.

TRACE functions as both a generative and an embedding model, unlike current encoder-only single-
cell transformer models Cui et al. (2024); Theodoris et al. (2023). Its flexibility allows for the
modeling of high-dimensional single-cell data without relying on dimensionality reduction, unlike
recent innovations using flow matching and optimal transport, which primarily operate in low-
dimensional spaces (Huguet et al., 2022; Yeo et al., 2021). TRACE’s learned embedding space
enables seamless transformation from token space to gene expression count space through a count
decoder. Additionally, TRACE can be easily integrated into the foundation model pre-training stack
and scales to large-scale pre-training, leveraging transformers’ efficient and parallelizable training
strategies developed in the NLP and LLM communities (Dao et al., 2022), while avoiding challenges
in VAE training, such as posterior collapse (Dai et al., 2020) and provides an alternative to the
promising flow matching and diffusion models in this space.

We demonstrate TRACE’s abilities to predict condition-specific changes and support downstream
analyses across comprehensive experiments. TRACE outperforms existing methods in both in-
distribution and out-of-distribution prediction tasks for time-specific changes. TRACE effectively
captures biological signals in cell embeddings, such as cell types and populations, and achieves
superior performance for modeling count distributions. Finally, we highlight another use case showing
how TRACE can capture known gene markers for T cell activation through gene embedding analysis,
underpinning its potential to uncover novel biological processes.

2 RELATED WORKS

Modeling cells as a sequence The first model to represent cells as a sequence of tokens (genes) was
scBERT(Yang et al., 2022), which used bidirectional encoder pretraining by masking gene labels,
similar to BERT(Devlin et al., 2018a). Geneformer(Theodoris et al., 2023) introduced rank value
encoding, where each genes’ expression is normalized based on the median expression across a
corpus of 30M cells, and then ranked within each cell. scGPT(Cui et al., 2024) uses autoregressive
masking to predict gene expression binned values. However, no existing work represents the single-
cell generation problem as a full seq2seq task using a transformer encoder-decoder formulation.
The power of encoder-decoder architectures for generative modeling has been demonstrated in text
generation(Raffel et al., 2020b), text-to-image(Yu et al., 2022), and audio(Borsos et al., 2023) models,
motivating our current work.

Modeling temporal dynamics We are interested in the task of predicting gene expression at time
point t′ given single cell gene expression at time point t (and a potential perturbation). The temporal
coupling between cell populations at time points t and t′ has been leveraged by multiple methods
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Frozen TRACE

cls

Figure 1: TRACE architecture. a The target sequence at time point t′ consisting of a gene tokens
xi,t′ and a [CLS] token for cell, where the remaining time points are provided as the context in the
cross-attention. The trained context embeddings Ct are retrieved using a forward pass through the
transformer model. b Source and target cells are passed into an encoder f(δ) and decoder network
h(θ), respectively. Here, each colored box represents a single tokenized cell. The model is optimized
in a self-supervised manner by predicting the proportion of masked target tokens. c, Cell embeddings
cls are used to reconstruct gene counts of the target condition using a count decoder d(ϕ) optimized
with a count loss ℓZINB .

treating this as an optimal transport (OT) problem. For example, developmental processes can be
approximated by OT couplings, with transitions between progenitor and differentiated cell states
modeled as locally linear transitions between probability distributions (Schiebinger et al., 2019). Cel-
lOT combines OT and input convex neural networks to learn OT maps in a fully paramterized manner,
yielding improvements in scalability, stability and performance (Bunne et al., 2023). To account
for non-linear trajectories in biological systems, TrajectoryNet incorporates continuous normalizing
flows and a dynamic OT system (Tong et al., 2020). Conditional flow matching (CFM) generalizes
this approach to arbitrary transport maps, avoiding the limitations of continuous normalizing flows
(such as the assumption of deterministic process and a Gaussian starting distribution), and uses
minibatch approximations to efficiently estimate the OT map in a simulation-free manner (OT-CFM)
(Tong et al., 2023). MIOFlow uses neural ordinary differential equations (ODE) solver to learn an OT
plan in a latent space which preserves geodesic distances between time points (Huguet et al., 2022).
While further improvements to OT-based methods have been reported(Eyring et al., 2023), their
applicability to the high-dimensional gene expression single-cell prediction tasks benchmarked here
has not been demonstrated. Alternatively, PRESCIENT is a generative model which uses stochastic
differential equations to model cellular differentiation as a diffusion process.

Here, we adopt a novel approach, modeling the time series task as a seq2seq problem. The advantage
of this approach is that the model simultaneously learns the gene-level transformation of cells between
time points and learns biologically-meaningful gene and cell embeddings. Additionally, unlike flow-
based models, the seq2seq approach learns the transformation between the input distribution and
target distribution (i.e., between the initial and final states) without requiring the explicit definition of
closed-form conditional flows.

3 METHOD

TRACE is an encoder-decoder transformer designed to generate a sequence of genes and their
expression for a cell under a desired target condition, given a sequence of genes in the source
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condition. Uniquely, it combines context generation for the target condition with bidirectional
masking. In temporal prediction, the representations of the other time points provide context for the
generation. This approach enables the model to learn gene-gene relationships within a cell and across
different conditions. In the following sections, we describe each component of our model in detail.

3.1 TRACE TRANSFORMER PRETRAINING

Problem Formulation Let Xt,j = {xi,t,j}Ni=1 denote gene tokens for a cell j ∈ {1, . . . , L} at
time point t where N is the maximum number of tokens for each cell, L is the number of cells and
t ∈ {0, . . . , T}. For simplicity, we omit the subscription of j in the following formulations. We
assign an embedding Yt = {yi,t}Ni=1 where yi,t ∈ Rd to each gene token. To learn a cell embedding,
we introduce a unique special token [CLS] and prepend it to the sequence of gene tokens. We aim to
generate cell and gene embeddings for a target time point t′ given all the remaining time points as
context.

Masking Strategy During training, we randomly select a time point t′. Then, we sample a subset
of M tokens with a probability of β from Xt′ based on masking scheduler function γ and replace
them with a [MASK] token following the MaskGIT (Chang et al., 2022) masking strategy. Since we
have different sequence length padding, we need to ensure we do not mask cl and pad tokens during
training. So, we use an implementation trick (details in A.2 to prevent the masking of pad tokens). In
the end, we get masked tokens X′

t′
= {xi,t}M

′

k=1 where X′
t′
⊂Xt′ and M ′ is the number of masked

tokens.

Training Objective We feed the token embedding for the source time point t0 to the transformer
encoder f with parameters δ. The encoder generates the embedding Z0 = {zi,0}Nk=1. Then, we pass
the embeddings for the remaining time points to the transformer decoder h with parameters θ. The
decoder is trained for time point t′, and the remaining time points and source are concatenated to
generate the context embedding Ct. This provides context for the decoder’s cross-attention. The
training objective is to minimize the cross entropy loss for masked tokens:

ℓpretraining =
∑

t′∈[1,...,T ]

M ′∑
i=1

logP (xi,t′ |X̂M̄,t′ , Ct) (1)

where X̂M̄,t′ are the remaining tokens after masking. This loss motivates the model to learn the cell
and gene representation based on bidirectional masking. Attending to genes in both directions and
different time points helps generate better cell and gene representations.

Generating Context For each time point t, excluding t = 0 and t′, we run the decoder in a forward
pass without backpropagation to generate context embeddings. Context embeddings are used in the
target sequence generation process described later. This process is autoregressive, meaning that the
context embeddings for each t are generated sequentially, using the embeddings from all previous
time steps as context. The process starts by generating the embedding for the initial time step after the
source time step (t = 0); subsequently, for each following time step, the newly generated embedding
from the previous step is used as context. This continues iteratively until the context embedding
for the last time step is generated. The context embedding at any time t is given by the following
equation:

Ct = h(Yt | Z0, . . . , Ct−1) (2)

Gene expression decoder Given the learned CLS embedding clj , the perturbed gene expression
counts G = {gi,j}Ri=1 were predicted through a count decoder d with parameters ϕ, where R is the
number of genes. In detail, the count decoder is composed of a 2-layer multi-perceptron followed by
Euclidean normalization and a zero-inflated negative binomial (ZINB) reconstruction loss, previously
introduced by (Lopez et al., 2018). ZINB accounts for read dropout, an artifact of scRNA-seq data.
(See Appendix 11 for more details.)
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3.2 CELL SEQUENCE GENERATION

As in text generation, autoregressive decoding predicts tokens conditioned on the previously gen-
erated sequence. However, gene expression does not follow this unidirectional logic, as genes act
together in non-sequential gene regulatory networks. Instead, the iterative decoder proposed in the
bidirectional MaskGIT (Chang et al., 2022) transformer is more suitable to infer "cell sentences".
While theoretically, this method could generate all tokens simultaneously, tokens are iteratively
inferred as this approach yields superior results (Chang et al., 2022). The sequence starts blank with
all unpadded tokens masked x̂

(0)

M̄
. At each iteration step r, a mask scheduling function γ determines

the number of masked tokens n = γ
(
r
RN

)
. As the number of iteration steps r increases, the number

of mask tokens decreases. The probabilities p(r) ∈ RN for the masked tokens x̂
(r)

M̄
are predicted

based on the bidirectional context of unmasked tokens. For each masked position, a token x
(r)
i

is sampled based on predictive probabilities pi, wherein temperature annealing can be adjusted to
modulate diversity. Moreover, gene tokens cannot occur multiple times within the same sequence,
thus unmasked tokens are excluded from the possibilities. The remaining tokens undergo the same
prediction cycle until the total step R is reached, and all tokens are predicted.

Interpolation and Extrapolation We introduce two positional encodings. The first one captures
the rank of gene tokens in a cell, and the second one determines the order of time points. We add
the positional encodings PE1,i = {pei,t}Ni=1 and PE2,t = {pei,t}Tt=1 based on the position of
each token within the cell’s sequence, and the timepoint, respectively. We interpolate between two
time points ti−1 and ti+1 by introducing new time points ti to the time positional encoding PE2,t

between PE2,t−1 and PE2,t+1 during training. During testing, we also provide all time points as the
context during generation to generate the interpolated time points. For extrapolation, we follow the
training mode described above and provide all time points as the context during the generation. We
can decide the sequence length and the number of time points by adjusting the positional encoding
for both extrapolation and interpolation cells. We investigate the effect of using different types of
positional encoding on the model’s performance. (See the details and results at ablation 5.3.)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Metrics We use Maximum Mean Discrepancy (MMD, Mean kernel (Gretton et al., 2006)), Earth
Moving Distance (1-Wasserstein, EMD (Cuturi, 2013)), Pearson correlation (PearsonR), and Rouge
score(See et al., 2017). EMD is calculated for each gene separately based on (Lotfollahi et al., 2023),
and the mean value over genes is reported. All metrics except the Rouge score are reported on
log-normalized counts.

Implementation For the main model, we use a 6-layer transformer encoder-decoder. For the count
decoder, we use a multi-layer perceptron with a GELU activation layer. We use Adam Optimizer
(Kingma & Ba, 2015). We use NVIDIA A100 80 GB and H100 80 GB for all the experiments. See
Appendix A.1 for more information about hyperparameters. To recreate other methods’ results, we fol-
low their respective repositories. We compute PCA on log-normalized counts to reduce the dimension
to 100 dimensions for OT-CFM and 50 dimensions for other methods. For OT-CFM, we scaled the PC
values as recommended. The predicted PC values are inverse-transformed to project back to the count
space. You can find the repository here: https://anonymous.4open.science/status/TRACE-ICLR-3316

4.2 DATASETS

T cell Soskic and Cano-Gamez, et. al. profiled single-cell gene expression of 655’349 naive and
memory CD4+ T cells from 119 donors which were measured at four time points (resting (0h) and
α-CD3,α-CD28 activated T cells (16h, 40h and 5d)). Experimental procedures and scRNA-seq
analysis steps (donor deconvolution, QC, cell type annotation) were kept the same as described in the
publication (Soskic et al., 2022).

Embryoid body The embryoid body (EB) dataset is timely resolved to investigate the differentiation
potential of human embryonic stem cells into distinct cell lineages. Over 27 days, samples were
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acquired in 3-day time intervals for scRNA-seq. In total, 31’161 cells were analysed. After performing
QC steps, 16’825 high-quality cells remained for downstream analysis (Moon et al., 2019).

Lipopolysaccharide The LPS (Lipopolysaccharide) dataset consists of CITE-seq data (Stoeckius
et al., 2017) from 6 patients injected with LPS and their Peripheral Blood Mononuclear Cells (PBMCs)
collected at 4 time points, 0min, 90min, 6hr (validation experiment) and 10hr. LPS is a component
of bacteria when injected intravenously can elicit a controlled immune response similar to sepsis,
a potentially serious condition resulting from a systemic and a dysregulated immune response to
bacterial infection (van der Poll et al., 2017). In this study, the RNA modality of the data comprising
93’648 cells and 15 cell types are from volunteers injected with LPS and used as model to study
sepsis. The data for time points 90min and 10hr has been published in (Stephenson et al., 2021).

4.3 PREPROCESSING

We use the ranked tokenization from Geneformer (Theodoris et al., 2023) to transform raw gene ex-
pression counts into a sequence of ranked gene tokens (Method 3.2). For the time-series experiments,
gene features are filtered based on 2000 highly variable genes using Scanpy before tokenization
(Wolf et al., 2019). A cell from source time point t0 is paired to a cell from each target time point
t ∈ {1, . . . , T} using either random or stratified pairing. Stratification conditions are used if rea-
sonable experimental and biological anchors (e.g., perturbation, donor, cell types) exist. We add a
cell pairing index to map gene tokens to the corresponding gene counts for count modeling. We
use coarse cell type and donor in the case of T cell and only cell type for the LPS dataset as pairing
condition.

4.4 RESULTS

Here, we show that TRACE obtains biologically meaningful cell and gene embeddings given ground
truth gene tokens of source and different time points to study immune responses. Then the model’s
generative abilities are evaluated on time point interpolation and extrapolation. Lastly, we explore the
dependency on the pretrained encoder and different components of the methods on the generation
quality.

4.5 CELL AND GENE EMBEDDINGS RECOVER DISTINCT T CELL ACTIVATION STAGES

(a) (b)
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Figure 2: Uniform Manifold Approximation and Projection (UMAP) of cell embeddings of
activated T cells at 16 hours colored by (a) granular cell types and (b) activation level. (c) Mean
cosine similarity of cell embedding and gene embedding for activation level condition. The size of
the dots indicates the proportion of cells expressing that gene.

In single-cell biology, cell and gene embeddings from deep learning models can be used to uncover
cell states specific to biological conditions such as development and immune responses. T cell
response to antigen stimulation is essential for triggering a healthy immune response. Characterizing
this activation process can help detect genes involved in autoimmune diseases and cancer (Schmidt
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et al., 2022; Soskic et al., 2019; 2022). We use TRACE to analyze the dynamics of T cell activation
in a time-course of antigen-stimulated human CD4+ T cells. In this experiment, we train only the
encoder-decoder transformer of TRACE in a self-supervised manner for 20 epochs and extract cell
and gene embeddings. For each cell, we compute the cosine similarity between the cell and gene
embeddings to determine which genes contribute most to the global cell representation. Even without
supervised cell type information, in Figure 2 the cell embeddings recapitulate cell states defined by
expert annotation in the original publication.

The authors report highly and lowly active T cell states with different transcriptomic profiles during
early T cell activation. In accordance, the cell embeddings separate based on activation level.
Additionally, the gene embeddings with highest cosine similarity to the highly activated T cells are
known activation markers and cytokines such IL2RA, TNFRSF4 and CD69. Thus, both cell and
gene embedding capture nuanced activation-dependent cell states in this highly homogeneous T cell
population.

4.6 PREDICTING TEMPORAL IMMUNE RESPONSE TO BACTERIAL INFECTION

We qualitatively assess the generated gene expression for an interpolated time point at 6 hours (Figure
3) and an extrapolated time point at 10 hours after stimulation with LPS. TRACE distinguishes major
immune cell types, including B cells, T cells, and monocytes, all of which have been previously
reported to be affected at different stages (Ngkelo et al., 2012).. This shows that TRACE predicts the
gene expression distributions across cell type during generation. (See Appendix B.4 for extrapolation).

(a) (b)

Figure 3: Generated cells for the first time point for interpolation (a) Cell type annotations of
generated cells in the first two principal component spaces. (b) Generated cells for LPS treatment at
6 hours (LPS 6h) are overlaid onto true cells in the first two principal components (PC1 and PC2).

4.7 DISCRETE SINGLE CELL TEMPORAL INTER- AND EXRAPOLATION

In this experiment, we evaluate the generalization power of our method to unseen data in single-cell
temporal interpolation and extrapolation. The EB dataset consists of time points [0, 1, 2, 3, 4] while
the T cell and LPS time points are [0, 1, 2, 3]. We exclude time point 3 for the EB dataset, time point
2 for the T cell dataset, and time point 1 from the LPS dataset, then generate cells for held-out time
points for all datasets in the interpolation task. For extrapolation, we exclude time point 4 for the
EB dataset, time point 3 for the T cell and the LPS datasets. The model trains on all the time points
except those excluded for generation. (see Appendix B.2 and B.1 further details on gene marker and
generated cell plots for T cell interpolation)

We compare our results with MIOFlow (Huguet et al., 2022), Prescient (Yeo et al., 2021) and OT-CFM
(Tong et al., 2023). Table 1 and 2 show the results for interpolation and extrapolation; we use MMD
and EMD for comparison. Prescient could not be applied to the T cell dataset because of poor
scalability with the number of data points. TRACE outperforms all other methods for extrapolation
and interpolation in three datasets based on EMD. OT-CFM performs similarly to TRACE in terms
of MMD, which is known to be sensitive to differences in the mean values of distributions. In the
case of scRNA-seq data, which is inherently sparse with a mean expression close to zero, OT-CFM
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Table 1: Held-out time point prediction for scRNA-seq time-series. Interpolation performance
was assessed based on MMD and EMD, and predicted and true expression values were compared.
All results are reported over three random seeds.

Method EB (t=3) T cell (t=2) LPS (t=2)
MMD (↓) EMD (↓) MMD (↓) EMD (↓) MMD (↓) EMD (↓)

TRACE (ours) 0.001±0.000 0.152±0.000 0.004±0.000 0.095 ± 0.006 0.001±0.000 0.152 ± 0.000
MIOFlow 0.061±0.004 0.207±0.000 0.082±0.008 0.119±0.009 0.034±0.002 0.269±0.005
Prescient 0.058±0.003 0.241±0.0001 _ _ 0.032±0.000 0.488±0.003
OT-CFM 0.001±0.000 0.288±0.003 0.004±0.000 0.178±0.004 0.002±0.000 0.285±0.002

uses scaled PC (principle component) space, so their mean value is close to zero, so they perform
similarly to TRACE in MMD, but TRACE outperforms OT-CFM significantly in EMD.

Table 2: Held-out time point prediction for scRNA-seq time-series. Extrapolation performance
was assessed based on MMD and EMD, comparing predicted and true expression values. All results
are reported over three random seeds.

Method EB (t=4) T cell (t=3) LPS (t=3)
MMD (↓) EMD (↓) MMD (↓) EMD (↓) MMD (↓) EMD (↓)

TRACE (ours) 0.001±0.000 0.188±0.002 0.004±0.000 0.120 ± 0.006 0.001±0.000 0.188 ± 0.002
MIOFlow 0.062±0.007 0.212±0.005 0.106±0.006 0.16±0.006 0.033±0.003 0.288±0.008
Prescient 0.043±0.003 0.245±0.01 _ _ 0.034±0.005 0.444±0.001
OT-CFM 0.001±0.000 0.380±0.002 0.002±0.000 0.287±0.006 0.001±0.000 0.726±0.021

5 ABLATION

5.1 TRANSFORMER ENCODER ANALYSIS

In Table 3, we evaluate three scenarios with the same training epochs. First, we evaluate the impact
of using Geneformer as an encoder. In detail, we investigate frozen Geneformer and fine-tuned
Geneformer compared to an encoder trained from scratch. Using a pretrained encoder is effective but
not crucial since even training from scratch shows promising results. Furthermore, fine-tuning the
pretrained encoder deteriorates the results; this could be due to the small size of the datasets.

Table 3: Evaluation of Different Encoders. Ablation study on different types of encoders based
EMD↓, MMD↓ and PearsonR↑.

Encoder Type MMD EMD PearsonR
Pre-trained encoder (frozen) 0.004 0.096 0.924
Pre-trained encoder (fine-tuned) 0.004 0.099 0.895
Encoder from scratch 0.008 0.102 0.836

5.2 IMPACT OF HYPERPARAMETERS ON GENERATION QUALITY

Figure 4 and Table 4 show the effect of hyperparameters on generation performance. Based on our
experiments, the number of iterations only has a minor impact on the quality of generated cells, and
the exponential scheduler shows the best performance during generation and training.

Furthermore, we investigate the effect of generated sequence length in Figure 5. Higher sequence
length improves the Rouge score since the model has a higher chance of generating the correct genes.
The identified optimal sequence length for the generation is in concordance with the actual mean
sequence length 159. Thus, we use the mean length of the target sequences, excluding the prediction
time points for the experiments. (See Appendix B.4 for more details on the effect of sequence length)

5.3 EXPERIMENTS FOR DIFFERENT TYPES OF POSITIONAL ENCODINGS

We investigate three different positional encoding scenarios to capture gene-gene relation in a cell
and over time based on Method 3.2: Sinusoidal Positional Encoding for Both Gene Rank and

8
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Figure 4: Study of the number of iteration (a, b) Number of iterations to generate samples based
on EMD↓ and Pearson correlation↑, (c) rouge score↑ of three sequence lengths as the number of
iterations increases.
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Figure 5: Study of the sequence length (a, b) Analysis of the effect of sequence length based on
EMD↓ and Pearson correlation↑, (c) rouge score↑ of three sequence lengths for different sequence
lengths as sequence length increases.

Table 4: Evaluation of Different Schedulers. Ablation study on different types of Scheduler method
based on EMD↓, MMD↓ and PearsonR↑.

Scheduler method MMD EMD PearsonR
Cosine 0.005 0.182 0.815
Exponential 0.005 0.156 0.841
Cubic 0.005 0.181 0.818

Time: In the first scenario, we use two different sinusoidal positional encodings for both, the gene
rank within each cell and the time points. This approach leverages fixed positional patterns to capture
structural information across genes and time points. Learnable Positional Encoding for Gene Rank
and Sinusoidal for Time: In the second scenario, we use a learnable positional encoding for the gene
rank within each cell, allowing the model to adaptively learn optimal positional representations for
genes. Simultaneously, we use sinusoidal positional encoding for time positional encoding. Unified
Sinusoidal Positional Encoding Across Combined Time Points: In the final scenario, we treat all
time points as a single sequence. We use a unified sinusoidal positional encoding across this extended
sequence, enabling the model to capture long-range temporal dependencies and interactions between
genes over time. Table 5.3 shows performance for different scenarios, and the second approach shows
the best performance.

6 CONCLUSION

Discussion In this paper, we introduce TRACE, a seq2seq transformer model designed for single-cell
temporal prediction. We compare our approach with the state-of-the-art (SOTA) models in single-cell
temporal data generation, and TRACE shows promising results across the tasks. We evaluate our
model across three different studies in developmental biology, T cell activation, and response to
infection. TRACE can generate embeddings of cells and genes at unseen time points, enabling
analysis in embedding space while also demonstrating recoverability of original gene expression
counts. These applications highlight the generative potential of TRACE. We envision that TRACE
can facilitate temporal analysis of single-cell data and guide experimental design and cell engineering.
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Table 5: Evaluation of Different positional encoding. Ablation study on different types of positional
encoding based on EMD↓, MMD↓ and PearsonR↑. The first positional encoding is for time positional
encoding, and the second is for gene positional encoding. The last option uses one sinusoidal over all
time points length together

Scheduler method MMD EMD PearsonR
Sinusoidal+Learnable 0.005 0.168 0.798
Sinusoidal+Sinusoidal 0.005 0.233 0.684
Sinusoidal 0.006 0.216 0.680

Limitation The effectiveness and performance of TRACE depend on how the data is paired. To
capture cellular heterogeneity and cellular processes (i.e., temporal effects), having paired data is
essential. However, the one-to-one mapping of a source cell in time point t− 1 to a cell in time point
t does not capture biological processes such as cell growth and death which have been addressed in
unbalanced OT (Schiebinger et al., 2019).

Future work Leveraging recent developments in NLP for fine-tuning (Zhao et al., 2024; Dettmers
et al., 2024) and continual learning (Wang et al., 2024) of LLMs can improve the generative power of
TRACE to enhance generation quality for unseen and rare cell types. Furthermore, this work can be
applied to other areas of biology, such as developmental biology (Schiebinger et al., 2019; Klein et al.,
2023b) or disease progression to study genes driving cellular changes or differentiation trajectories.
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A HYPERPARAMETERS AND IMPLEMENTATION DETAILS

A.1 HYPERPARAMETERS

Hyperameters for interpolation for LPS dataset is in Table 6 and for extrapolation is in Table 7. For
the T cell and EB dataset, we use the same hyperparameters for interpolation and extrapolation
which is in Table 8 and in Table 9, respectively. For all the models, we load pre-trained Geneformer
(gf-12L-95M-i4096 from (April 2024)) as the encoder transformer from HuggingFace and freeze all
the layers during training and testing. This is referred to as ’Frozen Geneformer encoder’.

Table 6: Hyperparameters for LPS Interpolation

Component Parameter Default Value
General Batch size 64

Transformer

Learning rate 1× 10−4

Weight decay 1× 10−4

Masking probability 0.15
Embedding size 128
Frozen Geneformer encoder Yes
Number of attention heads 8
Number of attention layers 6
Attention head dimension 64
Maximum sequence length 647

Count Decoder

Learning rate 5× 10−3

Weight decay 1× 10−3

Number of hidden layers 2
Layer dimension 128

Mask Decoder
Temperature 1.5
Iterations 19
Mask scheduler Cosine

Table 7: Hyperparameters for LPS Extrapolation

Component Parameter Default Value
General Batch size 64

Transformer

Learning rate 1× 10−4

Weight decay 1× 10−4

Masking probability 0.3
Embedding size 32
Frozen Geneformer encoder Yes
Number of attention heads 8
Number of attention layers 6
Attention head dimension 64
Maximum sequence length 647

Count Decoder

Learning rate 5× 10−3

Weight decay 1× 10−3

Number of hidden layers 2
Layer dimension 128

Mask Decoder
Temperature 1.5
Iterations 19
Mask scheduler Cosine
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Table 8: Hyperparameters for T cell

Component Parameter Default Value
General Batch size 64

Transformer

Learning rate 1× 10−5

Weight decay 1× 10−5

Embedding size 512
Frozen Geneformer encoder Yes
Number of attention heads 8
Number of attention layers 6
Attention head dimension 64
Maximum sequence length 300

Count Decoder

Learning rate 5× 10−3

Weight decay 1× 10−4

Number of hidden layers 2
Layer dimension 512

Mask Decoder
Temperature 0.5
Iterations 20
Mask scheduler Cosine

Table 9: Hyperparameters for EB

Component Parameter Default Value
General Batch size 64

Transformer

Learning rate 1× 10−3

Weight decay 1× 10−4

Embedding size 512
Frozen Geneformer encoder Yes
Number of attention heads 8
Number of attention layers 6
Attention head dimension 32
Maximum sequence length 270

Count Decoder

Learning rate 5× 10−4

Weight decay 1× 10−4

Number of hidden layers 2
Dropout 0.25
Layer dimension 512

Mask Decoder
Temperature 0.5
Iterations 20
Mask scheduler Cosine

A.2 IMPLEMENTATION DETAILS

Implementation of Masking We demonstrate the details of the masking strategy in the following
Algorithm. The masking idea is adapted based on MaskGIT (Chang et al., 2022). We prevent
padding tokens by adding line 7 to the algorithm so padding tokens get the highest probability;
therefore, they don’t get chosen for the masking.
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Algorithm 1: Masking algorithm

Input: pad, input_id, mask_scheduler, mask_token
Output: input_id, labels

1 sample_length← sum of non-padding tokens in pad ;
2 batch, seq_len← shape of input_id;
3 rand_time← uniform random values of size (batch);
4 rand_mask_probs← noise schedule of rand_time;
5 num_token_masked← round(sample_length× rand_mask_probs);
6 rand_int← random values of size (batch, seq_len);
7 Set padding positions in rand_int to 1;
8 batch_randperm← argsort of rand_int;
9 mask ← batch_randperm < num_token_masked;

10 input_id[mask]← mask_token;
11 Update labels: labels[¬mask]← −100;

Implementation of ZINB loss The Zero-Inflated Negative Binomial (ZINB) loss function is defined
in the following. We used the implementation from SCVI (Lopez et al., 2018):

ℓ(g;µ, θ, π) =− I[g = 0] · ln

(
π + (1− π)

(
θ

θ + µ

)θ
)

− I[g > 0] ·

(
ln(1− π) + ln

(
g + θ − 1

g

)
+ g ln

(
µ

θ + µ

)
+ θ ln

(
θ

θ + µ

))
(3)

Where g is the observed count, µ is the mean of the Negative Binomial distribution, θ is the dispersion
parameter (overdispersion), π is the probability of zero inflation (dropout probability), and I[·] is the
indicator function, which equals 1 when the condition is true and 0 otherwise.

(
n
k

)
is the binomial

coefficient, defined as
(
n
k

)
=

Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
.

A.3 GENERATION DETAILS

B EXPERIMENTAL RESULTS

B.1 TCELL GENERATED CELL EMBEDDINGS FOR INTERPOLATION

(a) (b)

Figure 6: Generated cells for 40h timepoint and ground truth for all timepoints for T cell dataset
(a) colored based on generated and ground truth for two principal components (PC1 and PC2), (b)
colored based on different time points two principal components (PC1 and PC2).
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B.2 T CELL GENERATED CELL GENE MARKER ANALYSIS FOR INTERPOLATION
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Figure 7: Violin plot of activation gene markers at 40h time point comparing true to interpolated
gene expression counts. (a,b) Predicted log-normalized gene expression counts colored in blue
contrasted with the ground truth counts. T cell activation-dependent gene markers (TNFRSF4,
FABP5, BATF, IL2RA, HSP90AA1, TUBA1B, DDIT4 and S100A4) are shown, highlighted by the
author in the original publication (Soskic et al., 2022)

B.3 TCELL GENERATED CELLS FOR IMPUTATION

(a) (b)

Figure 8: Imputed cells across all activated timepoints for in-distribution held-out cells (80%-
20% train-test split) for T cell dataset (a) colored based on generated and ground truth for two
principal components (PC1 and PC2), (b) colored based on different time points two principal
components (PC1 and PC2).

B.4 LPS GENERATED CELL EMBEDDINGS FOR EXTRAPOLATION

9b shows the generated cell embeddings in PC space for the extrapolation of the LPS dataset. The
generated cell captures the underlying distribution, but the information about some rare cell types is
lost.

Experiments for quality of extrapolation as the context length increases We evaluate the capability
of our method in extrapolation for the EB dataset. First, we train the model for the first two time
points; then the trained model is used to extrapolate the three subsequent time points separately. As
shown in Figure 10, we observe that as the time distance increases, the embedding quality decreases,
leading to an increase in MMD. Pearson correlation does not change significantly as the time distance
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(a) (b)

Figure 9: Generated cells for the second timepoint for extrapolation (a) Cell type annotations of
generated cells in the first two principal component spaces. , (b)Generated cells for LPS treatment at
10 hours (LPS 10h) are overlaid onto true cells in the first two principal components (PC1 and PC2).

increases, likely due to the abundance of zero values in the raw counts. It makes it less sensitive to
changes as long as zeros are predicted correctly.
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Figure 10: Evaluation of extrapolation with increasing timesteps as distance to the source
increases. The left figure shows results for MMD, and the right figure shows results for Pearson
correlation. The lower number is better for MMD, and a higher number is better for Pearson
correlation.
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