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PERFCODER: LARGE LANGUAGE MODELS FOR INTER-
PRETABLE CODE PERFORMANCE OPTIMIZATION

ABSTRACT

Large language models (LLMs) have achieved remarkable progress in automatic
code generation, yet their ability to produce high-performance code remains lim-
ited—a critical requirement in real-world software systems. We argue that current
LLMs struggle not only due to data scarcity but, more importantly, because they
lack supervision that guides interpretable and effective performance improvements.
In this work, we introduce PerfCoder, a family of LLMs specifically designed
to generate performance-enhanced code from source code via interpretable, cus-
tomized optimizations. PerfCoder is fine-tuned on a curated collection of real-world
optimization trajectories with human-readable annotations, and preference-aligned
by reinforcement fine-tuning using runtime measurements, enabling it to propose
input-specific improvement strategies and apply them directly without relying
on iterative refinement. On the PIE code performance benchmark, PerfCoder
surpasses all existing models in both runtime speedup and effective optimization
rate, demonstrating that performance optimization cannot be achieved by scale
alone but requires optimization stratetgy awareness. In addition, PerfCoder can
generate interpretable feedback about the source code, which, when provided as
input to a larger LLM in a planner-and-optimizer cooperative workflow, can further
improve outcomes. Specifically, we elevate the performance of 32B models and
GPT-5 to new levels on code optimization, substantially surpassing their original
performance.

1 INTRODUCTION

Large language models (LLMs) such as Codex (Chen et al., 2021), GPT-4/5 (OpenAI et al., 2023), and
Code Llama (Roziere et al., 2023) have substantially advanced automatic code generation, enabling
natural language prompts to be translated into syntactically and semantically correct programs.
Although these models excel at producing functionally correct code, they remain limited in optimizing
code implementations for performance–an essential ability for building efficient, scalable software
systems to meet strict latency and runtime requirements.

As illustrated in Figure 1, even advanced LLMs like ChatGPT1 often generate transformations
that appear plausible but degrade or fail to improve code runtime performance. This shortcoming
arises because most models are trained in general-purpose corpora with little efficiency-related
supervision (Shypula et al., 2024). Even when exposed to improved solutions, they typically lack the
ability to explain or justify their code edits, but instead rely on opaque trial-and-error heuristics (Gao
et al., 2024). Recent efforts have investigated data curation, fine-tuning schemes, and search-based
inference-time scaling (Du et al., 2024; Huang et al., 2024a). Yet these approaches often remain black-
box and non-interpretable, making them difficult to generalize and remain limited in performance.

In this paper, we introduce PerfCoder, a family of fine-tuned language models specifically targeting
at interpretable and customized code performance optimizations. Given the input slow program,
PerfCoder generates human-readable optimization strategies tailored to the program and applies them
to the input context, allowing for code transformations in a reliable, transparent, and traceable way.
Furthermore, PerfCoder does not rely on feedback or multi-step refinement (Huang et al., 2024a)
during inference, and can be deployed as either a standalone code optimizer in a single step or as
a planner to guide another (usually larger) model to optimize code performance in a cooperative
procedure.

We enable PerfCoder’s optimization capability through a fine-tuning procedure grounded in AI-
synthesized code optimization trajectories from real-world code implementations. First, we recon-

1https://chatgpt.com/
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#include <bits/stdc++.h>
using namespace std;
int main()
{
    int N;
    cin >> N;
    int A[N];
    int freq[100001];
    memset(freq, 0, sizeof freq);
    long long int sum = 0;
    for (int i = 0; i < N; i++)
    {
        cin >> A[i];
        freq[A[i]]++;
        sum += A[i];
    }
    int Q;
    cin >> Q;
    for (int i = 0; i < Q; i++)
    {
        int B, C;
        cin >> B >> C;
        sum = sum + (C - B) * 
freq[B];
        freq[C] += freq[B];
        freq[B] = 0;
        cout << sum << endl;
    }
}

[Slow Code]

#include <iostream>
#include <cstdio>
using namespace std;

const int MAXN = 2e5 + 5;

int n, q, a[MAXN], cnt[MAXN];
long long sum;

int main() {
    scanf("%d", &n);
    for (int i = 1; i <= n; i++) {
        scanf("%d", a + i), 
cnt[a[i]]++, sum += a[i];
    }

    scanf("%d", &q);
    for (int b, c, i = 1; i <= q; i+
+) {
        scanf("%d%d", &b, &c);
        sum = sum + (long 
long)cnt[b] * (c - b);
        cnt[c] += cnt[b];
        cnt[b] = 0;
        printf("%lld\n", sum);
    }

    return 0;
}

[Fast Code]
#include <iostream>
#include <vector>
using namespace std;
int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int N;
    cin >> N;
    vector<int> freq(100001, 0);
    long long sum = 0;
    for (int i = 0; i < N; ++i) {
        int x;
        cin >> x;
        freq[x]++;
        sum += x;
    }
    int Q;
    cin >> Q;
    while (Q--) {
        int B, C;
        cin >> B >> C;
        if (B != C && freq[B] > 0) {
            sum += (long long)(C - 
B) * freq[B];
            freq[C] += freq[B];
            freq[B] = 0;
        }
        cout << sum << '\n';
    }
    return 0;
}

[GPT-4o Optimized Code]
[Slow-Fast Code Pair in Dataset]

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
int main()
{
    int n;
    scanf("%d", &n);
    int arr[n];
    int brr[100001] = {0};
    long long sum = 0;
    for (int i = 0; i < n; i++){
        scanf("%d", &arr[i]);
        brr[arr[i]]++;
        sum = sum + arr[i];
    }
    int q;
    scanf("%d", &q);
    for (int i = 0; i < q; i++)
    {
        int x, y;
        scanf("%d%d", &x, &y);
        sum = sum - (brr[x] * x) + 
(brr[x] * y);
        brr[y] = brr[y] + brr[x];
        brr[x] = 0;
        printf("%lld\n", sum);
    }
    return 0;
}

[PerfCoder Optimized Code]
[Optimized Code by LLMs]

Figure 1: A real code optimization case of PerfCoder and ChatGPT.

struct the PIE dataset (Shypula et al., 2024), assembling an evaluation-aligned corpus of 30,649
slow–fast program pairs via endpoint selection. We then automatically extract optimization strategies
from the code pairs, mapping them into core strategy primitives to provide automated supervision
for structured reasoning. We propose sampling procedures to yield high quality data that is used to
train PerfCoder into a single-step code optimizer which can generate both structured strategies and
optimized code for the given input. we then introduce a reinforcement fine-tuning procedure to further
incentivize the strategy generation ability of PerfCoder by fine-tuning it in a planner-and-optimizer
cooperative framework using measured runtime as reward signals.

On the PIE benchmark, PerfCoder achieves substantial gains over existing baselines. A 7B version
delivers a 2.50× runtime speedup, surpassing both single-step methods (e.g., PIE-CodeLlama at
1.89×) and larger models such as Qwen2.5-Inst-32B (1.50×). Its strategy outputs also generalize;
when used to guide stronger LLMs in planner–optimizer mode, they provide significant additional
improvements. Furthermore, RL fine-tuning with runtime feedback can align PerfCoder’s strategy
generation ability directly with code optimization outcomes. A small 1.5B PerfCoder can guide a
32B optimizer to achieve 3.03× speedup, and guide GPT-52 to achieve 4.82× speedup (a significant
leap from 1.96× speedup by GPT-5 alone without using PerfCoder as a planner).

In summary, PerfCoder establishes a practical and interpretable framework for code performance
optimization. By combining strategy-aware supervision, balanced data curation, and RL preference
alignment, it consistently outperforms a wide range of baselines, enhances larger models, and moves
toward closing the gap between correctness and efficiency. To help support further research, we will
publicly release our code, models, and the curated dataset at Anonymous.

2 METHOD

This section presents the design of PerfCoder. In contrast to prior work that focuses mainly on
behavioral imitation or reinforcement by runtime metrics, PerfCoder learns through structured
strategy induction. Given unoptimized code, it can either directly generate optimized code or act as a
planner that guides an external (usually larger) optimizer model. Our fine-tuning procedure consists
of two main stages, with an overview shown in Figure 2. First, we introduce a supervised fine-tuning
(SFT) scheme to obtain PerfCoder Jr. which can generate optimization strategies followed by the
corresponding code edits in a single-step mode. We describe our unified and automated data curation

2https://openai.com/index/introducing-gpt-5/
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Human Coding
Submissions

Reconstruct Slow-Fast 
Code Pairs

Refined
Code Pairs

Code Pairs with 
Categorized Strategies

Automated
Categorization &

Strategy Extraction
[s1][desc]
[s2][desc]

…
Code Pairs with 

Balanced Strategies

[s1][desc]
[s2][desc]

…

Balanced
Sampling

PerfCoder Jr.

Supervised
Finetuning

Slow 
Code

Fast 
Code

[Instruction] You are helping students learn how to optimize C++ code. Your role is to analyze their Original Code (which they can see) and a hidden 
Optimized Code (which they cannot see), and then provide structured suggestions that inspire the student how to improve their code independently. 
Given the Original Code and a hidden Optimized Code (not visible to the student), identify all optimization categories made in the optimized code, and 
make corresponding suggestion to the students to inspire them how to optimize the original code. You must not provide the detailed optimization steps to 
the student, instead, for each recognized optimization strategy in the optimized code, provide the suggestion in the following format:
    - [Strategy Name]: [Explanation]  
---
### Optimization Categories: {{  category  }}
### Slow Code: [src_code] ### Fast Code: [tgt_code]
### Optimization Strategies: 

Strategy Extraction

Optimiztion 
Strategies +

Qwen 2.5 

Single-Step SFT for Strategy + Code  Alignment

GRPO-Enhanced Planner + External Optimizer

PerfCoder Jr.

Slow 
Code

Optimiztion 
Strategies

Frozen External
Optimizer

Fast 
Code

Reward

Refined
Code Pairs PerfCoder

GRPO 

Figure 2: An illustration of our PerfCoder framework.

pipeline for SFT. Second, we introduce a reinforcement fine-tuning process where PerfCoder is
fine-tuned into a stronger planner, in a planner-optimizer cooperative framework, to generate effective
natural language code optimization strategies for optimizers to follow.

2.1 SINGLE-STEP CODE OPTIMIZATION MODE AND SUPERVISED FINE-TUNING

Unlike costly iterative self-refinement, in single-step mode, PerfCoder adopts a single-step format
that can generate optimization strategies and optimized code in one autoregressive sequence (one
LLM invocation). This design explicitly aligns what to optimize with how to implement it.

Consider a user u solving a programming problem p. Let x(u,p)
slow denote a slow submission and x

(u,p)
fast

a corresponding faster solution. Each training instance additionally includes a natural-language
instruction I and a set of extracted optimization strategies s(u,p) = {s1, . . . , sk} describing the
transformations from x

(u,p)
slow to x

(u,p)
fast . To serialize these elements, we introduce control tokens

Vctl = {[SUGG/], [/SUGG], [OPT/], [/OPT]},

which delimit the strategy and code spans. Given (I, x(u,p)
slow ), the model gϕ—a transformer-based

language model parameterized by ϕ—is trained to generate the structured sequence

y(u,p) = [SUGG/] s(u,p) [/SUGG] [OPT/] x
(u,p)
fast [/OPT]. (1)

Each strategy si = (namei,desci) consists of a canonical identifier (e.g., Loop Optimization)
and a context-specific explanation of why the transformation improves x

(u,p)
slow . This serialization

provides interpretable plans that connect abstract reasoning with concrete implementations.

The training objective is the standard causal language modeling loss. Let P (· | ·;ϕ) denote the token
distribution predicted by gϕ. Then

LLM = −
|y(u,p)|∑
t=1

logP
(
y
(u,p)
t

∣∣∣ y(u,p)<t , I, x(u,p)
slow ;ϕ

)
, (2)

where y
(u,p)
t is the t-th token of the target y(u,p) and y

(u,p)
<t its prefix. Here, ϕ explicitly denotes the

trainable parameters of the model.

This single-step design naturally supports two inference modes. In plan+code mode, decoding
continues through the [OPT/] span to produce optimized implementations directly. In plan-only
mode, generation halts at [/SUGG], yielding a human-interpretable strategy plan that can guide a
stronger external LLM. This dual capability allows PerfCoder to function as either a self-contained
optimizer or a lightweight planner, enhancing its flexibility and practical impact across real-world
optimization scenarios.

3
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[Instruction]
+

[Slow code]

[Stategy]
+

[Opt code]

[Input]
[Instruction]
Your task is to analyze the given C++ code, provide 
optimization suggestions, and then apply those 
optimizations to improve performance while 
ensuring correctness.

[Slow Code]
#include<iostream>
#include<cstring>
using namespace std;
int main()
{
    int k;
    string s;
    cin>>k>>s;
    if(s.length()>k)
    {
        for(int i=0;i<k;i++)
        cout<<s[i];
        cout<<"...";
    }
    else
        cout<<s;
}

[Strategy]
[SUGG/]
- Input/Output Throughput Optimization: The 
original code uses `cin` and `cout` for input and 
output, which can be slower compared to `scanf` 
and `printf`. Consider using `scanf` and `printf` 
for faster I/O operations, especially in 
performance-critical sections of your code.
- Data Structure Selection: The original code 
uses a `std::string` to store the input string, which 
involves dynamic memory allocation and 
management. Using a fixed-size character array 
can be more efficient in terms of memory usage 
and access speed, especially when the 
maximum length of the string is known and 
bounded.
- Loop Efficiency Techniques: The original 
code uses a loop to iterate over the string and 
print characters, which can be optimized by 
directly printing characters using a loop that 
iterates up to the length of the string, if it is 
shorter than the maximum length. This reduces 
the overhead of string operations and can 
improve performance.
[/SUGG]

[Output]

[Optimized Code]
[OPT/]
#include <stdio.h>
#include <string.h>
int main(){
    int k;
    scanf("%d",&k);
    char s[100];
    scanf("%s",&s);

    int lol = strlen(s);
    s[k] = '\0';

    for(int i=0;s[i]!='\0';i++){
        printf("%c",s[i]);
    }

    if(k<lol){
        printf("...");
    }

    return 0;
}
[/OPT]

Figure 3: A real example of slow-fast code pair with optimization strategies. LLMs will learn from
the output part to generate the strategy and the optimize the code in a single-pass.

2.2 AUTOMATED CODE OPTIMIZATION STRATEGY SYNTHESIS

The strategies in the [SUGG/] segment (Eq. 1) are extracted automatically with a 32B open-source
instruction-tuned model. By relying on an openly available model, the pipeline not only scales reliably
but also ensures that every step can be reproduced by independent researchers. This automated design
guarantees scalability, consistency, and reproducibility: instead of relying on human annotation,
the system distills optimization knowledge directly from code trajectories. Formally, for each pair
(x

(u,p)
slow , x

(u,p)
fast ) in the curated dataset, the extractor fθ, parameterized by θ, generates a corresponding

set of strategies
s(u,p) = fθ

(
x
(u,p)
slow , x

(u,p)
fast

)
, (3)

which describe the transformations that turn the slower code into the faster one.

Each strategy is encoded as a tuple

si = (namei,desci), (4)

where namei is not arbitrary but drawn from a fixed set of fifteen canonical categories
C = {c1, . . . , c15}, such as Algorithm Design Optimization or Loop Efficiency
Techniques. The accompanying desci is a natural-language explanation detailing why the
technique benefits x(u,p)

slow . This separation of a categorical “what” from a contextual “why” yields
interpretable strategies that can generalize across diverse problems while remaining grounded in the
local program context.

Mapping every strategy name to one of the fifteen categories provides structural regularization: it
prevents frequent but superficial techniques from dominating training and ensures that rarer, long-tail
strategies remain represented. The technical details of deduplication and category-guided strategy
re-extraction are provided in the Appendix A.

Figure 3 illustrates outputs from this pipeline, showing how canonical category labels are paired with
context-specific explanations to form interpretable and reusable optimization strategies.

2.3 DATASET RECONSTRUCTION AND BALANCED STRATEGY SAMPLING

To obtain reliable optimization strategies, it is essential to begin with high-quality code pairs. We build
on the PIE dataset DPIE = {(x(u,p)

slow , x
(u,p)
fast )}, which provides abundant real-world trajectories of

performance improvement. However, the raw dataset suffers from several shortcomings: optimization
targets are often ambiguous due to intermediate submissions of real users, and the absolute quality
of a user’s final code may lag far behind problem-level best solutions. These issues introduce noise
and weaken the learning signal. To overcome them, we reconstruct the dataset to impose clear
optimization endpoints and then apply balanced sampling to reduce category bias.

4
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Table 1: Dataset overview with symbolic representations. DPIE is the original dataset. Dref contains
pairs where the optimized code is either the user’s final or the global best submission. Db is a
strategy-category-balanced subset used for fine-tuning. “Cross-User Pairs” indicate cases where the
optimized code was taken from a different user due to the user’s poor performance.

Dataset Total Pairs Description Cross-User Pairs
DPIE 77,967 Original PIE slow-fast pairs –
Dref 30,649 Reconstructed (slow vs. final/best) 12,350
Db 5,000 Strategy-category-balanced subset of Dref 2,267

Final-submission filtering. For each user u and problem p, we retain only the last submission as
the optimization target, ensuring that every pair points toward a well-defined endpoint:

Dref =
{
(x

(u,p)
slow , x

(u,p)
final )

}
. (5)

Global-best replacement. Some final submissions remain significantly slower than the best-known
solution for the same problem. To prevent the model from imitating under-optimized code, we replace
such targets with the global best x(p)

best. Formally, if the runtime T (·) satisfies

T
(
x
(u,p)
final

)
> 2 · T

(
x
(p)
best

)
, (6)

then we substitute x
(u,p)
fast ← x

(p)
best. This correction grounds training in performance-competitive

implementations rather than local improvements.

Balanced strategy sampling. Even after reconstruction, strategy frequencies are highly skewed:
common strategies such as loop unrolling dominate, while rare yet more important strategies are under-
represented. To counteract this, we assign each pair a rarity-weighted score S(u,p) = 1

k

∑k
i=1

1
f(si)

,

where f(si) denotes the global frequency of strategy si. The pairs are ranked by S(u,p), and round-
robin selection is applied to form a balanced subset Db ⊂ Dref, with |Db| = 5000, which preserves
long-tail coverage and prevents the model from overfitting to the most frequent strategy categories.
Please refer to Appendix C (Figure 5) for the distribution of code optimization strategy categories
in the dataset before and after applying our category-balanced sampling procedure, with Table 4
providing the detailed explanation of each category.

2.4 REINFORCEMENT FINE-TUNING IN PLANNER MODE

Planner mode. While single-step supervised fine-tuning already provides substantial gains as we
will show in Section 3, its effectiveness still depends heavily on the coding capacity of the base
model, i.e., how well it can generate code following instructions, an ability usually tied to the model
size. In contrast, generating effective optimization strategies for the given code does not necessarily
require a large coding model. Motivated by this intuition, we further fine-tune PerfCoder with Group
Relative Policy Optimization (GRPO), where PerfCoder serves as a smaller planner model that
outputs optimization strategies only for the given code, while another larger external model serves as
the optimizer to follow these proposed strategies.

As shown in Figure 2, during GRPO fine-tuning, PerfCoder operates in planner mode, i.e., decoding
terminates at [/SUGG], which is treated as an end-of-sequence token. The set of generated strategies
(together with the slow input code) are passed as prompts into a larger external LLM, referred to as
optimizer, which generates optimized code by applying these PerfCoder-generated strategies. We
only fine-tune the smaller planner (PerfCoder) with GRPO while freezing the optimizer, using an
end-to-end reward obtained from measured outputs.

Reward design. Let T (·) denote the measured runtime of a program. Given a slow input code
x
(u,p)
slow and optimizer-generated code x

(u,p)
gen , we define the speedup factor as

∆ =
T
(
x
(u,p)
slow

)
T
(
x
(u,p)
gen

) . (7)

5
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To encourage compilable and competitive output, reward is then assigned as

R =


−ω, if x(u,p)

gen fails to compile,

−1, if ∆ < 1 (slower than baseline),

∆2, if ∆ ≥ 1 (speedup achieved).

(8)

Here we set ω to 100 to severely penalize uncompilable or regressive outputs, while quadratically
rewarding positive runtime gains. The quadratic scaling of ∆ incentivizes the discovery and use of
strategies that can produce not only valid but also significantly faster implementations.

Following GRPO training objective Shao et al. (2024), we perform relative comparisons within
groups of end-to-end edits to calculate advantages. That is, for each input slow code x

(u,p)
slow , the

planner is called multiple times to generate a group of (e.g., 4) different strategies, each of which
separately guides the optimizer to generate a different piece of output code. Each output code is
scored with the reward (a function of runtime speedup) mentioned above. Then, GRPO compares
each output’s reward relative to the group’s average. We only fine-tune the PerfCoder planner with
such reward signals while freezing the larger optimizer. Please refer to Appendix B for GRPO taining
details.

Although PerfCoder can also produce strategies and code directly in single-step mode (Section 2.1),
reinforcement fine-tuning of planner alone ensures that reward signals target strategy generation
alone (which is the missing ability even in current large base models) instead of instruction following.
Through this further alignment, strategies that generate compilable code with relatively higher
speedup are reinforced and made more likely, while weaker or harmful ones are suppressed. However,
the SFT of PerfCoder in single-step mode is necessary, since it has aligned meaningful strategy
generation with code generation, providing a starting point for further reinforcement learning.

3 EXPERIMENTAL RESULTS

We evaluate PerfCoder on the PIE benchmark (Shypula et al., 2024), which consists of 978 unopti-
mized C++ programs drawn from 41 competitive programming problems. All experiments follow the
PIE evaluation protocol and report the following three metrics:

Speedup, the primary performance indicator, is defined as Speedup = tslow
tfast

, measuring how much
faster the optimized code runs relative to the original. Each optimized program is evaluated on 20
test cases. Only those that pass all test cases are considered correct; otherwise, the program is treated
as incorrect and assigned a speedup of 1. Additionally, we report Effective Optimization rate, the
percentage of generated programs that are both correct and achieve at least 1.1× speedup, and Code
Accuracy, the percentage of programs passing all functional test cases.

While code accuracy evaluates functional correctness, it does not imply meaningful performance
improvement. A model can achieve high accuracy yet produce code that is inefficient. Effective
optimization, by contrast, ensures both correctness and speedup, making it a more practical metric
for real-world deployment.

Baselines. We compare PerfCoder against a broad range of instruction-tuned and open-source
baselines. This includes smaller models such as CodeLlama-7B (Roziere et al., 2023) and Olympic-
Coder (Face, 2025), as well as larger 32B-scale models like Qwen2.5-Inst (Team, 2024a), Qwen2.5-
Coder-Inst (Team, 2024b), and DeepSeek-R1-Distill-Qwen (Team, 2025). We also include models
fine-tuned on high-quality PIE subsets, including PIE-CodeLlama and PIE-Qwen2.5-Coder.

To isolate the effect of our balanced dataset and strategy supervision, we fine-tune each model under
identical conditions where applicable.

We evaluate models under two distinct inference modes. In the single-step setting, models are
prompted with the unoptimized (slow) code and directly generate the optimized version, including
any embedded strategies. In the two-step setting (include GRPO), models first generate a set of
optimization strategies, and are then re-prompted to produce optimized code conditioned on those

6
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Table 2: Main Results. “-HQ” indicates LLMs fine-tuned on the high-quality datasets from the PIE
paper. Model name in bold represent our proposed approach, fine-tuned on the category-balanced
dataset constructed using our sampling method.

Method Model Size Inference Steps Speedup Effective Optimization Code Accuracy
GPT-4 - Single-Step 1.32× 26.99% 63.09%
GPT-5 - Single-Step 1.96× 53.25% 93.66%
CodeLlama-Inst 7B Single-Step 1.04× 3.17% 30.27%
Olympic-Coder 7B Single-Step 1.08× 2.56% 18.20%
Qwen2.5-Inst 32B Single-Step 1.50× 26.69% 72.29%
Qwen2.5-Coder-Inst 32B Single-Step 1.39× 22.90% 68.40%
DeepSeek-R1-Distill-Qwen 32B Single-Step 1.23× 11.25% 38.55%
PIE-CodeLlama-HQ 7B Single-Step 1.73× 26.58% 41.41%
PIE-Qwen2.5-Coder-HQ 7B Single-Step 1.98× 32.62% 42.64%
PerfCoder-CL 7B Single-Step 1.94× 21.47% 31.60%
PerfCoder-QC 1.5B Single-Step 1.81× 17.18% 20.35%
PerfCoder-QC 7B Single-Step 2.50× 33.13% 43.46%
Effi-Learner w/o history 32B Five-Rounds 1.47× 26.01% 64.21%
Effi-Learner w/ history 32B Five-Rounds 1.54× 26.28% 64.72%
Qwen2.5-Coder-Inst 32B Two-Step 1.38× 20.86% 72.29%
Qwen2.5-Inst 32B Two-Step 1.32× 20.76% 80.37%
PerfCoder-QC+Qwen2.5-Coder-Inst 7B+32B Two-Step 2.26× 44.89% 61.66%
PerfCoder-QC+Qwen2.5-Inst 1.5B+32B Two-Step 2.54× 43.05% 62.27%
PerfCoder-QC+Qwen2.5-Inst 7B+32B Two-Step 2.52× 43.56% 60.63%
PerfCoder-QC+Qwen2.5-Inst 1.5B+32B Two-Step with GRPO 3.03× 48.06% 59.00%
PerfCoder-QC+GPT-5 1.5B+GPT-5 Two-Step with GRPO 4.82× 79.86% 97.95%

strategies. This two-step procedure is tested in two configurations: (1) using strategies generated
by the model itself, and (2) using strategies provided by PerfCoder. This setup allows us to assess
both the internal strategy reasoning capabilities of large LLMs and the transferability of PerfCoder’s
explicitly trained strategies.

Additionally, we reproduce Effi-Learner (Huang et al., 2024a) in the C++ environment. Because the
original relies on Python-specific profilers (line_profiler, memory_profiler), we replace
them with gcov and end-to-end runtime, ensuring a fair comparison on PIE. The vanilla system
queries the LLM only with the previous round’s code; we denote this as Effi-Learner w/o
history in Table 2. To test the role of context, we also evaluate Effi-Learner w/ history,
which conditions on the full conversation history, allowing the model to build on accumulated
reasoning and prior generations.

Infrastructure and Hyperparameter. All experiments are conducted on a single-node server
with 4× NVIDIA V100 32GB GPUs, except for GRPO training, which requires an additional 8×
NVIDIA V100 32GB GPUs. We fine-tune all models for 2 epochs with a batch size of 64 and a
learning rate of 2× 10−5, following the protocol described in the PIE paper. Decoding is performed
using greedy search. For GRPO, we fine-tune PerfCoder for 1 epoch with 4 generations per sample
and employ Qwen-2.5-32B-Inst as the optimizer, while keeping all other settings unchanged. To
evaluate PerfCoder’s planning ability, we use the GRPO-finetuned PerfCoder to guide GPT-5 in code
optimization.

3.1 RESULTS ANALYSIS

Table 2 presents a comprehensive comparison across all evaluated models under both single-step and
two-step inference settings. Our analysis yields five key findings.

(1) PerfCoder achieves state-of-the-art single-step performance. Both variants of PerfCoder
outperform all direct optimization baselines in speedup. PerfCoder-CL, based on CodeLlama-7B,
achieves a 1.94× speedup, exceeding PIE-CodeLlama-HQ (1.73×) despite PIE-CodeLlama being
fine-tuned with high-quality data distilled from GPT-3.5 (OpenAI, 2023). PerfCoder-QC, based on
Qwen2.5-Coder-7B, achieves a 2.50× speedup and 33.13% effective optimization—surpassing PIE-
Qwen2.5-Coder-HQ (1.98×, 32.62%) and even the much larger 32B Effi-Learner (1.54×, 26.28%).
Notably, PerfCoder-QC-7B also outperforms GPT-4 (1.32×, 26.99%) and GPT-5 (1.96×, 53.25%)
in runtime speedup, despite being smaller and open-source. These results validate the effectiveness of
our strategy-aware, single-step framework and demonstrate that interpretable, optimization-trajectory
supervision can outperform both scale and proprietary pretraining.

(2) PerfCoder strategies generalize to larger models. When used in a two-step setup to guide
stronger models, PerfCoder’s strategies produce substantial performance gains. Qwen2.5-Inst im-
proves from 1.32× to 2.52× speedup and from 20.76% to 43.56% effective optimization when guided
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Table 3: Ablation study results. We test the performance of fine-tuning LLMs without optimization
strategy or category balancing.

Method Speedup Effective Optimization Code Accuracy
PerfCoder-QC 2.50× 33.13% 43.46%

w/o Strategy 2.11× 32.62% 63.08%
w/o Balancing 2.09× 20.76% 33.64%

by PerfCoder-QC. Qwen2.5-Coder-Inst shows a similar trend, improving from 1.38× to 2.26× and
from 20.86% to 44.89%. These results demonstrate that PerfCoder strategies are highly transferable
and provide effective, interpretable guidance for general-purpose LLMs. These results demon-
strate that PerfCoder’s strategies are not only interpretable but also highly transferable—allowing
general-purpose models to benefit from targeted optimization knowledge even without additional
fine-tuning.

(3) Strong optimization guidance does not require large models. Even small models can serve as
effective optimization planners. For example, PerfCoder-QC-1.5B, without any preference learning,
already produces strategies that enable a 32B model to reach performance comparable to that achieved
with PerfCoder-QC-7B as the planner. With just one epoch of GRPO fine-tuning, the 1.5B variant
provides even stronger guidance, allowing the 32B model to achieve a 3.03× speedup—surpassing
all baselines.

(4) Strategy generation without supervision can be harmful. When large models such as Qwen2.5-
Inst and Qwen2.5-Coder-Inst are prompted to generate and follow their own optimization strategies,
performance drops substantially—reaching only 1.32× and 1.38× speedup, respectively, which is
worse than their single-step baselines. This degradation arises not because strategy conditioning is
ineffective, but because these general-purpose models lack optimization-specific supervision and
thus often produce vague, incorrect, or misleading strategies. Unlike PerfCoder, which is explicitly
fine-tuned to generate actionable and interpretable strategies grounded in real transformations, these
models are not strategy-aware and may inadvertently misguide the optimization process. This
highlights the importance of supervised strategy modeling and validates PerfCoder’s design for
delivering reliable planning signals (Section 2).

(5) Code correctness does not guarantee optimization. Correctness is necessary but insufficient for
optimization. For example, Qwen2.5-Inst attains the highest code accuracy (80.37%) in the two-step
setting, yet only 20.76% of its outputs yield effective optimizations (at least 1.1× faster). In contrast,
PerfCoder-QC reaches 33.13% effective optimizations despite a lower accuracy of 43.46%, showing
that strategy-aware learning favors performance gains over merely valid code. This stems from
our curated dataset (Section 2), which aligns targets with user-final or globally optimal solutions,
encouraging models to seek impactful transformations. In practice—where runtime and throughput
dominate—effective optimization is thus a more actionable metric than correctness alone.

3.2 ABLATION STUDY

We ablate the two key components of PerfCoder: category-balanced sampling and strategy-aware
supervision.

First, removing strategy supervision—training the model directly on optimized code without revealing
the underlying intent—reduces speedup. While these models often generate functionally correct code,
they struggle to internalize performance-improving transformations. This is because direct imitation
encourages surface-level learning of final outputs, biasing the model toward correctness rather than
efficiency. In contrast, PerfCoder’s interpretable and customizable strategy supervision explicitly
teaches the model why and how to optimize, resulting in higher speedup.

Second, removing category-balancing reduces the model’s exposure to rare but impactful strategies.
This leads to an overemphasis on frequent patterns and degrades the model’s ability to generalize
beyond commonly seen optimizations.

These findings reinforce our central claim: effective optimization, not just correctness, is the proper
objective for performance-critical code generation. Strategy-aware learning provides the most direct
and interpretable signal for achieving this goal.
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4 RELATED WORK

To assist software engineers in completing coding tasks more efficiently, LLMs for code generation
have rapidly progressed, from generating simple code snippets (Li et al., 2024; Peng et al., 2024;
Zhuo et al., 2024) to supporting repository-level code generation (Jimenez et al., 2023; Zhang et al.,
2023; Liu et al., 2023; Ding et al., 2023). Concurrently, a growing body of research focuses on
optimizing both original and generated code from various perspectives, including bug fixing (Jin et al.,
2023; Xia et al., 2023; Dinh et al., 2023; Xia & Zhang, 2024; Liu et al., 2024), security enhancement
(Berabi et al., 2024; Ahmad et al., 2024; Wu et al., 2023; Pearce et al., 2023), and performance
improvement (Madaan et al., 2023; Du et al., 2024; Waghjale et al., 2024; Huang et al., 2024b; Rosas
et al., 2024; Cummins et al., 2025; Niu et al., 2024; Coignion et al., 2024). Among these, performance
optimization aims to enhance execution speed, reduce memory consumption, and improve energy
efficiency—critical factors for real-time applications, edge deployment, and cloud cost reduction. As
such, generating high-performance code is essential for enabling scalable and efficient intelligent
systems in real-world scenarios.

Achieving such performance gains has motivated a line of work on improving the quality and
efficiency of LLM-generated code during both training and inference. To this end, various search
algorithms have been employed during training (Gao et al., 2024; Wang et al., 2024; Nichols et al.,
2024; Duan et al., 2023; Ishida et al., 2024). Despite their effectiveness, these search-based and
reinforcement learning methods are often computationally intensive and slow. Recent advances
explore alternatives such as self-refinement (Du et al., 2024; Waghjale et al., 2024) and agentic
approaches (Huang et al., 2024a; Chen et al., 2024a), which aim to improve performance but incur
high token costs during inference due to multi-round generation.

A more direct and efficient strategy involves fine-tuning on paired examples of inefficient and
optimized code, allowing models to learn performance-oriented transformations. Several recent
efforts have explored different strategies to improve the performance of LLM-generated code. (Chen
et al., 2024b) formulates the task as a Seq2Seq learning problem focused on generating optimized
code patches, while (Ma et al., 2024) applies contrastive learning and instruction tuning to improve
code quality based on problem descriptions. Both approaches require additional information or
specialized models, which may limit their applicability. (Taneja et al., 2025) addresses the specific
challenge of generating vectorizable code, but its technique lacks generalizability. In contrast, (Huang
et al., 2024c; Madaan et al., 2023) highlight the importance of high-quality training datasets for
enhancing model performance, though their inference processes lack interpretability. Inspired by
these insights, we propose an intuitive and effective data construction and fine-tuning method for
LLM-based code optimization, enabling an interpretable and customizable optimization process with
improved speedup.

5 CONCLUSION

This work addresses the challenge of optimizing LLM-generated code, a critical step toward efficient
and scalable systems. We introduce PerfCoder, a strategy-driven model that improves performance
by learning and applying human-readable optimization strategies. Trained on a balanced, strategy-
annotated dataset of real-world C++ optimizations, PerfCoder achieves notable runtime gains without
iterative refinement or heavy external tooling. Experiments show that PerfCoder not only outperforms
baselines in runtime speedup and effective optimization, but also provides interpretable strategies
that guide larger LLMs more effectively. While our current extractor (Qwen2.5-32B-Inst) may limit
strategy quality compared to frontier models, PerfCoder establishes a practical and reproducible
foundation for strategy-aware optimization. Future work will explore stronger extractors, multi-
language extensions, and hardware-aware tuning to further close the gap between code generation
accuracy and execution efficiency.
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A STRATEGY DEDUPLICATION AND CATEGORIZATION

To obtain the 15 categories used in our method, we perform the following two steps to consolidate
and structure the extracted strategies. The resulting taxonomy is summarized in Table 4. An example
is illustrated in Figure 4.
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[Instruction] You are an expert AI classifier specializing in code optimization strategies. Strictly follow these instructions:
Task: 1. Analyze the provided optimization strategy. 2. Match it to exactly one category from the given list. 3. Return ONLY the category name or “N/A”. 4. No 
explanations, disclaimers, or formatting.
Rules: 1. If no clear match, immediately return “N/A”. 2. Never modify or combine category names 3. Never infer beyond provided information 4. Response must be 
exactly the name of the category or “N/A”.
---
### Categories (EXACT MATCH REQUIRED): {{  category  }}
### Strategy to Classify: {{  strategy  }}
### Classification Output: 

Categorization

[Instruction] You are helping students learn C++ code optimization. Given an Original Code submitted by a student and a corresponding Optimized Code (which the 
student cannot see), your task is to provide clear and structured optimization suggestions. Your goal is to guide the student in improving their Original Code step by 
step. The suggestions should be actionable so that, by following them, the student can independently transform their code into an optimized version—without seeing the 
Optimized Code. List all optimization strategies applied in the Optimized Code. Provide each strategy in this format:  
    - [Strategy Name]: [Explanation]  
Each explanation should clearly describe what needs improvement in the Original Code, why the optimization is beneficial, and how the student should modify their 
code to implement the optimization.  
---
### Example 1: [src_code:example_1] + [tgt_code:example_1] + {{ strategy }}
### Example 2: [src_code:example_2] + [tgt_code:example_2] + {{ strategy }}
### Now analyze this pair: [src_code] + [tgt_code]
#### Optimization Suggestions:  

Direct Strategy Generation

Figure 4: An illustration of strategy deduplication and categorization.

(1) Direct Extraction. For each pair (x(u,p)
slow , x

(u,p)
fast ) in the curated dataset, we prompt the extractor

fθ to generate the corresponding optimization strategies:

s(u,p) = fθ

(
x
(u,p)
slow , x

(u,p)
fast

)
. (9)

The model outputs strategies in the structured tuple format si = (namei,desci), ensuring that each
optimization is described both by a high-level technique label and by a contextual rationale tied to
the input program.

(2) Deduplication and Categorization. Since lexical variation often leads to redundant expressions
of the same optimization, we normalize strategy names to construct a unique set Suniq, yielding
60,650 distinct entries. To impose structure, we define a taxonomy of categories C = {c1, . . . , c15}
by manually inspecting 1,000 random names and then automatically classifying the remainder:

Classify(namei) → cj ∈ C. (10)

This taxonomy supports filtering, balancing, and interpretability. Importantly, over 90.27% of
extracted strategies align with the defined categories, demonstrating both the coverage and the
robustness of the categorization.

B GRPO TRAINING

Here we introduce the fine-tuning of PerfCoder using GRPO.

Let πϕ denote PerfCoder’s policy over strategy sequences in planner mode. During training, for each
slow program x

(u,p)
slow with instruction I, we sample a set of candidate strategies from the old policy:

{s1, . . . , sG} ∼ πϕold(· | I, x
(u,p)
slow ),

where G is the number of samples. Each set of strategies si is passed to the optimizer, which
produces optimized code x

(u,p)
gen,i , and a reward R(si) is computed according to compilation and

speedup (Section 2.4, reward design).

To stabilize training, rewards are normalized within the sampled group:

Ai =
R(si)−mean({R(sj)}Gj=1)

std({R(sj)}Gj=1)
. (11)

The optimization then follows a surrogate with group-relative advantage and KL regularization:

max
ϕ

EI, x(u,p)
slow , si

[
min

(
ρi(ϕ)Ai, clip(ρi(ϕ), 1− ε, 1 + ε)Ai

)
− β DKL

(
πϕ ∥πref

)]
, (12)

13
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where

ρi(ϕ) =
πϕ(si | I, x(u,p)

slow )

πϕold(si | I, x
(u,p)
slow )

,

ε is the clipping parameter, and β controls the KL penalty relative to a fixed reference policy πref .

Thus, for each slow program, PerfCoder generates a set of strategies (e.g., 4 in our experiments),
receives group-relative rewards from the optimizer, and updates its policy so that strategies leading to
higher speedups are increasingly favored.

C STRATEGY CATEGORY DISTRIBUTION

Figure 5 illustrates the distribution of optimization strategy categories in the dataset before and after
applying our category-balanced sampling procedure. Table 4 give the detailed explanation of each
category.

0 20 40 60 80
Percentage (%)

Algorithm Design Optimization

Data Structure Selection

Memory Usage and Allocation

Loop Efficiency Techniques

Compiler Configuration and Tuning

Multithreading and Concurrency

Data Locality and Cache Awareness

Input/Output Throughput Optimization

Instruction-Level Execution Optimization

Function Call Overhead Reduction

Branching Efficiency

Numerical Computation Optimization

Hardware-Aware System Optimization

Resource Lifetime and Scope Management

Efficient Library and API Utilization

74.81

72.58

40.21

75.04

9.33

0.04

1.15

86.72

3.69

21.44

7.78

9.64

0.44

8.4

46.19

66.52

60.58

45.56

71.8

16.94

0.54

8.2

73.9

14.48

35.08

24.5

26.26

2.74

27.5

47.08

Data Percentage of All Strategies Before/After Balanced.

Before Balanced
After Balanced

Figure 5: An illustration of data percentage of strategies in the training data before or after balanced
sampling.

Prior to balancing, the dataset exhibits a strong skewness toward a few dominant strategy types.
Categories such as Input/Output Throughput Optimization and Loop Efficiency Techniques account
for the vast majority of samples—over 86% and 75%, respectively. In contrast, several meaningful
yet underrepresented categories—such as Multithreading and Concurrency, Data Locality and Cache

14
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Awareness, and Hardware-Aware System Optimization—appear in less than 1% of training pairs. This
heavy imbalance limits the model’s exposure to diverse optimization behaviors, biasing it toward
over-represented patterns and reducing its capacity to generalize.

Table 4: Categories of Code Optimization Techniques
Optimization Category Description
Algorithm Design Optimization Choosing or improving algorithms to make the program faster, more

efficient, or simpler, etc.
Data Structure Selection Using the right data structures for better performance, memory use,

search speed, etc.
Memory Usage and Allocation Managing how memory is allocated and accessed to reduce waste, im-

prove speed, avoid fragmentation, etc.
Loop Efficiency Techniques Optimizing loops to run fewer times, faster, or more efficiently with

things like unrolling, breaking early, etc.
Compiler Configuration and Tuning Using compiler flags or settings to let the compiler optimize the code

automatically—like inlining, vectorizing, etc.
Multithreading and Concurrency Running code in parallel using threads, tasks, or async techniques to

make better use of CPU time, etc.
Data Locality and Cache Awareness Organizing data in memory to take advantage of CPU caching and reduce

access time, cache misses, etc.
Input/Output Throughput Optimization Speeding up file, network, or console input/output through buffering,

batching, async I/O, etc.
Instruction-Level Execution Optimiza-
tion

Making use of low-level CPU capabilities like SIMD, pipelining, instruc-
tion reordering, etc.

Function Call Overhead Reduction Reducing the cost of function calls by inlining, simplifying call chains,
avoiding deep stacks, etc.

Branching Efficiency Making conditionals faster by simplifying logic, reducing unpredictable
branches, avoiding nested ifs, etc.

Numerical Computation Optimization Making math-heavy code faster with better formulas, approximations, or
hardware-accelerated operations, etc.

Hardware-Aware System Optimization Tuning code for specific hardware features like CPU cores, vector units,
cache size, memory bandwidth, etc.

Resource Lifetime and Scope Manage-
ment

Managing the lifespan and ownership of resources like memory, files,
threads to avoid leaks, race conditions, etc.

Efficient Library and API Utilization Using well-optimized libraries, built-in functions, or system APIs instead
of writing everything from scratch, etc.

After applying our balancing method (described in Section 2), the long-tail categories are significantly
upsampled, while the most frequent ones are proportionally reduced. For example, the frequency of
the Multithreading and Concurrency category increases from 0.04% to 0.54%, and Data Locality and
Cache Awareness increases from 1.15% to 8.2%. Meanwhile, the share of Input/Output Throughput
Optimization decreases from 86.72% to 73.9%, preserving its presence but reducing its dominance.

This rebalancing procedure encourages the model to learn from a broader spectrum of optimization
strategies. By promoting rare but impactful patterns, the balanced dataset enables better generalization
and more robust performance—particularly on less common yet industrially relevant optimization
scenarios. As evidenced in our ablation results, this leads to consistent improvements in effective
optimization, even when overall code accuracy remains unchanged.

D TRANSFERABILITY TO OTHER BENCHMARKS

Table 5: Experimental results. We further fine-tune our model and PIE-Qwen2.5-Coder-HQ on a
curated subset of PolyBenchC and evaluate their performance alongside other selected baselines.

Method Model Size Inference Steps Speedup Effective Optimization Code Accuracy
Qwen2.5-32B-Inst 32B Single-Step 1.027× 12.5% 75.0%
PIE-Qwen2.5-Coder-HQ 7B Single-Step 1.016× 12.5% 12.5%
PerfCoder-QC 7B Single-Step 1.053× 25.0% 50.0%
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D.1 DATA COLLECTION

To evaluate the transferability of PerfCoder beyond the PIE dataset, we construct a small auxiliary
benchmark using the PolyBenchC suite (Pouchet, 2012; 2016). PolyBenchC consists of 30 loop-
dominated numerical kernels characterized by static control flow, drawn from domains such as linear
algebra, signal processing, dynamic programming, and scientific simulations.

We curate this benchmark in a two-stage process. First, for each function, we prompt sev-
eral instruction-tuned language models—including CodeLlama-7B-Inst, CodeLlama-13B-Inst, and
LLaMA3.3-Inst (Touvron et al., 2024)—with transformation-specific instructions targeting classic
loop optimizations. These include loop unrolling (by factors of 2, 4, and 8), loop tiling, loop fusion,
loop fission, operator strength reduction, and cache locality enhancement. Each prompt requests
an optimized version of the given function using the specified transformation technique. This step
results in a total of 1,620 generated code samples across model variants and prompt variations.

In the second stage, we filter the generated outputs to ensure quality and relevance. Specifically,
we discard samples that either (i) fail to compile, (ii) exhibit no structural transformation compared
to the original code, or (iii) do not yield any runtime performance gain when evaluated on an Intel
Xeon server using gcc with -O3 and time profiling. After filtering, we retain 185 unique and non-
trivial optimized code instances that exhibit at least one interpretable transformation and measurable
performance improvement over the baseline.

D.2 EXPERIMENTAL SETTINGS

To evaluate the transferability of PerfCoder to new performance-critical domains, we conduct experi-
ments on the PolyBenchC benchmark—a suite of loop-intensive scientific kernels commonly used in
compiler and optimization research.

We randomly select 22 kernels from PolyBenchC for fine-tuning and use the remaining 8 kernels
for evaluation. From the selected training set, we collect all available slow-fast pairs, yielding 141
training examples. Fine-tuning is performed for a single epoch using a learning rate of 1× 10−5 and
a batch size of 4.

We apply this setup to fine-tune both PerfCoder-QC and the PIE baseline model (PIE-Qwen2.5-
Coder-HQ) using the curated PolyBench training subset. Their performance is then evaluated on the
held-out test kernels, alongside general-purpose LLMs in the single-step inference mode. The full
results are reported in Table 5.

D.3 EXPERIMENTAL ANALYSIS

Table 5 presents the evaluation results on the held-out PolyBenchC kernels. Among all models
tested, PerfCoder-QC achieves the strongest transfer performance, yielding a speedup of 1.053× and
an effective optimization rate of 25.0%. In contrast, the baseline PIE-Qwen2.5-Coder-HQ, which
lacks strategy-aware training and was fine-tuned on a high-quality subset of PIE using output-only
supervision, achieves only 1.016× speedup and 12.5% effective optimization—matching the score of
Qwen2.5-32B-Inst, a significantly larger model (32B vs. 7B).

These results reinforce a core insight: explicit strategy modeling is more effective than mimicking op-
timized code alone. PerfCoder’s use of interpretable, context-specific optimization strategies—paired
with a category-balanced training set—enables it to generalize more robustly to structurally dis-
tinct tasks, such as numerical kernel optimization in PolyBenchC. Unlike code-only fine-tuning,
strategy-guided supervision focuses the model’s learning on why and how specific transformations
yield performance gains, facilitating transfer to new domains.

Additionally, the experiment supports our earlier claim that effective optimization is a more meaning-
ful metric than code accuracy in performance-critical scenarios. For example, Qwen2.5-Inst achieves
the highest code accuracy on this benchmark (75.0%), yet only 12.5% of its outputs meet the threshold
for effective optimization. Meanwhile, PerfCoder-QC, despite a lower code accuracy (50.0%), pro-
duces twice as many successful speedups. This reflects a known limitation of training on optimized
code alone: the model may overfit to syntactic correctness without learning performance-centric
transformations.
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Slow: 1.00×
#include <iostream>

#include <vector>

#include <string>

#include <algorithm>

#include<climits>

using namespace std;

#define ll long long

#define tc                int T;cin>>T;while(T-

-)

int a[100000];

int main()

{

    int n, c, b, k ; cin >> n >> k;

    for (int& e : a)cin >> e;

    vector<int> dp(n, INT_MAX);

    dp[0] = 0;

    for (int i = 0; i < n; ++i) {

        for (int e = i + 1; e <= i + k; ++e) {

            if (e < n)

                if ((dp[i] + abs(a[e] - a[i])) < 

dp[e])

                    dp[e] = dp[i] + abs(a[e] - 

a[i]);

        }

    }

    cout << dp[n - 1] << '\n';

    return 0;

}

Fast: 2.20×
#include <iostream>

#include <vector>

#include <string>

#include <algorithm>

#include<climits>

using namespace std;

#define ll long long

#define tc                int T;cin>>T;while(T-

-)

int main()

{

    int n, c, b, k ; cin >> n >> k;

    vector<int> a(n);

    for (int& e : a)cin >> e;

    vector<int> dp(n, INT_MAX);

    dp[0] = 0;

    for (int i = 0; i < n; ++i) {

        for (int e = i + 1; e <= i + k; ++e) {

            if (e < n)

                if ((dp[i] + abs(a[e] - a[i])) < 

dp[e])

                    dp[e] = dp[i] + abs(a[e] - 

a[i]);

        }

    }

    cout << dp[n - 1] << '\n';

    return 0;

}

PerfCoder-QC: 3.75×
#include <cstdio>

#include <cstring>

#include <algorithm>

using namespace std;

const int maxn = 1e5 + 10;

int n, k;

int a[maxn];

int dp[maxn];

int main() {

    scanf("%d%d", &n, &k);

    for (int i = 0; i < n; ++i) {

        scanf("%d", &a[i]);

    }

    memset(dp, 0x3f, sizeof(dp));

    dp[0] = 0;

    for (int i = 0; i < n; ++i) {

        for (int j = i + 1; j <= min(n - 1, i + 

k); ++j) {

            dp[j] = min(dp[j], dp[i] + abs(a[j] - 

a[i]));

        }

    }

    printf("%d\n", dp[n - 1]);

    return 0;

}

Qwen2.5-32B-Inst:
#include <iostream>

#include <climits>

#include <cstdlib> // For std::abs

using namespace std;

#define ll long long

#define tc int T; cin >> T; while(T--)

const int MAX_N = 100000;

int a[MAX_N];

int main() {

    int n, k;

    cin >> n >> k;

    for (int i = 0; i < n; ++i) {

        cin >> a[i];

    }

    vector<int> dp(n, INT_MAX);

    dp[0] = 0;

    for (int i = 0; i < n; ++i) {

        for (int e = i + 1; e <= i + k && e < n; 

++e) {

            dp[e] = min(dp[e], dp[i] + 

std::abs(a[e] - a[i]));

        }

    }

    cout << dp[n - 1] << '\n';

    return 0;

}

PerfCoder-QC+Qwen2.5-32B-Inst: 

11.78×
#include <cstdio>

#include <algorithm>

#include <climits>

#define ll long long

#define tc int T; scanf("%d", &T); while(T--)

int a[100000];

int dp[100000];

int main() {

    int n, k;

    scanf("%d %d", &n, &k);

    for (int i = 0; i < n; ++i) {

        scanf("%d", &a[i]);

    }

    for (int i = 0; i < n; ++i) {

        dp[i] = INT_MAX;

    }

    dp[0] = 0;

    for (int i = 0; i < n; ++i) {

        for (int e = i + 1; e <= i + k && e < n; 

++e) {

            if (dp[i] + abs(a[e] - a[i]) < dp[e]) {

                dp[e] = dp[i] + abs(a[e] - a[i]);

            }

        }

    }

    printf("%d\n", dp[n - 1]);

    return 0;

}

PerfCoder-QC Strategy:
1. Input/Output Throughput Optimization: The 

original code uses `cin` and `cout` for input and 

output operations, which can be slower compared 

to `scanf` and `printf`. Consider using `scanf` and 

`printf` for faster I/O operations, especially in 

performance-critical sections of your code.

2. Data Structure Selection: The original code 

uses `std::vector<int>` for dynamic memory 

allocation, which can introduce overhead due to 

dynamic resizing. Consider using a fixed-size array 

if the size is known beforehand, as it can be more 

efficient in terms of memory usage and access 

speed.

3. Loop Efficiency Techniques: The original 

code uses nested loops with index-based iteration, 

which can be less efficient than range-based loops 

or more optimized loop structures. Consider using 

range-based loops or optimizing the loop structure 

to reduce the number of iterations and improve 

performance.

Qwen2.5-32B-Inst Strategy:
1. Remove Unnecessary Includes: The code 

includes headers that are not used (`<vector>`, 

`<string>`, `<algorithm>`).

2. Use `const` for Constants: Use `const` for the 

array size to avoid magic numbers.

3. Optimize the Loop Structure: The nested loop 

can be optimized by reducing the number of 

checks and operations.

Use `std::abs` Instead of `abs`: To avoid potential 

conflicts with the C library's `abs` function.

4. Remove Unnecessary Variables: The 

variables `c` and `b` are declared but not used.

PIE-Qwen2.5-Coder-HQ  

(folded):
#include <bits/stdc++.h>

using namespace std;

#define ll long long

#define io 

ios_base::sync_with_stdio(false);cin.tie(

NULL)

#define MOD 1000000007

ll bigpow(ll base, ll pw, ll M) { /* ... */ }

ll maxi(ll a, ll b) { /* ... */ }

ll mini(ll a, ll b) { /* ... */ }

ll abse(ll a) { return a < 0 ? -a : a; }

ll ceili(ll a, ll div) { return (a + div - 1) / 

div; }

int h, w;

ll** dp;

ll f(int i, int j, vector<int>& v) {

    if (i >= h || j >= w) return 

LLONG_MAX;

    if (i == h - 1 && j == w - 1) return 0;

    if (dp[i][j] != LLONG_MAX) return 

dp[i][j];

    return dp[i][j] = abse(v[i] - v[j]) + min(f(i 

+ 1, j + 1, v), f(i + 1, j, v));

[Too Long]

Figure 6: A real example from the PIE testset. Code segments highlighted in red fail to compile or do
not pass all test cases, while those in green are functionally correct. The green numbers indicate the
corresponding speedup. The rightmost boxes in each row show the optimization strategies proposed
by PerfCoder-QC and Qwen2.5-32B-Inst (in a two-step setting), respectively.

E CASE STUDY

Figure 6 presents a real example from the PIE benchmark, highlighting the performance impact of
strategy-aware optimization across multiple models and inference modes.

The original slow submission contains several inefficiencies, such as dynamic memory allocation
via std::vector, slow C++ I/O using cin/cout, and redundant header files. The manually
optimized reference version improves stability but yields only a moderate 2.20× speedup.

PerfCoder-QC, trained with strategy-aware supervision, applies three concrete strategies: (1) replac-
ing I/O with scanf/printf, (2) using fixed-size arrays in place of vectors, and (3) optimizing loop
bounds with min(). These result in a 3.75× speedup, demonstrating effective performance-oriented
transformation.

Qwen2.5-32B-Inst, when used without external guidance, produces mostly stylistic edits—such as
removing unused headers and variables—that yield only minor runtime improvement (1.055×).

However, when Qwen2.5-32B-Inst is guided by strategies extracted by PerfCoder-QC in a two-step
inference setup, it achieves a dramatic 11.78× speedup. This not only outperforms all other models
but also underscores the benefit of modular, interpretable optimization guidance.
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Overall, this case study reinforces our core insight: strategy-aware supervision produces more
meaningful and transferable optimization behaviors than code imitation alone, especially when paired
with instruction-following models in collaborative settings.

F LLM USAGE

This paper uses a Large Language Model (LLM) only to polish English writing, including grammar,
clarity, and style. All ideas, methods, and results are entirely authored by the researchers.

18


	Introduction
	Method
	Single-Step Code Optimization Mode and Supervised Fine-Tuning
	Automated Code Optimization Strategy Synthesis
	Dataset Reconstruction and Balanced Strategy Sampling
	Reinforcement Fine-Tuning in Planner Mode

	Experimental Results
	Results Analysis
	Ablation Study

	Related Work
	Conclusion
	Strategy Deduplication and Categorization
	GRPO training
	Strategy Category Distribution
	Transferability to Other Benchmarks
	Data Collection
	Experimental Settings
	Experimental Analysis

	Case Study
	LLM Usage

