
AegisFL: Efficient and Flexible Privacy-Preserving Byzantine-Robust Cross-silo
Federated Learning

Dong Chen 1 2 Hongyuan Qu 1 2 Guangwu Xu 1 2 3 4

Abstract

Privacy attacks and poisoning attacks are two
of the thorniest problems in federated learning
(FL). Homomorphic encryption (HE), which al-
lows certain mathematical operations to be done
in the ciphertext state, provides a way to solve
these two problems simultaneously. However,
existing Paillier-based and CKKS-based privacy-
preserving byzantine-robust FL (PBFL) solutions
not only suffer from low efficiency but also ex-
pose the final model to the server. Additionally,
these methods are limited to one robust aggrega-
tion algorithm (AGR) and are therefore vulnerable
to AGR-tailored poisoning attacks. In this paper,
we present AegisFL, an efficient PBFL system
that provides the flexibility to change the AGR.
We first observe that the core of the existing ad-
vanced AGRs is to calculate the inner products,
L2 norms and mean values for vectors. Based
on this observation, we tailor a packing scheme
for PBFL, which fits perfectly with RLWE-based
fully homomorphic encryption. Under this pack-
ing scheme, the server only needs to perform one
ciphertext multiplication to construct any required
AGR, while the global model only belongs to hon-
est clients. Finally, we conduct extensive exper-
iments on different datasets and adversary set-
tings, which also confirm the effectiveness and
efficiency of our scheme.

1School of Cyber Science and Technology, Shandong Univer-
sity, Qingdao, China 2Key Laboratory of Cryptologic Technology
and Information Security of Ministry of Education, Shandong Uni-
versity, Qingdao, China 3Shandong Institute of Blockchain, Jinan,
China 4Quan Cheng Laboratory, Jinan, China. Correspondence to:
Guangwu Xu <gxu4sdq@sdu.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Federated learning (FL) (McMahan et al., 2017) is an emerg-
ing machine learning paradigm that was proposed to solve
the data privacy problem when multiple clients jointly train
machine learning models. However, there are two fatal
shortcomings in traditional FL. First, a large number of stud-
ies (Nasr et al., 2019; Geiping et al., 2020; Zhu et al., 2019;
Zhang et al., 2021) have shown that the server can launch
privacy attacks based on intermediate results uploaded by
clients, thereby recovering some sensitive information of
clients, which makes federated learning meaningless. Sec-
ond, FL is vulnerable to poisoning attacks that some mali-
cious clients may upload manipulated intermediate results
to the server (Fang et al., 2020; Shejwalkar & Houmansadr,
2021; Baruch et al., 2019; Bagdasaryan et al., 2020; Wang
et al., 2020). Even a single malformed intermediate re-
sult can significantly alter the final model in FL training
(Roy Chowdhury et al., 2022). As a result, the final model
will have poor performance or be left backdoors by mali-
cious clients.

Unfortunately, mitigating both privacy attacks and poison-
ing attacks simultaneously is a very challenging problem: in
general, to defend against privacy attacks, clients’ interme-
diate results will be encrypted or masked, which makes the
intermediate results invisible to the server. To guard against
poisoning attacks, using AGR on the server is an effective
method because AGR can filter out abnormal intermediate
results. However, this method requires the server to access
the clients’ intermediate results and perform comprehensive
similarity measurements in plaintext. Therefore, they are
mutually orthogonal aspects.

Homomorphic encryption not only provides strong privacy
guarantees, but also allows certain mathematical operations
(such as addition and multiplication) to be performed di-
rectly on encrypted data without prior decryption. When
decrypted, the output is the same as that produced from
plaintext data. Therefore, some works, such as Paillier-
based solutions (Liu et al., 2021; Ma et al., 2022; Lu et al.,
2023) and CKKS-based solutions (Miao et al., 2022; Rahu-
lamathavan et al., 2023), explore using HE as a privacy
protection method to build privacy-preserving byzantine-
robust FL (PBFL), which can simultaneously solve privacy

1

AegisFL: Efficient and Flexible Privacy-Preserving Byzantine-Robust Cross-silo Federated Learning

Schemes Privacy-preserving technology Similarity measurement method Efficiency Ownership of the final model

PEFL (Liu et al., 2021) Paillier Pearson correlation coefficient Low Clients
ShieldFL (Ma et al., 2022) Paillier Cosine similarity Low Clients
Scheme (Lu et al., 2023) Paillier Adjusted cosine similarity Low Clients and Server
Scheme (Miao et al., 2022) CKKS Cosine similarity Moderate Clients and Server
FheFL (Rahulamathavan et al., 2023) CKKS Euclidean distance Moderate Clients and Server
AegisFL (ours) RLWE-based HE Various High Clients

Table 1. Comparison between our scheme and previous schemes.

attacks and poisoning attacks. However, this leads to sev-
eral serious problems when trying to use these schemes in
practice, as shown below.

Firstly, heavy computational burden. When using Paillier
(Liu et al., 2021; Ma et al., 2022; Lu et al., 2023), each
element in an intermediate result needs to be quantified and
encrypted one by one, and measuring the similarity between
intermediate results in Paillier ciphertext also requires a lot
of additional calculation and communication, which makes
their methods very inefficient. When using CKKS (Miao
et al., 2022; Rahulamathavan et al., 2023), thanks to the
single-instruction-multiple-data (SIMD), the efficiency is in-
creased to a certain extent compared with the Paillier-based
scheme. However, calculating the inner products and L2

norms for N -dimensional vectors under CKKS ciphertext
involves log2N rotations, which is very time-consuming.
Furthermore, in (Miao et al., 2022), they use the ReLU
function to realize their AGR. However, when evaluating
in CKKS, an iteration algorithm is used to approximate
the ReLU function, which requires a high multiplication
depth (possibly requiring bootstrapping), severely degrad-
ing efficiency. Secondly, lack of flexibility. Existing PBFL
solutions are all designed for a specific AGR. The AGR
and privacy protection technology are bound together. It is
difficult to change the AGR in the existing PBFL methods.
However, due to the influence of factors such as the type of
poisoning attack and the distribution of clients’ data (maybe
iid or non-iid), different AGRs may exhibit varying levels of
effectiveness, so it is difficult to determine an optimal AGR.
Even worse, if malicious clients know the adopted AGR,
they can launch targeted advanced poisoning attacks so that
the poisoned models completely bypass the detection of the
adopted AGR. Thirdly, the final model is exposed to the
server. In cross-silo FL, the final model should only be vis-
ible to the clients (Zhang et al., 2020; Kairouz et al., 2021).
However, some schemes (Lu et al., 2023; Miao et al., 2022;
Rahulamathavan et al., 2023) expose the final model to the
server, which does not meet the requirements of cross-silo
FL.

In this paper, we strive to build an efficient PBFL system
that can flexibly change AGR while ensuring that the final
model only belongs to honest clients. To achieve this goal,
we take a closer look at the AGRs in existing PBFL and

observe that almost all of them build upon three basic oper-
ations: inner product, L2 norm and mean value. Based on
this observation, we propose AegisFL, whose core idea is
to use a special packing scheme to encode the intermediate
results into polynomials, while protecting the polynomi-
als with a RLWE-based HE. With the help of polynomial
ring structure of HE scheme, only one polynomial modular
multiplication is performed to get some meaningful results,
such as the inner product of two vectors or the L2 norm and
mean value of a vector. Then, a variety of state-of-the-art
AGRs can be flexibly constructed based on these results.
In addition, in order to reduce the communication burden,
we also compress the ciphertext without affecting the re-
sults. In a word, we tailor a HE-based privacy preserving
scheme for PBFL, while retaining high efficiency and flex-
ibility. TABLE 1 gives a comparison of AegisFL with the
above-mentioned PBFL solutions.

The contributions of this paper can be summarized as fol-
lows:

• To the best of our knowledge, we propose the first
PBFL scheme that can flexibly change the AGR.

• We use a special packing method that is perfectly com-
patible with RLWE-based HE and FL. In this packing
method, the inner products, L2 norms and mean values
for vectors can be efficiently calculated.

• We have carried out our experiments on two dataset and
three types of poisoning attacks, and these experiments
show the high accuracy and efficiency of AegisFL.

2. Background
2.1. Federated Learning

In a standard cross-silo FL setting, with the help of a server,
U clients C = {C1, C2, . . . , CU} aim to cooperatively train a
global model w without leaking their own data. Each client
has a local dataset Du, u ∈ [1, U], the training objective is
argminw

∑U
u=1 Lu(w, Du), where Lu(w, Du) is the loss

for client u’s local dataset.

At the beginning of each global iteration t, the server first
sends the current global model w(t) to each client. Sec-
ondly, after receiving the global model, each client Cu con-

2

AegisFL: Efficient and Flexible Privacy-Preserving Byzantine-Robust Cross-silo Federated Learning

ducts one or more local iterations based on its dataset to
obtain a local model w(t)

u , then sends local model w(t)
u or

local model update g
(t)
u = w(t) − w

(t)
u to the server. Fi-

nally, the server aggregates the intermediate results sent by
all clients to obtain a new global model w(t+1) according
to a defined aggregation rule, such as FedAvg. Specifi-
cally, if clients send local models to the server, the new
global model w(t+1) = 1

U

∑U
u=1 w

(t)
u . If clients send

local model updates to the server, the new global model
w(t+1) = w(t)−g(t), g(t) = 1

U

∑U
u=1 g

(t)
u is global model

update. The above process is repeated until the termination
condition is reached.

2.2. Poisoning Attacks

Based on adversarial goals, poisoning attacks can also
be divided into targeted poisoning attacks (Bagdasaryan
et al., 2020; Xie et al., 2019; Wang et al., 2020) and untar-
geted poisoning attacks (Fang et al., 2020; Shejwalkar &
Houmansadr, 2021; Baruch et al., 2019). Untargeted attacks,
such as Krum attack (Fang et al., 2020) and Min-Max attack
(Shejwalkar & Houmansadr, 2021), aim to corrupt the global
model so that it makes wrong predictions indiscriminately
for a large number of test examples, that is, the test error
rate is high. Targeted attacks, such as Scaling attack (Bag-
dasaryan et al., 2020) and PGD attack (Wang et al., 2020),
aim to destroy the integrity of the global model, resulting
in incorrect predictions for specific input but maintaining
correct predictions for other test samples.

2.3. Privacy Attacks

Privacy attacks refer to when the server gets the plaintext in-
termediate results sent by clients, the server can infer some
sensitive information from them. In recent years, a variety
of privacy attacks have been proposed, including member
inference (Nasr et al., 2019), attribute inference (Geiping
et al., 2020; Zhu et al., 2019), and distribution estimation
(Zhang et al., 2021). It is even possible to reconstruct mul-
tiple independent input images from the average gradient
(Geiping et al., 2020). Therefore, it is essential to protect
the intermediate results.

3. Preliminaries
3.1. RLWE-based Homomorphic Encryption

Homomorphic encryption is a cryptographic technology
that can perform arithmetic operations on ciphertext. In this
paper, we use CKKS scheme (Cheon et al., 2017). We first
define some parameters used in this scheme. Let Z,Q,R
and C be the set of integers, rational numbers, real numbers
and complex numbers respectively. For a power-of-2 N ,
let R = Z[X]/

(
XN + 1

)
, and RQ = R/QR. Let L be

the level of CKKS scheme, and P ∈ Z be the big integer

used in the key switching stage. Let Ql = q0 · ∆l for
0 < l ≤ L. Let ∆ be the scaling factor of CKKS scheme.
Let χkey, χerr, χenc denote the small distributions overR for
secret, error and encryption respectively. The following is a
concrete description of CKKS scheme that we use.

• KeyGen. Sample a secret s ← χsec, a random a ←
RQL

, and an error e ← χerr. Set secret key as sk ←
(1, s) and public key pk ← (b, a) ∈ R2

QL
, where

b = −a · s + e (mod QL). As for evaluation key,
sample a′ ← RP ·QL

, e′ ← χerr, set evk ← (b′, a′),
where b′ = −a′ · s+ P · s2 + e′ (mod P ·QL).

• Encode(m). We do not use the packing scheme in
CKKS. Here we first briefly describe our packing
scheme, and Sect. 3.2 will give its details and function-
ality. For a vector m = [m0,m1, . . . ,mN−1] ∈ RN ,
we give the following two packing methods:

- pm1(m): Compute m′ =
∑N−1

i=0 mi · Xi ∈
R[X]/(XN + 1), return an integer polynomial
m = ⌊∆ ·m′⌉ ∈ R.

- pm2(m): Computem′ = −
∑N−1

i=0 mi ·XN−i ∈
R[X]/(XN + 1), return an integer polynomial
m = ⌊∆ ·m′⌉ ∈ R.

• Decode(m). For m ∈ R, compute m′ = m/∆ =∑N−1
i=0 m′

i · Xi ∈ R[X]/(XN + 1), return a vector
m = [m′

0,m
′
1, . . . ,m

′
N−1].

• Enc(m, pk). For m ∈ R, sample r ← χenc and
e1, e2 ← χerr . Then output ct← (r · b+m+ e1, r ·
a+ e2) (mod QL).

• Dec(ct, sk). For ct = (c1, c2) ∈ R2
Ql

, output m̃ ←
c1 + c2 · s (mod Ql).

• Add(ct; ct′). For ct, ct′ ∈ R2
Ql

, output ĉt← ct+ ct′

(mod Ql).

• cAdd(ct,m′). For ct = (c0, c1) ∈ R2
Ql

and a plaintext
polynomial m′ ∈ R, output ĉt ← (c0 + m′, c1) ∈
RQl

.

• Mul(ct, ct′, evk). For two level l ciphertexts ct =
(c0, c1), ct′ = (c′0, c

′
1), compute

c̃t = (d0, d1) + ⌊P−1 · d2 · evk⌉ ∈ R2
Ql
,

where (d0, d1, d2) = (c0c
′
0, c0c

′
1 + c1c

′
0, c1c

′
1) ∈ R3

Ql
,

then return ĉt = ⌊∆−1 · c̃t⌉ ∈ R2
Ql−1

.

• cMul(ct, cons). For a level l ciphertext ct = (c0, c1)
and a constant cons ∈ R, let c̃t = (⌊cons · ∆⌉ ·
c0, ⌊cons ·∆⌉ · c1) ∈ R2

Ql
, then return ĉt = ⌊∆−1 ·

c̃t⌉ ∈ R2
Ql−1

.

3

AegisFL: Efficient and Flexible Privacy-Preserving Byzantine-Robust Cross-silo Federated Learning

3.2. Practical Packing Scheme

In this section, we describe a practical encode scheme (Ya-
suda et al., 2014) that exploits the structure of polynomial
rings to efficiently compute the L2 norm and mean value
of a vector, or the inner product of two vectors. We have
introduced the packing algorithms pm1 and pm2 in Sect.
3.1.

Assume a = [a0, a1, . . . , aN−1] ∈ RN , p
(1)
a ←

pm1(a,∆) and p(2)a ← pm2(a,∆). Then:

p(1)a · p(2)a =

⌊
N−1∑
i=0

∆ai ·Xi

⌉
·

−N−1∑
j=0

∆aj ·XN−j


=

N−1∑
i=0

⌊∆ai⌉2 + (non-constant terms) ∈ R,

(1)
we find that the constant of p(1)a · p(2)a is about ∆2 times
the squared L2 norm of a. The larger the ∆, the higher the
precision.

For computing the mean value of a, we need to define a
polynomial p = −

∑N−1
i=0 XN−i. Then:

p(1)a · p =
N−1∑
i=0

⌊∆ai⌉+ (non-constant terms) ∈ R, (2)

we can calculate that the mean value of a is about (p(1)
a ·p)0
∆·N .

For the inner product of a and b = [b0, b1, . . . bN−1] ∈ RN ,
p
(2)
b ← pm2(b). Then:

p(1)a ·p
(2)
b =

N−1∑
i=0

⌊∆ai⌉·⌊∆bi⌉+(non-constant terms) ∈ R,

(3)
it is clear that the constant of p(1)a · pb is about ∆2 times the
inner product of a and b.

It is worth noting that with this special packing approach,
computing the inner product, L2 norm and mean value re-
quires only a single polynomial multiplication. Conversely,
in the original CKKS encoding scheme, requiring one poly-
nomial multiplication, log2N rotations, and log2N poly-
nomial additions for both inner product and L2 norm, and
log2N rotations and log2N polynomial additions for mean
value.

4. Observation
In this section, let’s review some AGRs in existing PBFL.

(1) AGR in ShieldFL (Ma et al., 2022): In ShieldFL,
servers first check whether the L2 norm of the local
model update g

(t)
u is 1, if not, it is discarded directly.

Then servers determine a baseline local model update
g∗ which has the lowest cosine similarity to the global
model update g(t−1) of the (t−1)-th global iteration. A
confidence score is calculated for each local model up-
date g(t)

u with L2 norm of 1 as su = 1− cos(g∗, g
(t)
u).

Lastly, updating the global model as follows:

w(t+1) = w(t) −
U∑

u=1

su
s
· g(t)

u , (4)

where s =
∑U

u=1 su.

(2) AGR in (Liu et al., 2021) and (Lu et al., 2023): In these
two AGRs, the coordinate-wise medians g∗ of all local
model updates is securely calculated first. Then, in
(Liu et al., 2021) the trust score for each local model
update g

(t)
u is defined as follows:

su = max{0, ln(
1 + ρ

g∗,g
(t)
u

1− ρ
g∗,g

(t)
u

)− 0.5},

where ρ
g∗,g

(t)
u

=
Cov(g∗,g(t)

u)

σ(g∗)σ(g
(t)
u)

is the Person correla-

tion coefficient between g∗ and g
(t)
u . Similarly, in

(Lu et al., 2023), the trust score is defined as su =

(ReLU(acs(g∗, g
(t)
u)))2, where acs(g∗, g

(t)
u) is the

adjusted cosine similarity (Sarwar et al., 2001) between
g∗ and g

(t)
u . Lastly, they update the global model as in

Equation (4).

(3) AGR in (Miao et al., 2022): This AGR is actually based
on FLTrust (Cao et al., 2020). In this AGR, the server
requires to possess a clean trusted dataset and trains a
server model update g

(t)
s with L2 norm of 1. In each

global iteration t, the server also checks whether the L2

norm of local model update is 1. Then for each local
model update g

(t)
u whose L2 norm is 1, server defines

a trust score as su = ReLU(cos(g
(t)
u , g

(t)
s)). Lastly,

the global model of next round can be computed as in
Equation (4).

(4) AGR in FheFL (Rahulamathavan et al., 2023): The
basic idea of this AGR is to calculate the squared Eu-
clidean distance between each local model w(t)

u and
the current global model w(t): d(t)u = ∥w(t) −w

(t)
u ∥2.

The confidence score for each local model w(t)
u is then

calculated as su = 1 − d(t)
u∑U

u=1 d
(t)
u

. We can find that∑U
u=1 su = U − 1. Lastly, the global model of next

round can be computed as follows:

w(t+1) =
1

U − 1

U∑
u=1

su ·w(t)
u .

4

AegisFL: Efficient and Flexible Privacy-Preserving Byzantine-Robust Cross-silo Federated Learning

(5) FLAME (Nguyen et al., 2022): FLAME is one of the
most advanced AGRs. Firstly, the server filters out
local models that are anomalous in direction based on
the cosine similarity between local models:

{wa1 ,wa2 , . . . ,waU′} ← Clustering(c11, . . . , cUU),

where cij is the cosine distance between w
(t)
i and w

(t)
j ,

i, j ∈ [1, U], U ′ is the number of admitted local mod-
els, and Clustering() is a clustering algorithm such
as HDBSCAN (Campello et al., 2013). Secondly, the
adaptive clipping bound St at round t is calculated
for each local model based on the Euclidean distance
between the local model and the current global model:

St ← Median(e1, . . . , eU),

where eu is the Euclidean distance between w
(t)
u and

w(t). Then the server clip the each admitted model by
adaptive clipping bound St as follows:

w(t)
au

= w(t) + (w(t)
au
−w(t)) ·Min(1, St/eau).

But this clipping formula is not friendly to our system
framework because w(t) is included in this clipping
formula. In ciphertext form, the server cannot refresh
ct(w(t)), so each global iteration requires one layer of
multiplication depth, which is unrealistic. To overcome
this problem, we transform the clipping formula into
the following form:

w(t)
au

= w(t)
au
·Min(1, St/eau).

We believe that the modified clipping formula still
works, because the purpose of clipping is to ensure that
the L2 norm of the local model does not exceed St, and
our clipping formula can do this. We refer to FLAME
using modified clipping formula as M-FLAME. In Sect.
7, our experiments also show that modified-FLAME
has very superior robustness. Lastly, the server com-
putes the global model of next round as follows:

w(t+1) =
1

U ′

U ′∑
u=1

w(t)
au

+ noi.

where noi is the adaptive noising.

In Figure 1, we analyze all indicators used by the above
AGRs. We find that for two N -dimensional vectors a and
b, the Euclidean distance, cosine similarity, Pearson corre-
lation coefficient, and adjusted cosine similarity between
a and b can all be deduced when their inner products, L2

norms and mean values are known. Recall the packing
method introduced in Sect. 3.2, it fits our needs very well.

𝒂

𝒂,𝒃

ത𝒂

ത𝒃

𝒄𝒐𝒔 𝒂,𝒃 =
𝒂,𝒃

𝒂 ∙ 𝒃

𝒂−𝒃 = 𝒂 𝟐+ 𝒃 𝟐−𝟐 𝒂,𝒃

𝒃

𝝆𝒂,𝒃 =
𝑪𝒐𝒗(𝒂,𝒃)

𝝈(𝒂)𝝈(𝒃)
=

𝒂,𝒃 −𝑵 ∙ ത𝒂 ∙ ത𝒃

𝒂 𝟐−𝑵 ∙ ത𝒂𝟐 ∙ 𝒃 𝟐−𝑵 ∙ ത𝒃𝟐

𝒂𝒄𝒔 𝒂,𝒃

=
𝒂,𝒃 −𝑵 ∙𝝁𝟐

𝒂 𝟐+𝑵 ∙𝝁𝟐 −𝟐𝑵𝝁ത𝒂 ∙ 𝒃 𝟐+𝑵 ∙𝝁𝟐 −𝟐𝑵𝝁ത𝒃

𝝁 =
ത𝒂+ ത𝒃

𝟐

Figure 1. Indicators.

② Local training

⋯

𝑺𝟐 𝑺𝟏

① 𝒔𝒌𝒄

𝒔𝒌𝒔

① Key distribution

③ Upload
encrypted
local
models

④ Secure defense

② ②

⑤ download
encrypted
global
model

𝒑𝒌𝒄, 𝒑𝒌𝒔, 𝒆𝒗𝒌𝒔
is public

Key Center

Honest Malicious

Figure 2. System model.

5. Problem Formulation
5.1. Adversarial Model

As depicted in Fig.2, our system consists of a Key Center
(KC), two servers and U clients. We assume KC is an
independent and trustworthy organization. S1 and S2 are
two honest-but-curious and non-colluding central servers,
meaning they follow the established protocol honestly, but
may launch inference attack (see Sect. 2.3) to deduce some
sensitive information from the data they receive. Meanwhile,
we consider honest clients and malicious clients, but the
number of malicious clients is not more than 50%. For
honest clients, they are eager to get a high-quality model
by combining their datasets and therefore upload their local
models correctly. For malicious clients, their goal is to
launch various poisoning attacks (see Sect. 2.2) to affect the
performance of the global model without being detected. In
addition, we also assume malicious clients can collude with
S1 to help it carry out inference attacks.

5.2. Design Goals

Considering the above adversarial model, we have the fol-
lowing five design goals:

• Privacy. The privacy of our scheme should have two
aspects, one is to maintain the confidentiality of the

5

AegisFL: Efficient and Flexible Privacy-Preserving Byzantine-Robust Cross-silo Federated Learning

Notation Description

T The number of global iterations
ψ The number of local iterations
µ Local learning rate
U The number of clients
|B| The batch size
(p)0 the constant term of polynomial p
cos Cosine similarity value
⟨a, b⟩ The inner product of a and b
a The mean value of a
∥a∥ The L2 norm of a
∥a− b∥ The Euclidean distance between a and b

p
(1)
a The polynomial obtained by pm1(a)
p
(2)
a The polynomial obtained by pm2(a)

ct
(1)
pk (a) Ciphertext of pm1(a) encrypted with pk

ct
(2)
pk (a) Ciphertext of pm2(a) encrypted with pk

Table 2. Notations.

intermediate results uploaded by clients, and the other
is that the final model should be released exclusively
to honest clients—other parties (such as S1, S2, and
malicious clients) cannot access the final model.

• Robustness. Our scheme should be robust against
poisoning attacks by malicious clients, which means
that the final model will not be deteriorated or left
backdoors by malicious clients. At the same time,
our system can resist the collusion between malicious
clients and S1

• Efficiency. Compared to other PBFL schemes, our
scheme should significantly reduce the computational
burden caused by encryption

• Accuracy. Our solution should not sacrifice accuracy
to achieve other goals, which means that the accuracy
of the final model should be comparable to traditional
FL.

• Flexibility. Our system should be able to flexibly
change AGR to cope with different poisoning attacks
and the distribution of clients’ data.

6. Design of AegisFL
In this section, we describe the concrete construction of
AegisFL. The main notations are shown in Table 2. At a high
level, AegisFL consists of key distribution, local training
and secure defense. In key distribution phase, the KC
generates keys and distributes them to entities according to
the protocol. This process only needs to be performed once
at the beginning of training. In local training phase, each

client trains a local model based on its own local dataset,
which is then encrypted and uploaded to S1. The secure
defense is the core of AegisFL, to build AGRs, S1 and
S2 cooperate to perform consistency check, secure inner
product, secure L2 norm, secure mean value, and secure key
conversion.

6.1. Key Distribution (Step 1⃝ in Figure 2)

The KC generates {pks, sks, evks} and {pkc, skc}. pks,
evks and pkc are broadcast to all entities in the system, but
sks is only sent to S2, and skc is only sent to clients. In
addition, S1 initializes the parameters of the global model
w(1) randomly at the beginning of the protocol.

6.2. Local Training (Step 2⃝ and 3⃝ in Figure 2)

We show this process in detail in Algorithm 1. We assume
that the trained model is flattened into a vector. If the length
of this vector is not a multiple of N , it is padded with 0.

Algorithm 1 Local training

Input: Encrypted global model ct
(1)
pkc

(w(t)), local
datasets D = {D1, D2, . . . DU}, batch size |B|, local
learning rate µ, number of local iterations ψ.
Output: {ct(1)pks

(w
(t)
u), ct

(2)
pks

(w
(t)
u)}Uu=1.

for each client Cu∈[1,U] in parallel do
p
(1)

w(t) ← Dec(ct(1)pkc
(w(t)), skc);

w(t) ← Decode(p(1)
w(t));

w
(t)
u = w(t);

if Cu is a honest client then
for each i ∈ {1, 2, . . . , ψ} do

Randomly choose a batch D|B| from Du;
w

(t)
u ← w

(t)
u − µ▽L(w(t)

u , D|B|);
end for

else
Cu launches a poisoning attack, spawning a poi-
sonous local model w(t)

u ;
end if
p
(1)

w
(t)
u

← pm1(w(t)
u), p(2)

w
(t)
u

← pm2(w(t)
u);

ct
(1)
pks

(w
(t)
u)← Enc(p(1)

w
(t)
u

, pks);

ct
(2)
pks

(w
(t)
u)← Enc(p(2)

w
(t)
u

, pks);

Sends ct(1)pks
(w

(t)
u) and ct(2)pks

(w
(t)
u) to S1;

end for
return {ct(1)pks

(w
(t)
u), ct

(2)
pks

(w
(t)
u)}Uu=1.

6.3. Secure Defense (Step 4⃝ and 5⃝ in Figure 2)

Security defense essentially involves filtering and refining
local models under ciphertext to ensure the performance of
the final model. The primary algorithm constituting security

6

AegisFL: Efficient and Flexible Privacy-Preserving Byzantine-Robust Cross-silo Federated Learning

Algorithm 2 Consistency check

1: Input: S1 holds {ct(1)pks
(w

(t)
u), ct

(2)
pks

(w
(t)
u)}Uu=1; S2

holds sks = ss.
2: Output: Client list C∗ = {Cb1 , Cb2 , . . . , CbU∗}.
3: S1:
4: Generates a random vector r ∈ ZN ;
5: p(1)r ←

∑N−1
i=0 ri ·Xi, p(2)r ← −

∑N−1
i=0 ri ·XN−i;

6: for each u ∈ {1, 2, . . . , U} do
7: Computes ct(1)pks

(w
(t)
u) · p(2)r = (c

(1)
0 , c

(1)
1) ∈ R2

QL
,

ct
(2)
pks

(w
(t)
u) · p(1)r = (c

(2)
0 , c

(2)
1) ∈ R2

QL
;

8: Sends((c(1)0)0, c
(1)
1),((c(2)0)0, c

(2)
1)∈ZQL

×RQL
to S2;

9: end for
10: S2:
11: Initializes client list C∗ ← ∅
12: for each u ∈ {1, 2, . . . , U} do
13: Decrypts res1 = [(c

(1)
0)0 + (ss · c(1)1)0]QL

and
res2 = [(c

(2)
0)0 + (ss · c(2)1)0]QL

;
14: if | res1−res2

∆ | < κ then
15: Adds client Cu to C∗;
16: end if
17: end for
18: Sends C∗ = {Cb1 , Cb2 , . . . , CbU∗} to S1;
19: return C∗.

defense include consistency check, secure inner product,
secure L2 norm, secure mean value, and secure key con-
version. We present it in detail in Algorithm 3. There is
a general and stationary assumption that in the first global
iteration (i.e., t = 1), all clients are honest and they will not
launch poison attacks (Ma et al., 2022; Nguyen et al., 2022).

6.3.1. CONSISTENCY CHECK

The purpose of consistency check is to ensure that the clients
package their local model updates correctly according to
the packing method. We present it in Algorithm 2. In our
scheme, instead of sending (c

(1)
0 , c

(1)
1), (c

(2)
0 , c

(2)
1) ∈ R2

QL

directly, S1 sends ((c
(1)
0)0, c

(1)
1), ((c

(2)
0)0, c

(2)
1) ∈ ZQL

×
RQL

to S2. Upon receiving them, S2 decrypts with sks to
get res1 and res2, and then checks whether | res1−res2

∆ | <
κ, where κ is the error threshold caused by noise, if so, Cu
is accepted by S2. We know from Sect. 3.2 that res1

∆ and
res2
∆ are actually the approximate inner product of w(t)

u and
r. If the client does not package its local model correctly,
it will not pass this detection due to the randomness of r.
Finally, we assume that U∗ clients pass the check, and S2
sends the client list C∗ = {Cb1 , Cb2 , . . . , CbU∗} to S1.

Compared to sending ct(1)pks
(w

(t)
u)·p(2)r and ct(2)pks

(w
(t)
u)·p(1)r

directly to S2, our approach has two advantages. Firstly, it
reduces the communication cost between S1 and S1 from
2N · log2QL to (N + 1) · log2QL. Secondly, after de-

cryption, only the constant terms are meaningful, that is,
S2 cannot get any valuable information from other terms,
further enhancing data privacy.

6.3.2. SECURE INNER PRODUCT, L2 NORM AND MEAN
VALUE

In lines 8-15 of Algorithm 3, S1 and S2 cooperate to cal-
culate {∥w(t)

bu
∥, ⟨w(t)

bu
,w(t)⟩,w(t)

bu
}U∗

u=1, ∥w(t)∥, and w(t).
Then we can construct all AGRs described in Sect. 4. We
define the ciphertext of the global model for the next round
as: ct

(1)
pks

(w(t+1)) =
∑U∗

u=1 cMul(sbus , ct
(1)
pks

(w
(t)
bu
),∆),

where sbu is the trust score for each client Cbu ∈ C∗,
s =

∑U∗

u=1 sbu . The global model is implicit in the co-
efficients of the polynomial p(1)

w(t+1) . It is worth noting that
our system only requires two multiplication levels. We show
the specific process of secure inner product, L2 norm and
mean value in Appendix A.

6.3.3. SECURE KEY CONVERSION

Clients upload intermediate results encrypted with pks to
ensure their confidentiality, but will get the global model
encrypted with pkc from S1. The purpose of this is that even
if the malicious clients collude with S1 and leak the private
key skc to S1, as long as S1 and S2 are non-colluding, S1
still cannot decrypt the encrypted information. We show the
specific process of secure key conversion in Appendix B.

6.4. Security Analysis

The security of our system can depends on the following
facts:

• Fact 1: CKKS has the IND-CPA security property.

• Fact 2: If a random polynomial r is uniformly dis-
tributed onR and also independent from any plaintext
x ∈ R, then x± r is also uniformly random and inde-
pendent from x.

• Fact 3: In our case, the system involves 5 equations
(which are either linear forms or binary forms) for each
client, but the number of variables is usually more
than 8192. With a significant amount of freedom, it
becomes impossible to guess a specific value of a vari-
able.

Then we give the following Theorem:

Theorem 6.1. S1, S2, and malicious clients can get nothing
about the sensitive information of honest clients.

Proof. In our scheme, we consider two honest-but-curious
and non-colluding servers, honest clients and malicious

7

AegisFL: Efficient and Flexible Privacy-Preserving Byzantine-Robust Cross-silo Federated Learning

Algorithm 3 Secure defense

1: Input: {ct(1)pks
(w

(t)
u), ct

(2)
pks

(w
(t)
u)}Uu=1.

2: Output: ct(1)pkc
(w(t+1)).

3: if t == 1 then
4: S1 computes ct(1)pks

(w(t+1)) =
∑U

u=1 cMul(ct(1)pks
(w

(t)
u), 1

U ,∆), ct(2)pks
(w(t+1)) =

∑U
u=1 cMul(ct(2)pks

(w
(t)
u), 1

U ,∆);
5: else
6: S1 and S2 invoke Consistency check({ct(1)pks

(w
(t)
u), ct

(2)
pks

(w
(t)
u)}Uu=1, sks) to get C∗ = {Cb1 , Cb2 , . . . , CbU∗};

7: S1 sets ct(1)pks
(w(t)) and ct(2)pks

(w(t)) as the baseline;
8: S1 and S2:
9: ∥w(t)∥ ← Secure L2 norm(ct

(1)
pks

(w(t)), ct
(2)
pks

(w(t)), sks);

10: w(t) ← Secure mean value(ct(1)pks
(w(t)), sks);

11: for each client Cbu∈[1,U∗]
∈ C∗ do

12: S1 and S2:
13: ∥w(t)

bu
∥ ← Secure L2 norm(ct

(1)
pks

(w
(t)
bu
), ct

(2)
pks

(w
(t)
bu
), sks);

14: ⟨w(t)
bu
,w(t)⟩ ← Secure inner product(ct(1)pks

(w(t)), ct
(2)
pks

(w
(t)
bu
), sks);

15: w
(t)
bu
← Secure mean value(ct(1)pks

(w
(t)
bu
), sks);

16: end for
17: S1:
18: Computes a trust score sbu for each client Cbu ∈ C∗ based on {∥w(t)

bu
∥, ∥w(t)∥, ⟨w(t)

bu
,w∗⟩,w(t)

bu
,w(t)};

19: Computes s =
∑U∗

i=1 sbu ;
20: Computes ct(1)pks

(w(t+1))=
∑U∗

u=1 cMul(sbus , ct
(1)
pks

(w
(t)
bu
),∆), ct(2)pks

(w(t+1))=
∑U∗

u=1 cMul(sbus , ct
(2)
pks

(w
(t)
u),∆);

21: end if
22: S1 and S2 invoke Secure key conversion(ct(1)pks

(w(t+1)), sks) to get ct(1)pkc
(w(t+1)), and send it to clients Cbu∈[1,U∗]

;

23: return ct(1)pkc
(w(t+1)).

clients. And the malicious clients can collude with one of
the servers. Therefore, there are three adversary cases:

• Case 1: Servers and malicious clients do not collude.
In this case, for S1, it only gets the encrypted local
models, based on Fact 1, it can not get information
of clients’ data. For S2, it gets r + p

(1)
a in secure key

conversion phase, based on Fact 2, it can’t get any
information from it. For a malicious clients, S1 does
not return any data to them. In addition, when building
a AGR, the L2 norms, mean values, and inner products
between clients’ local models and the global model of
the last round are public, for each client, the server can
construct up to 5 equations, but there are N unknowns,
5≪ N , based on Fact 3, server can’t push out valuable
information.

• Case 2: Malicious clients collude with S1. In this case,
the malicious clients will leak the private key skc to
S1, but this is meaningless because the honest clients’
models are encrypted with the public key pks. And
although the malicious clients will get the global model
from S1 and perform decryption, they cannot calculate
the models of honest clients unless there are U − 1
malicious clients. But U − 1 malicious clients is an

unrealistic assumption.

• Case 3: Malicious clients collude with S2. In this case,
the malicious clients will get the private key sks from
S2, but this is also meaningless because they can’t get
the ciphertexts of the honest clients’ local models. And
the private key skc is also useless to S2.

7. Experiments
7.1. Experiment Setup

7.1.1. ENVIRONMENT

Our experiments run on a Windows PC with Intel(R)
Core(TM) i7-8700 CPU @ 3.20GHz and 16 GB memory.
We use PyTorch to train the neural network. For the imple-
mentation of HE, we first incorporated our encoding method
into the SEAL library, and then utilized the SEAL-Python
library to enable its execution in a Python environment.
We set N = 8192,∆ = 240 and QL as a 200-bit number,
achieving 128-bit security.

8

AegisFL: Efficient and Flexible Privacy-Preserving Byzantine-Robust Cross-silo Federated Learning

7.1.2. CLIENTS, DATASETS, MODELS, AND ATTACKS

We consider 30 clients in total, and three cases where the
number of malicious clients are 3, 9, and 12. We adopt two
widely used datasets HAR and MNIST. We use a simple
neural network that contains an input layer, a fully connected
layer, and an output layer. When using HAR, there are
72710 parameters; when using MNIST, there are 101770
parameters. Meanwhile, we examine three types of attacks:
untargeted attack, label flipping attack, and scaling attack.
Please see Appendix C.1 for details.

7.2. Effectiveness Analysis

We test the ability of FedAvg (baseline), M-FLAME and
ShieldFL to resist poisoning attacks under both plaintext and
ciphertext. We present the experimental results in Appendix
C.2. Our experimental results reveal three key phenom-
ena: First, M-FLAME is effective in defending against all
types of attacks encountered in our experiments. Secondly,
ShieldFL shows improved defense capabilities against untar-
geted attacks and label flipping attacks on the HAR (non-iid)
dataset, yet it is less effective against more subtle scaling
attacks. In contrast, M-FLAME performs better on the
MNIST (iid) dataset and effectively counters scaling attacks.
This indicates that different AGRs exhibit varying levels
of effectiveness depending on the specific scenario. Third,
the accuracy under encryption is on par with, or slightly ex-
ceeds, the accuracy in plaintext, indicating that at ∆ = 240,
approximate HE does not adversely affect model training.
This insight underscores the potential of HE in maintaining
model performance while ensuring data privacy.

7.3. Computational Efficiency Analysis

We measure the time required to compute the inner product
of two local models, the L2 norm or mean value of one local
model when trained separately with the MNIST and HAR
datasets. The original CKKS scheme serves as our baseline.
(Miao et al., 2022) has shown that both the Paillier cryp-
tosystem and its batch computation variant (BatchCrypt)
exhibit significantly lower efficiency in encryption, decryp-
tion, and plaintext-ciphertext multiplication compared to
CKKS, we no longer include Paillier in our comparison.

As shown in Figure 3, compared to the original CKKS,
our encoding approach achieves approximately 24 times
speedup in computing inner products and L2 norms, and
about 30 times speedup in calculating mean values. This is
because the original CKKS scheme involves multiple rota-
tions in computing these values, and rotation is a relatively
time-consuming operation.

7.4. Communication Efficiency Analysis

We measure the communication volume between clients and
S1 during one global iteration on two datasets. We consider

Inner productL2 norm Mean value
Original CKKS 797 797 727
Ours 34 34 23

797 797
727

34 34 23

0

200

400

600

800

1000

Inner product L2 norm Mean value

Ti
m

e
C

o
st

 (
m

s)

Original CKKS
Ours

577 577
526

24 24 18
0

100

200

300

400

500

600

700

Inner product L2 norm Mean
value

Ti
m

e
 C

o
st

 (
m

s)

Original CKKS

Ours

(a) HAR

Inner productL2 norm Mean value
Original CKKS 797 797 727
Ours 34 34 23

797 797
727

34 34 23
0

200

400

600

800

1000

Inner product L2 norm Mean
value

Ti
m

e
 C

o
st

 (
m

s)

Original CKKS
Ours

577 577
526

24 24 18

0

100

200

300

400

500

600

700

Inner product L2 norm Mean value

Ti
m

e
C

o
st

 (
m

s)

Original CKKS
Ours

(b) MNIST

Figure 3. The time cost of calculating inner product, L2 norm and
mean value.

HAR MNIST
Baseline 1 35.5 49.69
Baseline 2 7.03 9.77
Ours 7.03 10.16

35.5

49.69

7.03 9.777.03 10.16

0

10

20

30

40

50

60

HAR MNIST

Tr
af

fi
c

(M
B

)

Baseline 1

Baseline 2

Ours

Figure 4. Traffic

the Paillier-based scheme ShieldFL (Ma et al., 2022) as
baseline 1 and original CKKS-based scheme (Miao et al.,
2022) as baseline 2. As shown in Figure 4, the traffic of our
scheme is significantly lower than baseline 1 and roughly
equivalent to or slightly higher than baseline 2. In original
CKKS, there are at most N/2 slots for packaging data,
but in our scheme all N slots can be used for packaging
data. Therefore, although the client needs to upload twice
ciphertexts to S1 in our scheme, the communication burden
will not increase compared to baseline 2.

8. Conclusion and Open Problem
We introduce AegisFL, a novel PBFL framework. Com-
pared to previous approaches, it offers two main advantages.
First, it achieves high efficiency, thanks to our packaging
scheme that requires only a single ciphertext multiplication
to compute the inner products, L2 norms and mean values
of vectors. Second, it boasts high flexibility, our system is
not limited to a single robust aggregation algorithm but can
combine various robust aggregation methods to address dif-
ferent adversarial environments. Moreover, our experiments
validate the effectiveness and efficiency of our method.

Our approach is compatible with the majority of similarity-
based AGRs because key similarity metrics, derived from
L2 norms, mean value, and inner products, can be effectively
applied. However, it is incompatible with statistics-based
and feature extraction-based AGRs, this is because comput-
ing the coordinate-wise median/trimmed mean and the top
right singular eigenvector under CKKS ciphertext remains
a highly challenging open problem. For performance-based
AGRs, they require access to the clients’ models in plaintext,
which violates the privacy requirements and falls outside
the scope of this discussion. We leave the exploration of
efficient compatibility with a wider range of aggregation
schemes under HE for future work.

9

AegisFL: Efficient and Flexible Privacy-Preserving Byzantine-Robust Cross-silo Federated Learning

Acknowledgements
This work is partially supported by the National Natural Sci-
ence Foundation of China (No. 12271306) and the National
Key Research and Development Program of China (Grant
No. 2018YFA0704702).

Impact Statement
In this paper, we present AegisFL, a novel federated learning
system that enhances privacy and security against poisoning
attacks. By using advanced homomorphic encryption, Aeg-
isFL offers a more efficient and flexible solution compared
to existing methods. This improvement is significant for the
broader societal application of federated learning, as it in-
creases data protection and model integrity in various fields,
including healthcare, finance, and more. While our work pri-
marily focuses on advancing machine learning technology,
we recognize the importance of considering the ethical use
of such advancements. Therefore, we encourage responsible
deployment and further discussion on the potential impacts
of our work.

References
Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and

Shmatikov, V. How to backdoor federated learning. In
International conference on artificial intelligence and
statistics, pp. 2938–2948. PMLR, 2020.

Baruch, G., Baruch, M., and Goldberg, Y. A little is enough:
Circumventing defenses for distributed learning. Ad-
vances in Neural Information Processing Systems, 32,
2019.

Campello, R. J., Moulavi, D., and Sander, J. Density-based
clustering based on hierarchical density estimates. In
Pacific-Asia conference on knowledge discovery and data
mining, pp. 160–172. Springer, 2013.

Cao, X., Fang, M., Liu, J., and Gong, N. Z. Fltrust:
Byzantine-robust federated learning via trust bootstrap-
ping. arXiv preprint arXiv:2012.13995, 2020.

Cheon, J. H., Kim, A., Kim, M., and Song, Y. Homomor-
phic encryption for arithmetic of approximate numbers.
In Advances in Cryptology–ASIACRYPT 2017: 23rd In-
ternational Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I 23, pp. 409–437.
Springer, 2017.

Fang, M., Cao, X., Jia, J., and Gong, N. Local model poi-
soning attacks to {Byzantine-Robust} federated learning.
In 29th USENIX security symposium (USENIX Security
20), pp. 1605–1622, 2020.

Geiping, J., Bauermeister, H., Dröge, H., and Moeller, M.
Inverting gradients-how easy is it to break privacy in
federated learning? Advances in Neural Information
Processing Systems, 33:16937–16947, 2020.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021.

Liu, X., Li, H., Xu, G., Chen, Z., Huang, X., and Lu, R.
Privacy-enhanced federated learning against poisoning
adversaries. IEEE Transactions on Information Forensics
and Security, 16:4574–4588, 2021.

Lu, Z., Lu, S., Tang, X., and Wu, J. Robust and verifi-
able privacy federated learning. IEEE Transactions on
Artificial Intelligence, 2023.

Ma, Z., Ma, J., Miao, Y., Li, Y., and Deng, R. H. Shieldfl:
Mitigating model poisoning attacks in privacy-preserving
federated learning. IEEE Transactions on Information
Forensics and Security, 17:1639–1654, 2022.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Miao, Y., Liu, Z., Li, H., Choo, K.-K. R., and Deng, R. H.
Privacy-preserving byzantine-robust federated learning
via blockchain systems. IEEE Transactions on Informa-
tion Forensics and Security, 17:2848–2861, 2022.

Nasr, M., Shokri, R., and Houmansadr, A. Comprehen-
sive privacy analysis of deep learning: Passive and active
white-box inference attacks against centralized and feder-
ated learning. In 2019 IEEE symposium on security and
privacy (SP), pp. 739–753. IEEE, 2019.

Nguyen, T. D., Rieger, P., De Viti, R., Chen, H., Branden-
burg, B. B., Yalame, H., Möllering, H., Fereidooni, H.,
Marchal, S., Miettinen, M., et al. {FLAME}: Taming
backdoors in federated learning. In 31st USENIX Security
Symposium (USENIX Security 22), pp. 1415–1432, 2022.

Rahulamathavan, Y., Herath, C., Liu, X., Lambotharan,
S., and Maple, C. Fhefl: Fully homomorphic encryp-
tion friendly privacy-preserving federated learning with
byzantine users. arXiv preprint arXiv:2306.05112, 2023.

Roy Chowdhury, A., Guo, C., Jha, S., and van der Maaten,
L. Eiffel: Ensuring integrity for federated learning. In
Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2535–2549,
2022.

10

AegisFL: Efficient and Flexible Privacy-Preserving Byzantine-Robust Cross-silo Federated Learning

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. Item-
based collaborative filtering recommendation algorithms.
In Proceedings of the 10th international conference on
World Wide Web, pp. 285–295, 2001.

Shejwalkar, V. and Houmansadr, A. Manipulating the byzan-
tine: Optimizing model poisoning attacks and defenses
for federated learning. In NDSS, 2021.

Wang, H., Sreenivasan, K., Rajput, S., Vishwakarma, H.,
Agarwal, S., Sohn, J.-y., Lee, K., and Papailiopoulos, D.
Attack of the tails: Yes, you really can backdoor federated
learning. Advances in Neural Information Processing
Systems, 33:16070–16084, 2020.

Xie, C., Huang, K., Chen, P.-Y., and Li, B. Dba: Distributed
backdoor attacks against federated learning. In Interna-
tional conference on learning representations, 2019.

Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., and
Koshiba, T. Practical packing method in somewhat ho-
momorphic encryption. In Data Privacy Management
and Autonomous Spontaneous Security: 8th International
Workshop, DPM 2013, and 6th International Workshop,
SETOP 2013, Egham, UK, September 12-13, 2013, Re-
vised Selected Papers, pp. 34–50. Springer, 2014.

Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., and Liu,
Y. {BatchCrypt}: Efficient homomorphic encryption for
{Cross-Silo} federated learning. In 2020 USENIX annual
technical conference (USENIX ATC 20), pp. 493–506,
2020.

Zhang, W., Tople, S., and Ohrimenko, O. Leakage of dataset
properties in {Multi-Party} machine learning. In 30th
USENIX security symposium (USENIX Security 21), pp.
2687–2704, 2021.

Zhu, L., Liu, Z., and Han, S. Deep leakage from gradients.
Advances in neural information processing systems, 32,
2019.

A. Secure Inner Product, L2 Norm and Mean
Value

Benefit from the knowledge of Sect. 3.2, for two N -
dimensional vectors a and b, we show how S1 and S2 can
safely calculate the L2 norm of a, the inner product of a
and b and the mean value of a in Algorithm 4, Algorithm 5
and Algorithm 6 respectively.

Algorithm 4 Secure L2 norm

1: Input: S1 holds ct(1)pks
(a), ct

(2)
pks

(a) ∈ R2
Ql

; S2 holds
sks = ss.

2: Output: ∥a∥.
3: S1:
4: Mul(ct(1)pks

(a), ct
(2)
pks

(a), evk) = (c0, c1) ∈ R2
Ql−1

;
5: Sends ((c0)0, c1) ∈ ZQl−1

×RQl−1
to S2;

6: S2:
7: Decrypts result = [(c0)0 + (ss · c1)0]Ql−1

;

8: return ∥a∥ =
√

result
∆ .

Algorithm 5 Secure inner product

1: Input: S1 holds ct(1)pks
(a), ct(2)pks

(b) ∈ R2
Ql

; S2 holds
sks = ss.

2: Output: ⟨a, b⟩.
3: S1:
4: Mul(ct(1)pks

(a), ct
(2)
pks

(b), evk) = (c0, c1) ∈ R2
Ql−1

;
5: Sends ((c0)0, c1) ∈ ZQl−1

×RQl−1
to S2;

6: S2:
7: Decrypts result = [(c0)0 + (ss · c1)0]Ql−1

;
8: return ⟨a, b⟩ = result

∆ .

Algorithm 6 Secure mean value

1: Input: S1 holds ct(1)pks
(a) ∈ R2

Ql
; S2 holds sks = ss.

2: Output: a.
3: S1:
4: Generates a polynomial p = −

∑N−1
i=0 XN−i;

5: Computes ct(1)pks
(a) · p = (c0, c1) ∈ R2

Ql
;

6: Sends ((c0)0, c1) ∈ ZQl
×RQl

to S2;
7: S2:
8: Decrypts result = [(c0)0 + (ss · c1)0]Ql

;
9: return a = result

∆·N .

B. Secure Key Conversion
As illustrated by Algorithm 7, secure key conversion refers
to converting ciphertext ct(1)pks

(a) to cihpertext ct(1)pkc
(a),

where a is a N -dimensional vector. Due to the randomness
of r ∈ R, a will not be exposed to S2.

11

AegisFL: Efficient and Flexible Privacy-Preserving Byzantine-Robust Cross-silo Federated Learning

Algorithm 7 Secure key conversion

1: Input: S1 holds ct(1)pks
(a) = (c0, c1) ∈ R2

Ql
; S2 holds

sks.
2: Output: ct(1)pkc

(a).
3: S1:
4: Generates a random polynomial r ← R;
5: ĉt = (c0 + r, c1)← cAdd(ct(1)pks

(a), r);
6: Sends ĉt to S2;
7: S2:
8: r + p

(1)
a ← Dec(ĉt, sks);

9: ctpkc
(r + p

(1)
a)← Enc(r + p

(1)
a , pkc);

10: Sends ctpkc
(r + p

(1)
a) to S1;

11: S1:
12: ct(1)pkc

(a)← cAdd(ctpkc(r + p
(1)
a),−r);

13: return ct(1)pkc
(a).

C. Experiments
C.1. Experiment Setup Details

The Human Activity Recognition (HAR) dataset comprises
data collected from the smartphones of 30 real-world users.
This dataset includes signals from multiple sensors located
on the users’ smartphones, with the objective to predict
the user’s activity out of six possible categories: walking,
walking upstairs, walking downstairs, sitting, standing, and
lying down. Each example in this dataset encompasses
561 features, amounting to a total of 10,299 instances. In
our experiment, each user is considered as a distinct client,
with 75% of their data utilized for training purposes and
the remaining 25% serving as test cases. For HAR, we set
the number of global iterations T = 100, the number of
local iterations ψ = 50, and the batch size |B| = 100. We
note that due to individual variances, sensor positioning,
and variations in the execution of activities, the data in the
HAR dataset is non-independent and identically distributed
(non-iid).

The MNIST dataset is a classic dataset in the field of ma-
chine learning, primarily used for training and testing image
processing systems, particularly in the task of handwritten
digit recognition. It consists of 60,000 training images and
10,000 test images, each a 28*28 pixel grayscale represen-
tation of digits ranging from 0 to 9. In our experiment, we
distribute the training set evenly across 30 clients, ensuring
that the data is independent and identically distributed (iid)
among them, providing a consistent basis for our analysis.
For MNIST, we set the number of global iterations T = 100,
the number of local iterations ψ = 50, and the batch size
|B| = 100.

For untargeted attack, malicious clients upload random in-
termediate results that follow a (0,1) normal distribution. In

the case of label flipping attack, each malicious client alters
the label from l to M − l − 1, where l is an element of the
set {0, 1, . . . , N − 1} and N represents the total number of
labels. Regarding scaling attacks, malicious clients replicate
20% of their local training samples, create a feature-pattern
trigger by setting every 20-th feature to 0, modify their la-
bels to 2, and then incorporate these altered samples into
their local training dataset. Subsequently, during each global
iteration, these clients calculate their intermediate results
using the modified training data. These intermediate results
are then scaled by a factor prior to being transmitted to the
server.

C.2. Experimental Results

In this section, we present the testing accuracy of FedAvg,
M-FLAME, and ShieldFL under different attacks. For each
attack, we evaluate scenarios with 3, 9, and 12 attackers
respectively. The result of Scaling attack are presented in
the form of “testing accuracy / backdoor attack success rate”.
Table 3 and Table 4 show the results on HAR and MNIST,
respectively.

12

AegisFL: Efficient and Flexible Privacy-Preserving Byzantine-Robust Cross-silo Federated Learning

NO
UNTARGETED ATTACK LABLE FLIPPING SACLING ATTACK

AGR
ATTACK

3 9 12 3 9 12 3 9 12

FEDAVG
PLANTEXT 0.949 0.731 0.431 0.240 0.934 0.915 0.620 0.946/0.968 0.902/0.983 0.890/0.991
CIPHERTEXT 0.946 0.732 0.429 0.240 0.936 0.919 0.620 0.945/0.970 0.905/0.981 0.895/0.993

M-FLAME PLANTEXT 0.937 0.939 0.910 0.896 0.933 0.934 0.935 0.936/0.189 0.902/0.209 0.886/0.205
CIPHERTEXT 0.938 0.941 0.910 0.898 0.933 0.933 0.934 0.939/0.188 0.902/0.205 0.888/0.206

SHIELFL PLANTEXT 0.945 0.951 0.949 0.940 0.951 0.940 0.938 0.951/0.269 0.886/0.375 0.808/0.423
CIPHERTEXT 0.945 0.951 0.948 0.943 0.949 0.937 0.938 0.952/0.269 0.888/0.377 0.810/0.424

Table 3. Testing Accuracy on HAR.

NO
UNTARGETED ATTACK LABLE FLIPPING SACLING ATTACK

AGR
ATTACK

3 9 12 3 9 12 3 9 12

FEDAVG
PLANTEXT 0.953 0.236 0.089 0.072 0.950 0.929 0.885 0.953/0.941 0.955/0.986 0.955/0.993
CIPHERTEXT 0.955 0.233 0.091 0.073 0.952 0.928 0.885 0.953/0.940 0.956/0.989 0.953/0.995

M-FLAME PLANTEXT 0.950 0.953 0.949 0.946 0.952 0.948 0.945 0.953/0.120 0.950/0.170 0.950/0.167
CIPHERTEXT 0.948 0.953 0.950 0.944 0.956 0.951 0.946 0.949/0.118 0.950/0.171 0.951/0.168

SHIELFL PLANTEXT 0.934 0.941 0.933 0.928 0.926 0.922 0.918 0.934/0.139 0.891/0.373 0.947/0.521
CIPHERTEXT 0.935 0.943 0.934 0.926 0.925 0.9922 0.920 0.935/0.139 0.891/0.375 0.944/0.518

Table 4. Testing Accuracy on MNIST.

13

