
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PIXIE: FAST AND GENERALIZABLE SUPERVISED
LEARNING OF 3D PHYSICS FROM PIXELS

Anonymous authors
Paper under double-blind review

Figure 1: We introduce PIXIE, a novel method for learning simulatable physics of 3D scenes from
visual features. Trained on a curated dataset of paired 3D objects and physical material annotations,
PIXIE can predict both the discrete material types (e.g., rubber) and continuous values including
Young’s modulus, Poisson’s ratio, and density for a variety of materials, including elastic, plastic,
and granular. The predicted material parameters can then be coupled with a learned static 3D model
such as Gaussian splats and a physics solver such as the Material Point Method (MPM) to produce
realistic 3D simulation under physical forces such as gravity and wind.

ABSTRACT

Inferring the physical properties of 3D scenes from visual information is a critical
yet challenging task for creating interactive and realistic virtual worlds. While hu-
mans intuitively grasp material characteristics such as elasticity or stiffness, existing
methods often rely on slow, per-scene optimization, limiting their generalizability
and application. To address this problem, we introduce PIXIE, a novel method that
trains a generalizable neural network to predict physical properties across multiple
scenes from 3D visual features purely using supervised losses. Once trained, our
feed-forward network can perform fast inference of plausible material fields, which
coupled with a learned static scene representation like Gaussian Splatting enables
realistic physics simulation under external forces. To facilitate this research, we
also collected PIXIEVERSE, one of the largest known datasets of paired 3D assets
and physic material annotations. Extensive evaluations demonstrate that PIXIE is
about 1.46-4.39x better and orders of magnitude faster than test-time optimization
methods. By leveraging pretrained visual features like CLIP, our method can
also zero-shot generalize to real-world scenes despite only ever been trained on
synthetic data. https://pixie-2026-12998.github.io/

1

https://pixie-2026-12998.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Advances in scene reconstruction with Neural Radiance Fields (Mildenhall et al., 2021) and Gaussian
Splatting (Kerbl et al., 2023) have made it possible to recreate photorealistic 3D world from sparse
camera views, with broad applications from immersive content creation to robotics and simulation.
However, these approaches focus exclusively on visual appearance—capturing the geometry and
colors of a scene while remaining blind to its underlying physical properties.

Yet the world is not merely a static collection of shapes and textures. Objects bend, fold, bounce, and
deform according to their material composition and the forces acting upon them. Consequently, there
has been a growing body of work that aims to integrate physics into 3D scene modeling (Pumarola
et al., 2020; Ma et al., 2023; Li et al., 2023; Fischer et al., 2024; Feng et al., 2023; Xie et al., 2023;
Qiu et al., 2024; Guo et al., 2024; Lin et al., 2025; Zhai et al., 2024; Chen et al., 2025b). Current
approaches for acquiring the material properties of the scene generally fall into two categories,
each with significant limitations. Some works such as (Xie et al., 2023; Guo et al., 2024) require
users to manually specify material parameters for the entire scene based on domain knowledge.
This manual approach is limited in its application as it places a heavy burden on the user and lacks
fine-grained detail. Another line of work aims to automate the material discovery process via test-time
optimization. Works including (Jatavallabhula et al., 2021; Li et al., 2023; Zhong et al., 2024; Huang
et al., 2024; Lin et al., 2025; Zhang et al., 2024) leverage differentiable physics solvers, iteratively
optimizing material fields by comparing simulated outcomes against ground-truth observations or
realism scores from video generative models. However, predicting physical parameters for hundreds
of thousands of particles from sparse signals (i.e., a single rendering or distillation scalar loss) is an
extremely slow and difficult optimization process, often taking hours on a single scene. Furthermore,
this heavy per-scene memorization does not generalize: for each new scene, the incredibly slow
optimization has to be run from scratch again.

In this paper, we propose a new framework, PIXIE, which unifies geometry, appearance, and physics
prediction via direct supervised learning. Our approach is inspired by how humans intuitively
understand physics: when we see a tree swaying in the wind, we do not memorize the stiffness
values for each specific coordinate (x, y, z) – instead, we learn that objects with tree-like visual
features behave in certain ways when forces are applied. This physical understanding from visual
cues allows us to anticipate the motion of a different tree or even other vegetation like grass, in
an entirely new context. Thus, our insight is to leverage rich 3D visual features such as those
distilled from CLIP (Radford et al., 2021) to predict physical materials in a direct supervised and
feed-forward way. Once trained, our model can associate visual patterns (e.g., "if it looks like
vegetation") with physical behaviors (e.g., "it should have material properties similar to a tree"),
enabling fast inference and generalization across scenes. To facilitate this research, we have curated
and labeled PIXIEVERSE, a dataset of 1624 paired 3D objects and annotated materials spanning 10
semantic classes. We developed a multi-step and semi-automatic data labeling process, distilling
pretrained models including Gemini (Team et al., 2023), CLIP (Radford et al., 2021), and human
priors into the dataset. To our knowledge, this is the largest open-source dataset of paired 3D assets
and physical material labels. Trained on PIXIEVERSE, our feed-forward network can predict material
fields that are 1.46-4.39x better and orders of magnitude faster than test-time optimization methods.
By leveraging pretrained visual features, PIXIE can also zero-shot generalize to real-world scenes
despite only ever being trained on synthetic data.

Our contributions include:

1. Novel Framework for 3D Physics Prediction: We introduce PIXIE, a unified framework that
predicts discrete material types and continuous physical parameters (Young’s modulus, Poisson’s
ratio, density) directly from visual features using supervised learning.

2. PIXIEVERSE Dataset: We curate and release PIXIEVERSE, the largest open-source dataset of
3D objects with physical material annotations (1624 objects, 10 semantic classes).

3. Fast and Generalizable Inference: By leveraging pretrained visual features from CLIP and a
feed-forward 3D U-Net, PIXIE performs inference orders of magnitude faster than prior test-time
optimization approaches, achieving a 1.46-4.39x improvement in realism scores as evaluated by a
state-of-the-art vision-language model.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

4. Zero-Shot Generalization to Real Scenes: Despite being trained solely on synthetic data, PIXIE
generalizes to real-world scenes, showing how visual feature distillation can effectively bridge the
sim-to-real gap.

5. Seamless Integration with MPM Solvers: The predicted material fields can be directly coupled
with Gaussian splatting models for realistic physics simulations under applied forces such as wind
and gravity, enabling interactive and visually plausible 3D scene animations.

2 RELATED WORK

2D World Models Some early works (Bell et al., 2015; Bear et al., 2021) learn to predict material
labels on 2D images. Recently, learning forward dynamics from 2D video frames has also been
explored extensively. For instance, Google’s Genie (Parker-Holder et al., 2024) trains a next-frame
prediction model conditioned on latent actions derived from user inputs, capturing intuitive 2D physics
in an unsupervised manner. While these methods achieve impressive 2D generation and control, they
do not explicitly model 3D geometry or a physically grounded world. Other works such as (Chen
et al., 2024; Li et al., 2024) also explore generating or editing images based on learned real-world
dynamics. While these methods achieve impressive results in 2D visual synthesis, they typically
do not explicitly model 3D geometry, nor do they infer physically grounded material properties
decoupled from appearances. These can lead to problems such as a lack of object permanence or
implausible interactions. In contrast, PIXIE directly operates in 3D, predicting explicit physical
parameters (e.g., Young’s modulus, density) for 3D objects, enabling their integration into 3D physics
simulators or neural networks (Wang et al., 2025; Mittal et al., 2025) for realistic interaction.

Manual Assignment or Assignment of Physics using LLMs A number of recent methods have
explored combining learned 3D scene representations (e.g., Gaussian splatting) with a physics solver
where material parameters are assigned manually or through high-level heuristics. This often involves
users specifying material types for the scene (Xie et al., 2023; Abou-Chakra et al., 2024) or using
scripted object-to-material dictionaries (Qiu et al., 2024) or large language and vision-language
models (Hsu et al., 2024; Chen et al., 2025a; Zhai et al., 2024; Le et al., 2024; Xia et al., 2024; Li
et al., 2025; Cao et al., 2025) to guide the assignment.

Test-time material optimization using videos Other works explore more automatic and principled
ways to infer material properties using rendered videos. Some techniques (Jatavallabhula et al., 2021;
Li et al., 2023; Zhong et al., 2024; Jiang et al., 2025; Zhang et al., 2025) optimize material parameters
by comparing simulated deformations against ground-truth observations, often requiring ground-truth
multi-view videos of objects or particle positions under known forces. More recent approaches
(Huang et al., 2024; Lin et al., 2025; Zhang et al., 2024) use video diffusion models as priors to
optimize physics via a motion distillation loss. Notably, these approaches suffer from extremely
slow per-scene optimization, often taking hours on a single scene, and do not generalize to new
scenes. In contrast, PIXIE employs a feed-forward neural network that, once trained, predicts physical
parameters in seconds, and can generalize to unseen scenes. A recent work Vid2Sim (Chen et al.,
2025b) also aims to learn a generalizable material prediction network across scenes. This was done by
encoding a front-view video of the object in motion with a foundation video transformer (Tong et al.,
2022) and learning to regress these motion priors into physical parameters. Unlike Vid2Sim, PIXIE
does not require videos, relying instead on visual features from static images. Overall, PIXIE can also
be used as an informed warm-start along with these test-time methods to further refine predictions.

3 METHOD

Our central thesis is that 3D visual appearance provides sufficient information to recover an object’s
physical parameters. Texture, shading, and shape features captured from multiple calibrated images
correlate with physical quantities such as Young’s modulus and Poisson’s ratio. By learning a mapping
from these visual features to material properties, we can augment a volumetric reconstruction model
(e.g., Gaussian Splatting) with a point-wise material estimate, without requiring force response
observations. In Sec. 3.1, we detail our framework, leveraging rich visual priors from CLIP to predict
a material field, which can be used by a physics solver to animate objects responding to external
forces. To train this model, we curated PIXIEVERSE, a large dataset of paired 3D assets and material
annotations, as detailed in Sec. 3.2. Figure 2 gives an overview of our method.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

NeRF + CLIP

+ Voxelize

Visual Feature Grid2 Material Learning3

U-Net

Simulation4Posed Multi-view RGBs1

MPM
Physics 
Solver

DISCRETE CONTINUOUS

Figure 2: Method Overview. From posed multi-view RGB images of a static scene, PIXIE first
reconstructs a 3D model with NeRF and distilled CLIP features (Shen et al., 2023). Then, we
voxelize the features into a regular N × N × N × D grid where N is the grid size and D is the
CLIP feature dimension. A U-Net neural network (Dhariwal and Nichol, 2021) is trained to map the
feature grid to the material field M̂G which consists of a discrete material model ID and continuous
Young’s modulus, Poisson’s ratio, and density value for each voxel. Coupled with a separately trained
Gaussian Splatting model, M̂G can be used to simulate physics with a physics solver such as MPM.

3.1 PIXIE PHYSICS LEARNING

Problem Formulation Formally, the goal is to learn a mapping:

fθ : (I,Π) −→ M̂ (1)

that turns some calibrated RGB images of the static scene I = {Ik}Kk=1 and their joint camera
specification Π into a continuous three-dimensional material field. For every point p ∈ R3 within the
scene bounds, the field returns

M̂(p) =
(
ℓ̂(p), Ê(p), ν̂(p), d̂(p)

)
,

where ℓ̂ : R3 →{1, . . . , L} is the discrete material class and Ê, ν̂, d : R3 →R are the continuous
Young’s modulus, Poisson’s ratio, and density value respectively. Recall that the discrete material
class, also known as the constitutive law, in Material Point Method is a combination of the choices
of an expert-defined hyperelastic energy function E and return mapping P (Sec. A). Learning a
point-mapping like this provides a fine-grained material segmentation where for every spatial location
we assign both a semantic material label and the physical parameters that characterise that material.
Learning the mapping in equation 1 directly from 2D images to 3D materials is not simple nor
sample efficient. Instead, we leverage a distilled feature field which has rich visual priors to represent
the intermediate mapping between 2D images and 3D visual featutes, and then a separate U-Net
architecture to compute the mapping between 3D visual features and physical materials.

3D Visual Feature Distillation Recent work on distilled feature fields has shown that dense 2D
visual feature embeddings extracted from foundation models, such as CLIP, based on images can be
lifted into 3D, yielding a volumetric representation that is both geometrically accurate and rich in
terms of visual and semantic priors (Shen et al., 2023). Here, we also augment the classical NeRF
representation (Mildenhall et al., 2021) to predict a view-independent feature vector in addition to
color and density, i.e.,

Fθ : (x,d) 7→
(
f(x), c(x,d), σ(x)

)
,

where c ∈ R3 and σ ∈ R≥0 are standard color and radiance NeRF outputs and f ∈ Rd is a high-
dimensional descriptor capturing visual semantics (e.g., object identity or other attributes), which we
assume to be view-independent. We supervise color with image RGB and features with per-pixel
CLIP embeddings extracted from the training images, using standard volume rendering (App. A.2).
After training, we voxelize the feature field within known scene bounds to obtain a regular grid FG

of dimension N ×N ×N ×D grid, where N = 64 is the grid size and D = 768 is the CLIP feature
dimension, serving as input to our material network.

Material Grid Learning Our material learning network fM consists of a feature projector fP
and a U-Net fU . As the CLIP features are very high-dimensional, we learn a feature projector
network fP , which consists of three layers of 3D convolution mapping CLIP features R768 to a
low-dimensional manifold R64. We then use the U-Net architecture fU to learn the mapping from the
projected feature grid FG to a material grid M̂G(p), which is a voxelized version of the material

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: PIXIEVERSE Dataset Overview. We collect 1624 high-quality single-object assets,
spanning 10 semantic classes (a), and 5 constitutive material types (b). The dataset is annotated with
detailed physical properties including discrete material types (b), Young’s modulus (c), Poisson’s ratio
(d), and mass density (e). The left figure shows representative examples from the dataset: organic
matter (tree, shrubs, grass, flowers), deformable toys (rubber ducks), sports equipment (sport balls),
granular media (sand, snow & mud), and hollow containers (soda cans, metal crates).

field M̂(p). The feature projector fP and U-Net fU are jointly trained end-to-end via a cross-entropy
and mean-squared error loss to predict the discrete material classification and the continuous values
including Young’s modulus, Poisson’s ratio and density. More details is in Appendix E.

We found that our voxel grids are very sparse with around 98% of the voxels being background.
Naively trained, the material network fM would learn to always predict background. Thus, we also
separately compute an occupancy mask grid M ∈ RN × RN × RN , constructed by filtering out
all voxels whose NeRF densities fall below a threshold α = 0.01. The supervised losses—cross-
entropy and mean squared errors—are only enforced on the occupied voxels. Concretely, the masked
supervised loss consists of a discrete cross-entropy and continuous mean-squared error loss:

Lsup =
1

Nocc

∑
p∈G

M(p)
[
λ · CE(ℓ̂(p), ℓGT (p)) + (Ê(p)− EGT (p))2

+ (ν̂(p)− νGT (p))2 + (d̂(p)− dGT (p))2
]
,

(2)

where Nocc =
∑

p∈G M(p) is the total number of occupied voxels in the grid, ℓ̂(p) and ℓGT (p) are
the predicted material class logits and the ground-truth, CE is the cross-entropy loss, λ is a loss
balancing factor, and E, ν, d are the Young’s modulus, Poisson’s ratio and density values, respectively.

Physics Simulation We use the Material Point Method (MPM) to simulate physics. The MPM
solver (Sec. A.3) takes a point cloud of initial particle poses along with predicted material properties,
and the external force specification, and simulates the particles’ transformations and deformations.
Although it is possible to sample particles from a NeRF model (e.g., via Poisson disk sampling (Feng
et al., 2023)), we have found that it is easier to use a Gaussian Splatting model (Sec. A) as each
Gaussian can naturally be thought of as a MPM particle (Xie et al., 2023). Thus, we separately
learn a Gaussian Splatting model from posed multi-view RGB images. We then transfer the material
properties from our predicted material grid into the 3DGS model via nearest neighbor interpolation.

3.2 PIXIEVERSE DATASET

We collect one of the largest and highest quality known datasets of diverse objects with annotated
physical materials. Our dataset (Fig. 3) covers 10 semantic classes, ranging from organic matter (trees,
shrubs, grass, flowers) and granular media (sand, snow and mud) to hollow containers (soda-cans,
metal crates), and toys (rubber ducks, sport balls). The dataset is sourced from Objaverse (Deitke
et al., 2022). Since Objaverse objects do not have physical parameter annotations, we develop an
semi-automatic multi-stage labeling pipeline leveraging foundation vision-language models i.e.,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Main Quantitative Results. We report the average reconstruction quality (PSNR, SSIM)
against the reference videos in PIXIEVERSE, the VLM score, and five other metrics our method
optimizes including material accuracy and continuous errors over E, ν, ρ. Standard errors and 95% CI
are also included, and best values are bolded. PIXIE-CLIP is by far the best method across all metrics,
achieving 1.62-5.91x improvement in VLM score and 3.6-30.3% gains in PSNR and SSIM. Our CLIP
variant is also notably more accurate than RGB and occupancy features as measured by material class
accuracy and average continuous MSE on the test set. While our method simultaneously recovers all
physical properties, some prior works only predict a subset, hence -.

Method PSNR ↑ SSIM ↑ VLM ↑ Mat. Acc. ↑ Avg. Cont. MSE ↓ logE err ↓ ν err ↓ log ρ err ↓
DreamPhysics (Huang et al., 2024)

1 epoch 19.398±1.090 0.880±0.020 2.97±0.31 - - 2.393±0.123 - -
25 epochs 19.078±0.939 0.881±0.019 2.68±0.24 - - 1.419±0.097 - -
50 epochs 19.189±0.980 0.880±0.020 2.53±0.24 - - 1.387±0.097 - -

OmniPhysGS (Lin et al., 2025)
1 epoch 17.907±0.359 0.882±0.007 0.74±0.10 0.072±0.0511 - - - -
2 epochs 17.889±0.372 0.882±0.007 1.23±0.19 0.109±0.0704 - - - -
5 epochs 17.842±0.354 0.883±0.007 0.99±0.12 0.104±0.0681 - - - -

NeRF2Physics (Zhai et al., 2024) 18.517±0.644 0.886±0.013 1.09±0.28 0.274±0.001 0.858±0.109 1.115±0.165 0.462±0.106 0.997±0.162

PIXIE
Occupancy 17.887±1.524 0.866±0.027 1.76±0.41 0.643±0.052 0.126±0.012 0.149±0.023 0.124±0.014 0.105±0.015
RGB 18.652±2.031 0.861±0.035 2.53±0.46 0.722±0.061 0.106±0.015 0.196±0.032 0.079±0.012 0.045±0.014
CLIP (ours) 23.256±2.456 0.918±0.023 4.35±0.08 0.985±0.011 0.056±0.005 0.022±0.004 0.034±0.006 0.112±0.009

Gemini-2.5-Pro (Team et al., 2023), distilled CLIP feature field (Kobayashi et al., 2022) and manually
tuned in-context physics examples. The full details is given in Appendix B and C.

4 EXPERIMENTS

Dataset We train PIXIE on the PIXIEVERSE dataset and evaluate on 38 synthetic scenes from the
test set and six real-world scene from the NeRF (Mildenhall et al., 2021), LERF (Kerr et al., 2023)
and Spring-Gaus (Zhong et al., 2024) datasets.

Simulation Details We use the material point method (MPM) implementation from PhysGaussian
(Xie et al., 2023) as the physics solver. The solver takes a gaussian splatting model augmented with
physics where each Gaussian particle also has a discrete material model ID, and continuous Young’s
modulus, Poisson’s ratio, and density values. Each simulation is run for around 50 to 125 frames on a
single NVIDIA RTX A6000 GPU. External forces such as gravity and wind are applied to the static
scenes as boundary conditions to create physics animations.

Baselines We evaluate PIXIE against two recent test-time optimization methods: DreamPhysics
(Huang et al., 2024) and OmniPhysGS (Lin et al., 2025), and a LLM method – NeRF2Physics
(Zhai et al., 2024). DreamPhysics optimizes a Young’s modulus field, requiring users to specify
other values including material ID, Poisson’s ratio, and density. OmniPhysGS, on the other hand,
selects a hyperelastic energy density function and a return mapping model, which, in combination,
specifies a material ID for each point in the field, requiring other physics parameters to be manually
specified. Both methods rely on a user prompt such as "a tree swing in the wind" and a generative
video diffusion model to optimize a motion distillation loss. PIXIE, in contrast, infers all discrete and
continuous parameters jointly (Fig. 16). NeRF2Physics first captions the scene and queries a LLM
for all plausible material types (e.g., “metal") along with the associated continuous values. Then,
the material semantic names are associated with 3D points in the CLIP feature field, and physical
properties are thus assigned via weighted similarities. This method is similar to our dataset labeling
in principle with some crucial differences as detailed in Appendix B and C, allowing PIXIEVERSE to
have much more high-quality labels. PIXIE was trained on 12 NVIDIA RTX A6000 GPUs, each with
a batch size of 4, in one day using the Adam optimizer (Kingma, 2014) while prior test-time methods
do not require training. For training PIXIE and computing metrics, we apply a log transform to E and
ρ, and normalize all logE, ν, log ρ values to [−1, 1] based on max/min statistics from PIXIEVERSE.

Evaluation Metrics We utilize a state-of-the-art vision-language model, Gemini-2.5-Pro (Team
et al., 2023) as the judge. The models are prompted to compare the rendered candidate animations
generated using physics parameters predicted by different baselines, and score those videos on a
scale from 0 to 5, where a higher score is better. The prompt is in Appendix D. We also measure the
reconstruction quality using PSNR and SSIM metric against the reference videos in the PIXIEVERSE
dataset, which are manually verified by humans for quality control. Other metrics our method
optimizes including class accuracy and continuous errors over E, ν, ρ are also computed.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Main VLM Results. (a) VLM score versus wall-clock time: PIXIE is three orders of
magnitude faster than previous works while achieving 1.46-4.39x improvement in realism. Test-time
optimization methods are run with varying numbers of epochs i.e., 1, 25, 50 for DreamPhysics and
1, 2, 5 for OmniPhysGS while inference methods are only run once. (b) Per-class VLM score: Our
method leads on most object classes. Standard errors are also included.

4.1 SYNTHETIC SCENE EXPERIMENTS

Figure 4 (a) plots Gemini score versus runtime. PIXIE achieves a VLM realism score of 4.35 ± 0.08 –
a 1.46-4.39x improvement over all baselines and tops all other metrics – while reducing inference
time from minutes or hours to 2 s. A per-class breakdown in Fig. 4 (b) shows our lead in most classes.
In Table 1, our model improves perceptual metrics such as PSNR and SSIM by 3.6−30.3% and VLM
scores by 2.21− 4.58x over prior works. Figure 5 visualises eight representative scenes, comparing
PIXIE against prior works. DreamPhysics leaves stiff artifacts due to missegmentation or overly
high predicted E values, OmniPhysGS collapses under force, and NeRF2Physics introduces high-
frequency noise, whereas PIXIE generates smooth, class-consistent motion and segment boundaries.
In the appendix, Figure 16 qualitatively visualizes the physical properties predicted by our network,
showing PIXIE’s ability to cleanly and accurately recover both discrete and continuous parameters
across a diverse sets of objects and continuous value spectrum. In contrast, some prior methods can
only recover a subset of parameters like E or material class.

4.2 ZERO-SHOT GENERALIZATION TO REAL-WORLD SCENES

Without any real-scene supervision, PIXIE can zero-shot generalize to many real-world scenes as
shown in Fig. 6. For example, our method correctly assigns rigid vase bases and flexible leaves,
yielding realistic motion that closely matches human expectation. Our method is surprisingly
performant despite significant and non-trivial visual gaps between the training synthetic data versus
the out-of-distribution real-world scenes. No other baseline can generalize under this setting.

4.3 PIXIE’S FEATURE TYPE ABLATION

Replacing CLIP with RGB or occupancy features drops VLM score by 40-60 % and nearly doubles
parameter MSE (Table 1, rows “Occupancy” and “RGB”). We provide more results in the Appendix.
Specifically, we show that the material class prediction also dramatically drops across all classes
as shown in Fig. 17. Figure 18 shows the failure modes for real scenes, highlighting RGB and
occupancy’s struggle to generalize to unseen data as compared to CLIP.

5 CONCLUSION AND LIMITATIONS

We presented PIXIE, a framework that jointly reconstructs geometry, appearance, and explicit physical
material fields from posed RGB images. By distilling rich CLIP features into 3D and training a
feed-forward 3D U-Net with per-voxel material supervision on our new PIXIEVERSE dataset, PIXIE
avoids the expensive test-time optimization required by prior work. Once trained, it produces full
material fields in a few seconds, improving Gemini realism scores by 1.46-4.39x over prior art while

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Qualitative comparison on synthetic scenes. We visualized the predicted material class
and E predictions (left, right respectively) for PIXIE and Nerf2Physics, E for DreamPhysics (right),
and the plasticity and hyperelastic function classes predicted by OmniPhysGS. PIXIE produces stable,
physically plausible motion while DreamPhysics remains overly stiff due to inaccurate fine-grained
E prediction or too high E (e.g., see tree (C)), OmniPhysGS collapses under load due to unrealistic
combination of plasticity and hyperelastic functions, and NeRF2Physics exhibits noisy artifacts.
Please see https://pixie-2026-12998.github.io/for the videos.

reducing inference time by three orders of magnitude. PIXIE leverages CLIP’s strong visual priors,
which enables zero-shot transfer to real scenes, even though it is only trained on synthetic data. The
method enables realistic, physically plausible 3D scene animation with off-the-shelf MPM solvers.

Limitations We take the first step towards learning a supervised 3D model for physical material
prediction. Like prior art, our work focuses on single object interactions leaving multi-object scenes
for future investigation. Another limitation is that while our UNet predicts a point estimate for each
voxel, materials in the real-world contain uncertainty that visual information alone cannot resolve
(e.g., a tree can be stiff or flexible). A promising extension is to learn a distribution of materials (e.g.,
using diffusion) instead.

8

https://pixie-2026-12998.github.io/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Material class E

Figure 6: PIXIE’s Zero-shot Real-scene Generalization. Trained only on synthetic PIXIEVERSE,
PIXIE can predict plausible physic properties, enabling realistic MPM simulation of real scenes.
Here, we visualize the material types (left) and Young’s modulus (right) prediction in the first
frame, and subsequent frames impacted by a wind force. Please see the videos in our website
https://pixie-2026-12998.github.io/.

9

https://pixie-2026-12998.github.io/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jad Abou-Chakra, Krishan Rana, Feras Dayoub, and Niko Suenderhauf. Physically embodied
gaussian splatting: A realtime correctable world model for robotics. In 8th Annual Conference on
Robot Learning, 2024. URL https://openreview.net/forum?id=AEq0onGrN2.

Daniel M Bear, Elias Wang, Damian Mrowca, Felix J Binder, Hsiao-Yu Fish Tung, RT Pramod,
Cameron Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, et al. Physion: Evaluating physical
prediction from vision in humans and machines. arXiv preprint arXiv:2106.08261, 2021.

Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Material recognition in the wild with
the materials in context database. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3479–3487, 2015.

Ziang Cao, Zhaoxi Chen, Liang Pan, and Ziwei Liu. Physx: Physical-grounded 3d asset generation.
arXiv preprint arXiv:2507.12465, 2025.

Boyuan Chen, Hanxiao Jiang, Shaowei Liu, Saurabh Gupta, Yunzhu Li, Hao Zhao, and Shenlong
Wang. Physgen3d: Crafting a miniature interactive world from a single image. arXiv preprint
arXiv:2503.20746, 2025a.

Chuhao Chen, Zhiyang Dou, Chen Wang, Yiming Huang, Anjun Chen, Qiao Feng, Jiatao Gu, and
Lingjie Liu. Vid2sim: Generalizable, video-based reconstruction of appearance, geometry and
physics for mesh-free simulation. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2025b.

Xi Chen, Zhifei Zhang, He Zhang, Yuqian Zhou, Soo Ye Kim, Qing Liu, Yijun Li, Jianming Zhang,
Nanxuan Zhao, Yilin Wang, et al. Unireal: Universal image generation and editing via learning
real-world dynamics. arXiv preprint arXiv:2412.07774, 2024.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of annotated
3d objects, 2022. URL https://arxiv.org/abs/2212.08051.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Yutao Feng, Yintong Shang, Xuan Li, Tianjia Shao, Chenfanfu Jiang, and Yin Yang. Pie-nerf:
Physics-based interactive elastodynamics with nerf, 2023.

Michael Fischer, Iliyan Georgiev, Thibault Groueix, Vladimir G Kim, Tobias Ritschel, and
Valentin Deschaintre. Sama: Material-aware 3d selection and segmentation. arXiv preprint
arXiv:2411.19322, 2024.

Minghao Guo, Bohan Wang, Pingchuan Ma, Tianyuan Zhang, Crystal Elaine Owens, Chuang Gan,
Joshua B. Tenenbaum, Kaiming He, and Wojciech Matusik. Physically compatible 3d object
modeling from a single image. arXiv preprint arXiv:2405.20510, 2024.

Hao-Yu Hsu, Zhi-Hao Lin, Albert Zhai, Hongchi Xia, and Shenlong Wang. Autovfx: Physically
realistic video editing from natural language instructions. arXiv preprint arXiv:2411.02394, 2024.

Tianyu Huang, Yihan Zeng, Hui Li, Wangmeng Zuo, and Rynson WH Lau. Dreamphysics: Learn-
ing physical properties of dynamic 3d gaussians with video diffusion priors. arXiv preprint
arXiv:2406.01476, 2024.

Krishna Murthy Jatavallabhula, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin
Weiss, Breandan Considine, Jerome Parent-Levesque, Kevin Xie, Kenny Erleben, Liam Paull,
Florian Shkurti, Derek Nowrouzezahrai, and Sanja Fidler. gradsim: Differentiable simulation for
system identification and visuomotor control. International Conference on Learning Representa-
tions (ICLR), 2021. URL https://openreview.net/forum?id=c_E8kFWfhp0.

Hanxiao Jiang, Hao-Yu Hsu, Kaifeng Zhang, Hsin-Ni Yu, Shenlong Wang, and Yunzhu Li. Phystwin:
Physics-informed reconstruction and simulation of deformable objects from videos. arXiv preprint
arXiv:2503.17973, 2025.

10

https://openreview.net/forum?id=AEq0onGrN2
https://arxiv.org/abs/2212.08051
https://openreview.net/forum?id=c_E8kFWfhp0

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker: It is better to track together. In European Conference on Computer Vision,
pages 18–35. Springer, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf: Language
embedded radiance fields. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 19729–19739, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing nerf for editing via
feature field distillation. In Advances in Neural Information Processing Systems, volume 35, 2022.
URL https://arxiv.org/pdf/2205.15585.pdf.

Long Le, Jason Xie, William Liang, Hung-Ju Wang, Yue Yang, Yecheng Jason Ma, Kyle Vedder,
Arjun Krishna, Dinesh Jayaraman, and Eric Eaton. Articulate-anything: Automatic modeling of
articulated objects via a vision-language foundation model. arXiv preprint arXiv:2410.13882,
2024.

Xuan Li, Yi-Ling Qiao, Peter Yichen Chen, Krishna Murthy Jatavallabhula, Ming Lin, Chenfanfu
Jiang, and Chuang Gan. PAC-neRF: Physics augmented continuum neural radiance fields for
geometry-agnostic system identification. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=tVkrbkz42vc.

Zhengqi Li, Richard Tucker, Noah Snavely, and Aleksander Holynski. Generative image dynamics.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
24142–24153, 2024.

Zizhang Li, Hong-Xing Yu, Wei Liu, Yin Yang, Charles Herrmann, Gordon Wetzstein, and Jiajun
Wu. Wonderplay: Dynamic 3d scene generation from a single image and actions. arXiv preprint
arXiv:2505.18151, 2025.

Yuchen Lin, Chenguo Lin, Jianjin Xu, and Yadong MU. OmniphysGS: 3d constitutive gaussians for
general physics-based dynamics generation. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=9HZtP6I5lv.

Pingchuan Ma, Peter Yichen Chen, Bolei Deng, Joshua B Tenenbaum, Tao Du, Chuang Gan, and
Wojciech Matusik. Learning neural constitutive laws from motion observations for generalizable
pde dynamics. In International Conference on Machine Learning, pages 23279–23300. PMLR,
2023.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Himangi Mittal, Peiye Zhuang, Hsin-Ying Lee, and Shubham Tulsiani. Uniphy: Learning a unified
constitutive model for inverse physics simulation. arXiv preprint arXiv:2505.16971, 2025.

Jack Parker-Holder, Philip Ball, Jake Bruce, Vibhavari Dasagi, Kristian Holsheimer, Chris-
tos Kaplanis, Alexandre Moufarek, Guy Scully, Jeremy Shar, Jimmy Shi, Stephen Spencer,
Jessica Yung, Michael Dennis, Sultan Kenjeyev, Shangbang Long, Vlad Mnih, Harris
Chan, Maxime Gazeau, Bonnie Li, Fabio Pardo, Luyu Wang, Lei Zhang, Frederic Besse,
Tim Harley, Anna Mitenkova, Jane Wang, Jeff Clune, Demis Hassabis, Raia Hadsell,
Adrian Bolton, Satinder Singh, and Tim Rocktäschel. Genie 2: A large-scale foun-
dation world model. 2024. URL https://deepmind.google/discover/blog/
genie-2-a-large-scale-foundation-world-model/.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-NeRF: Neural
Radiance Fields for Dynamic Scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020.

11

https://arxiv.org/pdf/2205.15585.pdf
https://openreview.net/forum?id=tVkrbkz42vc
https://openreview.net/forum?id=9HZtP6I5lv
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ri-Zhao Qiu, Ge Yang, Weijia Zeng, and Xiaolong Wang. Feature splatting: Language-driven
physics-based scene synthesis and editing. arXiv preprint arXiv:2404.01223, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pages
8748–8763. PmLR, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pages 234–241. Springer, 2015.

William Shen, Ge Yang, Alan Yu, Jansen Wong, Leslie Pack Kaelbling, and Phillip Isola. Distilled
feature fields enable few-shot language-guided manipulation, 2023. URL https://arxiv.
org/abs/2308.07931.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-
efficient learners for self-supervised video pre-training. Advances in neural information processing
systems, 35:10078–10093, 2022.

Chen Wang, Chuhao Chen, Yiming Huang, Zhiyang Dou, Yuan Liu, Jiatao Gu, and Lingjie Liu.
Physctrl: Generative physics for controllable and physics-grounded video generation. In arXiv
preprint, 2025.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in neural
information processing systems, 33:5776–5788, 2020.

Hongchi Xia, Zhi-Hao Lin, Wei-Chiu Ma, and Shenlong Wang. Video2game: Real-time, interactive,
realistic and browser-compatible environment from a single video, 2024.

Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
Physgaussian: Physics-integrated 3d gaussians for generative dynamics. arXiv preprint
arXiv:2311.12198, 2023.

Albert J Zhai, Yuan Shen, Emily Y Chen, Gloria X Wang, Xinlei Wang, Sheng Wang, Kaiyu Guan,
and Shenlong Wang. Physical property understanding from language-embedded feature fields. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
28296–28305, 2024.

Kaifeng Zhang, Baoyu Li, Kris Hauser, and Yunzhu Li. Particle-grid neural dynamics for learning
deformable object models from rgb-d videos. arXiv preprint arXiv:2506.15680, 2025.

Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y. Feng, Changxi Zheng, Noah Snavely, Jiajun
Wu, and William T. Freeman. PhysDreamer: Physics-based interaction with 3d objects via video
generation. In European Conference on Computer Vision. Springer, 2024.

Licheng Zhong, Hong-Xing Yu, Jiajun Wu, and Yunzhu Li. Reconstruction and simulation of elastic
objects with spring-mass 3d gaussians. European Conference on Computer Vision (ECCV), 2024.

12

https://arxiv.org/abs/2308.07931
https://arxiv.org/abs/2308.07931

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PRELIMINARIES

This section briefly reviews foundational concepts in 3D scene representation and physics modeling
relevant to our work.

A.1 LEARNED SCENE REPRESENTATION

Reconstructing 3D scenes from 2D images is commonly achieved by learning a parameterized
representation, Fθ, optimized to render novel views that match observed images {I(i)}Mi=1 given
camera parameters {π(i)}Mi=1. This typically involves minimizing a photometric loss:

min
θ

M∑
i=1

∥∥∥Î(i)(θ)− I(i)
∥∥∥2
2

,

where Î(i)(θ) is the image rendered from viewpoint i. Two prominent representations are Neural
Radiance Fields (NeRF) and Gaussian Splatting (GS) models.

Neural Radiance Fields (NeRF) (Mildenhall et al., 2021) model a scene as a continuous function
Fθ : (x,d) 7→ (c, σ), mapping a 3D location x and viewing direction d to an emitted color c and
volume density σ. Images are synthesized using volume rendering, integrating color and density
along camera rays. This process’ differentiability allows for end-to-end optimization from images.

Gaussian Splatting (GS) (Kerbl et al., 2023) represents scenes as a collection of 3D Gaussian
primitives, each defined by a center µi, covariance Σi, color ci, and opacity αi. These Gaussians are
projected onto the image plane and blended using alpha compositing to render views.

In our work, the principles of neural scene representation, particularly NeRF-like architectures, are
leveraged not only for visual reconstruction but also for creating dense 3D visual feature fields. As
detailed in Sec. 3.1, we utilize a NeRF-based model to distill 2D image features (e.g., from CLIP)
into a volumetric 3D feature grid. This 3D feature representation, FG, then serves as the primary
input to our physics prediction network. For subsequent physics simulation, GS offers a convenient
particle-based representation.

A.2 3D VISUAL FEATURE DISTILLATION DETAILS

Following (Shen et al., 2023), we augment the NeRF mapping to produce features f alongside color c
and density σ:

Fθ : (x,d) 7→
(
f(x), c(x,d), σ(x)

)
.

Given a camera ray r(t) = o + td passing through pixel p, color C(p) and features F (p) are
volume-rendered as

C(p) =

∫ tf

tn

T (t)σ
(
r(t)

)
c
(
r(t),d

)
dt, F (p) =

∫ tf

tn

T (t)σ
(
r(t)

)
f
(
r(t)

)
dt, (3)

where T (t) = exp
(
−
∫ t

tn
σ(r(s)) ds

)
is the accumulated transmittance from the ray origin to depth

t. At each training iteration, a batch of rays is sampled from the input views. For each ray r (pixel
p), we enforce that the rendered color C(p) matches the ground-truth pixel RGB C∗(p), while the
rendered feature F (p) matches the corresponding CLIP-based feature vector F ∗(p) extracted from
the image. The loss of the network is:

L =
∑
p

∥∥C(p)− C∗(p)
∥∥2
2
+ λfeat

∑
p

∥∥F (p)− F ∗(p)
∥∥2
2
;

the first term enforces color fidelity, while the second aligns the rendered volumetric CLIP features
with the dense 2D features extracted from the training images.

From a trained distilled feature field Fθ, we obtain a regular feature grid FG of dimension N ×N ×
N ×D grid, where N = 64 is the grid size and D = 768 is the CLIP feature dimension. This is
done via voxelization using known scene bounds. For our synthetic dataset, we center and normalize
all objects within a unit cube.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 MATERIAL POINT METHOD (MPM) FOR PHYSICS SIMULATION

To simulate how objects move and deform under applied forces, a physics engine requires knowledge
of their material properties. These properties are typically defined within the framework of continuum
mechanics, which describes the behavior of materials at a macroscopic level. The fundamental
equations of motion (conservation of mass and momentum) are:

ρ
Dv

Dt
= ∇ · σ + f ext ∇ · v = 0 , (4)

where ρ is mass density, v the velocity field, σ the Cauchy stress tensor, and f ext any external force
(e.g. gravity or user interactions). The material-specific constitutive laws define how σ depends on
the local deformation gradient F. For elastic materials, stress depends purely on the recoverable
strain; for plastic materials, a yield condition enforces partial “flow” once strain exceeds a threshold.

Constitutive Laws and Parameters Most continuum simulations separate the constitutive model
into two core components:

Eµ : Fe 7→ P,

Pµ : F e,trial 7→ F e,new ,
(5)

where Fe is the elastic portion of the deformation gradient, P is the (First) Piola–Kirchhoff stress, and
µ represents the set of material parameters (e.g. Young’s modulus E, Poisson’s ratio ν, yield stress).
The elastic law Eµ computes stress from the current elastic deformation, while the return-mapping
Pµ projects any “trial” elastic update F e,trial onto the feasible yield surface if plastic flow is triggered.
Typically, the constitutive laws i.e., Eµ and Pµ are hand-designed by domain experts. The choice of E
and P jointly define a class of material (e.g., rubber). Within a material class, additional continuous
parameters µ including Young’s modulus, Poisson’s ratio and density can be specified for a more
granular control of the material properties (e.g., stiffness of rubber). In our work, PIXIE jointly
predicts the discrete material model and the continuous material parameters.

B PIXIEVERSE DATASET DETAILS

We heavily curate the dataset to a set of 1624 objects after a multi-stage filter that removes multi-object
scenes, missing textures, duplicated assets, and objects whose material labeling is either ambiguous or
physically implausible. The process is semi-automatic with a VLM-driven multi-stage pipeline while
still imparting substantial human prior and labor. We manually tune the physics parameter ranges for
each semantic class (e.g., “tree", “rubber toy") and 3D segmentation query terms, and provide these
as in-context examples for the VLM to align them with human’s physical understanding.

First, we define some object class (e.g., “tree") and some alternative query terms (e.g., “ficus, fern,
evergreen etc"). We then use a sentence transformer model (Wang et al., 2020) to compute the cosine
similarity between the search terms and the name of each Objaverse object. We select k = 500
objects with the highest similarity score for each class, creating an initial candidate pool. However,
since Objaverse objects vary greatly in asset quality, lighting conditions, and some scenes contain
multiple objects which are not suitable for our material learning, an additional filtering step is needed.
The Gemini VLM is prompted to filter out low-quality or unsuitable scenes. A distilled NeRF model
is fitted to each object. Then, the VLM is provided five multi-view RGB images of an object, and
prompted to provide a list of the object’s semantic parts along with associated material class and
ranges for continuous values. The ranges such as E ∈ {1e4, 1e5} allow us to simulate a wider
range of dynamics from flexible to more rigid trees. The VLM is also prompted to specify a list of
constraints such as to ensure that the leaf’s density is lower than the trunk’s. We then sample the
continuous values from the VLM’s specified ranges subject to the constraint via rejection sampling.
The semantic parts (e.g., “pot") are used with the CLIP distilled feature field to compute a 3D semantic
segmentation of the object into parts, and the sampled material properties are applied uniformly to
all points within a part. This ground-truth material and feature fields are then voxelized into regular
grids for use in supervised learning by the PIXIE framework.

The following sections provide more details on each step of our semi-automatic labeling process.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

tree: tree, ficus, fern, oak tree, pine tree, evergreen, palm tree, maple tree,
bonsai tree
flowers: flower, bouquet, rose, tulip, daisy, lily, sunflower, orchid, flower
arrangement, flowering plant, garden flowers, wildflowers, floral
rubber_ducks_and_toys: rubber duck, bath toy, rubber toy, toy duck, squeaky toy,
floating toy, plastic duck, children’s bath toy, yellow duck toy, rubber animal
toy
soda_cans: soda can, aluminum can, beverage can, cola can, soft drink can, metal
can, canned drink, pop can, fizzy drink can
sport_balls: basketball, soccer ball, football, tennis ball, baseball, volleyball,
golf ball, rugby ball, ping pong ball, cricket ball, bowling ball, beach ball,

sports ball
sand: sand, beach sand, desert sand, sandy terrain, sand pile, sand dune, sandpit,
sand box, sand texture, grainy sand

shrubs: shrub, bush, hedge, ornamental bush, garden shrub, boxwood, flowering
bush, evergreen shrub, decorative plant, landscaping shrub
metal_crates: metal crate, steel box, metal container, shipping crate, metal
storage box, industrial container, metal chest, storage crate, metallic box
grass: grass, lawn, turf, grassland, meadow, grassy field, green grass, grass
patch, tall grass, wild grass, pasture
snow_and_mud: snow, mud, snowy ground, muddy ground, wet mud, fresh snow, packed
snow, snowy terrain, muddy terrain, snow patch, mud puddle, snowdrift, muddy path,
snowy surface, muddy surface, slush, wet snow, dirty snow, muddy water, snowy

landscape

Figure 7: Objaverse Class Selection Keywords. The keywords for matching a semantic class with
an objaverse asset’s name.

B.1 OBJECT SELECTION FROM OBJAVERSE

We use the all-MiniLM-L6-v2 (Wang et al., 2020) sentence transformer to compute the cosine
similarity between an objaverse asset’s name and some search terms for each object class. The search
terms are in Fig. 7. The top k = 500 objects with the highest similarity score are selected for each
class.

B.2 OBJECT FILTERING

Next, we prompt Gemini to filter out low-quality assets. The system instruction is given in Fig. 8.
Then, a human quickly scans through the VLM results organized in our web interface as shown in
Fig. 9 to correct any mistakes.

B.3 CLIP-DRIVEN 3D SEMANTIC SEGMENTATION

From a distilled CLIP feature field of the object (Shen et al., 2023), we can perform 3D semantic
segmentation by providing a list of the object’s parts (e.g., “pot, trunk, leaves"). These query terms
are used to compute the cosine similarity between each CLIP feature at a given 3D coordinate against
the terms, and the part with highest similarity is assigned to that point. The choices of query terms
(e.g., “pot, trunk, leaves" vs “base, stem, leaf") greatly affect the segmentation quality, and is not
obvious. A high-performing query list in one object is not guaranteed to yield high performance in
another object, e.g., see Fig. 10. Thus, we prompt a VLM actor to generate several candidate queries
for each object, render all candidates, and prompt another VLM critic to select the best query terms
from the rendered 3D segmentation images, as detailed Sec. B.4.

B.4 VLM ACTOR-CRITIC LABELING

Current VLMs might not have robust physical understanding for generating high-quality labels for
PIXIEVERSE zeroshot. Thus, we first manually tune the physic parameters for each semantic object

15

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We need to select some images of the classes: {class_name}. This class includes
objects like {search_terms}. We will provide you some images rendered from the 3D
model. You need to either return True or False. Return False to reject the image
as inappropriate for the video game development. Some common reasons for

rejection:
− The image doesn’t clearly depict the object class
− The image is too dark or too bright or too blurry or has some other low

quality.
Remember, we want high−quality training data.

− The image contains other things in addition to the object.
REMEMBER, we only want images that depict cleanly ONE SINGLE OBJECT belonging to
one of the classes. But you also need to use your common sense and best judgement.
For example, for a class like "flowers", the object might include a vase of

flowers (you rarely see a single flower in the wild). So you should return True
in this case.

− We do want diversity in our dataset collection. So even if the texture of the
object is a bit unusual, as long as you can recognize it as belonging to the

class / search terms, you should return True. Only remove low−quality assets.

The return format is:
‘‘‘json
{
"is_appropriate": true (or false),
"reason": "reason for the decision"

}
‘‘‘
We’ll be using the 3d models to learn physic parameters like material and young
modulus to simulate the physics of the object. E.g., the tree swaying in the wind
or thing being dropped from a height. Therefore, you need to decide if the image
depicts an object that is likely to be used in a physics simulation.

Figure 8: Object Filtering System Prompt. Prompt for VLM to filter out low-quality assets.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 9: Manual correction for object filtering. The web interface for quickly inspecting and
manually correcting VLM results.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 10: CLIP Semantic Segmentation. CLIP features can be noisy for various objects and
different text queries vary greatly in segmentation quality. Thus, we prompt a VLM actor to generate
several candidate queries for each object, render all candidates, and prompt another VLM critic to
select the best query terms from the rendered 3D segmentation images. Some candidates are provided
and proposals chosen by the critic are highlighted. Note that a high-performing query proposal (e.g.,
“leaves,pot,trunk") in one object is not necessary high-performant in another. The PCA visualization
of the CLIP feature fields is also provided.

class (e.g., “tree", “rubber toy"). A condensed version of these examples is provided in Fig. 12. We
also provide examples of different search terms (e.g., “pot, trunk, leaves" vs “base, stem, leaf"). These
in-context examples are provided to a VLM actor that simultaneously proposes physics parameters
and semantic segmentatic queries for that object from multi-view images of that object as illustrated
in Fig. 11. The full system prompt for the VLM is provided in Fig. 13 and the full in-context examples
in Listing 1. We render an image representing 3D semantic segmentation masks for each query
proposal as shown in Fig. 10. A VLM critic is then prompted to select the best segmentation queries
from the rendered images. The critic’s system prompt is provided in Fig. 14.

Additionally, materials in the real-world contain uncertainty that visual information alone cannot
resolve (e.g., a tree can range from stiff to flexible). Thus, instead of specifying one physics parameter
per part, we prompt the VLM actor to output a plausible range (e.g., E ∈ {1e4, 1e5} see Fig. 11, 12).
We then sample a value uniformly from each range to build our training dataset. To further ensure
that the sampled values are consistent, the VLM is also prompted to specify a list of constraints (e.g.,
the density of leaves must be lower than that of the trunk). Rejection sampling is used to ensure that
the final dataset respects the constraints.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

...

OUTPUTINPUT

"reasoning"

"constraints"

"all_queries"

: "The pot is made of a dense,
stiff material like ceramic or concrete, so
it's density and Young's modulus are high, and
it is stationary. The trunk and leaves are
made of a flexible material like wood and
foliage, so they are modeled as jelly with
lower density and Young's modulus. The leaves
are more flexible

 than the trunk, so their Young's modulus is
lower.", 
 : "assert
material_dict[\"pot\"][\"density\"] >
material_dict[\"trunk\"][\"density\"]\nassert
material_dict[\"trunk\"][\"density\"] >
material_dict[\"leaves\"][\"density\"]\nassert
material_dict[\"pot\"][\"E\"] >
material_dict[\"trunk\"][\"E\"]\nassert
material_dict[\"trunk\"][\"E\"] >
material_dict[\"leaves\"][\"E\"]", 
 : [ 
 [ 
 "pot", 
 "trunk", 
 "leaves" 
], 
 [ 
 "brown pot", 
 "brown trunk", 
 "green leaves" 
], 
 [ 
 "ceramic pot", 
 "wooden trunk", 
 "foliage" 
] 
] 
}

{ 
: { 

 "pot": { 
 "density": [ 
 1500, 2000 
], 
 "E": [ 
 1e8, 1e9  
], 
 "nu": [ 
 0.2, 0.3 
], 
 "material_id": 6 
 }, 
 "trunk": { 
 "density": [ 
 300, 500 
], 
 "E": [ 
 1e5,5e6 
], 
 "nu": [ 
 0.3, 0.4 
], 
 "material_id": 0 
 }, 
 "leaves": { 
 "density": [ 
 100, 300 
], 
 "E": [ 
 1e4, 5e5 
], 
 "nu": [ 
 0.3, 0.4 
], 
 "material_id": 0 
 } 
 }, 

 "material_dict"
The image are

please provide the segmentation terms and

physics outputs as instructed.

Figure 11: VLM Actor’s Physics and Segmentation Proposal.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

tree:
pot: {density: 400, E: 2e8, nu: 0.4, material: "rigid"}
trunk: {density: 400, E: 2e6, nu: 0.4, material: "elastic"}
leaves: {density: 200, E: 2e4, nu: 0.4, material: "elastic"}

flowers:
vase: {density: 500, E: 1e6, nu: 0.3, material: "rigid"}
flowers: {density: 100, E: 1e4, nu: 0.4, material: "elastic"}

shrub:
stems: {density: 300, E: 1e5, nu: 0.35, material: "elastic"}
twigs: {density: 250, E: 6e4, nu: 0.38, material: "elastic"}
foliage: {density: 150, E: 2e4, nu: 0.40, material: "elastic"}

grass:
blades: {density: 80, E: 1e4, nu: 0.45, material: "elastic"}
soil (if visible): {density: 1200, E: 5e5, nu: 0.30, material: "rigid"}

rubber_ducks_and_toys:
toy: {density: [80, 150], E: [3e4, 5e4], nu: [0.4, 0.45], material: "elastic"}

sport_balls:
ball: {density: [80, 150], E: [3e4, 5e4], nu: [0.4, 0.45], material: "elastic"}

soda_cans:
can: {density: [2600, 2800], E: [5e10, 8e10], nu: [0.25, 0.35], material: "

metal"}

metal_crates:
crate: {density: [2500, 2900], E: [8e7, 1.2e8], nu: [0.25, 0.35], material: "

metal"}

sand:
sand: {density: [1800, 2200], E: [4e7, 6e7], nu: [0.25, 0.35], material: "sand"}

jello_block:
jello: {density: [40, 60], E: [800, 1200], nu: [0.25, 0.35], material: "elastic

"}

snow_and_mud:
snow_and_mud: {density: [2000, 3000], E: [8e4, 1.2e5], nu: [0.15, 0.25],

material: "snow"}

Figure 12: In-Context Physics Condensed Examples. Material properties for each object class used
in the VLM prompting. Density is in kg/m³, E (Young’s Modulus) is in Pa, nu (Poisson’s ratio) is
dimensionless.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We are trying to label a 3D object with physical properties. The physical
properties are:

− Density
− Young’s Modulus
− Poisson’s Ratio
− Material model

where the material model is one of the following: \{material_list_str\}
We have an automatic semantic segmentation model that can segment the object into
different parts. We’ll assume that each part has the same material model.

Your job is to come up with the part query to pass to the semantic segmentation
model, and the associated material properties for each part.

\{special_notes\}
For example, for a \{class_name_for_example\}, the return is

‘‘‘json
\{example_material_dict_str\}
‘‘‘
\{example_explanation\}

Note that there are many different valid values for the material properties
including E, nu, and density that would influence how the object behaves. Thus,
instead of actual values, you should return a range of values like "E": [2e4, 2e6
]. Also, provide reasoning and constraints on the values when appropriate.

So the output should be a json with the following format:

‘‘‘json
\{\{

"material_dict": \{\{ ... similar to example_dict with ranges ... \}\},
"reasoning": "...",
"constraints": "...",
"all_queries": "..."

\}\}
‘‘‘

Remember to write constraints in the form of python code. For example,
‘‘‘python

\{example_constraints_str\}
‘‘‘
Note that you’ve been asked to generate a material range so ‘material_dict["
leaves"]["density"]‘ is a range of values. But for the purpose of the constraints
writing, you can assume that the material_dict["leaves"]["density"] is a single
value, and generate the python code similar to the example above. This is

important because we will first sample a value from the range, then invoke your
constraints code. So instead of writing something like
‘‘‘python

assert material_dict["leaves"]["density"][0] ...
‘‘‘
you must write something like
‘‘‘python

assert material_dict["leaves"]["density"] ...
‘‘‘
Note that the correct code doesn’t have the bracket because ‘material_dict["
leaves"]["density"]‘ will be already reduced to a single value by our sampler.
You will be provided with images of the object from different views or a single
view. Please try your best to come up with appropriate part queries as well. For
example, if the object doesn’t have visible trunk or pot, then you should NOT
include them in the material_dict. Only segment parts that are visible in the
image.
Also, because our CLIP segmentation model is not perfect, you should come up with
alternative queries as well including the original queries in the all_queries

list. For example,
‘‘‘json
\{example_all_queries_str\}
‘‘‘

In total, you need to provide \{num_alternative_queries\} alternative queries.
Tips:
\{tips_str\}
− Make sure that each element in the ‘all_queries‘ list is in the exact same
order as the material_dict keys.

Figure 13: VLM Actor System Prompt.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

You are a segmentation quality critic. Your task is to evaluate the quality of
segmentation results produced by a CLIP−based segmentation model.

You will be shown:
1. A set of original RGB images of a 3D object from different views
2. Segmentation results for different part queries

Your job is to:
1. Evaluate each segmentation query based on how well it separates the object
into meaningful parts
2. Score each query on a scale of 1−10 (10 being perfect)
3. Provide reasoning for your scores
4. Suggest improvements to the queries if needed

Consider the following factors in your evaluation:
− Does the segmentation properly separate the object into distinct, semantically
meaningful parts?

− Are the boundaries of the segments accurate and clean?
− Is any important part of the object missed or incorrectly segmented?
− IMPORTANT: note that our imperfect CLIP segmentation model is heavily
dependent on the choice of part queries. Thus,
even if a query might not be semantically correct, as long as it is useful for
separating the object into distinct parts,
you should score it high.
− Bad queries would result in bad segmentation that are noisy or different parts
are not correctly and/or clearly separated.

Your output should be a JSON in the following format:

‘‘‘json
{
"query_evaluations": {
"query_0": {
"score": 8,
"reasoning": "This query effectively separates the object into functionally

distinct parts. The boundaries are clean and consistent across different views."
},
"query_1": {
"score": 3,
"reasoning": "This query fails to distinguish important parts of the object,

making it unsuitable for physical property assignment."
},
...

},
"best_query": "query_1",
"suggested_improvements": "Consider using more specific terms like ’ceramic pot’
instead of just ’pot’ to improve segmentation boundaries."

}
‘‘‘
where ‘query_{i}‘ is the i−th query in the "all_queries" list.

Be detailed in your reasoning and make concrete suggestions for improvements.

Figure 14: VLM Critic System Prompt. System instruction for evaluating segmentation quality and
suggesting improvements.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Listing 1: In-context Physics Examples
{

"tree": {
"class_name_for_example": "ficus tree",
"special_notes": "",
"example_material_dict": {

"pot": {"density": 400, "E": 2e8, "nu": 0.4, "material_id":
get_material_id("rigid")},

"trunk": {"density": 400, "E": 2e6, "nu": 0.4, "material_id":
get_material_id("elastic")},

"leaves": {"density": 200, "E": 2e4, "nu": 0.4, "material_id
": get_material_id("elastic")}

},
"example_explanation": textwrap.dedent("""

For this, we assume that the pot is stationary, while the
trunk and leaves are made of "elastic", which will make

them sway in the wind. The stiffness (Young’s Modulus) of the
trunk is much higher than that of the leaves.

"""),
"example_all_queries": [["leaves", "trunk", "pot"], ["green", "

orange", "reddish-brown"]],
"tips": [

"In a scene, typically there’s a stationary part that will
serve to fix the object to the ground. Usually, it’s the pot, or some
base of the tree. You must set the material_id of the stationary

part to 6. If there’s no stationary part, then never mind.",
"The higher the ‘E‘ is, the stiffer the object is. E.g., so

tree would sway less in the wind.",
]

},
"flowers": {

"class_name_for_example": "flowers in a vase",
"special_notes": "",
"example_material_dict": {

"vase": {"density": 500, "E": 1e6, "nu": 0.3, "material_id":
get_material_id("rigid")},

"flowers": {"density": 100, "E": 1e4, "nu": 0.4, "material_id
": get_material_id("elastic")}

},
"example_explanation": textwrap.dedent("""

Here, the vase is designated as stationary (material_id=6),
indicating it should not move or sway.

The flowers are set to a more pliable or flexible material (
like "elastic" = 0), so that they can sway

if there’s wind or slight motion. The stiffness (Young’s
Modulus) of the vase is much higher than that

of the flowers, making the vase rigid and the flowers more
flexible.

"""),
"example_all_queries": [["vase", "flowers"], ["ceramic base", "

petals"], ["blue vase", "pink flower"]],
"tips": [

"In a typical flower arrangement, the vase (or base) is
stationary, so give that part material_id=6 if present.",

"The higher the ‘E‘, the stiffer the part. So the vase should
have a higher E range than the flowers.",

]
},
"shrub": {

"class_name_for_example": "typical three-part shrub",
"special_notes": textwrap.dedent("""
Dataset note: Shrubs in our dataset stand by themselves---there

is no planter or base.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

You should therefore return only the shrub’s structural parts
and none of them are stationary.

"""),
"example_material_dict": {

"stems": { "density": 300, "E": 1e5, "nu": 0.35, "
material_id": get_material_id("elastic") },

"twigs": { "density": 250, "E": 6e4, "nu": 0.38, "
material_id": get_material_id("elastic") },

"foliage": { "density": 150, "E": 2e4, "nu": 0.40, "
material_id": get_material_id("elastic") }

},
"example_explanation": textwrap.dedent("""

Return *ranges* instead of single values and accompany them
with reasoning, Pythonic

constraints, and alternative query lists.
"""),
"example_all_queries": [

["stems", "twigs", "foliage"],
["woody stems", "thin branches", "leaves"],
["brown sticks", "small branches", "green leaves"]

],
"tips": [

"Provide exactly the parts visible (usually stems/twigs +
foliage).",

"1e4 <= E <= 1e6.",
"Stems should be stiffest > twigs > foliage.",
"No part uses material_id 6 because nothing is fixed to the

ground.",
]

},
"grass": {

"class_name_for_example": "",
"special_notes": textwrap.dedent("""

Dataset note: Grass patches are usually isolated;
occasionally a visible soil patch is

underneath. Include a "soil" part only if it is visible.
"""),
"example_material_dict": {

"blades": { "density": 80, "E": 1e4, "nu": 0.45, "material_id
": get_material_id("elastic") }

},
"example_explanation": textwrap.dedent("""

Example A (typical isolated grass---no stationary part):
‘‘‘json
{

"blades": { "density": 80, "E": 1e4, "nu": 0.45, "
material_id": get_material_id("elastic") }

}
‘‘‘

Example B (grass with visible soil):
‘‘‘json
{

"soil": { "density": 1200, "E": 5e5, "nu": 0.30, "
material_id": get_material_id("rigid") },

"blades": { "density": 80, "E": 1e4, "nu": 0.45, "
material_id": get_material_id("elastic") }

}
‘‘‘
Return *ranges*, reasoning, constraints, and alternative

query lists.
"""),
"example_all_queries": [
["blades"],
["grass"],

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

["green stalks"]
],
"tips": [

"Segment only the visible parts (sometimes just \"blades\")
.",

"If *no* soil visible:\nall_queries: [[\"blades\"],[\"grass
\"],[\"green stalks\"]]",

"If soil *is* visible:\nall_queries: [[\"soil\", \"blades
\"],[\"dirt\", \"grass\"],[\"brown base\", \"green grass\"]]",

"1e4 <= E <= 1e6.",
"If soil present -> give it material_id 6 and ensure E_soil >

E_blades.",
"If soil absent -> no stationary part; material_id 6 should

not appear.",
]

},
"rubber_ducks_and_toys": {

"class_name_for_example": "",
"special_notes": textwrap.dedent("""

IMPORTANT: For rubber ducks and toys, we want to treat the
entire object as a single part. Do not attempt to

segment it into multiple parts. The object should be treated
as a single, bouncy rubber-like object.

"""),
"example_material_dict": {

"toy": {"density": [80, 150], "E": [3e4, 5e4], "nu": [0.4,
0.45], "material_id": get_material_id("elastic")}

},
"example_explanation": "",
"example_all_queries": [["toy"], ["rubber toy"], ["yellow duck"],

["plastic toy"]],
"tips": [

"Always use material_id=0 (jelly) for bouncy rubber-like
behavior",

"Keep E relatively low (around 1e3) for good bounce",
"Density should be in the range of typical rubber/plastic

toys",
"Poisson’s ratio should be around 0.35 for rubber-like

behavior",
"Make sure all queries in all_queries list are single-part

queries"
]

},
"sport_balls": {

"class_name_for_example": "",
"special_notes": textwrap.dedent("""

IMPORTANT: For sport balls, we want to treat the entire ball
as a single part. Do not attempt to

segment it into multiple parts (like surface patterns or
seams). The ball should be treated as a single,

bouncy object.
"""),
"example_material_dict": {

"ball": {"density": [80, 150], "E": [3e4, 5e4], "nu": [0.4,
0.45], "material_id": get_material_id("elastic")}

},
"example_explanation": "",
"example_all_queries": [["ball"], ["sport ball"], ["basketball"],

["round ball"]],
"tips": [

"Always use material_id=0 (jelly) for bouncy behavior",
"Keep E relatively low (around 1e3) for good bounce",
"Density should be in the range of typical sport balls",
"Poisson’s ratio should be around 0.35 for rubber-like

behavior",

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

"Make sure all queries in all_queries list are single-part
queries"

]
},
"soda_cans": {

"class_name_for_example": "",
"special_notes": textwrap.dedent("""

IMPORTANT: For soda cans, we want to treat the entire can as
a single part. Do not attempt to

segment it into multiple parts (like the top, body, or label)
. The can should be treated as a single,

rigid metal object.
"""),
"example_material_dict": {

"can": {"density": [2600, 2800], "E": [5e10, 8e10], "nu":
[0.25, 0.35], "material_id": get_material_id("metal")}

},
"example_explanation": "",
"example_all_queries": [["can"], ["soda can"], ["aluminum can"],

["metal can"]],
"tips": [

"Always use material_id=1 (metal) for rigid metal behavior",
"Keep E relatively high (around 1e8) for metal stiffness",
"Density should be in the range of typical aluminum (around

2700 kg/m^3)",
"Poisson’s ratio should be around 0.3 for metal behavior",
"Make sure all queries in all_queries list are single-part

queries"
]

},
"metal_crates": {

"class_name_for_example": "",
"special_notes": textwrap.dedent("""

IMPORTANT: For metal crates, we want to treat the entire
crate as a single part. Do not attempt to

segment it into multiple parts (like the sides, top, or
bottom). The crate should be treated as a single,

rigid metal object.
"""),
"example_material_dict": {

"crate": {"density": [2500, 2900], "E": [8e7, 1.2e8], "nu":
[0.25, 0.35], "material_id": get_material_id("metal")}

},
"example_explanation": "",
"example_all_queries": [["crate"], ["metal crate"], ["metal box

"], ["steel crate"]],
"tips": [

"Always use material_id=1 (metal) for rigid metal behavior",
"Keep E relatively high (around 1e8) for metal stiffness",
"Density should be in the range of typical metal (around 2700

kg/m^3)",
"Poisson’s ratio should be around 0.3 for metal behavior",
"Make sure all queries in all_queries list are single-part

queries"
]

},
"sand": {

"class_name_for_example": "",
"special_notes": textwrap.dedent("""

IMPORTANT: For sand objects, we want to treat the entire
object as a single part. Do not attempt to

segment it into multiple parts. The sand should be treated as
a single, granular material.

"""),
"example_material_dict": {

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

"sand": {"density": [1800, 2200], "E": [4e7, 6e7], "nu":
[0.25, 0.35], "material_id": get_material_id("sand")}

},
"example_explanation": "",
"example_all_queries": [["sand"], ["sand pile"], ["sand mound"],

["granular material"]],
"tips": [

"Always use material_id=2 (sand) for granular behavior",
"Keep E relatively high (around 5e7) for sand stiffness",
"Density should be in the range of typical sand (around 2000

kg/m^3)",
"Poisson’s ratio should be around 0.3 for sand behavior",
"Make sure all queries in all_queries list are single-part

queries"
]

},
"jello_block": {

"class_name_for_example": "",
"special_notes": textwrap.dedent("""

IMPORTANT: For jello blocks, we want to treat the entire
object as a single part. Do not attempt to

segment it into multiple parts. The jello block should be
treated as a single, soft, bouncy object.

"""),
"example_material_dict": {

"jello": {"density": [40, 60], "E": [800, 1200], "nu": [0.25,
0.35], "material_id": get_material_id("elastic")}

},
"example_explanation": "",
"example_all_queries": [["jello"], ["jello block"], ["gelatin"],

["bouncy block"]],
"tips": [

"Always use material_id=0 (jelly) for soft, bouncy behavior",
"Keep E relatively low (around 1000) for good bounce and

jiggle",
"Density should be in the range of typical jello (around 50

kg/m^3)",
"Poisson’s ratio should be around 0.3 for jello-like behavior

",
"Make sure all queries in all_queries list are single-part

queries"
]

},
"snow_and_mud": {

"class_name_for_example": "",
"special_notes": textwrap.dedent("""

IMPORTANT: For combined snow & mud objects, we treat the
entire mixture as a single deformable part. Do **not**

attempt to split it into separate snow and mud regions---the
simulation will use one MPM material.

"""),
"example_material_dict": {

"snow_and_mud": {"density": [2000, 3000], "E": [8e4, 1.2e5],
"nu": [0.15, 0.25], "material_id": get_material_id("snow")}

},
"example_explanation": "",
"example_all_queries": [["snow and mud"], ["slush"], ["muddy snow

"], ["wet snow"]],
"tips": [

"Always set material_id = 5 (snow) so the simulator uses the
appropriate elasto-plastic snow model.",

"Keep E around 1e5 (the config value) to match the intended
softness.",

"Density is markedly higher than fluffy snow because of the
mud/water content---use roughly 2-3 g/cm^3 (2000-3000 kg/m^3).",

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

"Make sure every list in ‘all_queries‘ contains **one**
phrase because this is a single-part object."

]
},

}

C THE EFFECTS OF HUMAN PRIOR ON PIXIEVERSE

PIXIEVERSE is labeled via VLMs using in-conext physics examples manually tuned by humans. A
condensed version of these in-context examples is provided in Fig. 12 and the full prompt in Listing 1.
These examples align the VLM’s physical understanding with human’s. In our ablation result, we
found that removing these examples significantly results as shown in Tab. 2.

The main differences between PIXIEVERSE labeling and NeRF2Physics are

1. We use VLM to propose object-dependent segmentation while NeRF2Physics using LLM is
essentially blind. Specifically, ur VLM actor proposes segmentation queries based on a set of
mutli-view images of the object as shown in Fig. 11.

2. We use semantic proposals (e.g., "pot", "trunk") instead of material proposals (e.g., "leather",
"stone") like NeRF2Physics did. Computing similarity directly between material name and CLIP
features yields inaccurate and noisy segmentation as shown in Fig. 10. This also limits the
generality of the NeRF2Physics since one material type (e.g., “elastic") can only have a fixed set
of parameters in a scene. In contrast, PIXIE enables spatially-varying parameter specification: the
leaves and the trunk of a tree while both belonging to the same “elastic" class can have vastly
different young modulus, Poisson ratio and density as shown in Fig. 16.

3. We proposes multiple candidates (e.g., "pot,leaves" vs "base,folliage") and use a VLM critic
to select the best based on CLIP-based segmentation while NeRF2Physics does not have any
selection mechanism. Figure 10 show the dramatic segmentation quality across different queries,
highlighting the need for multiple candidates and selection.

4. We also provide manually tuned in-context physics parameter examples.

These crucial differences contribute to much higher quality dataset labeling as shown in Tab. 2.

D VLM AS A PHYSICS JUDGE

We utilize a VLM to evaluate the realism of different candidate videos. The videos are scored on the
scale 1-5, and an optional reference video and the prompt describing the video (e.g,. “tree swaying
in the wind") is provided. We also use Cotracker (Karaev et al., 2024) to annotate the videos with
motion traces. The system prompt is provided in Fig. 15.

E MODEL ARCHITECTURE

E.1 OVERVIEW

We employ a 3D UNet-based architecture for both discrete material segmentation and continuous
material parameter regression. The architecture consists of two main components: (1) a feature
projector for dimensionality reduction, and (2) a 3D UNet backbone for spatial processing.

Table 2: PIXIEVERSE Ablation. The effect of in-context physics examples on data quality. We
include the executionability rate, which computes the fraction of times that a physic simulation can
be successfully run without numerical explosion, and the realism score judged by Gemini.

Method Exec. Rate ↑ VLM Score ↑
W/ In-context Examples (Ours) 100.0% 4.83±0.09
W/o In-context Examples 62.5% 1.34±0.30
NeRF2Physics (Zhai et al., 2024) 45.0% 1.09±0.28

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

You are a physics−realism judge for animation videos.

You will be shown several candidate animations of the SAME 3D object responding
to the SAME textual prompt that describes its intended physical motion.

Your tasks:
1. Carefully watch each candidate animation.
2. Describe what’s going on in the animation.
3. Evaluate how physically realistic the motion looks (0−5 scale).
4. Identify concrete pros / cons affecting the score (e.g. energy conservation
errors, temporal jitter, incorrect response to gravity, static etc.).
5. Suggest specific improvements.
6. Pick the overall best candidate.

Please output ONLY valid JSON with the following schema:
{
"candidate_evaluations": {
"candidate_0": {"description": str, "score": float, "pros": str, "cons": str,

"suggested_improvements": str},
"candidate_1": { ... },
"candidate_2": { ... }

},
"best_candidate": "candidate_i", // the key of the best candidate
"general_comments": str // any overall remarks (optional)

}

NOTE: ignore missing videos. Still return score for ‘candidate_{idx}‘ that are
present.

NOTE: to make your job easier, we have also annotated the video with the Co−
Tracker. Cotracker is a motion tracker algorithm to highlight the moving parts in
the videos.

Pay close attention to the motion traces annotated in the videos to gain
information on how the object is moving.
Note that for objects that barely move, there will still be dots in the Co−
Tracker video, but the motion
(lines) will be very short or non−existent, indicating that the points are not
moving.

Cotracker can sometimes produce noisy traces so only use it as a reference, and
consider the motion of the object as a whole, and other visual cues.

Figure 15: VLM Evaluator’s System Prompt.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E.2 FEATURE PROJECTOR

The feature projector is used when the input feature dimension differs from the conditioning dimen-
sion:

• Input features: The model supports three input modalities:
– RGB features: F ∈ RN×3×D×H×W

– CLIP features: F ∈ RN×768×D×H×W

– Occupancy features: F ∈ RN×1×D×H×W

• Projection: Features are projected to a unified conditioning dimension of 32 channels using a
feature projector with hidden dimension of 128 (when input channels > 32). The projector consists
of three layers of Conv3D, GroupNorm and SiLU activation.

E.3 3D UNET ARCHITECTURE

We employ a U-Net architecture (Dhariwal and Nichol, 2021; Ronneberger et al., 2015) operating
on 3D feature grids of shape RN×32×64×64×64. The network follows a standard encoder-decoder
structure with skip connections, using a base channel dimension of 64 and channel multipliers of [1,
1, 2, 4] across four resolution levels.

The encoder begins with a 3D convolution that projects the 32-dimensional input features to 64
channels. The encoder then processes features through four resolution levels, each containing three
residual blocks. The first two levels maintain 64 channels while progressively reducing spatial
dimensions from 643 to 323. The subsequent levels double the channel count at each downsampling
step, reaching 128 channels at 163 resolution and 256 channels at 83 resolution. Downsampling
between levels is performed using strided 3D convolutions with stride 2.

At the bottleneck, the network processes the lowest resolution features through a sequence of
residual block, attention block, and another residual block, all operating at 83 spatial resolution with
256 channels. Note that in our implementation, attention blocks are disabled by setting attention
resolutions to empty.

The decoder symmetrically reverses the encoder path, utilizing skip connections from corresponding
encoder levels. Upsampling is achieved through nearest-neighbor interpolation with a scale factor of
2, followed by 3D convolution. Each decoder level matches the channel dimensions and number of
residual blocks of its corresponding encoder level.

Each residual block follows the formulation ResBlock(x) = x + f(x), where f consists of layer
normalization, LeakyReLU activation with negative slope 0.02, 3D convolution with kernel size
3, another layer normalization and activation, dropout, and a final zero-initialized 3D convolution.
When input and output channels differ, the skip connection employs a 1 × 1 × 1 convolution for
channel matching.

The final output layer applies layer normalization, LeakyReLU activation, and a 3D convolution that
projects to either 8 channels for discrete material classification or 3 channels for continuous material
parameter regression.

F ADDITIONAL RESULTS

We visualize the physics predictions by our model in Fig. 16. Figure 17 breaks down the material
accuracy across semantic classes of PIXIEVERSE between our PIXIE CLIP versus two ablated
versions using RGB and occupancy input features. Figure 18 qualitatively compare the ablated
methods on the real-world scenes.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 16: PIXIE Prediction Visualization. PIXIE simultaneously recovers discrete material class,
continuous Young’s modulus (E), Poisson’s ratio (ν), and mass density (ρ) with a high degree of
accuracy. For example, the model correctly labels foliage as elastic and the metal can as rigid, while
recovering realistic stiffness and density gradients within each object.

flowers
grass

metal crates
toys

sand
shrubs

snow & mud

soda cans

sport b
alls tree all

Occupancy

RGB

CLIP (Ours)

71% 48% 67% 67% 47% 79% 6% 64% 79% 74% 64%

54% 69% 78% 85% 31% 92% 52% 83% 96% 60% 72%

99% 93% 100% 100% 100% 99% 100% 100% 100% 96% 99%

0.0

0.5

1.0

A
cc

ur
ac

y

Figure 17: PIXIE Ablation’s Per-class Accuracy on synthetic scenes. CLIP features generalizes in
synthetic scenes, outperforming RGB and occupancy on all classes.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 18: PIXIE’s Feature Type Ablation on Real Scenes. Replacing CLIP features with RGB or
occupancy severely degrades the material prediction. Incorrect predictions such as leave mislaballed
as metal or Young’s modulus being uniform within an object are marked with question marks. This
highlights the power of pretrained visual features in bridging the sim2real gap.

32

	Introduction
	Related Work
	Method
	Pixie Physics Learning
	PixieVerse Dataset

	Experiments
	Synthetic Scene Experiments
	Zero-shot Generalization to Real-World Scenes
	Pixie's Feature Type Ablation

	Conclusion and Limitations
	Preliminaries
	Learned Scene Representation
	3D Visual Feature Distillation Details
	Material Point Method (MPM) for Physics Simulation

	PixieVerse Dataset Details
	Object Selection from Objaverse
	Object Filtering
	CLIP-Driven 3D Semantic Segmentation
	VLM Actor-Critic Labeling

	The Effects of Human Prior on PixieVerse
	VLM As a Physics Judge
	Model architecture
	Overview
	Feature Projector
	3D UNet Architecture

	Additional Results

