

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PIXIE: FAST AND GENERALIZABLE SUPERVISED LEARNING OF 3D PHYSICS FROM PIXELS

Anonymous authors

Paper under double-blind review

Figure 1: We introduce PIXIE, a novel method for learning simulatable physics of 3D scenes from visual features. Trained on a curated dataset of paired 3D objects and physical material annotations, PIXIE can predict both the discrete material types (e.g., rubber) and continuous values including Young’s modulus, Poisson’s ratio, and density for a variety of materials, including elastic, plastic, and granular. The predicted material parameters can then be coupled with a learned static 3D model such as Gaussian splats and a physics solver such as the Material Point Method (MPM) to produce realistic 3D simulation under physical forces such as gravity and wind.

ABSTRACT

Inferring the physical properties of 3D scenes from visual information is a critical yet challenging task for creating interactive and realistic virtual worlds. While humans intuitively grasp material characteristics such as elasticity or stiffness, existing methods often rely on slow, per-scene optimization, limiting their generalizability and application. To address this problem, we introduce PIXIE, a novel method that trains a generalizable neural network to predict physical properties across multiple scenes from 3D visual features purely using supervised losses. Once trained, our feed-forward network can perform fast inference of plausible material fields, which coupled with a learned static scene representation like Gaussian Splatting enables realistic physics simulation under external forces. To facilitate this research, we also collected PIXIEVERSE, one of the largest known datasets of paired 3D assets and physic material annotations. Extensive evaluations demonstrate that PIXIE is about 1.46-4.39x better and orders of magnitude faster than test-time optimization methods. By leveraging pretrained visual features like CLIP, our method can also zero-shot generalize to real-world scenes despite only ever been trained on synthetic data. <https://pixie-2026-12998.github.io/>

054
055
056
057
058
1 INTRODUCTION059
060
061
062
063
Advances in scene reconstruction with Neural Radiance Fields (Mildenhall et al., 2021) and Gaussian
Splattting (Kerbl et al., 2023) have made it possible to recreate photorealistic 3D world from sparse
camera views, with broad applications from immersive content creation to robotics and simulation.
However, these approaches focus exclusively on visual appearance—capturing the geometry and
colors of a scene while remaining blind to its underlying physical properties.064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
Yet the world is not merely a static collection of shapes and textures. Objects bend, fold, bounce, and
deform according to their material composition and the forces acting upon them. Consequently, there
has been a growing body of work that aims to integrate physics into 3D scene modeling (Pumarola
et al., 2020; Ma et al., 2023; Li et al., 2023; Fischer et al., 2024; Feng et al., 2023; Xie et al., 2023;
Qiu et al., 2024; Guo et al., 2024; Lin et al., 2025; Zhai et al., 2024; Chen et al., 2025b). Current
approaches for acquiring the material properties of the scene generally fall into two categories,
each with significant limitations. Some works such as (Xie et al., 2023; Guo et al., 2024) require
users to manually specify material parameters for the entire scene based on domain knowledge.
This manual approach is limited in its application as it places a heavy burden on the user and lacks
fine-grained detail. Another line of work aims to automate the material discovery process via test-time
optimization. Works including (Jatavallabhula et al., 2021; Li et al., 2023; Zhong et al., 2024; Huang
et al., 2024; Lin et al., 2025; Zhang et al., 2024) leverage differentiable physics solvers, iteratively
optimizing material fields by comparing simulated outcomes against ground-truth observations or
realism scores from video generative models. However, predicting physical parameters for hundreds
of thousands of particles from sparse signals (i.e., a single rendering or distillation scalar loss) is an
extremely slow and difficult optimization process, often taking hours on a single scene. Furthermore,
this heavy per-scene memorization does not generalize: for each new scene, the incredibly slow
optimization has to be run from scratch again.081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
In this paper, we propose a new framework, PIXIE, which unifies geometry, appearance, and physics
prediction via direct supervised learning. Our approach is inspired by how humans intuitively
understand physics: when we see a tree swaying in the wind, we do not memorize the stiffness
values for each specific coordinate (x, y, z) – instead, we learn that objects with tree-like visual
features behave in certain ways when forces are applied. This physical understanding from visual
cues allows us to anticipate the motion of a different tree or even other vegetation like grass, in
an entirely new context. Thus, our insight is to leverage rich 3D visual features such as those
distilled from CLIP (Radford et al., 2021) to predict physical materials in a direct supervised and
feed-forward way. Once trained, our model can associate visual patterns (e.g., "if it looks like
vegetation") with physical behaviors (e.g., "it should have material properties similar to a tree"),
enabling fast inference and generalization across scenes. To facilitate this research, we have curated
and labeled PIXIEVERSE, a dataset of 1624 paired 3D objects and annotated materials spanning 10
semantic classes. We developed a multi-step and semi-automatic data labeling process, distilling
pretrained models including Gemini (Team et al., 2023), CLIP (Radford et al., 2021), and human
priors into the dataset. To our knowledge, this is the largest open-source dataset of paired 3D assets
and physical material labels. Trained on PIXIEVERSE, our feed-forward network can predict material
fields that are 1.46-4.39x better and orders of magnitude faster than test-time optimization methods.
By leveraging pretrained visual features, PIXIE can also zero-shot generalize to real-world scenes
despite only ever being trained on synthetic data.099
Our contributions include:100
101
102
103
104
105
106
107
1. **Novel Framework for 3D Physics Prediction:** We introduce PIXIE, a unified framework that
predicts discrete material types and continuous physical parameters (Young's modulus, Poisson's
ratio, density) directly from visual features using supervised learning.
2. **PIXIEVERSE Dataset:** We curate and release PIXIEVERSE, the largest open-source dataset of
3D objects with physical material annotations (1624 objects, 10 semantic classes).
3. **Fast and Generalizable Inference:** By leveraging pretrained visual features from CLIP and a
feed-forward 3D U-Net, PIXIE performs inference orders of magnitude faster than prior test-time
optimization approaches, achieving a 1.46-4.39x improvement in realism scores as evaluated by a
state-of-the-art vision-language model.

108 4. **Zero-Shot Generalization to Real Scenes:** Despite being trained solely on synthetic data, PIXIE
 109 generalizes to real-world scenes, showing how visual feature distillation can effectively bridge the
 110 sim-to-real gap.
 111 5. **Seamless Integration with MPM Solvers:** The predicted material fields can be directly coupled
 112 with Gaussian splatting models for realistic physics simulations under applied forces such as wind
 113 and gravity, enabling interactive and visually plausible 3D scene animations.

114
 115 **2 RELATED WORK**
 116

117 **2D World Models** Some early works (Bell et al., 2015; Bear et al., 2021) learn to predict material
 118 labels on 2D images. Recently, learning forward dynamics from 2D video frames has also been
 119 explored extensively. For instance, Google’s Genie (Parker-Holder et al., 2024) trains a next-frame
 120 prediction model conditioned on latent actions derived from user inputs, capturing intuitive 2D physics
 121 in an unsupervised manner. While these methods achieve impressive 2D generation and control, they
 122 do not explicitly model 3D geometry or a physically grounded world. Other works such as (Chen
 123 et al., 2024; Li et al., 2024) also explore generating or editing images based on learned real-world
 124 dynamics. While these methods achieve impressive results in 2D visual synthesis, they typically
 125 do not explicitly model 3D geometry, nor do they infer physically grounded material properties
 126 decoupled from appearances. These can lead to problems such as a lack of object permanence or
 127 implausible interactions. In contrast, PIXIE directly operates in 3D, predicting explicit physical
 128 parameters (e.g., Young’s modulus, density) for 3D objects, enabling their integration into 3D physics
 129 simulators or neural networks (Wang et al., 2025; Mittal et al., 2025) for realistic interaction.

130 **Manual Assignment or Assignment of Physics using LLMs** A number of recent methods have
 131 explored combining learned 3D scene representations (e.g., Gaussian splatting) with a physics solver
 132 where material parameters are assigned manually or through high-level heuristics. This often involves
 133 users specifying material types for the scene (Xie et al., 2023; Abou-Chakra et al., 2024) or using
 134 scripted object-to-material dictionaries (Qiu et al., 2024) or large language and vision-language
 135 models (Hsu et al., 2024; Chen et al., 2025a; Zhai et al., 2024; Le et al., 2024; Xia et al., 2024; Li
 136 et al., 2025; Cao et al., 2025; Shuai et al.) to guide the assignment.

137 **Test-time material optimization using videos** Other works explore more automatic and principled
 138 ways to infer material properties using rendered videos. Some techniques (Jatavallabhula et al., 2021;
 139 Li et al., 2023; Zhong et al., 2024; Jiang et al., 2025; Zhang et al., 2025; Zhu et al., 2024) optimize
 140 material parameters by comparing simulated deformations against ground-truth observations, often
 141 requiring ground-truth multi-view videos of objects or particle positions under known forces. More
 142 recent approaches (Huang et al., 2024; Lin et al., 2025; Zhang et al., 2024) use video diffusion models
 143 as priors to optimize physics via a motion distillation loss. Notably, these approaches suffer from
 144 extremely slow per-scene optimization, often taking hours on a single scene, and do not generalize to
 145 new scenes. In contrast, PIXIE employs a feed-forward neural network that, once trained, predicts
 146 physical parameters in seconds, and can generalize to unseen scenes. A recent work Vid2Sim (Chen
 147 et al., 2025b) also aims to learn a generalizable material prediction network across scenes. This was
 148 done by encoding a front-view video of the object in motion with a foundation video transformer
 149 (Tong et al., 2022) and learning to regress these motion priors into physical parameters. Unlike
 150 Vid2Sim, PIXIE does not require videos, relying instead on visual features from static images. Overall,
 151 PIXIE can also be used as an informed warm-start along with these test-time methods to further refine
 152 predictions.

153 **3 METHOD**
 154

155 Our central thesis is that 3D visual appearance provides sufficient information to recover an object’s
 156 physical parameters. Texture, shading, and shape features captured from multiple calibrated images
 157 correlate with physical quantities such as Young’s modulus and Poisson’s ratio. By learning a mapping
 158 from these visual features to material properties, we can augment a volumetric reconstruction model
 159 (e.g., Gaussian Splatting) with a point-wise material estimate, without requiring force response
 160 observations. In Sec. 3.1, we detail our framework, leveraging rich visual priors from CLIP to predict
 161 a material field, which can be used by a physics solver to animate objects responding to external

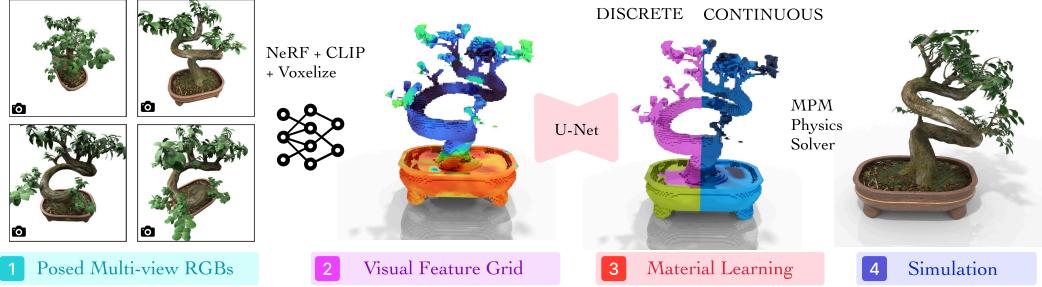
162
163
164
165
166
167
168

Figure 2: **Method Overview**. From posed multi-view RGB images of a static scene, PIXIE first reconstructs a 3D model with NeRF and distilled CLIP features (Shen et al., 2023). Then, we voxelize the features into a regular $N \times N \times N \times D$ grid where N is the grid size and D is the CLIP feature dimension. A U-Net neural network (Dhariwal and Nichol, 2021) is trained to map the feature grid to the material field $\hat{\mathcal{M}}_G$ which consists of a discrete material model ID and continuous Young’s modulus, Poisson’s ratio, and density value for each voxel. Coupled with a separately trained Gaussian Splatting model, $\hat{\mathcal{M}}_G$ can be used to simulate physics with a physics solver such as MPM.

forces. To train this model, we curated PIXIEVERSE, a large dataset of paired 3D assets and material annotations, as detailed in Sec. 3.2. Figure 2 gives an overview of our method.

3.1 PIXIE PHYSICS LEARNING

Problem Formulation Formally, the goal is to learn a mapping:

$$f_\theta : (\mathcal{I}, \Pi) \longrightarrow \hat{\mathcal{M}} \quad (1)$$

that turns some calibrated RGB images of the static scene $\mathcal{I} = \{I_k\}_{k=1}^K$ and their joint camera specification Π into a continuous three-dimensional *material field*. For every point $\mathbf{p} \in \mathbb{R}^3$ within the scene bounds, the field returns

$$\hat{\mathcal{M}}(\mathbf{p}) = (\hat{\ell}(\mathbf{p}), \hat{E}(\mathbf{p}), \hat{\nu}(\mathbf{p}), \hat{d}(\mathbf{p})) ,$$

where $\hat{\ell} : \mathbb{R}^3 \rightarrow \{1, \dots, L\}$ is the discrete material class and $\hat{E}, \hat{\nu}, \hat{d} : \mathbb{R}^3 \rightarrow \mathbb{R}$ are the continuous Young’s modulus, Poisson’s ratio, and density value respectively. Recall that the discrete material class, also known as the constitutive law, in Material Point Method is a combination of the choices of an expert-defined hyperelastic energy function \mathcal{E} and return mapping \mathcal{P} (Sec. A). Learning a point-mapping like this provides a fine-grained material segmentation where for every spatial location we assign both a semantic material label and the physical parameters that characterise that material. Learning the mapping in equation 1 directly from 2D images to 3D materials is not simple nor sample efficient. Instead, we leverage a distilled feature field which has rich visual priors to represent the intermediate mapping between 2D images and 3D visual features, and then a separate U-Net architecture to compute the mapping between 3D visual features and physical materials.

3D Visual Feature Distillation Recent work on distilled feature fields has shown that dense 2D visual feature embeddings extracted from foundation models, such as CLIP, based on images can be lifted into 3D, yielding a volumetric representation that is both geometrically accurate and rich in terms of visual and semantic priors (Shen et al., 2023). Here, we also augment the classical NeRF representation (Mildenhall et al., 2021) to predict a view-independent feature vector in addition to color and density, i.e.,

$$F_\theta : (\mathbf{x}, \mathbf{d}) \mapsto (\mathbf{f}(\mathbf{x}), c(\mathbf{x}, \mathbf{d}), \sigma(\mathbf{x})) ,$$

where $c \in \mathbb{R}^3$ and $\sigma \in \mathbb{R}_{\geq 0}$ are standard color and radiance NeRF outputs and $\mathbf{f} \in \mathbb{R}^d$ is a high-dimensional descriptor capturing visual semantics (e.g., object identity or other attributes), which we assume to be view-independent. We supervise color with image RGB and features with per-pixel CLIP embeddings extracted from the training images, using standard volume rendering (App. A.2). After training, we voxelize the feature field within known scene bounds to obtain a regular grid F_G of dimension $N \times N \times N \times D$ grid, where $N = 64$ is the grid size and $D = 768$ is the CLIP feature dimension, serving as input to our material network.

Material Grid Learning Our material learning network f_M consists of a feature projector f_P and a U-Net f_U . As the CLIP features are very high-dimensional, we learn a feature projector network f_P , which consists of three layers of 3D convolution mapping CLIP features \mathbb{R}^{768} to a

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

Figure 3: **PIXIEVERSE Dataset Overview.** We collect 1624 high-quality single-object assets, spanning 10 semantic classes (a), and 5 constitutive material types (b). The dataset is annotated with detailed physical properties including discrete material types (b), Young’s modulus (c), Poisson’s ratio (d), and mass density (e). The left figure shows representative examples from the dataset: organic matter (tree, shrubs, grass, flowers), deformable toys (rubber ducks), sports equipment (sport balls), granular media (sand, snow & mud), and hollow containers (soda cans, metal crates).

low-dimensional manifold \mathbb{R}^{64} . We then use the U-Net architecture f_U to learn the mapping from the projected feature grid F_G to a material grid $\hat{\mathcal{M}}_G(\mathbf{p})$, which is a voxelized version of the material field $\hat{\mathcal{M}}(\mathbf{p})$. The feature projector f_P and U-Net f_U are jointly trained end-to-end via a cross-entropy and mean-squared error loss to predict the discrete material classification and the continuous values including Young’s modulus, Poisson’s ratio and density. More details is in Appendix E.

We found that our voxel grids are very sparse with around 98% of the voxels being background. Naively trained, the material network f_M would learn to always predict background. Thus, we also separately compute an occupancy mask grid $\mathbb{M} \in \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N$, constructed by filtering out all voxels whose NeRF densities fall below a threshold $\alpha = 0.01$. The supervised losses—cross-entropy and mean squared errors—are only enforced on the occupied voxels. Concretely, the masked supervised loss consists of a discrete cross-entropy and continuous mean-squared error loss:

$$\mathcal{L}_{\text{sup}} = \frac{1}{N_{\text{occ}}} \sum_{\mathbf{p} \in \mathcal{G}} \mathbb{M}(\mathbf{p}) \left[\lambda \cdot \text{CE}(\hat{\ell}(\mathbf{p}), \ell^{GT}(\mathbf{p})) + (\hat{E}(\mathbf{p}) - E^{GT}(\mathbf{p}))^2 + (\hat{\nu}(\mathbf{p}) - \nu^{GT}(\mathbf{p}))^2 + (\hat{d}(\mathbf{p}) - d^{GT}(\mathbf{p}))^2 \right], \quad (2)$$

where $N_{\text{occ}} = \sum_{\mathbf{p} \in \mathcal{G}} \mathbb{M}(\mathbf{p})$ is the total number of occupied voxels in the grid, $\hat{\ell}(\mathbf{p})$ and $\ell^{GT}(\mathbf{p})$ are the predicted material class logits and the ground-truth, CE is the cross-entropy loss, λ is a loss balancing factor, and E, ν, d are the Young’s modulus, Poisson’s ratio and density values, respectively.

Physics Simulation We use the Material Point Method (MPM) to simulate physics. The MPM solver (Sec. A.3) takes a point cloud of initial particle poses along with predicted material properties, and the external force specification, and simulates the particles’ transformations and deformations. Following PhysGaussian (Xie et al., 2023), we learn a 3DGS model incorporating techniques such as internal fillings, making it suitable for MPM simulation. We then transfer the material properties from our predicted material grid into the 3DGS model via nearest neighbor interpolation.

3.2 PIXIEVERSE DATASET

We collect one of the largest and highest quality known datasets of diverse objects with annotated physical materials. Our dataset (Fig. 3) covers 10 semantic classes, ranging from organic matter (trees, shrubs, grass, flowers) and granular media (sand, snow and mud) to hollow containers (soda-cans, metal crates), and toys (rubber ducks, sport balls). The dataset is sourced from Objaverse (Deitke et al., 2022). Since Objaverse objects do not have physical parameter annotations, we develop an

270 semi-automatic multi-stage labeling pipeline leveraging foundation vision-language models i.e.,
 271 Gemini-2.5-Pro (Team et al., 2023), distilled CLIP feature field (Kobayashi et al., 2022) and manually
 272 tuned in-context physics examples. The full details is given in Appendix B and C.
 273

274 4 EXPERIMENTS

275 **Dataset** We train PIXIE on the PIXIEVERSE dataset and evaluate on 38 synthetic scenes from the
 276 test set and six real-world scene from the NeRF (Mildenhall et al., 2021), LERF (Kerr et al., 2023)
 277 and Spring-Gaus (Zhong et al., 2024) datasets.
 278

279 **Simulation Details** We use the material point method (MPM) implementation from PhysGaussian
 280 (Xie et al., 2023) as the physics solver. The solver takes a gaussian splatting model augmented with
 281 physics where each Gaussian particle also has a discrete material model ID, and continuous Young’s
 282 modulus, Poisson’s ratio, and density values. Each simulation is run for around 50 to 125 frames on a
 283 single NVIDIA RTX A6000 GPU. External forces such as gravity and wind are applied to the static
 284 scenes as boundary conditions to create physics animations.
 285

286 **Baselines** We evaluate PIXIE against two recent test-time optimization methods: DreamPhysics
 287 (Huang et al., 2024) and OmniPhysGS (Lin et al., 2025), and a LLM method – NeRF2Physics
 288 (Zhai et al., 2024). DreamPhysics optimizes a Young’s modulus field, requiring users to specify
 289 other values including material ID, Poisson’s ratio, and density. OmniPhysGS, on the other hand,
 290 selects a hyperelastic energy density function and a return mapping model, which, in combination,
 291 specifies a material ID for each point in the field, requiring other physics parameters to be manually
 292 specified. Both methods rely on a user prompt such as "a tree swing in the wind" and a generative
 293 video diffusion model to optimize a motion distillation loss. PIXIE, in contrast, infers all discrete and
 294 continuous parameters jointly (Fig. 16). NeRF2Physics first captions the scene and queries a LLM
 295 for all plausible material types (e.g., "metal") along with the associated continuous values. Then,
 296 the material semantic names are associated with 3D points in the CLIP feature field, and physical
 297 properties are thus assigned via weighted similarities. This method is similar to our dataset labeling
 298 in principle with some crucial differences as detailed in Appendix B and C, allowing PIXIEVERSE to
 299 have much more high-quality labels. PIXIE was trained on 12 NVIDIA RTX A6000 GPUs, each with
 300 a batch size of 4, in one day using the Adam optimizer (Kingma, 2014) while prior test-time methods
 301 do not require training. For training PIXIE and computing metrics, we apply a log transform to E and
 302 ρ , and normalize all $\log E, \nu, \log \rho$ values to $[-1, 1]$ based on max/min statistics from PIXIEVERSE.
 303

304 **Evaluation Metrics** We utilize a state-of-the-art vision-language model, Gemini-2.5-Pro (Team
 305 et al., 2023) as the judge. The models are prompted to compare the rendered candidate animations
 306 generated using physics parameters predicted by different baselines, and score those videos on a
 307 scale from 0 to 5, where a higher score is better. The prompt is in Appendix D. We also measure the
 308 reconstruction quality using PSNR and SSIM metric against the reference videos in the PIXIEVERSE
 309 dataset, which are manually verified by humans for quality control. Other metrics our method
 310 optimizes including class accuracy and continuous errors over E, ν, ρ are also computed.
 311

312 4.1 SYNTHETIC SCENE EXPERIMENTS

313 Figure 4 (a) plots Gemini score versus runtime. PIXIE achieves a VLM realism score of **4.35 ± 0.08** –
 314 a **1.46-4.39x** improvement over all baselines and tops all other metrics – while reducing inference time
 315 from minutes or hours to **2 s**. A per-class breakdown in Fig. 4 (b) shows our lead in most classes. In
 316 Table 1, our model improves perceptual metrics such as PSNR and SSIM by 3.6 – 30.3% and VLM
 317 scores by 2.21 – 4.58x over prior works. Figure 5 visualises eight representative scenes, comparing
 318 PIXIE against prior works. DreamPhysics leaves stiff artifacts due to missegmentation or overly
 319 high predicted E values, OmniPhysGS collapses under force, and NeRF2Physics introduces high-
 320 frequency noise, whereas PIXIE generates smooth, class-consistent motion and segment boundaries.
 321 In the appendix, Figure 16 qualitatively visualizes the physical properties predicted by our network,
 322 showing PIXIE’s ability to cleanly and accurately recover both discrete and continuous parameters
 323 across a diverse sets of objects and continuous value spectrum. In contrast, some prior methods can
 324 only recover a subset of parameters like E or material class. The end-to-end runtime is also included
 325 in Tab. 6. Additionally, we conducted a blind user study comprising of 512 responses from human
 326 volunteers who was asked to rank the realism of different methods. The result is included in the
 327 Appendix Tab. 4. The volunteers rank PIXIE higher than the next best method about 20% more often.
 328

Table 1: **Main Quantitative Results.** We report the average reconstruction quality (PSNR, SSIM) against the reference videos in PIXIEVERSE, the VLM score, and five other metrics our method optimizes including material accuracy and continuous errors over E, ν, ρ . Standard errors and 95% CI are also included, and best values are **bolded**. PIXIE-CLIP is by far the best method across all metrics, achieving 1.62-5.91x improvement in VLM score and 3.6-30.3% gains in PSNR and SSIM. Our CLIP variant is also notably more accurate than RGB and occupancy features as measured by material class accuracy and average continuous MSE on the test set. While our method simultaneously recovers all physical properties, some prior works only predict a subset, hence - (empty) entries.

Method	PSNR \uparrow	SSIM \uparrow	VLM \uparrow	Mat. Acc. \uparrow	Avg. Cont. MSE \downarrow	$\log E$ err \downarrow	ν err \downarrow	$\log \rho$ err \downarrow
DreamPhysics (Huang et al., 2024)								
1 epoch	19.398 \pm 1.090	0.880 \pm 0.020	2.97 \pm 0.31	-	-	2.393 \pm 0.123	-	-
25 epochs	19.078 \pm 0.939	0.881 \pm 0.019	2.68 \pm 0.24	-	-	1.419 \pm 0.097	-	-
50 epochs	19.189 \pm 0.980	0.880 \pm 0.020	2.53 \pm 0.24	-	-	1.387 \pm 0.097	-	-
OmniPhysGS (Lin et al., 2025)								
1 epoch	17.907 \pm 0.359	0.882 \pm 0.007	0.74 \pm 0.10	0.072 \pm 0.0511	-	-	-	-
2 epochs	17.889 \pm 0.372	0.882 \pm 0.007	1.23 \pm 0.19	0.109 \pm 0.0704	-	-	-	-
5 epochs	17.842 \pm 0.354	0.883 \pm 0.007	0.99 \pm 0.12	0.104 \pm 0.0681	-	-	-	-
NeRF2Physics (Zhai et al., 2024)	18.517 \pm 0.644	0.886 \pm 0.013	1.09 \pm 0.28	0.274 \pm 0.001	0.858 \pm 0.109	1.115 \pm 0.165	0.462 \pm 0.106	0.997 \pm 0.162
PIXIE								
Occupancy	17.887 \pm 1.524	0.866 \pm 0.027	1.76 \pm 0.41	0.643 \pm 0.052	0.126 \pm 0.012	0.149 \pm 0.023	0.124 \pm 0.014	0.105 \pm 0.015
RGB	18.652 \pm 2.031	0.861 \pm 0.035	2.53 \pm 0.46	0.722 \pm 0.061	0.106 \pm 0.015	0.196 \pm 0.032	0.079 \pm 0.012	0.045 \pm 0.014
CLIP (ours)	23.256 \pm 2.456	0.918 \pm 0.023	4.35 \pm 0.08	0.985 \pm 0.011	0.056 \pm 0.005	0.022 \pm 0.004	0.034 \pm 0.006	0.112 \pm 0.009

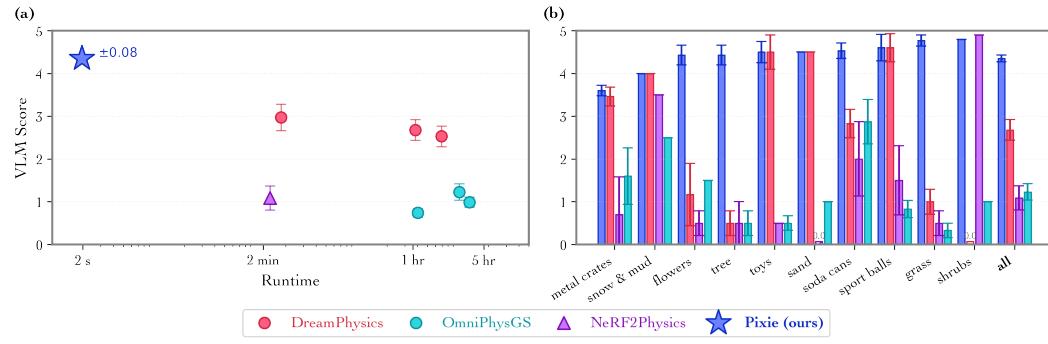


Figure 4: **Main VLM Results.** (a) **VLM score versus wall-clock time:** PIXIE is three orders of magnitude faster than previous works while achieving 1.46-4.39x improvement in realism. Test-time optimization methods are run with varying numbers of epochs i.e., 1, 25, 50 for DreamPhysics and 1, 2, 5 for OmniPhysGS while inference methods are only run once. (b) **Per-class VLM score:** Our method leads on most object classes. Standard errors are also included.

4.2 ZERO-SHOT GENERALIZATION TO REAL-WORLD SCENES

Without any real-scene supervision, PIXIE can zero-shot generalize to many real-world scenes as shown in Fig. 6. For example, our method correctly assigns rigid vase bases and flexible leaves, yielding realistic motion that closely matches human expectation. Our method is surprisingly performant despite significant and non-trivial visual gaps between the training synthetic data versus the out-of-distribution real-world scenes. No other baseline can generalize under this setting. The quantitative reconstruction performance is included in the Appendix Tab. 3.

To test the generalizability of PIXIE to more diverse and out-of-distribution real-world objects, we also conduct a quantitative experiment on the ABO-500 dataset (Zhai et al., 2024). This dataset contains 500 real-world objects sourced from products sold on Amazon. The mass estimation performance is reported in Appendix Sec. H. Despite never trained on categories such as household furniture, our method can produce reasonable predictions, outperforming other baselines.

4.3 PIXIE’S FEATURE TYPE ABLATION

Replacing CLIP with RGB or occupancy features drops VLM score by 40-60 % and nearly doubles parameter MSE (Table 1, rows “Occupancy” and “RGB”). We provide more results in the Appendix. Specifically, we show that the material class prediction also dramatically drops across all classes as shown in Fig. 17. Figure 18 shows the failure modes for real scenes, highlighting RGB and occupancy’s struggle to generalize to unseen data as compared to CLIP.

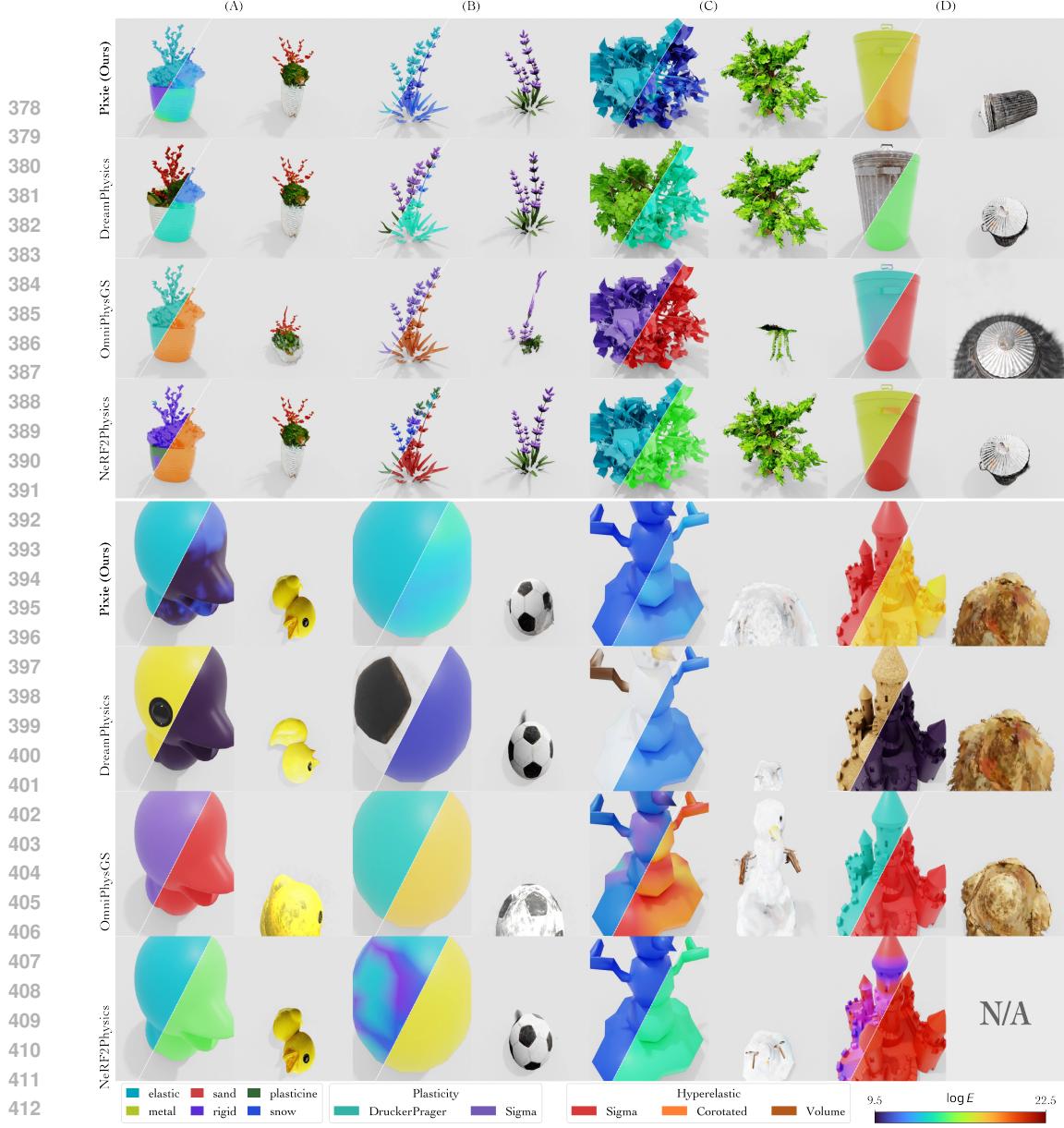


Figure 5: **Qualitative comparison on synthetic scenes.** We visualized the predicted material class and E predictions (left, right respectively) for PIXIE and Nerf2Physics, E for DreamPhysics (right), and the plasticity and hyperelastic function classes predicted by OmniPhysGS. PIXIE produces stable, physically plausible motion while DreamPhysics remains overly stiff due to inaccurate fine-grained E prediction or too high E (e.g., see tree (C)), OmniPhysGS collapses under load due to unrealistic combination of plasticity and hyperelastic functions, and NeRF2Physics exhibits noisy artifacts. Please see <https://pixie-2026-12998.github.io/> for the videos.

5 CONCLUSION AND LIMITATIONS

We presented PIXIE, a framework that jointly reconstructs geometry, appearance, and explicit physical material fields from posed RGB images. By distilling rich CLIP features into 3D and training a feed-forward 3D U-Net with per-voxel material supervision on our new PIXIEVERSE dataset, PIXIE avoids the expensive test-time optimization required by prior work. Once trained, it produces full material fields in a few seconds, improving Gemini realism scores by 1.46-4.39x over prior art while reducing inference time by three orders of magnitude. PIXIE leverages CLIP’s strong visual priors, which enables zero-shot transfer to real scenes, even though it is only trained on synthetic data. The method enables realistic, physically plausible 3D scene animation with off-the-shelf MPM solvers.

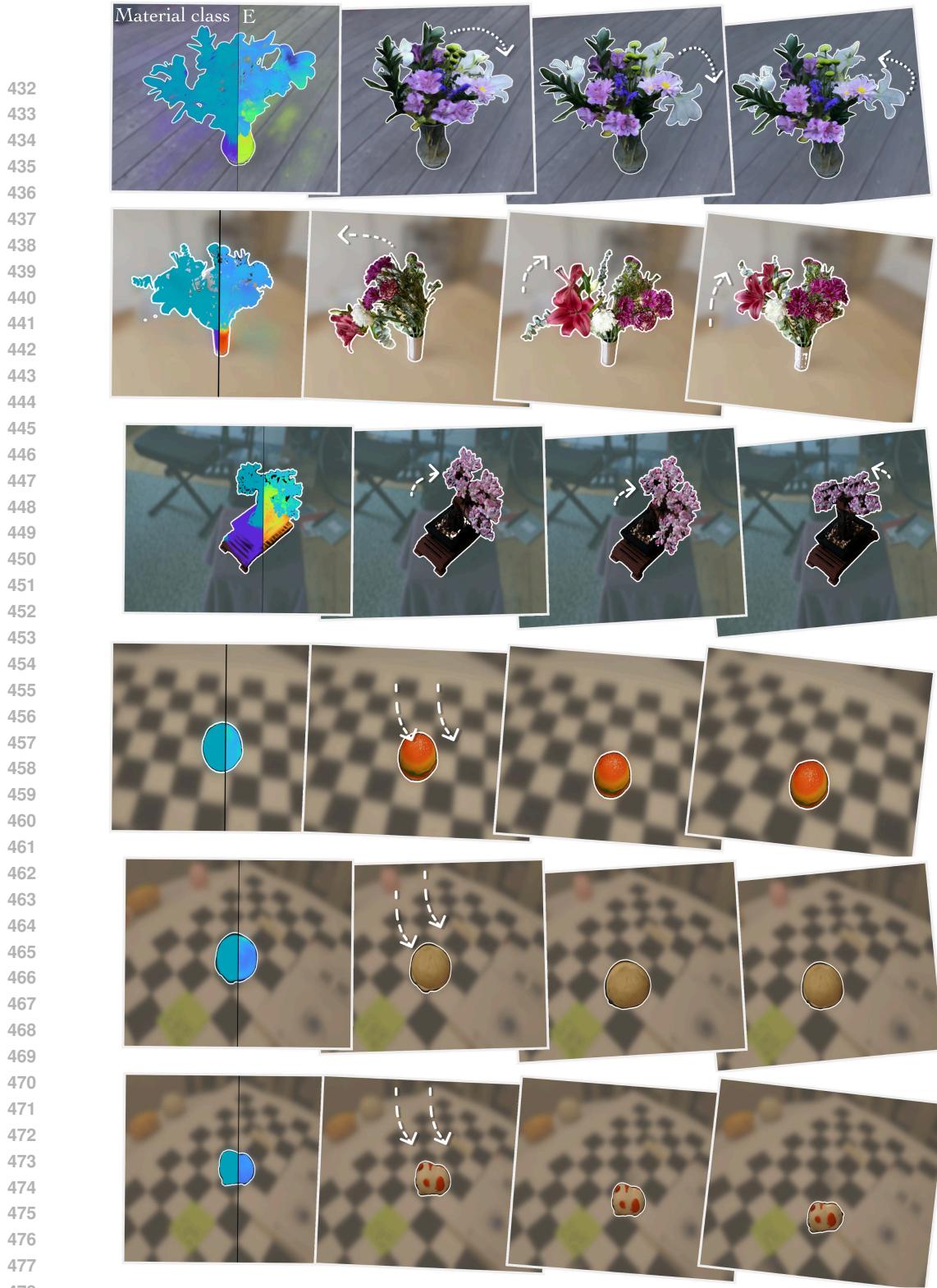


Figure 6: **PIXIE’s Zero-shot Real-scene Generalization.** Trained only on synthetic PIXIEVERSE, PIXIE can predict plausible physic properties, enabling realistic MPM simulation of real scenes. Here, we visualize the material types (left) and Young’s modulus (right) prediction in the first frame, and subsequent frames impacted by a wind force. Please see the videos in our website <https://pixie-2026-12998.github.io/>.

486

Limitations and Future Works We take the first step towards learning a supervised 3D model for physical material prediction. Like prior art, our work focuses on single object interactions leaving multi-object scenes for future investigation. Another limitation is that while our feed-forward model predicts a point estimate for each voxel, materials in the real-world contain uncertainty that visual information alone cannot resolve (e.g., a tree can be stiff or flexible). A promising extension is to learn a distribution of materials (e.g., using diffusion) instead. Nonetheless, the current PIXIE model which performs inference on static scenes can serve as a powerful prior for further fine-tuning via test-time optimization methods as shown in Appendix Sec. G,

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Jad Abou-Chakra, Krishan Rana, Feras Dayoub, and Niko Suenderhauf. Physically embodied
543 gaussian splatting: A realtime correctable world model for robotics. In *8th Annual Conference on*
544 *Robot Learning*, 2024. URL <https://openreview.net/forum?id=AEq0onGrN2>.

545 Daniel M Bear, Elias Wang, Damian Mrowca, Felix J Binder, Hsiao-Yu Fish Tung, RT Pramod,
546 Cameron Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, et al. Physion: Evaluating physical
547 prediction from vision in humans and machines. *arXiv preprint arXiv:2106.08261*, 2021.

548 Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Material recognition in the wild with
549 the materials in context database. In *Proceedings of the IEEE conference on computer vision and*
550 *pattern recognition*, pages 3479–3487, 2015.

551 Ziang Cao, Zhaoxi Chen, Liang Pan, and Ziwei Liu. Physx: Physical-grounded 3d asset generation.
552 *arXiv preprint arXiv:2507.12465*, 2025.

553 Boyuan Chen, Hanxiao Jiang, Shaowei Liu, Saurabh Gupta, Yunzhu Li, Hao Zhao, and Shenlong
554 Wang. Physgen3d: Crafting a miniature interactive world from a single image. *arXiv preprint*
555 *arXiv:2503.20746*, 2025a.

556 Chuahao Chen, Zhiyang Dou, Chen Wang, Yiming Huang, Anjun Chen, Qiao Feng, Jiatao Gu, and
557 Lingjie Liu. Vid2sim: Generalizable, video-based reconstruction of appearance, geometry and
558 physics for mesh-free simulation. *IEEE Conference on Computer Vision and Pattern Recognition*
559 (*CVPR*), 2025b.

560 Xi Chen, Zhifei Zhang, He Zhang, Yuqian Zhou, Soo Ye Kim, Qing Liu, Yijun Li, Jianming Zhang,
561 Nanxuan Zhao, Yilin Wang, et al. Unireal: Universal image generation and editing via learning
562 real-world dynamics. *arXiv preprint arXiv:2412.07774*, 2024.

563 Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
564 Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of annotated
565 3d objects, 2022. URL <https://arxiv.org/abs/2212.08051>.

566 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
567 *in neural information processing systems*, 34:8780–8794, 2021.

568 Yutao Feng, Yintong Shang, Xuan Li, Tianjia Shao, Chenfanfu Jiang, and Yin Yang. Pie-nerf:
569 Physics-based interactive elastodynamics with nerf, 2023.

570 Michael Fischer, Iliyan Georgiev, Thibault Groueix, Vladimir G Kim, Tobias Ritschel, and
571 Valentin Deschaintre. Sama: Material-aware 3d selection and segmentation. *arXiv preprint*
572 *arXiv:2411.19322*, 2024.

573 Minghao Guo, Bohan Wang, Pingchuan Ma, Tianyuan Zhang, Crystal Elaine Owens, Chuang Gan,
574 Joshua B. Tenenbaum, Kaiming He, and Wojciech Matusik. Physically compatible 3d object
575 modeling from a single image. *arXiv preprint arXiv:2405.20510*, 2024.

576 Hao-Yu Hsu, Zhi-Hao Lin, Albert Zhai, Hongchi Xia, and Shenlong Wang. Autovfx: Physically
577 realistic video editing from natural language instructions. *arXiv preprint arXiv:2411.02394*, 2024.

578 Tianyu Huang, Yihan Zeng, Hui Li, Wangmeng Zuo, and Rynson WH Lau. Dreamphysics: Learning
579 physical properties of dynamic 3d gaussians with video diffusion priors. *arXiv preprint*
580 *arXiv:2406.01476*, 2024.

581 Krishna Murthy Jatavallabhula, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin
582 Weiss, Breandan Considine, Jerome Parent-Levesque, Kevin Xie, Kenny Erleben, Liam Paull,
583 Florian Shkurti, Derek Nowrouzezahrai, and Sanja Fidler. gradsim: Differentiable simulation for
584 system identification and visuomotor control. *International Conference on Learning Representations*
585 (*ICLR*), 2021. URL https://openreview.net/forum?id=c_E8kFWfhp0.

586 Hanxiao Jiang, Hao-Yu Hsu, Kaifeng Zhang, Hsin-Ni Yu, Shenlong Wang, and Yunzhu Li. Phystwin:
587 Physics-informed reconstruction and simulation of deformable objects from videos. *arXiv preprint*
588 *arXiv:2503.17973*, 2025.

594 Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
 595 Rupprecht. Cotracker: It is better to track together. In *European Conference on Computer Vision*,
 596 pages 18–35. Springer, 2024.

597 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
 598 for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

600 Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerp: Language
 601 embedded radiance fields. In *Proceedings of the IEEE/CVF International Conference on Computer*
 602 *Vision*, pages 19729–19739, 2023.

603 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 604 2014.

606 Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing nerf for editing via
 607 feature field distillation. In *Advances in Neural Information Processing Systems*, volume 35, 2022.
 608 URL <https://arxiv.org/pdf/2205.15585.pdf>.

609 Long Le, Jason Xie, William Liang, Hung-Ju Wang, Yue Yang, Yecheng Jason Ma, Kyle Vedder,
 610 Arjun Krishna, Dinesh Jayaraman, and Eric Eaton. Articulate-anything: Automatic modeling of
 611 articulated objects via a vision-language foundation model. *arXiv preprint arXiv:2410.13882*,
 612 2024.

613 Xuan Li, Yi-Ling Qiao, Peter Yichen Chen, Krishna Murthy Jatavallabhula, Ming Lin, Chenfanfu
 614 Jiang, and Chuang Gan. PAC-neRF: Physics augmented continuum neural radiance fields for
 615 geometry-agnostic system identification. In *The Eleventh International Conference on Learning*
 616 *Representations*, 2023. URL <https://openreview.net/forum?id=tVkrbkz42vc>.

618 Zhengqi Li, Richard Tucker, Noah Snavely, and Aleksander Holynski. Generative image dynamics.
 619 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages
 620 24142–24153, 2024.

621 Zizhang Li, Hong-Xing Yu, Wei Liu, Yin Yang, Charles Herrmann, Gordon Wetzstein, and Jiajun
 622 Wu. Wonderplay: Dynamic 3d scene generation from a single image and actions. *arXiv preprint*
 623 *arXiv:2505.18151*, 2025.

624 Yuchen Lin, Chenguo Lin, Jianjin Xu, and Yadong MU. OmniphysGS: 3d constitutive gaussians for
 625 general physics-based dynamics generation. In *The Thirteenth International Conference on Learning*
 626 *Representations*, 2025. URL <https://openreview.net/forum?id=9HZtP6I51v>.

628 Pingchuan Ma, Peter Yichen Chen, Bolei Deng, Joshua B Tenenbaum, Tao Du, Chuang Gan, and
 629 Wojciech Matusik. Learning neural constitutive laws from motion observations for generalizable
 630 pde dynamics. In *International Conference on Machine Learning*, pages 23279–23300. PMLR,
 631 2023.

632 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 633 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 634 *of the ACM*, 65(1):99–106, 2021.

635 Himangi Mittal, Peiye Zhuang, Hsin-Ying Lee, and Shubham Tulsiani. Uniphy: Learning a unified
 636 constitutive model for inverse physics simulation. *arXiv preprint arXiv:2505.16971*, 2025.

638 Jack Parker-Holder, Philip Ball, Jake Bruce, Vibhavari Dasagi, Kristian Holsheimer, Chris-
 639 tos Kaplanis, Alexandre Moufarek, Guy Scully, Jeremy Shar, Jimmy Shi, Stephen Spencer,
 640 Jessica Yung, Michael Dennis, Sultan Kenjeyev, Shangbang Long, Vlad Mnih, Harris
 641 Chan, Maxime Gazeau, Bonnie Li, Fabio Pardo, Luyu Wang, Lei Zhang, Frederic Besse,
 642 Tim Harley, Anna Mitenkova, Jane Wang, Jeff Clune, Demis Hassabis, Raia Hadsell,
 643 Adrian Bolton, Satinder Singh, and Tim Rocktäschel. Genie 2: A large-scale foun-
 644 dation world model. 2024. URL <https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/>.

646 Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-NeRF: Neural
 647 Radiance Fields for Dynamic Scenes. In *Proceedings of the IEEE/CVF Conference on Computer*
 648 *Vision and Pattern Recognition*, 2020.

648 Ri-Zhao Qiu, Ge Yang, Weijia Zeng, and Xiaolong Wang. Feature splatting: Language-driven
 649 physics-based scene synthesis and editing. *arXiv preprint arXiv:2404.01223*, 2024.
 650

651 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 652 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 653 models from natural language supervision. In *International conference on machine learning*, pages
 654 8748–8763. PMLR, 2021.

655 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 656 image segmentation. In *International Conference on Medical image computing and computer-
 657 assisted intervention*, pages 234–241. Springer, 2015.

658 William Shen, Ge Yang, Alan Yu, Jansen Wong, Leslie Pack Kaelbling, and Phillip Isola. Distilled
 659 feature fields enable few-shot language-guided manipulation, 2023. URL <https://arxiv.org/abs/2308.07931>.
 660

661 Yinghao Shuai, Ran Yu, Yuantao Chen, Zijian Jiang, Xiaowei Song, Nan Wang, Jv Zheng, Jianzhu
 662 Ma, Meng Yang, Zhicheng Wang, et al. Pugs: Zero-shot physical understanding with gaussian
 663 splatting, 2025. URL <https://arxiv.org/abs/2502.12231>.
 664

665 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 666 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 667 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
 668

669 Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-
 670 efficient learners for self-supervised video pre-training. *Advances in neural information processing
 671 systems*, 35:10078–10093, 2022.

672 Chen Wang, Chuhao Chen, Yiming Huang, Zhiyang Dou, Yuan Liu, Jiatao Gu, and Lingjie Liu.
 673 Physctrl: Generative physics for controllable and physics-grounded video generation. In *arXiv
 674 preprint*, 2025.

675 Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
 676 attention distillation for task-agnostic compression of pre-trained transformers. *Advances in neural
 677 information processing systems*, 33:5776–5788, 2020.

678 Hongchi Xia, Zhi-Hao Lin, Wei-Chiu Ma, and Shenlong Wang. Video2game: Real-time, interactive,
 679 realistic and browser-compatible environment from a single video, 2024.

680 Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
 681 Physgaussian: Physics-integrated 3d gaussians for generative dynamics. *arXiv preprint
 682 arXiv:2311.12198*, 2023.

683 Albert J Zhai, Yuan Shen, Emily Y Chen, Gloria X Wang, Xinlei Wang, Sheng Wang, Kaiyu Guan,
 684 and Shenlong Wang. Physical property understanding from language-embedded feature fields. In
 685 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages
 686 28296–28305, 2024.

687 Kaifeng Zhang, Baoyu Li, Kris Hauser, and Yunzhu Li. Particle-grid neural dynamics for learning
 688 deformable object models from rgb-d videos. *arXiv preprint arXiv:2506.15680*, 2025.
 689

690 Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y. Feng, Changxi Zheng, Noah Snavely, Jiajun
 691 Wu, and William T. Freeman. PhysDreamer: Physics-based interaction with 3d objects via video
 692 generation. In *European Conference on Computer Vision*. Springer, 2024.

693 Licheng Zhong, Hong-Xing Yu, Jiajun Wu, and Yunzhu Li. Reconstruction and simulation of elastic
 694 objects with spring-mass 3d gaussians. *European Conference on Computer Vision (ECCV)*, 2024.

695 Xiangming Zhu, Huayu Deng, Haochen Yuan, Yunbo Wang, and Xiaokang Yang. Latent intuitive
 696 physics: Learning to transfer hidden physics from a 3d video. *arXiv preprint arXiv:2406.12769*,
 697 2024.
 698

700

702 A PRELIMINARIES
703704 This section briefly reviews foundational concepts in 3D scene representation and physics modeling
705 relevant to our work.
706707 A.1 LEARNED SCENE REPRESENTATION
708709 Reconstructing 3D scenes from 2D images is commonly achieved by learning a parameterized
710 representation, F_θ , optimized to render novel views that match observed images $\{I^{(i)}\}_{i=1}^M$ given
711 camera parameters $\{\pi^{(i)}\}_{i=1}^M$. This typically involves minimizing a photometric loss:
712

713
$$\min_{\theta} \sum_{i=1}^M \left\| \hat{I}^{(i)}(\theta) - I^{(i)} \right\|_2^2 ,$$

714
715

716 where $\hat{I}^{(i)}(\theta)$ is the image rendered from viewpoint i . Two prominent representations are Neural
717 Radiance Fields (NeRF) and Gaussian Splatting (GS) models.
718719 **Neural Radiance Fields (NeRF)** (Mildenhall et al., 2021) model a scene as a continuous function
720 $F_\theta : (\mathbf{x}, \mathbf{d}) \mapsto (c, \sigma)$, mapping a 3D location \mathbf{x} and viewing direction \mathbf{d} to an emitted color c and
721 volume density σ . Images are synthesized using volume rendering, integrating color and density
722 along camera rays. This process’ differentiability allows for end-to-end optimization from images.
723724 **Gaussian Splatting (GS)** (Kerbl et al., 2023) represents scenes as a collection of 3D Gaussian
725 primitives, each defined by a center μ_i , covariance Σ_i , color \mathbf{c}_i , and opacity α_i . These Gaussians are
726 projected onto the image plane and blended using alpha compositing to render views.
727728 In our work, the principles of neural scene representation, particularly NeRF-like architectures, are
729 leveraged not only for visual reconstruction but also for creating dense 3D visual feature fields. As
730 detailed in Sec. 3.1, we utilize a NeRF-based model to distill 2D image features (e.g., from CLIP)
731 into a volumetric 3D feature grid. This 3D feature representation, F_G , then serves as the primary
732 input to our physics prediction network. For subsequent physics simulation, GS offers a convenient
733 particle-based representation.
734735 A.2 3D VISUAL FEATURE DISTILLATION DETAILS
736737 Following (Shen et al., 2023), we augment the NeRF mapping to produce features \mathbf{f} alongside color c
738 and density σ :
739

740
$$F_\theta : (\mathbf{x}, \mathbf{d}) \mapsto (\mathbf{f}(\mathbf{x}), c(\mathbf{x}, \mathbf{d}), \sigma(\mathbf{x})).$$

741

742 Given a camera ray $r(t) = \mathbf{o} + t\mathbf{d}$ passing through pixel p , color $C(p)$ and features $F(p)$ are
743 volume-rendered as
744

745
$$C(p) = \int_{t_n}^{t_f} T(t) \sigma(r(t)) \mathbf{c}(r(t), \mathbf{d}) dt, \quad F(p) = \int_{t_n}^{t_f} T(t) \sigma(r(t)) \mathbf{f}(r(t)) dt, \quad (3)$$

746

747 where $T(t) = \exp(-\int_{t_n}^t \sigma(r(s)) ds)$ is the accumulated transmittance from the ray origin to depth
748 t . At each training iteration, a batch of rays is sampled from the input views. For each ray r (pixel
749 p), we enforce that the rendered color $C(p)$ matches the ground-truth pixel RGB $C^*(p)$, while the
750 rendered feature $F(p)$ matches the corresponding CLIP-based feature vector $F^*(p)$ extracted from
751 the image. The loss of the network is:
752

753
$$\mathcal{L} = \sum_p \|C(p) - C^*(p)\|_2^2 + \lambda_{\text{feat}} \sum_p \|F(p) - F^*(p)\|_2^2 ;$$

754

755 the first term enforces color fidelity, while the second aligns the rendered volumetric CLIP features
756 with the dense 2D features extracted from the training images.
757758 From a trained distilled feature field F_θ , we obtain a regular feature grid F_G of dimension $N \times N \times$
759 $N \times D$ grid, where $N = 64$ is the grid size and $D = 768$ is the CLIP feature dimension. This is
760 done via voxelization using known scene bounds. For our synthetic dataset, we center and normalize
761 all objects within a unit cube.
762

756 A.3 MATERIAL POINT METHOD (MPM) FOR PHYSICS SIMULATION
757

758 To simulate how objects move and deform under applied forces, a physics engine requires knowledge
759 of their material properties. These properties are typically defined within the framework of continuum
760 mechanics, which describes the behavior of materials at a macroscopic level. The fundamental
761 equations of motion (conservation of mass and momentum) are:

$$762 \quad \rho \frac{D\mathbf{v}}{Dt} = \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}^{\text{ext}} \quad \nabla \cdot \mathbf{v} = 0, \quad (4)$$

$$763$$

$$764$$

765 where ρ is mass density, \mathbf{v} the velocity field, $\boldsymbol{\sigma}$ the Cauchy stress tensor, and \mathbf{f}^{ext} any external force
766 (e.g. gravity or user interactions). The material-specific *constitutive laws* define how $\boldsymbol{\sigma}$ depends on
767 the local deformation gradient \mathbf{F} . For elastic materials, stress depends purely on the recoverable
768 strain; for plastic materials, a yield condition enforces partial “flow” once strain exceeds a threshold.
769

770 **Constitutive Laws and Parameters** Most continuum simulations separate the constitutive model
771 into two core components:

$$772 \quad \mathcal{E}_\mu : \mathbf{F}^e \mapsto \mathbf{P}, \quad (5)$$

$$773 \quad \mathcal{P}_\mu : \mathbf{F}^{e,\text{trial}} \mapsto \mathbf{F}^{e,\text{new}},$$

$$774$$

775 where \mathbf{F}^e is the *elastic* portion of the deformation gradient, \mathbf{P} is the (First) Piola–Kirchhoff stress, and
776 μ represents the set of material parameters (e.g. Young’s modulus E , Poisson’s ratio ν , yield stress).
777 The *elastic law* \mathcal{E}_μ computes stress from the current elastic deformation, while the *return-mapping*
778 \mathcal{P}_μ projects any “trial” elastic update $\mathbf{F}^{e,\text{trial}}$ onto the feasible yield surface if plastic flow is triggered.
779 Typically, the constitutive laws i.e., \mathcal{E}_μ and \mathcal{P}_μ are hand-designed by domain experts. The choice of \mathcal{E}
780 and \mathcal{P} jointly define a class of material (e.g., rubber). Within a material class, additional continuous
781 parameters μ including Young’s modulus, Poisson’s ratio and density can be specified for a more
782 granular control of the material properties (e.g., stiffness of rubber). In our work, PIXIE jointly
783 predicts the discrete material model and the continuous material parameters.
784

785 B PIXIEVERSE DATASET DETAILS
786

787 We heavily curate the dataset to a set of 1624 objects after a multi-stage filter that removes multi-object
788 scenes, missing textures, duplicated assets, and objects whose material labeling is either ambiguous or
789 physically implausible. The process is semi-automatic with a VLM-driven multi-stage pipeline while
790 still imparting substantial human prior and labor. [We manually tune the physics parameter ranges for
791 each semantic class \(e.g., “tree”, “rubber toy”\) and 3D segmentation query terms, and provide these
792 as in-context examples for the VLM to align them with human’s physical understanding.](#)
793

794 First, we define some object class (e.g., “tree”) and some alternative query terms (e.g., “ficus, fern,
795 evergreen etc”). We then use a sentence transformer model ([Wang et al., 2020](#)) to compute the cosine
796 similarity between the search terms and the name of each Objaverse object. We select $k = 500$
797 objects with the highest similarity score for each class, creating an initial candidate pool. However,
798 since Objaverse objects vary greatly in asset quality, lighting conditions, and some scenes contain
799 multiple objects which are not suitable for our material learning, an additional filtering step is needed.
800 The Gemini VLM is prompted to filter out low-quality or unsuitable scenes. A distilled Nerf model
801 is fitted to each object. Then, the VLM is provided five multi-view RGB images of an object, and
802 prompted to provide a list of the object’s semantic parts along with associated material class and
803 ranges for continuous values. The ranges such as $E \in \{1e4, 1e5\}$ allow us to simulate a wider
804 range of dynamics from flexible to more rigid trees. The VLM is also prompted to specify a list of
805 constraints such as to ensure that the leaf’s density is lower than the trunk’s. We then sample the
806 continuous values from the VLM’s specified ranges subject to the constraint via rejection sampling.
807 The semantic parts (e.g., “pot”) are used with the CLIP distilled feature field to compute a 3D semantic
808 segmentation of the object into parts, and the sampled material properties are applied uniformly to
809 all points within a part. This ground-truth material and feature fields are then voxelized into regular
810 grids for use in supervised learning by the PIXIE framework.

811 The following sections provide more details on each step of our semi-automatic labeling process.

```

810
811     tree: tree, ficus, fern, oak tree, pine tree, evergreen, palm tree, maple tree,
812     bonsai tree
813     flowers: flower, bouquet, rose, tulip, daisy, lily, sunflower, orchid, flower
814     arrangement, flowering plant, garden flowers, wildflowers, floral
815     rubber_ducks_and_toys: rubber duck, bath toy, rubber toy, toy duck, squeaky toy,
816     floating toy, plastic duck, children's bath toy, yellow duck toy, rubber animal
817     toy
818     soda_cans: soda can, aluminum can, beverage can, cola can, soft drink can, metal
819     can, canned drink, pop can, fizzy drink can
820     sport_balls: basketball, soccer ball, football, tennis ball, baseball, volleyball,
821     golf ball, rugby ball, ping pong ball, cricket ball, bowling ball, beach ball,
822     sports ball
823     sand: sand, beach sand, desert sand, sandy terrain, sand pile, sand dune, sandpit,
824     sand box, sand texture, grainy sand
825     shrubs: shrub, bush, hedge, ornamental bush, garden shrub, boxwood, flowering
826     bush, evergreen shrub, decorative plant, landscaping shrub
827     metal_crates: metal crate, steel box, metal container, shipping crate, metal
828     storage box, industrial container, metal chest, storage crate, metallic box
829     grass: grass, lawn, turf, grassland, meadow, grassy field, green grass, grass
830     patch, tall grass, wild grass, pasture
831     snow_and_mud: snow, mud, snowy ground, muddy ground, wet mud, fresh snow, packed
832     snow, snowy terrain, muddy terrain, snow patch, mud puddle, snowdrift, muddy path,
833     snowy surface, muddy surface, slush, wet snow, dirty snow, muddy water, snowy
834     landscape
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

```

Figure 7: **Objaverse Class Selection Keywords.** The keywords for matching a semantic class with an objaverse asset’s name.

B.1 OBJECT SELECTION FROM OBJAVERSE

We use the [all-MiniLM-L6-v2](#) (Wang et al., 2020) sentence transformer to compute the cosine similarity between an objaverse asset’s name and some search terms for each object class. The search terms are in Fig. 7. The top $k = 500$ objects with the highest similarity score are selected for each class.

B.2 OBJECT FILTERING

Next, we prompt Gemini to filter out low-quality assets. The system instruction is given in Fig. 8. Then, a human quickly scans through the VLM results organized in our web interface as shown in Fig. 9 to correct any mistakes.

B.3 CLIP-DRIVEN 3D SEMANTIC SEGMENTATION

From a distilled CLIP feature field of the object (Shen et al., 2023), we can perform 3D semantic segmentation by providing a list of the object’s parts (e.g., “pot, trunk, leaves”). These query terms are used to compute the cosine similarity between each CLIP feature at a given 3D coordinate against the terms, and the part with highest similarity is assigned to that point. The choices of query terms (e.g., “pot, trunk, leaves” vs “base, stem, leaf”) greatly affect the segmentation quality, and is not obvious. A high-performing query list in one object is not guaranteed to yield high performance in another object, e.g., see Fig. 10. Thus, we prompt a VLM actor to generate several candidate queries for each object, render all candidates, and prompt another VLM critic to select the best query terms from the rendered 3D segmentation images, as detailed Sec. B.4.

B.4 VLM ACTOR-CRITIC LABELING

Current VLMs might not have robust physical understanding for generating high-quality labels for PIXIEVERSE zeroshot. Thus, we first manually tune the physic parameters for each semantic object

```

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878 We need to select some images of the classes: {class_name}. This class includes
879 objects like {search_terms}. We will provide you some images rendered from the 3D
880 model. You need to either return True or False. Return False to reject the image
881 as inappropriate for the video game development. Some common reasons for
882 rejection:
883   — The image doesn't clearly depict the object class
884   — The image is too dark or too bright or too blurry or has some other low
885     quality.
886     Remember, we want high-quality training data.
887     — The image contains other things in addition to the object.
888 REMEMBER, we only want images that depict cleanly ONE SINGLE OBJECT belonging to
889 one of the classes. But you also need to use your common sense and best judgement.
890     For example, for a class like "flowers", the object might include a vase of
891     flowers (you rarely see a single flower in the wild). So you should return True
892     in this case.
893     — We do want diversity in our dataset collection. So even if the texture of the
894     object is a bit unusual, as long as you can recognize it as belonging to the
895     class / search terms, you should return True. Only remove low-quality assets.
896
897 The return format is:
898   ``json
899   {
900     "is_appropriate": true (or false),
901     "reason": "reason for the decision"
902   }``
903
904 We'll be using the 3d models to learn physic parameters like material and young
905 modulus to simulate the physics of the object. E.g., the tree swaying in the wind
906 or thing being dropped from a height. Therefore, you need to decide if the image
907 depicts an object that is likely to be used in a physics simulation.
908
909
910
911
912
913
914
915
916
917

```

Figure 8: **Object Filtering System Prompt.** Prompt for VLM to filter out low-quality assets.

918
919
920
921
922
923
924
925
926

Image Filtering

Total Images
494

Discarded Images
184

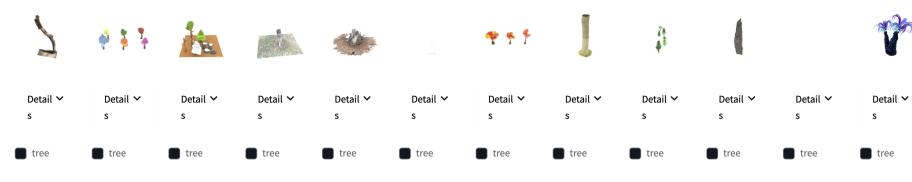
Chosen Images
310

Instructions

- Click "Details" below any image to see its full details and object ID
- Click the code block to copy the object ID
- Check the box below any image you want to flip to the other category
- All changes will be applied when you click "Save Changes" at the bottom

Discarded Images (184)

Check boxes to flip to 'Chosen'



Chosen Images (310)

Check boxes to flip to 'Discarded'

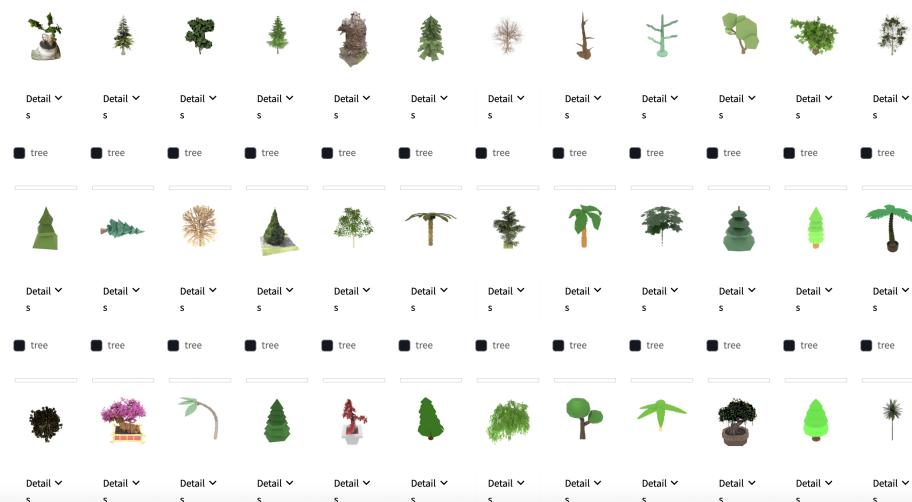


Figure 9: **Manual correction for object filtering.** The web interface for quickly inspecting and manually correcting VLM results.

964
965
966
967
968
969
970
971

972
973
974
975
976
977
978
979
980
981
982
983
984 **Figure 10: CLIP Semantic Segmentation.** CLIP features can be noisy for various objects and
985 different text queries vary greatly in segmentation quality. Thus, we prompt a VLM actor to generate
986 several candidate queries for each object, render all candidates, and prompt another VLM critic to
987 select the best query terms from the rendered 3D segmentation images. Some candidates are provided
988 and proposals chosen by the critic are highlighted. Note that a high-performing query proposal (e.g.,
989 “leaves,pot,trunk”) in one object is not necessary high-performing in another. The PCA visualization
990 of the CLIP feature fields is also provided.
991

992 class (e.g., “tree”, “rubber toy”). A condensed version of these examples is provided in Fig. 12. We
993 also provide examples of different search terms (e.g., “pot, trunk, leaves” vs “base, stem, leaf”). These
994 in-context examples are provided to a VLM actor that simultaneously proposes physics parameters
995 and semantic segmentative queries for that object from multi-view images of that object as illustrated
996 in Fig. 11. The full system prompt for the VLM is provided in Fig. 13 and the full in-context examples
997 in Listing 1. We render an image representing 3D semantic segmentation masks for each query
998 proposal as shown in Fig. 10. A VLM critic is then prompted to select the best segmentation queries
999 from the rendered images. The critic’s system prompt is provided in Fig. 14.

1000 Additionally, materials in the real-world contain uncertainty that visual information alone cannot
1001 resolve (e.g., a tree can range from stiff to flexible). Thus, instead of specifying one physics parameter
1002 per part, we prompt the VLM actor to output a plausible range (e.g., $E \in \{1e4, 1e5\}$ see Fig. 11, 12).
1003 We then sample a value uniformly from each range to build our training dataset. To further ensure
1004 that the sampled values are consistent, the VLM is also prompted to specify a list of constraints (e.g.,
1005 the density of leaves must be lower than that of the trunk). Rejection sampling is used to ensure that
1006 the final dataset respects the constraints.
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

The image are

please provide the segmentation terms and physics outputs as instructed.

INPUT

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

```
{
  "material_dict": {
    "pot": {
      "density": [
        1500, 2000
      ],
      "E": [
        1e8, 1e9
      ],
      "mu": [
        0.2, 0.3
      ],
      "material_id": 6
    },
    "trunk": {
      "density": [
        300, 500
      ],
      "E": [
        1e5, 5e6
      ],
      "mu": [
        0.3, 0.4
      ],
      "material_id": 0
    },
    "leaves": {
      "density": [
        100, 300
      ],
      "E": [
        1e4, 5e5
      ],
      "mu": [
        0.3, 0.4
      ],
      "material_id": 0
    }
  },
  "reasoning": "The pot is made of a dense, stiff material like ceramic or concrete, so it's density and Young's modulus are high, and it is stationary. The trunk and leaves are made of a flexible material like wood and foliage, so they are modeled as jelly with lower density and Young's modulus. The leaves are more flexible than the trunk, so their Young's modulus is lower.",
  "constraints": "assert material_dict['pot']["density"] > material_dict['trunk']["density"]\nassert material_dict['trunk']["density"] > material_dict['leaves']["density"]\nassert material_dict['pot']["E"] > material_dict['trunk']["E"]\nassert material_dict['trunk']["E"] > material_dict['leaves']["E"]",
  "all_queries": [
    [
      "pot",
      "trunk",
      "leaves"
    ],
    [
      "brown pot",
      "brown trunk",
      "green leaves"
    ],
    [
      "ceramic pot",
      "wooden trunk",
      "foliage"
    ]
  ]
}
```

OUTPUT

Figure 11: VLM Actor's Physics and Segmentation Proposal.

```

1080
1081
1082
1083
1084
1085
1086
1087     tree:
1088         pot: {density: 400, E: 2e8, nu: 0.4, material: "rigid"}
1089         trunk: {density: 400, E: 2e6, nu: 0.4, material: "elastic"}
1090         leaves: {density: 200, E: 2e4, nu: 0.4, material: "elastic"}
1091
1092     flowers:
1093         vase: {density: 500, E: 1e6, nu: 0.3, material: "rigid"}
1094         flowers: {density: 100, E: 1e4, nu: 0.4, material: "elastic"}
1095
1096     shrub:
1097         stems: {density: 300, E: 1e5, nu: 0.35, material: "elastic"}
1098         twigs: {density: 250, E: 6e4, nu: 0.38, material: "elastic"}
1099         foliage: {density: 150, E: 2e4, nu: 0.40, material: "elastic"}
1100
1101     grass:
1102         blades: {density: 80, E: 1e4, nu: 0.45, material: "elastic"}
1103         soil (if visible): {density: 1200, E: 5e5, nu: 0.30, material: "rigid"}
1104
1105     rubber_ducks_and_toys:
1106         toy: {density: [80, 150], E: [3e4, 5e4], nu: [0.4, 0.45], material: "elastic"}
1107
1108     sport_balls:
1109         ball: {density: [80, 150], E: [3e4, 5e4], nu: [0.4, 0.45], material: "elastic"}
1110
1111     soda_cans:
1112         can: {density: [2600, 2800], E: [5e10, 8e10], nu: [0.25, 0.35], material: "metal"}
1113
1114     metal_crates:
1115         crate: {density: [2500, 2900], E: [8e7, 1.2e8], nu: [0.25, 0.35], material: "metal"}
1116
1117     sand:
1118         sand: {density: [1800, 2200], E: [4e7, 6e7], nu: [0.25, 0.35], material: "sand"}
1119
1120     jello_block:
1121         jello: {density: [40, 60], E: [800, 1200], nu: [0.25, 0.35], material: "elastic"}
1122
1123     snow_and_mud:
1124         snow_and_mud: {density: [2000, 3000], E: [8e4, 1.2e5], nu: [0.15, 0.25],
1125             material: "snow"}
1126
1127
1128
1129
1130
1131
1132
1133

```

We are trying to label a 3D object with physical properties. The physical properties are:

- Density
- Young's Modulus
- Poisson's Ratio
- Material model

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

— where the material model is one of the following: \{material_list_str\}
We have an automatic semantic segmentation model that can segment the object into different parts. We'll assume that each part has the same material model.

Your job is to come up with the part query to pass to the semantic segmentation model, and the associated material properties for each part.

\{special_notes\}

For example, for a \{class_name_for_example\}, the return is

```
'''json
\{example_material_dict_str\}
'''
```

Note that there are many different valid values for the material properties including E, nu, and density that would influence how the object behaves. Thus, instead of actual values, you should return a range of values like "E": [2e4, 2e6]. Also, provide reasoning and constraints on the values when appropriate.

So the output should be a json with the following format:

```
'''json
\{\{
    "material\dict": \{\ ... similar to example\dict with ranges ... \},
    "reasoning": "...",
    "constraints": "...",
    "all\queries": "..."
\}\}
'''
```

Remember to write constraints in the form of python code. For example,

```
'''python
\{example_constraints_str\}
'''
```

Note that you've been asked to generate a material range so 'material\dict["leaves"]["density"]' is a range of values. But for the purpose of the constraints writing, you can assume that the material\dict["leaves"]["density"] is a single value, and generate the python code similar to the example above. This is important because we will first sample a value from the range, then invoke your constraints code. So instead of writing something like

```
'''python
    assert material\dict["leaves"]["density"][[0] ...
```

you must write something like

```
'''python
    assert material\dict["leaves"]["density"] ...
```

Note that the correct code doesn't have the bracket because 'material\dict["leaves"]["density"]' will be already reduced to a single value by our sampler. You will be provided with images of the object from different views or a single view. Please try your best to come up with appropriate part queries as well. For example, if the object doesn't have visible trunk or pot, then you should NOT include them in the material\dict. Only segment parts that are visible in the image.

Also, because our CLIP segmentation model is not perfect, you should come up with alternative queries as well including the original queries in the all\queries list. For example,

```
'''json
\{example_all_queries_str\}
'''
```

In total, you need to provide \{num_alternative_queries\} alternative queries.

Tips:

\{tips_str\}

- Make sure that each element in the 'all\queries' list is in the exact same order as the material\dict keys.

```

1188
1189
1190
1191
1192 You are a segmentation quality critic. Your task is to evaluate the quality of
1193 segmentation results produced by a CLIP-based segmentation model.
1194
1195 You will be shown:
1196 1. A set of original RGB images of a 3D object from different views
1197 2. Segmentation results for different part queries
1198
1199 Your job is to:
1200 1. Evaluate each segmentation query based on how well it separates the object
1201 into meaningful parts
1202 2. Score each query on a scale of 1–10 (10 being perfect)
1203 3. Provide reasoning for your scores
1204 4. Suggest improvements to the queries if needed
1205
1206 Consider the following factors in your evaluation:
1207 – Does the segmentation properly separate the object into distinct, semantically
1208 meaningful parts?
1209 – Are the boundaries of the segments accurate and clean?
1210 – Is any important part of the object missed or incorrectly segmented?
1211 – IMPORTANT: note that our imperfect CLIP segmentation model is heavily
1212 dependent on the choice of part queries. Thus,
1213 even if a query might not be semantically correct, as long as it is useful for
1214 separating the object into distinct parts,
1215 you should score it high.
1216 – Bad queries would result in bad segmentation that are noisy or different parts
1217 are not correctly and/or clearly separated.
1218
1219 Your output should be a JSON in the following format:
1220
1221 ```json
1222 {
1223   "query_evaluations": {
1224     "query_0": {
1225       "score": 8,
1226       "reasoning": "This query effectively separates the object into functionally
1227       distinct parts. The boundaries are clean and consistent across different views."
1228     },
1229     "query_1": {
1230       "score": 3,
1231       "reasoning": "This query fails to distinguish important parts of the object,
1232       making it unsuitable for physical property assignment."
1233     },
1234     ...
1235   },
1236   "best_query": "query_1",
1237   "suggested_improvements": "Consider using more specific terms like 'ceramic pot'
1238   instead of just 'pot' to improve segmentation boundaries."
1239 }
1240
1241
1242 where 'query_{i}' is the i-th query in the "all_queries" list.
1243
1244 Be detailed in your reasoning and make concrete suggestions for improvements.
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3079
3080
3081
3082
3083
3084
3085
3086
3087
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3097
3098
3099
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3109
3110
3111
3112
3113
3114
3115
3116
3117
3117
3118
3119
3119
3120
3121
3122
3123
3124
3125
3125
3126
3127
3128
3129
3129
3130
3131
3132
3133
3133
3134
3135
3135
3136
3136
3137
3137
3138
3138
3139
3139
3140
3140
3141
3141
3142
3142
3143
3143
3144
3144
3145
3145
3146
3146
3147
3147
3148
3148
3149
3149
3150
3150
3151
3151
3152
3152
3153
3153
3154
3154
3155
3155
3156
3156
3157
3157
3158
3158
3159
3159
3160
3160
3161
3161
3162
3162
3163
3163
3164
3164
3165
3165
3166
3166
3167
3167
3168
3168
3169
3169
3170
3170
3171
3171
3172
3172
3173
3173
3174
3174
3175
3175
3176
3176
3177
3177
3178
3178
3179
3179
3180
3180
3181
3181
3182
3182
3183
3183
3184
3184
3185
3185
3186
3186
3187
3187
3188
3188
3189
3189
3190
3190
3191
3191
3192
3192
3193
3193
3194
3194
3195
3195
3196
3196
3197
3197
3198
3198
3199
3199
3200
3200
3201
3201
3202
3202
3203
3203
3204
3204
3205
3205
3206
3206
3207
3207
3208
3208
3209
3209
3210
3210
3211
3211
3212
3212
3213
3213
3214
3214
3215
3215
3216
3216
3217
3217
3218
3218
3219
3219
3220
3220
3221
3221
3222
3222
3223
3223
3224
3224
3225
3225
3226
3226
3227
3227
3228
3228
3229
3229
3230
3230
3231
3231
3232
3232
3233
3233
3234
3234
3235
3235
3236
3236
3237
3237
3238
3238
3239
3239
3240
3240
3241
3241
3242
3242
3243
3243
32
```

```

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

```

Listing 1: In-context Physics Examples

```

{
    "tree": {
        "class_name_for_example": "ficus tree",
        "special_notes": "",
        "example_material_dict": {
            "pot": {"density": 400, "E": 2e8, "nu": 0.4, "material_id": get_material_id("rigid")},
            "trunk": {"density": 400, "E": 2e6, "nu": 0.4, "material_id": get_material_id("elastic")},
            "leaves": {"density": 200, "E": 2e4, "nu": 0.4, "material_id": get_material_id("elastic")}
        },
        "example_explanation": textwrap.dedent("""
            For this, we assume that the pot is stationary, while the
            trunk and leaves are made of "elastic", which will make
            them sway in the wind. The stiffness (Young's Modulus) of the
            trunk is much higher than that of the leaves.
        """),
        "example_all_queries": [["leaves", "trunk", "pot"], ["green", "orange", "reddish-brown"]],
        "tips": [
            "In a scene, typically there's a stationary part that will
            serve to fix the object to the ground. Usually, it's the pot, or some
            base of the tree. You must set the material_id of the stationary
            part to 6. If there's no stationary part, then never mind.",
            "The higher the 'E' is, the stiffer the object is. E.g., so
            tree would sway less in the wind.",
        ]
    },
    "flowers": {
        "class_name_for_example": "flowers in a vase",
        "special_notes": "",
        "example_material_dict": {
            "vase": {"density": 500, "E": 1e6, "nu": 0.3, "material_id": get_material_id("rigid")},
            "flowers": {"density": 100, "E": 1e4, "nu": 0.4, "material_id": get_material_id("elastic")}
        },
        "example_explanation": textwrap.dedent("""
            Here, the vase is designated as stationary (material_id=6),
            indicating it should not move or sway.
            The flowers are set to a more pliable or flexible material (
            like "elastic" = 0), so that they can sway
            if there's wind or slight motion. The stiffness (Young's
            Modulus) of the vase is much higher than that
            of the flowers, making the vase rigid and the flowers more
            flexible.
        """),
        "example_all_queries": [["vase", "flowers"], ["ceramic base", "petals"], ["blue vase", "pink flower"]],
        "tips": [
            "In a typical flower arrangement, the vase (or base) is
            stationary, so give that part material_id=6 if present.",
            "The higher the 'E', the stiffer the part. So the vase should
            have a higher E range than the flowers.",
        ]
    },
    "shrub": {
        "class_name_for_example": "typical three-part shrub",
        "special_notes": textwrap.dedent("""
            Dataset note: Shrubs in our dataset stand by themselves---there
            is no planter or base.
        """)
    }
}

```

```

1296
1297     You should therefore return only the shrub's structural parts
1298     and none of them are stationary.
1299     """
1300     "example_material_dict": {
1301         "stems": { "density": 300, "E": 1e5, "nu": 0.35, "material_id": get_material_id("elastic") },
1302         "twigs": { "density": 250, "E": 6e4, "nu": 0.38, "material_id": get_material_id("elastic") },
1303         "foliage": { "density": 150, "E": 2e4, "nu": 0.40, "material_id": get_material_id("elastic") }
1304     },
1305     "example_explanation": textwrap.dedent("""
1306         Return *ranges* instead of single values and accompany them
1307         with reasoning, Pythonic
1308         constraints, and alternative query lists.
1309     """),
1310     "example_all_queries": [
1311         ["stems", "twigs", "foliage"],
1312         ["woody stems", "thin branches", "leaves"],
1313         ["brown sticks", "small branches", "green leaves"]
1314     ],
1315     "tips": [
1316         "Provide exactly the parts visible (usually stems/twigs + foliage).",
1317         "1e4 <= E <= 1e6.",
1318         "Stems should be stiffest > twigs > foliage.",
1319         "No part uses material_id 6 because nothing is fixed to the ground.",
1320     ],
1321     "grass": {
1322         "class_name_for_example": "",
1323         "special_notes": textwrap.dedent("""
1324             **Dataset note:** Grass patches are usually isolated;
1325             occasionally a visible soil patch is
1326             underneath. Include a "soil" part only if it is visible.
1327         """),
1328         "example_material_dict": {
1329             "blades": { "density": 80, "E": 1e4, "nu": 0.45, "material_id": get_material_id("elastic") }
1330         },
1331         "example_explanation": textwrap.dedent("""
1332             Example A (typical isolated grass---no stationary part):
1333             ```json
1334             {
1335                 "blades": { "density": 80, "E": 1e4, "nu": 0.45, "material_id": get_material_id("elastic") }
1336             }
1337             ```

1338             Example B (grass with visible soil):
1339             ```json
1340             {
1341                 "soil": { "density": 1200, "E": 5e5, "nu": 0.30, "material_id": get_material_id("rigid") },
1342                 "blades": { "density": 80, "E": 1e4, "nu": 0.45, "material_id": get_material_id("elastic") }
1343             }
1344             ```

1345             Return *ranges*, reasoning, constraints, and alternative
1346             query lists.
1347         """),
1348         "example_all_queries": [
1349             ["blades"],
1350             ["grass"]
1351         ]
1352     }
1353 
```

```

1350     ["green stalks"]
1351   ],
1352   "tips": [
1353     "Segment only the visible parts (sometimes just \"blades\")"
1354     .",
1355     "If *no* soil visible:\nall_queries: [[\"blades\"], [\"grass\"], [\"green stalks\"]]]",
1356     "If soil *is* visible:\nall_queries: [[\"soil\", \"blades\"], [\"dirt\", \"grass\"], [\"brown base\", \"green grass\"]]]",
1357     "1e4 <= E <= 1e6.",
1358     "If soil present -> give it material_id 6 and ensure E_soil > E_blades.",
1359     "If soil absent -> no stationary part; material_id 6 should not appear.",
1360     ]
1361   ],
1362   "rubber_ducks_and_toys": {
1363     "class_name_for_example": "",
1364     "special_notes": textwrap.dedent("""
1365       IMPORTANT: For rubber ducks and toys, we want to treat the
1366       entire object as a single part. Do not attempt to
1367       segment it into multiple parts. The object should be treated
1368       as a single, bouncy rubber-like object.
1369       """),
1370     "example_material_dict": {
1371       "toy": {"density": [80, 150], "E": [3e4, 5e4], "nu": [0.4,
1372       0.45], "material_id": get_material_id("elastic")}
1373     },
1374     "example_explanation": "",
1375     "example_all_queries": [[["toy"], ["rubber toy"], ["yellow duck"],
1376     ["plastic toy"]]],
1377     "tips": [
1378       "Always use material_id=0 (jelly) for bouncy rubber-like
1379       behavior",
1380       "Keep E relatively low (around 1e3) for good bounce",
1381       "Density should be in the range of typical rubber/plastic
1382       toys",
1383       "Poisson's ratio should be around 0.35 for rubber-like
1384       behavior",
1385       "Make sure all queries in all_queries list are single-part
1386       queries"
1387     ],
1388   },
1389   "sport_balls": {
1390     "class_name_for_example": "",
1391     "special_notes": textwrap.dedent("""
1392       IMPORTANT: For sport balls, we want to treat the entire ball
1393       as a single part. Do not attempt to
1394       segment it into multiple parts (like surface patterns or
1395       seams). The ball should be treated as a single,
1396       bouncy object.
1397       """),
1398     "example_material_dict": {
1399       "ball": {"density": [80, 150], "E": [3e4, 5e4], "nu": [0.4,
1400       0.45], "material_id": get_material_id("elastic")}
1401     },
1402     "example_explanation": "",
1403     "example_all_queries": [[["ball"], ["sport ball"], ["basketball"],
1404     ["round ball"]]],
1405     "tips": [
1406       "Always use material_id=0 (jelly) for bouncy behavior",
1407       "Keep E relatively low (around 1e3) for good bounce",
1408       "Density should be in the range of typical sport balls",
1409       "Poisson's ratio should be around 0.35 for rubber-like
1410       behavior",
1411     ]
1412   }
1413 
```

```

1404         "Make sure all queries in all_queries list are single-part
1405         queries"
1406     ]
1407 },
1408 "soda_cans": {
1409     "class_name_for_example": "",
1410     "special_notes": textwrap.dedent("""
1411         IMPORTANT: For soda cans, we want to treat the entire can as
1412         a single part. Do not attempt to
1413             segment it into multiple parts (like the top, body, or label)
1414         . The can should be treated as a single,
1415             rigid metal object.
1416        """),
1417     "example_material_dict": {
1418         "can": {"density": [2600, 2800], "E": [5e10, 8e10], "nu": [0.25, 0.35], "material_id": get_material_id("metal")}
1419     },
1420     "example_explanation": "",
1421     "example_all_queries": [[["can"], ["soda can"], ["aluminum can"], ["metal can"]]],
1422     "tips": [
1423         "Always use material_id=1 (metal) for rigid metal behavior",
1424         "Keep E relatively high (around 1e8) for metal stiffness",
1425         "Density should be in the range of typical aluminum (around
1426             2700 kg/m^3)",
1427         "Poisson's ratio should be around 0.3 for metal behavior",
1428         "Make sure all queries in all_queries list are single-part
1429         queries"
1430     ],
1431     "metal_crates": {
1432         "class_name_for_example": "",
1433         "special_notes": textwrap.dedent("""
1434             IMPORTANT: For metal crates, we want to treat the entire
1435             crate as a single part. Do not attempt to
1436                 segment it into multiple parts (like the sides, top, or
1437                 bottom). The crate should be treated as a single,
1438                 rigid metal object.
1439            """),
1440         "example_material_dict": {
1441             "crate": {"density": [2500, 2900], "E": [8e7, 1.2e8], "nu": [0.25, 0.35], "material_id": get_material_id("metal")}
1442         },
1443         "example_explanation": "",
1444         "example_all_queries": [[["crate"], ["metal crate"], ["metal box"], ["steel crate"]]],
1445         "tips": [
1446             "Always use material_id=1 (metal) for rigid metal behavior",
1447             "Keep E relatively high (around 1e8) for metal stiffness",
1448             "Density should be in the range of typical metal (around 2700
1449                 kg/m^3)",
1450             "Poisson's ratio should be around 0.3 for metal behavior",
1451             "Make sure all queries in all_queries list are single-part
1452             queries"
1453         ],
1454     },
1455     "sand": {
1456         "class_name_for_example": "",
1457         "special_notes": textwrap.dedent("""
1458             IMPORTANT: For sand objects, we want to treat the entire
1459             object as a single part. Do not attempt to
1460                 segment it into multiple parts. The sand should be treated as
1461                 a single, granular material.
1462            """),
1463         "example_material_dict": {

```

```

1458
1459         "sand": {"density": [1800, 2200], "E": [4e7, 6e7], "nu": [0.25, 0.35], "material_id": get_material_id("sand")}
1460         },
1461         "example_explanation": "",
1462         "example_all_queries": [[["sand"]], ["sand pile"], ["sand mound"], ["granular material"]],
1463         "tips": [
1464             "Always use material_id=2 (sand) for granular behavior",
1465             "Keep E relatively high (around 5e7) for sand stiffness",
1466             "Density should be in the range of typical sand (around 2000 kg/m^3)",
1467             "Poisson's ratio should be around 0.3 for sand behavior",
1468             "Make sure all queries in all_queries list are single-part queries"
1469             ]
1470         },
1471     },
1472     "jello_block": {
1473         "class_name_for_example": "",
1474         "special_notes": textwrap.dedent("""
1475             IMPORTANT: For jello blocks, we want to treat the entire object as a single part. Do not attempt to
1476             segment it into multiple parts. The jello block should be
1477             treated as a single, soft, bouncy object.
1478             """),
1479         "example_material_dict": {
1480             "jello": {"density": [40, 60], "E": [800, 1200], "nu": [0.25, 0.35], "material_id": get_material_id("elastic")}
1481             },
1482             "example_explanation": "",
1483             "example_all_queries": [[["jello"]], ["jello block"], ["gelatin"], ["bouncy block"]],
1484             "tips": [
1485                 "Always use material_id=0 (jelly) for soft, bouncy behavior",
1486                 "Keep E relatively low (around 1000) for good bounce and jiggle",
1487                 "Density should be in the range of typical jello (around 50 kg/m^3)",
1488                 "Poisson's ratio should be around 0.3 for jello-like behavior",
1489                 ",
1490                 "Make sure all queries in all_queries list are single-part queries"
1491                 ]
1492             },
1493         },
1494     "snow_and_mud": {
1495         "class_name_for_example": "",
1496         "special_notes": textwrap.dedent("""
1497             IMPORTANT: For combined snow & mud objects, we treat the entire mixture as a single deformable part. Do **not**
1498             attempt to split it into separate snow and mud regions---the
1499             simulation will use one MPM material.
1500             """),
1501         "example_material_dict": {
1502             "snow_and_mud": {"density": [2000, 3000], "E": [8e4, 1.2e5], "nu": [0.15, 0.25], "material_id": get_material_id("snow")}
1503             },
1504             "example_explanation": "",
1505             "example_all_queries": [[["snow and mud"]], ["slush"], ["muddy snow"], ["wet snow"]],
1506             "tips": [
1507                 "Always set material_id = 5 (snow) so the simulator uses the appropriate elasto-plastic snow model.",
1508                 "Keep E around 1e5 (the config value) to match the intended softness.",
1509                 "Density is markedly higher than fluffy snow because of the mud/water content---use roughly 2-3 g/cm^3 (2000-3000 kg/m^3).",
1510             }
1511         }

```

```

1512         "Make sure every list in 'all_queries' contains **one**  

1513         phrase because this is a single-part object."  

1514     ]  

1515 },  

1516 }

```

C THE EFFECTS OF HUMAN PRIOR ON PIXIEVERSE

PIXIEVERSE is labeled via VLMs using in-context physics examples manually tuned by humans. A condensed version of these in-context examples is provided in Fig. 12 and the full prompt in Listing 1. These examples align the VLM’s physical understanding with human’s. In our ablation result, we found that removing these examples significantly results as shown in Tab. 2.

The main differences between PIXIEVERSE labeling and NeRF2Physics are

1. We use VLM to propose object-dependent segmentation while NeRF2Physics using LLM is essentially blind. Specifically, ur VLM actor proposes segmentation queries based on a set of mutli-view images of the object as shown in Fig. 11.
2. We use semantic proposals (e.g., "pot", "trunk") instead of material proposals (e.g., "leather", "stone") like NeRF2Physics did. Computing similarity directly between material name and CLIP features yields inaccurate and noisy segmentation as shown in Fig. 10. This also limits the generality of the NeRF2Physics since one material type (e.g., “elastic”) can only have a fixed set of parameters in a scene. In contrast, PIXIE enables spatially-varying parameter specification: the leaves and the trunk of a tree while both belonging to the same “elastic” class can have vastly different young modulus, Poisson ratio and density as shown in Fig. 16.
3. We proposes multiple candidates (e.g., "pot,leaves" vs "base,folliage") and use a VLM critic to select the best based on CLIP-based segmentation while NeRF2Physics does not have any selection mechanism. Figure 10 show the dramatic segmentation quality across different queries, highlighting the need for multiple candidates and selection.
4. We also provide manually tuned in-context physics parameter examples.

These crucial differences contribute to much higher quality dataset labeling as shown in Tab. 2.

D VLM AS A PHYSICS JUDGE

We utilize a VLM to evaluate the realism of different candidate videos. The videos are scored on the scale 1-5, and an optional reference video and the prompt describing the video (e.g., “tree swaying in the wind”) is provided. We also use Cotracker (Karaev et al., 2024) to annotate the videos with motion traces. The system prompt is provided in Fig. 15.

E MODEL ARCHITECTURE

E.1 OVERVIEW

We employ a 3D UNet-based architecture for both discrete material segmentation and continuous material parameter regression. The architecture consists of two main components: (1) a feature projector for dimensionality reduction, and (2) a 3D UNet backbone for spatial processing.

Table 2: **PIXIEVERSE Ablation.** The effect of in-context physics examples on data quality. We include the executionability rate, which computes the fraction of times that a physic simulation can be successfully run without numerical explosion, and the realism score judged by Gemini.

Method	Exec. Rate \uparrow	VLM Score \uparrow
W/ In-context Examples (Ours)	100.0%	4.83 ± 0.09
W/o In-context Examples	62.5%	1.34 ± 0.30
NeRF2Physics (Zhai et al., 2024)	45.0%	1.09 ± 0.28

```

1566
1567
1568
1569
1570
1571
1572
1573
1574 You are a physics-realism judge for animation videos.
1575
1576 You will be shown several candidate animations of the SAME 3D object responding
1577 to the SAME textual prompt that describes its intended physical motion.
1578
1579 Your tasks:
1580 1. Carefully watch each candidate animation.
1581 2. Describe what's going on in the animation.
1582 3. Evaluate how physically realistic the motion looks (0–5 scale).
1583 4. Identify concrete pros / cons affecting the score (e.g. energy conservation
1584 errors, temporal jitter, incorrect response to gravity, static etc.).
1585 5. Suggest specific improvements.
1586 6. Pick the overall best candidate.

1587 Please output ONLY valid JSON with the following schema:
1588 {
1589   "candidate_evaluations": {
1590     "candidate_0": {"description": str, "score": float, "pros": str, "cons": str,
1591     "suggested_improvements": str},
1592     "candidate_1": { ... },
1593     "candidate_2": { ... }
1594   },
1595   "best_candidate": "candidate_i", // the key of the best candidate
1596   "general_comments": str // any overall remarks (optional)
1597 }

1598 NOTE: ignore missing videos. Still return score for 'candidate_{idx}' that are
1599 present.

1600 NOTE: to make your job easier, we have also annotated the video with the Co-
1601 Tracker. Cotracker is a motion tracker algorithm to highlight the moving parts in
1602 the videos.
1603 Pay close attention to the motion traces annotated in the videos to gain
1604 information on how the object is moving.
1605 Note that for objects that barely move, there will still be dots in the Co-
1606 Tracker video, but the motion
1607 (lines) will be very short or non-existent, indicating that the points are not
1608 moving.

1609 Cotracker can sometimes produce noisy traces so only use it as a reference, and
1610 consider the motion of the object as a whole, and other visual cues.
1611
1612
1613
1614
1615
1616
1617
1618
1619

```

Figure 15: VLM Evaluator’s System Prompt.

1620
1621

E.2 FEATURE PROJECTOR

1622
1623

The feature projector is used when the input feature dimension differs from the conditioning dimension:

1624

- **Input features:** The model supports three input modalities:

1625

- RGB features: $\mathbf{F} \in \mathbb{R}^{N \times 3 \times D \times H \times W}$
- CLIP features: $\mathbf{F} \in \mathbb{R}^{N \times 768 \times D \times H \times W}$
- Occupancy features: $\mathbf{F} \in \mathbb{R}^{N \times 1 \times D \times H \times W}$

1626

- **Projection:** Features are projected to a unified conditioning dimension of 32 channels using a feature projector with hidden dimension of 128 (when input channels > 32). The projector consists of three layers of Conv3D, GroupNorm and SiLU activation.

1627

E.3 3D UNET ARCHITECTURE

1628

We employ a U-Net architecture (Dhariwal and Nichol, 2021; Ronneberger et al., 2015) operating on 3D feature grids of shape $\mathbb{R}^{N \times 32 \times 64 \times 64 \times 64}$. The network follows a standard encoder-decoder structure with skip connections, using a base channel dimension of 64 and channel multipliers of [1, 1, 2, 4] across four resolution levels.

1629

The encoder begins with a 3D convolution that projects the 32-dimensional input features to 64 channels. The encoder then processes features through four resolution levels, each containing three residual blocks. The first two levels maintain 64 channels while progressively reducing spatial dimensions from 64^3 to 32^3 . The subsequent levels double the channel count at each downsampling step, reaching 128 channels at 16^3 resolution and 256 channels at 8^3 resolution. Downsampling between levels is performed using strided 3D convolutions with stride 2.

1630

At the bottleneck, the network processes the lowest resolution features through a sequence of residual block, attention block, and another residual block, all operating at 8^3 spatial resolution with 256 channels. Note that in our implementation, attention blocks are disabled by setting attention resolutions to empty.

1631

The decoder symmetrically reverses the encoder path, utilizing skip connections from corresponding encoder levels. Upsampling is achieved through nearest-neighbor interpolation with a scale factor of 2, followed by 3D convolution. Each decoder level matches the channel dimensions and number of residual blocks of its corresponding encoder level.

1632

Each residual block follows the formulation $\text{ResBlock}(x) = x + f(x)$, where f consists of layer normalization, LeakyReLU activation with negative slope 0.02, 3D convolution with kernel size 3, another layer normalization and activation, dropout, and a final zero-initialized 3D convolution. When input and output channels differ, the skip connection employs a $1 \times 1 \times 1$ convolution for channel matching.

1633

The final output layer applies layer normalization, LeakyReLU activation, and a 3D convolution that projects to either 8 channels for discrete material classification or 3 channels for continuous material parameter regression.

1634

F ADDITIONAL RESULTS

1635

We visualize the physics predictions by our model in Fig. 16. Figure 17 breaks down the material accuracy across semantic classes of PIXIEVERSE between our PIXIE CLIP versus two ablated versions using RGB and occupancy input features. Figure 18 qualitatively compare the ablated methods on the real-world scenes. Table 3 includes the quantitative reconstruction results on real-world scenes using PSNR and SSIM metrics.

1636

1637

G PIXIE AS INFORMED PRIOR FOR TEST-TIME OPTIMIZATION

1638

1639

1640

1641

1642

Test-time optimization methods such as DreamPhysics and OmniPhysGS often rely on slow per-scene optimization to refine material parameters, and their performance is highly sensitive to initialization

1674
 1675 **Table 3: Per-Category Reconstruction Performance.** We report PSNR and SSIM across three
 1676 object categories (bun, burger, dog) and their mean from the Spring-Gauss (Zhong et al., 2024) dataset
 1677 Higher is better.

	bun	burger	dog	Mean
PSNR \uparrow				
CLIP (ours)	25.23	23.41	20.18	22.94
RGB	20.31	18.92	16.37	18.53
Occupancy	19.52	18.26	15.83	17.87
OmniPhysGS	19.50	18.21	15.72	17.81
DreamPhysics	20.79	19.28	16.60	18.89
NeRF2Physics	20.14	18.74	16.40	18.43
SSIM \uparrow				
CLIP (ours)	0.920	0.875	0.852	0.882
RGB	0.866	0.821	0.797	0.828
Occupancy	0.871	0.826	0.804	0.834
OmniPhysGS	0.885	0.839	0.820	0.848
DreamPhysics	0.883	0.835	0.813	0.844
NeRF2Physics	0.889	0.842	0.823	0.851

1694 (Sec. 4). Here we show that PIXIE’s feed-forward predictions serve as *strong informed priors* for
 1695 these methods. For the Ficus scene used in DreamPhysics, Fig. 19 compares optimization curves
 1696 initialized either from DreamPhysics’ default parameters or from PIXIE’s predicted parameters.
 1697 When initialized with PIXIE, the latent distillation loss (computed via ModelScoped video diffusion
 1698 priors, as in (Huang et al., 2024)) converges faster and to a lower final value. This demonstrates that
 1699 PIXIE can accelerate test-time optimization pipelines by providing a physically coherent, semantically
 1700 consistent starting point for continuous parameters (E, ν, ρ) and material classes.

H GENERALIZATION TO REAL-WORLD OBJECTS: ABO-500 MASS ESTIMATION

1705 To evaluate the robustness of the predicted density fields beyond synthetic data and NeRF-style
 1706 real scenes, we further test PIXIE on the ABO-500 dataset (Zhai et al., 2024), which contains 500
 1707 real products sourced from Amazon with ground-truth mass. This real-world dataset contains many
 1708 out-of-distribution objects such as furniture that was not in our training set. We estimate object mass
 1709 by integrating PIXIE’s predicted density over the reconstructed object volume. We compared the
 1710 absolute difference error (ADE), absolute log difference error (ALDE), absolute percentage error
 1711 (APE), and min ratio error (MnRE) following NeRF2Physics. As shown in Table 5, PIXIE achieves
 1712 lower error across ADE, ALDE, APE, and higher MnRE compared to NeRF2Physics, despite never
 1713 observing these object categories during training. This demonstrates strong semantic generalization
 1714 and the physical plausibility of PIXIE’s continuous predictions, reinforcing its utility for downstream
 1715 real-world applications.

I HUMAN USER STUDY

1720 We conduct a blind user study containing 512 responses and 16 volunteers. The object and method
 1721 ordering are randomly shuffled in each trial to mitigate bias. Each trial displayed four side-by-side
 1722 simulations rendered using material parameters from different methods (PIXIE, DreamPhysics,
 1723 NeRF2Physics, OmniPhysGS). Participants ranked the realism of the animations, with ties allowed.
 1724 As summarized in Tab. 4, PIXIE achieves the best average rank (1.78, lower is better) and is chosen
 1725 as the top method in 55% of trials—over 20% higher than the next-best method. These results align
 1726 with both Gemini-VLM evaluations and the qualitative trends in Fig. 5–6, confirming that humans
 1727 also perceive PIXIE’s motion as the most physically plausible.

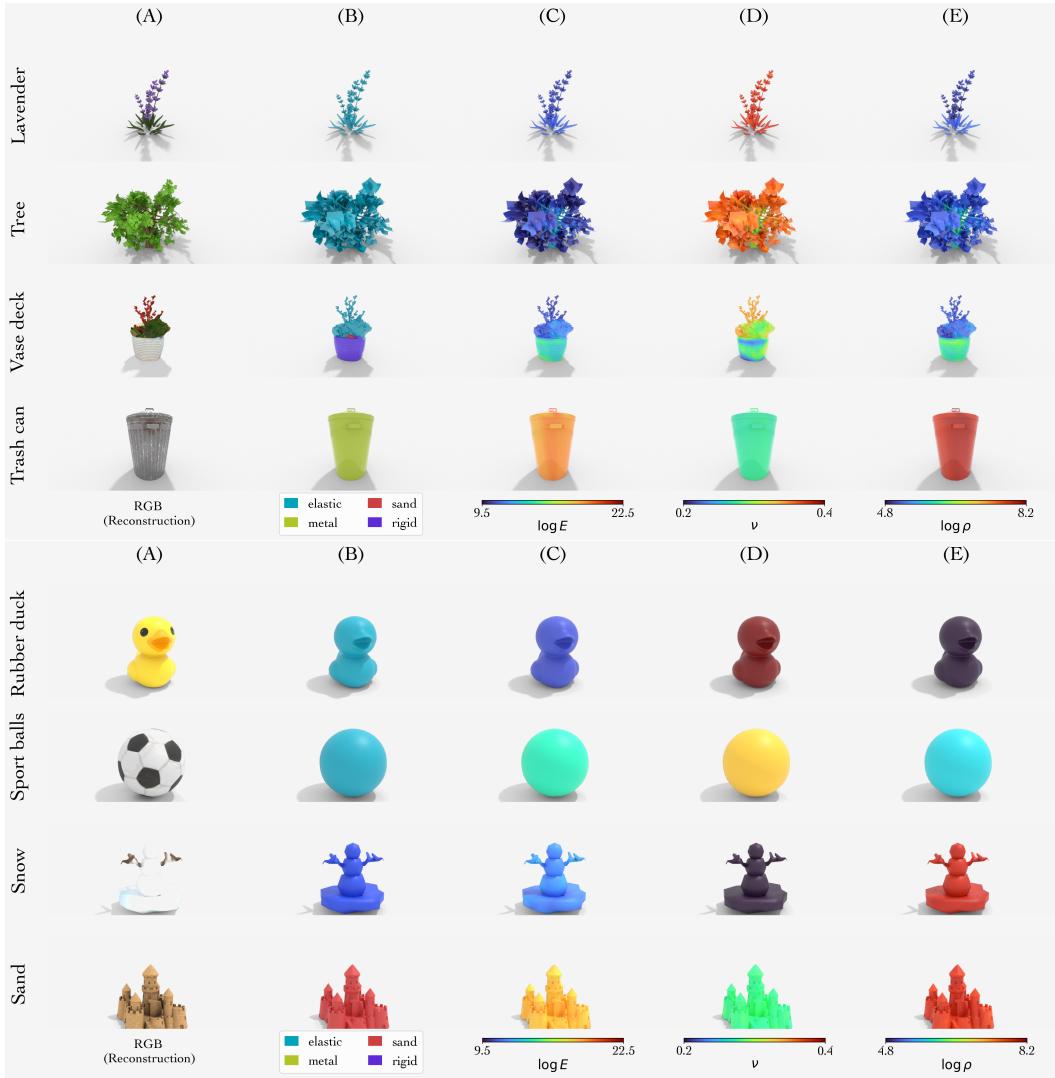


Figure 16: **PIXIE Prediction Visualization.** PIXIE simultaneously recovers discrete material class, continuous Young’s modulus (E), Poisson’s ratio (ν), and mass density (ρ) with a high degree of accuracy. For example, the model correctly labels foliage as elastic and the metal can as rigid, while recovering realistic stiffness and density gradients within each object.

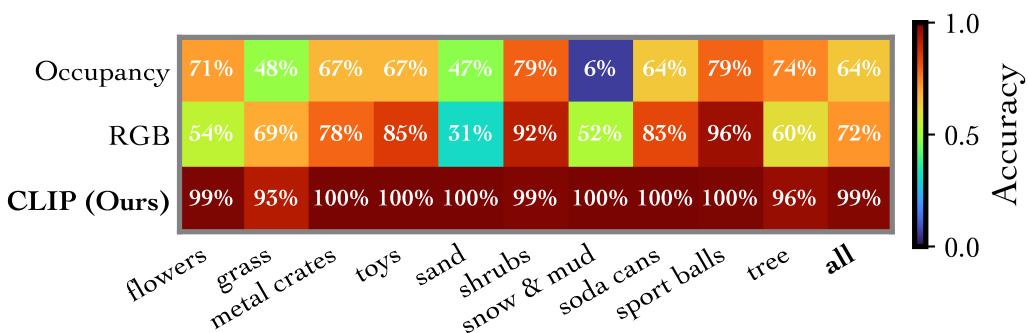


Figure 17: **PIXIE Ablation’s Per-class Accuracy on synthetic scenes.** CLIP features generalizes in synthetic scenes, outperforming RGB and occupancy on all classes.

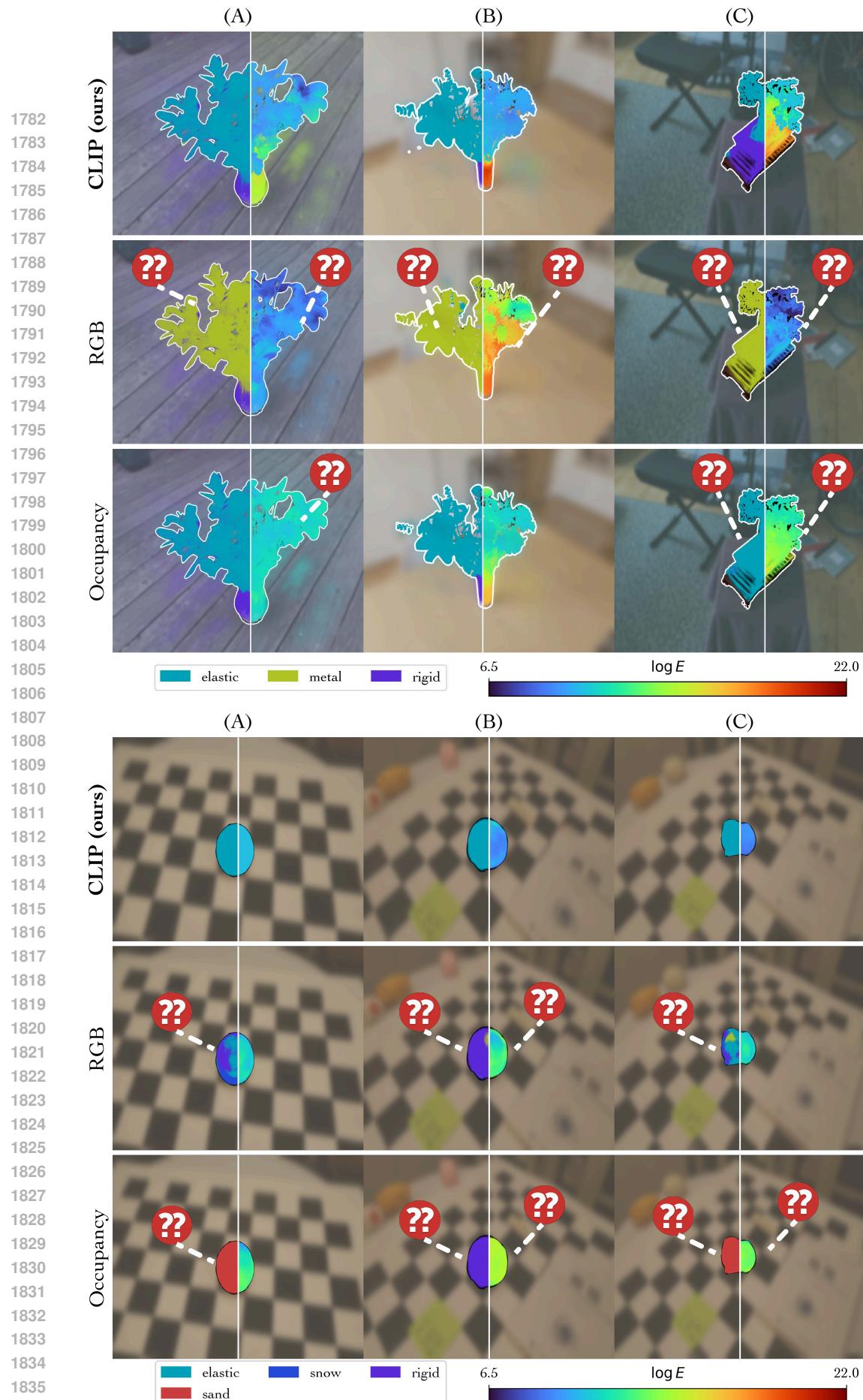


Figure 18: **PIXIE’s Feature Type Ablation on Real Scenes.** Replacing CLIP features with RGB or occupancy severely degrades the material predictions. Incorrect predictions such as leave mislabelled as metal or Young’s modulus being uniform within an object are marked with question marks. This highlights the power of pretrained visual features in bridging the sim2real gap.

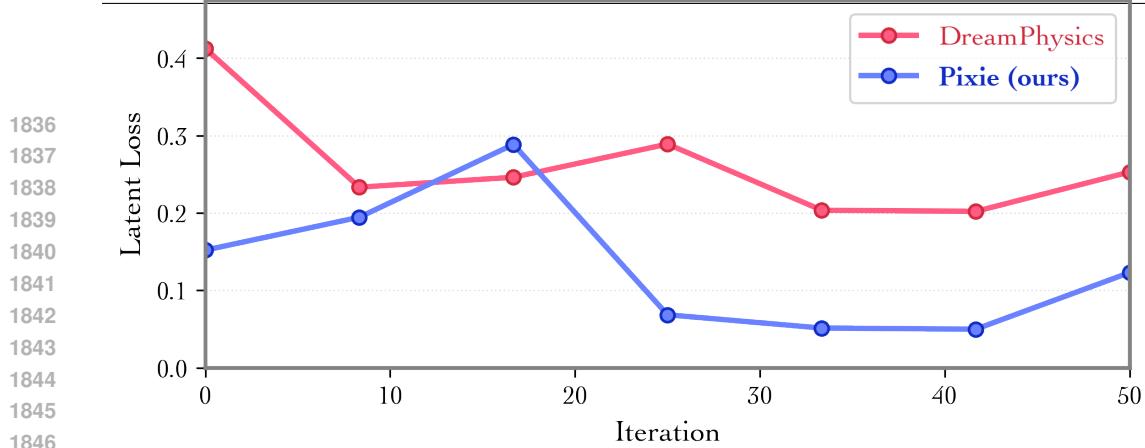


Figure 19: **PIXIE’s predicted parameters can serve as an informed priors.** When initialized with PIXIE’s predicted physic parameters, DreamPhysics (Huang et al., 2024) test-time optimization converge to a 2.05x lower latent loss compared to default initializations in the original work.

Table 4: **User Preference Study.** Results from our blind human study, where participants ranked the perceived physical realism of animations produced by each method. We report the mean rank (lower is better) and the proportion of trials in which a method was chosen as most realistic (higher is better). Based on 512 responses from 16 volunteers, these human judgments validate PIXIE’s superior physical plausibility and align closely with the VLM-based evaluations presented in the main paper.

Method	Avg Rank ↓	Best % ↑
Pixie	1.7875	55.00%
DreamPhysics	3.7000	31.25%
NeRF2Physics	2.3125	28.75%
OmniPhysGS	2.1625	7.50%

Method	ADE ↓	ALDE ↓	APE ↓	MnRE ↑
NeRF2Physics	8.730	0.771	1.061	0.552
Ours	8.231	0.654	0.875	0.584

Table 5: **Mass estimation results on the ABO-500 dataset (Zhai et al., 2024).** We estimate mass by integrating predicted density over object volume. Despite no training on these real object categories, PIXIE achieves lower error across all metrics compared to NeRF2Physics, demonstrating strong real-world generalization.

Method	Preprocessing (s)	Inference (s)	Total Time (s)
DreamPhysics (mid)	35.5	3811	3846.5
OmniPhysGS (mid)	35.5	10302	10337.5
NeRF2Physics	175.0	140.24	315.24
Pixie (Ours)	210.5	1.95	212.45

Table 6: **End-to-End Runtime Comparison (RTX A6000).** All methods require a 3D scene representation prior to physics prediction—DreamPhysics and OmniPhysGS rely on 3D Gaussian Splatting, NeRF2Physics uses a distilled NeRF, and PIXIE uses both. While Fig. 4 focuses on the core problem studied in this paper—*physics prediction*—here we report full end-to-end wall-clock time including preprocessing. On average, learning a 3DGS model requires 35.5 s (1,000 iterations) and distilled NeRF training requires 2.92 min (5,000 steps) on a single NVIDIA RTX A6000 GPU. Even with these preprocessing stages included, PIXIE achieves a total runtime of only 212.45 s (\approx 3.5 min), making it 1.48 \times faster than NeRF2Physics (315.24 s) and *orders of magnitude* faster than test-time optimization methods such as DreamPhysics and OmniPhysGS, which require hours to converge.