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ABSTRACT

Gradient clipping is a widely used technique in Machine Learning and Deep
Learning (DL), known for its effectiveness in mitigating the impact of heavy-tailed
noise, which frequently arises in the training of large language models. Addition-
ally, first-order methods with clipping, such as Clip-SGD, exhibit stronger conver-
gence guarantees than SGD under the (Lg, L1 )-smoothness assumption, a prop-
erty observed in many DL tasks. However, the high-probability convergence of
Clip-SGD under both assumptions — heavy-tailed noise and (Lo, L1 )-smoothness
— has not been fully addressed in the literature. In this paper, we bridge this crit-
ical gap by establishing the first high-probability convergence bounds for Clip-
SGD applied to convex (Lg, L1)-smooth optimization with heavy-tailed noise.
Our analysis extends prior results by recovering known bounds for the determin-
istic case and the stochastic setting with L; = 0 as special cases. Notably, our
rates avoid exponentially large factors and do not rely on restrictive sub-Gaussian
noise assumptions, significantly broadening the applicability of gradient clipping.

1 INTRODUCTION

Stochastic optimization forms the backbone of modern machine learning (Shalev-Shwartz and Ben-
David, 2014) and deep learning (Goodfellow et al., 2016), providing the computational efficiency
required to train models at scale. While full-gradient methods offer precise optimization, they are of-
ten impractical for real-world applications due to their prohibitive computational costs and memory
demands. In contrast, Stochastic Gradient Descent (SGD) (Robbins and Monro, 1951) has emerged
as the de facto standard for training deep learning models, thanks to its simplicity, scalability, and
effectiveness in high-dimensional settings. However, despite its widespread use, SGD alone is often
insufficient for capturing the full complexity of modern optimization problems.

Gradient clipping is one of the most widely adopted extensions of SGD, providing a simple yet
powerful mechanism for controlling gradient magnitudes in the presence of noisy updates. Clip-
SGD and its variants have demonstrated significant practical utility across a range of challenging
machine learning tasks. For instance, Pascanu et al. (2013) employed gradient clipping to stabilize
the training of recurrent neural networks, which are particularly prone to gradient explosions due to
their architectural structure. More recently, gradient clipping has become a crucial component in the
training of large language models (LLMs) such as BERT (Devlin et al., 2019), GPT-3 (Brown et al.,
2020), Switch Transformers (Fedus et al., 2022), and LLaMA (Touvron et al., 2023).

Gradient clipping is particularly effective in stabilizing the training of deep learning models in the
presence of heavy-tailed noise in stochastic gradients. This phenomenon, where the probability
density of gradient noise decays polynomially, leading to potentially unbounded variance, has been
observed in real-world settings such as the pre-training of BERT models (Zhang et al., 2020c).
Under such conditions, classical SGD can suffer from divergence, even in expectation, making it
poorly suited for training in these high-variance environments. In contrast, gradient clipping not
only mitigates these explosive gradient updates but also plays a critical role in establishing high-
probability convergence guarantees. Recent studies (Gorbunov et al., 2020; Cutkosky and Mehta,
2021; Sadiev et al., 2023; Nguyen et al., 2023; Chezhegov et al., 2024) have shown that employing
a clipping threshold that grows with the number of iterations can yield high-probability convergence
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bounds with only polylogarithmic dependence on the confidence level. In contrast, neither classical
SGD nor popular adaptive methods such as AdaGrad (Duchi et al., 2011) and Adam (Kingma and
Ba, 2014) can achieve such favorable convergence bounds (Sadiev et al., 2023; Chezhegov et al.,
2024), highlighting the advantages of gradient clipping in handling heavy-tailed noise.

Gradient clipping is also particularly well-suited for optimization problems characterized by relaxed
smoothness assumptions, which better capture the complex landscapes typical of deep learning. For
example, Zhang et al. (2020b) empirically demonstrated that the local smoothness constant along the
training trajectory of various deep learning models often scales linearly with the gradient norm. This
observation led Zhang et al. (2020b) to the introduction of the more general (Lg, L1 )-smoothness
assumption, which strictly extends the classical L-smoothness by allowing the smoothness constant
to depend on the gradient magnitude. This assumption aligns more closely with the real-world
behavior of deep learning models, where the loss surface can vary significantly across different re-
gions. Crucially, it has been shown that first-order methods incorporating gradient clipping can
achieve faster convergence rates under (Lo, L1)-smoothness compared to their unclipped counter-
parts (Zhang et al., 2020b;a; Koloskova et al., 2023; Gorbunov et al., 2025; Vankov et al., 2025).
However, a critical aspect of all these results is the careful selection of the clipping threshold, which
must be set as a specific constant determined by the parameters Lo and L.

This observation highlights a fundamental mismatch in the design of gradient clipping strategies:
under the (Lg, L1)-smoothness assumption, the clipping threshold is typically set as a fixed constant
determined by problem-specific parameters (L and L), while in the presence of heavy-tailed noise,
the threshold is often required to grow with the total number of iterations to ensure stability and
convergence. This apparent conflict raises a critical open question:

How should the clipping threshold be chosen to effectively address

heavy-tailed noise and (Lg, L1)-smoothness?

Our contribution. In this paper, we resolve the above open question by providing the first high-
probability convergence analysis of Clip-SGD under the joint assumptions of heavy-tailed noise
and (Lg, L1)-smoothness. Specifically, for convex (Lg, L1)-smooth problems with stochastic gra-
dients having bounded central a-th moment for some « € (1,2], we establish a high-probability

convergence rate of
@ <max { L()R(z) , max{l, LlRo}R()O' }) :

K K(a—l)/a

where O hides numerical and polylogarithmic factors, K = () % is the number of itera-

tions required to achieve a high-probability bound with confidence level 1 — §, and Ry is an upper
bound on the initial distance to the solution. Our result not only recovers the known deterministic
convergence rates for generalized smoothness (Gorbunov et al., 2025; Vankov et al., 2025), but also
fully reproduces the stochastic convergence guarantees in the special case of L; = 0 (Sadiev et al.,
2023). Importantly, our analysis avoids the exponentially large factors that can arise from the gen-
eralized smoothness assumption, marking a significant improvement over previous approaches. For
a detailed comparison, see Table 1.

2 PRELIMINARIES

Notation. The Euclidean norm in R is denoted as ||z|| = \/(z,z). The norm || X||,, where X €
R4*4 s the spectral norm of the matrix. The E¢[-] denotes the expectation w.r.t. random variable .
The ball with the center at z € R? and radius 7 is defined as a B,.(z) := {y € R?| ||z —y|| < r}.

The clipping operator is denoted as clip(z,A) := min {1, ﬁ} . We often use Ry to denote
some upper bound on the distance between the starting point and the solution of the problem.

Problem. We focus on the classical stochastic optimization problem, which can be stated as
min {f(z) := Eevp[f(z, )]} (1
z€R

This formulation is foundational in machine learning (Shalev-Shwartz and Ben-David, 2014), where
f represents the loss function of the model, x are the parameters to be optimized, D is the underlying
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Table 1: Comparison of the state-of-the-art high-probability convergence results for Clip-SGD
applied to convex problems satisfying the heavy-tailed noise assumption (Assumption 3) and/or
(Lo, L1)-smoothness assumption (Assumption 2).

Stochasticity

Reference L-smooth | (Lo, Ly)-smooth Tight tails | Heavy tails Complexity
Sadiev et al. (2023) v /XD v v o (% + Af‘“‘ff)/)
Gorbunov et al. (2025) R
Vankov et al. (2025) v v X x o (Ha)®
Lobanov et al. (2024)
4 A [ LoR - :
Gaash et al. (2025) v v v X o ( IS 1 g (LlRU)Z)
This work v v v v O (max { 2ofts, maxlilafol oo 1)1
K D/a

(1 Sadiev et al. (2023) make all assumptions on a ball centered at x* and having radius ~ 2R, and show that the iter-
ates do not escape this ball with high probability. On such a set, (Lo, L1)-smoothness implies L-smoothness with L =
Lo(1 + Ly Ry exp(Ly Ryp)), making the final bound dependent on the exponentially large factor of L Ry.

@ Deterministic result.

) Gorbunov et al. (2025) prove this bound for K = Q((L;Ry)?), while Vankov et al. (2025); Lobanov et al. (2024) obtain it for
K = Q(LRy).

@ Gaash et al. (2025) derive their result under the assumption that the noise is sub-Gaussian (3).

) This bound holds for K = € (L2912,

data distribution, and & captures the stochasticity introduced by sampling the data. We consider Clip-
SGD (Algorithm 1) applied to this problem.

Algorithm 1 Clip-SGD

1: Input: Starting point x, level of clipping A, learning rate
cfork=0,..., K—1do

Sample V f(zy, §)

Tpy1 = 2 — yclip(Vf(2r, &), N)
end for

PANE A

Assumptions. In this part, we introduce and briefly discuss the assumptions used in the analysis.
First, let us introduce the assumption of convexity.

Assumption 1 (Convexity). The function f is convex, i.e., for all x,y € R? the next inequality
holds:

fy) = f(2) +(Vf(x),y — ).

Next, we will use the assumption of (L, L1)-smoothness.

Assumption 2 (Lo, L;)-smoothness). The function f is (Lo, L1)-smooth, i.e. for all z,y € R? the
next inequality holds:

| V(@) = V) lI< | Lo+ Ly Sup]IIVf(U)II [z—yl.

u€lz,y

Historically, the first version of the above assumption was formulated by Zhang et al. (2020b) for
twice differentiable functions as follows:

|V2f(@)||, < Lo+ L1 |[Vf()l|, zeR™

Later, it was generalized to the case of functions not necessarily having second derivatives by Zhang
et al. (2020a). Assumption 2 was first introduced by Chen et al. (2023), and it is equivalent to the
one proposed by Zhang et al. (2020a). This assumption is strictly more general than

IVf(y) = V@) <Llly—z|, Va,yeR )

known as L-smoothness: it reduces to the standard L-smoothness with L = L if L; = 0. Moreover,
one can construct functions that satisfy Assumption 2 but not L-smoothness, e.g., exponent of norm
f(x) = exp(||z||) +exp(— ||=||), power of norm f(z) = ||z||" for n > 2, and exponent of the linear
function f(z) = exp({(a, x)) (Chen et al., 2023; Gorbunov et al., 2025).

Finally, we assume unbiasedness and boundedness of the a-th central moment.
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Assumption 3 (Stochastic oracle). The stochastic oracle V f(x, &) is unbiased and have bounded
a-th central moment with o € (1, 2], i.e.

EVf(z O] =Vf(x);  E[IVf(z, - V)] <o

This assumption has become relatively standard — it has already been considered in (Zhang et al.,
2020c; Cutkosky and Mehta, 2021; Sadiev et al., 2023; Nguyen et al., 2023; Chezhegov et al.,
2024). Prominent examples of distributions that satisfy Assumption 3 include Lévy a-stable noise,
as well as synthetic one-dimensional distributions that can be easily constructed. In turn, case o = 2
corresponds to one of the most classical assumptions on the stochastic oracle (Nemirovski et al.,
2009; Ghadimi and Lan, 2013; Takac et al., 2013).

High-probability convergence bounds. A vast body of work in stochastic optimization has fo-
cused on establishing convergence guarantees in expectation. Specifically, for an iterative process
{1} k=0 and a target criterion C'({z}), the typical goal is to identify the smallest number of itera-
tions K needed to ensure that E [C’ ({xk}kK:_Ol)] < ¢ is satisfied. However, this expectation-based
approach only captures the average performance of the algorithm and does not fully reflect the vari-
ability inherent in the stochastic process. In contrast, high-probability bounds, which ensure that the
desired criterion is satisfied with high confidence, are often more informative. These bounds take the
form P {C ({mk}kK;()l) < 5} > 1 — 4, directly controlling the likelihood of worst-case deviations.

While it is possible to derive high-probability bounds from expectation bounds using tools like
Markov’s inequality, this approach typically results in convergence rates with an inverse-power de-
pendence on 4. Modern methods aim for much tighter, polylogarithmic dependence on %, which
significantly reduces the required number of iterations for a given confidence level. Achieving this
improved scaling generally requires either imposing stronger assumptions, e.g., sub-Gaussian noise

E [exp (IVf(@8)=-Vi@)?/52)] < exp(1), 3)

or employing advanced techniques such as gradient clipping, truncation, or normalization.

3 RELATED WORK

Convergence under (L, L1 )-smoothness. Early studies on the convergence of first-order meth-
ods under (Lg, L1)-smoothness has primarily focused on the non-convex setting (Zhang et al.,
2020b;a; Zhao et al., 2021; Chen et al., 2023; Hiibler et al., 2024b; Khirirat et al., 2024; Craw-
shaw et al., 2022; Faw et al., 2023; Wang et al., 2022; 2023; Li et al., 2024; Bilel, 2024;
Vankov et al., 2025), which we discuss in Appendix A. In the convex setting, the analysis
is more recent and less developed. Koloskova et al. (2023) provided convergence guarantees
for Clip-GD under convexity, (Lo, L1)-smoothness and L-smoothness, deriving a complexity

bound of O (max {(L0+)‘L1)R3/E’ \/RgL(Lo+/\L1)2/A2s}). The leading term in this complexity

bound is independent of L; and L, if A\ ~ ZLo/L,, and can significantly outperform standard
GD. Building on this, Takezawa et al. (2024) analyzed GD with Polyak stepsizes and derived

(@) (maX{LoRg/s, \/RéLL?/s}) complexity bound. Li et al. (2023) considered GD and Nes-
terov’s accelerated gradient (Nesterov, 1983) under the broad class of functions satisfying the so-
called (r, £)-smoothness and derive O (#%/c) and O (\/ER?J/&) complexities respectively, where

¢:= Lo+ LG and G is dependent on smoothness parameters (Lo, L1 ), initial gradient norm, and
functional suboptimality. However, through the constants I and G, the bounds from Koloskova et al.
(2023); Takezawa et al. (2024); Li et al. (2023) include exponentially large factors of L Ry, a signifi-
cant drawback addressed by the more recent results of Gorbunov et al. (2025); Vankov et al. (2025);
Lobanov et al. (2024), which currently provide the tightest known bounds for deterministic con-
vex (Lg, L1)-smooth problems. Additionally, Tyurin (2024) present a unified analysis of GD (with
specific stepsizes) for both convex and non-convex problems under a more general £(||V f(z)]])-
smoothness condition, and Yu et al. (2025b) study Mirror Descent and its variants under a version
of (r, £)-smoothness (Li et al., 2023), adapted to non-Euclidean norms.

Most of the works discussed above also present the convergence results for the stochastic methods
(Zhang et al., 2020b;c; Zhao et al., 2021; Chen et al., 2023; Crawshaw et al., 2022; Faw et al., 2023;
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Wang et al., 2022; 2023; Li et al., 2024; Hiibler et al., 2024b; Gorbunov et al., 2025; Yu et al., 2025b).
In addition, Yang et al. (2024) propose and analyze a variant of Normalized SGD with independent
normalization. Yu et al. (2025a) establish new convergence results for an accelerated version of SGD
with both constant and adaptive stepsizes under (Lo, L1)-smoothness and relaxed affine variance
assumptions. Furthermore, Tovmasyan et al. (2025) introduce a generalized smoothness condition
called )-smoothness and derive new convergence bounds for the Stochastic Proximal Point Method
(Bertsekas, 2011) under this framework. However, these papers do not address the heavy-tailed
noise settings, and only Faw et al. (2023); Wang et al. (2023); Li et al. (2024); Yu et al. (2025a)
provide high-probability convergence guarantees. However, the bounds from Faw et al. (2023);
Wang et al. (2023) have inverse-power dependencies on d, while the results of Li et al. (2024); Yu
et al. (2025a) rely on a sub-Gaussian noise assumption (3)".

High-probability convergence under the light-tailed noise. High-probability convergence guar-
antees have long been a critical component in the analysis of stochastic first-order methods, par-
ticularly when the noise in the stochastic gradients is light-tailed. In these settings, methods like
SGD and its variants can achieve convergence rates with the polylogarithmic dependence on the
failure probability . Under the sub-Gaussian noise assumption, this behavior has been rigorously
established for SGD (Nemirovski et al., 2009; Harvey et al., 2019), its accelerated counterparts
(Ghadimi and Lan, 2012; Dvurechensky and Gasnikov, 2016), and adaptive methods like AdaGrad
(Li and Orabona, 2020; Liu et al., 2023). Recent extensions to even broader classes of noise, such as
sub-Weibull distributions, have further expanded this theoretical framework (Madden et al., 2024).

The most closely related work to ours is that of Gaash et al. (2025), who derive high-probability
convergence rates with polylogarithmic dependence on § for convex (Lg, L1 )-smooth optimization
under the assumption of sub-Gaussian noise in the stochastic gradients. Their approach involves a
variant of Clip-SGD that uses two independent stochastic gradients — one for the update direction
and another for the clipping multiplier. While this technique effectively avoids the exponentially
large factors of L; Ry, its performance in the presence of heavy-tailed noise remains unclear.

High-probability convergence under the heavy-tailed noise. Gradient clipping is one of the
most popular approaches to deal with the heavy-tailed noise in the literature on the high-probability
convergence. Early work in this direction includes the truncated Stochastic Mirror Descent method
proposed by Nazin et al. (2019), which established high-probability complexity bounds for convex
and strongly convex problems under the bounded variance assumption (Assumption 3 with a@ =
2). Building on this foundation, Gorbunov et al. (2020) provided the first comprehensive high-
probability bounds for Clip-SGD (Algorithm 1) and introduced an accelerated variant using the
Stochastic Similar Triangles Method (SSTM) (Gasnikov and Nesterov, 2016). Subsequent work
extended these results to broader problem classes, including non-smooth optimization (Gorbunov
et al., 2024a; Parletta et al., 2024), unconstrained variational inequalities (Gorbunov et al., 2022),
and problems satisfying Assumption 3 with a < 2 (Cutkosky and Mehta, 2021; Sadiev et al., 2023;
Nguyen et al., 2023; Gorbunov et al., 2024b). Adaptive variants have also been developed: Li and
Liu (2023) analyzed Clip-AdaGrad with scalar stepsizes, while Chezhegov et al. (2024) obtained
similar bounds for both scalar and coordinate-wise versions of Clip-AdaGrad and Clip-Adam. In
the zeroth-order setting, Kornilov et al. (2023) proposed a clipped variant of SSTM.

Beyond gradient clipping, several alternative strategies for achieving high-probability convergence
have been proposed. These include robust distance estimation with inexact proximal point meth-
ods (Davis et al., 2021), gradient normalization (Cutkosky and Mehta, 2021; Hiibler et al., 2024a),
and sign-based methods (Kornilov et al., 2025). Notably, some of these approaches, such as those
proposed by Hiibler et al. (2024a) and Kornilov et al. (2025), do not require prior knowledge of the
tail parameter «, albeit at the cost of sub-optimal convergence rates. For symmetric distributions,
recent work has provided high-probability guarantees for non-linear transformations like standard
clipping, coordinate-wise clipping, and normalization (Armacki et al., 2023; 2024), while Puchkin
et al. (2024) has explored median-based clipping under structured non-symmetric noise.

Despite these advancements, existing high-probability convergence results for the (Lg, L1)-smooth
case (with the heavy-tailed noise) still suffer from the presence of exponentially large factors involv-
ing L1 Ry in their bounds.

"Yu et al. (2025a) use a more general version of (3) with 0% = A(f(z) — f(z*)) + B ||V f(z)| + C.
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4 MAIN RESULT

In this section, we provide our main convergence result for Clip-SGD method (Algorithm 1). The
next theorem provides new high-probability convergence rates for Clip-SGD.

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold. Then, after K iterations of Clip-SGD
(Algorithm 1) with

1
1 4K\ =
A =max< 2Lymin{ 4Ry, — ,QiaKé In| — ,
Ly 1)
1 1
= —— gy win 4Ry, — ¢,
77 160aIn (35) mm{ ‘ Ll}
we have:

e IfARy < L% then

K-—1
1 LoRO Roo
f (K 1;) ﬂ?k> f - ( K K(al)/a>

with probability at least 1 — 6.

24a 1 2( K
. I[fAR, > LdK:Q(w>

: *\ __ 7 LOR% Llea
ponin (flaw) = f7) =0 (maX{ K K
holds with probability at least 1 — 6.

Proof sketch. The proof begins with the establishment of a descent lemma (Lemma 3, Appendix B),
formulated in a case-based manner to account for the various possible relationships between
IV f(zx)||, the clipping threshold A, and the ratio LO , in line with existing analyses under (Lg, L1 )-
smoothness (Koloskova et al., 2023; Takezawa et al., 2024; Gorbunov et al., 2025). Followmg the
approach of Sadiev et al. (2023), we define a sequence of events E}, which imply the main result for
k = K. We then use an inductive argument to derive sufficiently strong lower bounds on the proba-
bilities of these events, proving by induction that P{E},} > 1 — %2 which yields the desired bound
for k = K. However, our proof introduces an additional layer of complex1ty by distinguishing two
separate cases based on the relationship between the initial distance to the optimum, R, and %1

In the first case (4R0 ) our proof follows from the result from Sadiev et al. (2023) (though
we provide the full proof for the convenience). This is expected, as we show that with high proba-
bility, the iterates remain within the ball B 55 (z*). Consequently, for any x, y within this set, the

terms Ly ||V f(x)|| and exp(L; ||y — «||) from Proposition 2 can be bounded by O(Lg) and O(1),
respectively, implying that the objective function is L-smooth on B 55 (z*) with L = O(Ly).

In contrast, in the second case (4Ry > L%), we must additionally control the effect of rare, large

gradient norms that exceed the clipping threshold. Specifically, for any 0 < T' < K, we show that
ET,1 1mplles

S @) — ) < lleo — 2 — e — 2 @)
€T (t)UT>(t)
- Y 2m—a)+ Y 2Pal ©)
1€T, () UTx(t) 1€T, (£)UTx(t)
A . ANT3(¢
- > 2y(fy, w1 — ) — L] (6)
16Lq
leT3(t)



Under review as a conference paper at ICLR 2026

holds for t = ].7 e ,T, where 91 = clip(Vf(xl,fl), /\) - Vf(xl), él = Clip(Vf((El,gl)7 )\) -
clip(Vf(z),*/2), and

Ty (t) = {kEO,...,t—l IV f(zp)| < 22}’
TQ(t) = {kEO,...,t_l |%Z ||vf(l'k)|| S E?}7

Ty(t) = {keo,...,t—1| IV f ()| > ;}

As in the first case, we bound the contributions from (4) and (5) by O(Ry) with high probability
using Bernstein’s inequality, along with assumptions on v and A\. However, the key term in (6) is
bounded using a different argument. Specifically, we show that the inequality —2v(0;, z; — z*) <

% follows from the condition ||& < B = z57-—- for | € T3(t), where we slightly abuse

notation by defining &, := V f(x;,&) — V f(x;). Furthermore, the construction of Ep_; guarantees

that |T3(T —1)| < C; = 10240(L; Ro)? In (%£), since Ep_; also implies 0 < 2R3 — %ﬁ’;_l)‘
To complete the inductive step, we apply Markov’s inequality to estimate P{||¢x—1]] < B} under

the conditions ¥ — 1 € T5(k) and |[T3(k —1)] < Cy — 1. This step leads to the requirement

(L1 Ro)*T™ 1112(%) . . . , . . .
K = Q| ——————=% ), which arises from applying Markov’s inequality up to C times.
Finally, we emphasize that in the second case (4Ry > L%), we prove by induction that

k
ko .
PEY 21— 0 - 3w { ooz = o)

r=0

which significantly differs from the induction assumptions used in previous works (Gorbunov et al.,
2020; Sadiev et al., 2023; Gorbunov et al., 2024b). For complete technical details, we refer the
reader to Appendix B. O

5 DISCUSSION OF THE RESULT

In this section, we discuss our main convergence results, highlighting their significance in the context
of existing work, including a detailed comparison with prior analyses, and addressing the challenges
associated with heavy-tailed noise and generalized smoothness.

5.1 COMPARISON WITH GAASH ET AL. (2025)

The closest related work to ours is the recent study by Gaash et al. (2025), which also analyzes
the high-probability convergence of Clip-SGD under generalized smoothness conditions. Prior to
conducting the comparison, we introduce the algorithm (see Algorithm 2) under consideration in
(Gaash et al., 2025). For simplicity, we omit the projection operator on some set X from the original
version since it is unnecessary for the convergence guarantees of Algorithm 2.

Algorithm 2 Clip-SGD with double sampling (Gaash et al., 2025)
1: Input: Start point z, level of clipping )\, learning rate ~y

2. fork=0,..., K —1do

3:  Sample Vf(xy,&5), V f(zk, &) independently

4 T4 =xp —yming 1, m Vf(xk, &)
5: end for

Light-tailed noise. The analysis from Gaash et al. (2025) is restricted to the case of sub-Gaussian
noise, which is substantially lighter-tailed than the noise distributions considered in our work (Zhang
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et al., 2020c). This assumption simplifies the convergence analysis, as sub-Gaussian noise is inher-
ently more amenable to standard concentration inequalities. In contrast, we focus on the more
challenging setting of heavy-tailed noise, characterized by only a bounded central o-th moment,
which introduces significant technical difficulties in establishing high-probability guarantees.

Role of clipping. Furthermore, under the simpler L-smoothness assumption (2), the need for clip-
ping in the light-tailed noise setting largely disappears. In this case, the inherent concentration of
sub-Gaussian noise is often sufficient to control the gradient norms, making clipping unnecessary.
However, when the generalized (Lo, L )-smoothness assumption is introduced, clipping becomes
essential even with light-tailed noise, as it restricts the range of gradient norms, ensuring the validity
of the generalized smoothness assumption. In contrast, for heavy-tailed noise, the clipping thresh-
old A must address two competing objectives: (i) it must remain constant to effectively control the
gradient norms for the application of the (Lo, L1 )-smoothness condition, and (ii) it must scale with
the number of iterations to mitigate the impact of rare, extreme gradients. Our analysis demon-
strates that standard clipping can simultaneously address both of these challenges, a property that is
unnecessary in the purely light-tailed regime where gradient norms are naturally more controlled.

Practicality. Finally, the algorithm analyzed in Gaash et al. (2025) employs a double-sampling
strategy, where the gradient direction and the clipping threshold are computed using two independent
samples. This approach, while providing strong theoretical guarantees, can significantly increase the
computational cost and memory requirements, potentially limiting its practical applicability in large-
scale machine learning problems. In contrast, our analysis considers the standard, single-sample
variant of Clip-SGD, demonstrating that strong convergence guarantees can be obtained without
requiring such algorithmic modifications. This distinction is critical, as it reflects a more realistic
scenario for practical applications, where computational efficiency is a key concern.

Upper bounds. Our main result establishes the following upper bound on the convergence rate:

3 LoRj max{1, L1 Ro}Roo o ((LiRg)* o In® (£)
O<max{ 7 e/ with K = () 5 .

This result recovers several known special cases from the literature. When L; = 0, the bound sim-
plifies to the convergence rate for L-smooth settings previously established in Sadiev et al. (2023),
which corresponds to the classical smooth optimization framework. On the other hand, if the noise
level is zero (i.e., 0 = 0), our bound reduces to the deterministic convergence rates derived in the
context of GD with smoothed gradient clipping by Gorbunov et al. (2025).

For comparison, the recent work by Gaash et al. (2025) obtained an upper bound of the form

o (max { L‘}fg, %}) with K = (m (?) (L1R0)2> .

While this bound shares a similar structure to ours, their lower bound on K is (L;Ry)* times
smaller. This difference arises from the different ways in which gradient clipping manages extreme
gradient magnitudes, as discussed in the paragraph on the role of clipping from the previous sub-
section. Furthermore, the lower bound on K in (Gaash et al., 2025) does not explicitly include a 1/s
factor, due to their reliance on sub-Gaussian noise assumptions, which provide inherently stronger
tail control (see equation (3)). In contrast, our analysis, which handles the more general heavy-tailed
noise case, requires the use of Markov’s inequality to control the probability of rare, high-magnitude
gradient events (when ||V f(z)| > § > f—?), leading to a stricter dependence on .

Nevertheless, the term proportional to 1/5 in our result has only a polylogarithmic dependence on
K. This means that our result ensures that ming—o . x—1(f(zx) — f*) < € holds with probability
at least 1 — ¢ after

. LoR2 1,L 55T (LyRy)?te
K=0 (max{ OgROa (max{ : ;RO}ROU> ,(IR(?)}> iterations.

5.2 ON THE IN-EXPECTATION BOUNDS AND THE CHOICE OF THE ITERATE

Is our bound stronger than the in-expectation result? It is natural that the bound we provide
may initially appear counterintuitive — the factor 1/s is indeed non-standard for the high-probability
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convergence results. However, at present, no in-expectation results that we could compare to are
available for the class of problems under consideration.

Let us, however, assume the existence of an in-expectation bound of the form E [f(zx) — f*] < ¢

with K = K(e) = O (l + 1%1) where we ignore the problem parameters Lo, L1, Ry, o. This

€
rate in fact coincides with the best-known results for the convex L-smooth case (Sadiev et al., 2023;
Nguyen et al., 2023). To obtain a high-probability bound from this, the only general tool is Markov’s
inequality, which would yield f(zx) — f* < e with probability at least 1 — ¢, provided that K =

(e§)a—T ca—

is strictly better for all § € (0, 1).

K(e0) =0 (615 + L > In contrast, our result guarantees K = 1) (é + Ll + %), which

More precisely, the inverse-power dependence on § appears only in the term that is independent of
¢ (up to logarithmic factors). This means that, unless ¢ is much smaller than ¢, the J-dependent
term is not dominant — the second term is. Consequently, if an in-expectation bound for the convex

(Lo, L1)-smooth case exists, which would almost certainly yield K = O (l + 1%1) up to a

€

problem-dependent constants, then our bound is strictly stronger than one obtained via such an
expectation-based result.

How to choose the final iterate? From a practical perspective, one may ask: which point
should be chosen as the final output? The convergence guarantees allow us to take either
ming—o,... x—1(f(zx) — f*) < e (see Theorem 1), or, as follows from the proof, a point selected
through ergodicity over T (K) U To(K). However, two issues arise in practice: i) computing the
minimum requires evaluating the full model at every step, which is prohibitively expensive; ii) the
sets 71 (K) and T, (K) are stochastic, and their exact time indices are unknown.

In machine learning and deep learning applications, however, it is crucial to produce concrete model
weights that can be directly deployed. To address this, we propose a robust method for selecting
the final iterate without weakening the convergence guarantees. Our approach is based on uniform
sampling combined with robust estimation of function values. Details are provided in Appendix C.

6 CONCLUSION

In this paper, we presented the first high-probability convergence analysis for Clip-SGD under the
joint assumptions of heavy-tailed noise and (Lg, L1 )-smoothness. Our results establish that for
convex (Lo, L1)-smooth optimization problems with stochastic gradients having bounded central
a-th moment with o € (1, 2], Clip-SGD with specifically selected clipping level achieves a high-
probability convergence rate of

~ 2 ~ 24«
O <maX{LORO7 max{l,LlRU}Roo }) for K = O ((LlRU) ) .

K K(a—1)/a J
Our approach successfully avoids the exponentially large factors of L; RRy.

While our work resolves a critical gap in the convergence theory of stochastic gradient methods un-
der generalized smoothness and heavy-tailed noise, several important open questions remain. First,
it would be interesting to investigate the optimality of the lower bound on K, i.e., its dependence
on 4. Second, it would be valuable to extend these high-probability convergence results to the ac-
celerated methods, such as the ones based on Nesterov’s momentum, which are known to exhibit
faster convergence under classical smoothness. Third, our analysis is limited to convex optimization,
and extending these results to the non-convex case remains a significant challenge, especially un-
der heavy-tailed noise. Fourth, understanding how these techniques can be adapted to handle more
complex structures, such as variational inequalities and saddle-point problems, represents another
promising direction for future research. Finally, the application of these methods in distributed and
federated learning, where the gradient noise can vary significantly across nodes, is another important
open problem, particularly in light of recent interest in scalable, decentralized optimization methods.

We hope that our results inspire further research in these directions and contribute to the broader
understanding of stochastic optimization under realistic noise and smoothness assumptions.
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A NOTATION TABLE, AUXILIARY FACTS, AND EXTRA RELATED WORK

Table 2: Auxiliary notation used in the proofs.

Symbol Formula
gt min{l,M}Vf(mt,&)
04 gt — Vf(fﬂt)
0; gt — clip(Vf(xy), VN 2)
9? gt — Eft [gt]
0; Ee, [9¢] — Vf(z¢)
Ry e — 2™

The next lemma is used to control the bias and variance of the clipped stochastic gradient.

Lemma 1 (Lemma 5.1 from (Sadiev et al., 2023)). Let X be a random vector from R¢ and X =
clip(X,A). Then, X-E {)?} H < 2X\. Moreover, if for some o > 0 and o € (1,2] we have
E[X]=2 € RLE[|X —2||%] < 0%, and ||z|| < 2, then

%] -] < 55
€ -+

E {H)A( _E [}?} m < 18X2 57,

IN

IN

18\2~%g“,

Moreover, our analysis involves sums of martingale-difference sequences, to which Bernstein’s in-
equality can be applied (Bennett, 1962; Dzhaparidze and Van Zanten, 2001; Freedman et al., 1975).

Lemma 2 (Bernstein’s inequality). Let the sequence of random variables {X,};>1 form a martin-
gale difference sequence, ie., E[X; | X;—1,...,X1] = 0 forall i > 1. Assume that conditional
variances 01»2 =E [XE | Xiz1,... ,Xl] exist and are bounded and also assume that there exists
deterministic constant ¢ > 0 such that |X;| < ¢ almost surely for all i > 1. Then for all b > 0,
G>0andn >1

|

Below, we also list some useful properties of Assumption 2.

Proposition 1 (Gorbunov et al. (2025), Lemma 2.2). Suppose that Assumption 2 holds. Then,
v[IVF@)|® < 2(Lo + Ly IV £() ) (£ () = ),

where v is the solution of x exp(z) = 1.

>

i=1

> band 2 < Gy<2 - .
wd 3o < }_ exp< 2G+2§b>

i=1

Proposition 2 (Chen et al. (2023)). Assumption 2 is equivalent to
IVf(y) = V@) < (Lo + Ly [Vf(@) ) exp (L ly — 2|) |y — =, Va,y € R™.

Finally, in the next paragraph, we give an overview of prior convergence results derived for (Lo, L1 )-
smooth non-convex problems.

Convergence under (L, L1 )-smoothness. Early studies on the convergence of first-order meth-
ods under (Lg, L1)-smoothness has primarily focused on the non-convex setting. Zhang et al.
(2020b) introduced this smoothness condition and demonstrated that Clip-GD achieves an itera-
tion complexity of O (max {LoA/e?, A+L1)A/L,}) with A = f(x) — inf,cpa f(2) for finding
e-approximate first-order stationary point. The dominant term in the derived bound is independent
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of Ly and can be significantly smaller than the complexity of GD. This foundational work has since
been extended to include methods with momentum and clipping (Zhang et al., 2020a), as well as
variants like Normalized GD (Zhao et al., 2021; Chen et al., 2023), its momentum-based counter-
part (Hiibler et al., 2024b), its distributed version with compression (Khirirat et al., 2024), SignGD
(Crawshaw et al., 2022), adaptive methods like AdaGrad and Adam (Faw et al., 2023; Wang et al.,
2022; 2023; Li et al., 2024), and Armijo-like gradient methods (Bilel, 2024). More recently, Vankov
et al. (2025) further improved these results by deriving a tighter complexity bound for Clip-GD of
O (max {LoA/e? LA/},
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B MISSING PROOFS

B.1 LEMMAS

Lemma 3 (Different cases). Suppose that Assumptions 1 and 2 hold. Then, the sequence {zy}5_,
generated by Algorithm 1 after K iterations, satisfies following inequalities.

Case 1. If |V f(zi)| < %’ we have
Y(f(@r) = £7) < Ml — @ )° = lanen — 2" = 29{0n, 21 — 27) + 297|105
with 0y, .= g, — Vf(xp), v < ﬁ and any A > 0.
Case2. If § > ||V f(xx)| > 72 then
Y(f () = ) < law = @ |7 = Jowsr — 2|17 = 29{0r, 5, — ) + 297|605
with O == gr, — V f(zr), v < ﬁ
Case 3. If ||V f(zx)|| = 5 > f—‘; we get

2 )/>\ ~ %
” 16L, 7< ky Tk — & >

with ), = g — c1ip(V f(zk),*2), v < 16i1A'

|z = 2*|* < Jlag - 2*

Proof. We start our proof using the update rule of Algorithm 1:

lzn — 2| = [z — 2*(|* = 2v(gr, ax — 2*) + 77 llgx . M
The rest of the proof depends on the relation between A, |V f(x)]|, and f—‘;
Case1: |V f(zg)] < %’ Using the definition of 6, (see Table 2), we can decompose (7) as follows:

leies — 2 < lax — 2" — 20V F(wn), - a*) — 2y(6h, 2 — )

+29° |V ()| + 29701 (8

Using Proposition 1 with ||V f(z)|| < f—fl’ and v > 1, we get
IV f@)l® < 4(Lo + Ly [V f () 1) (f (i) = ) < 8Lo(f(wx) = f7), ©)
where we also use ||V f(zg)]] < f—? in the last step. Applying the convexity of f (Assumption 1)

and substituting (9) into (8), one can obtain
iy — 2| < o — 2% = 29(0k, @ — %) + 297 [10k]1” = (2y = 169 Lo) (f () — 7).
Then, the above inequality combined with the stepsize condition v < ﬁ imply
* * (12 *1(12 * 2
Y @r) = ) < llaow = 217 = Noeer — ™[ = 29(0n, 2 — 27) + 297 [10I".

Case2: 5 > ||V f(zp)| > f—‘l’ In this case, Proposition 1 gives

IV f@)l* < 4(Lo + Lo |V (o)) (f (@) = £7) < 8Ly [V f (@)l (F () = f7). (10)

1

Therefore, using the same decomposition (8) as in Case 1, applying (10) and choosing v < g7,

we obtain
|zksr — 2*[° < [lok — 27| = 29(V f (@), 2p — &%) — 29(O, 24 — )

+ 297V £ () 1 + 29216k
< lox — 21 = 29(0k, 2k — =) + 2970
— (2 = 165*Ly [V f () ) (f () — F7)
< o — 2*[|* = 290, 2k — 27) + 29°][0])?
— (27 = 8V LiN) (f (wx) — f7)
< loe — 2" )1* = 29(0k, z — &) + 292)|0kl” = v (f(zk) = 7).
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where we use |V f(z)|| < 5. Rearranging the terms, we conclude this part of the proof.

Case 3: |V f(xp)| > % > é—‘; Using this relation and the definition of ; (see Table 2), we
decompose (7):
2 )2 " 2
k1 — |17 = o — 2*[1° = 2v(gk, z — ™) +7*| g

A ~
"I = T (Vo) =) = 2yl =) 497 D)

Applying the convexity of f, and then combining it with (10), one can get

<llzp —x

* * ’YA * N *
|1 — 2" < [lag — 2" - TV 7@l (Vf(ar),an — %) = 29(0p, ap — %) +7°\?
* 12 ’7>‘ * 2 * 2142
< — —_— — 29(O, xp, — A
<l — 2" = HVf(ark)ll( (k) = f7) = 29(Ok, 2k — ") +
(10) . A
< g — 2% - ;T — 2y (B, e — 37) + 42N
Using that v < 16L Ter o We have
* * >‘
ke = o"* < i = ** = g7 = 29{f 2 — ) +770°
* )‘ *
< llaw = | = g7 = 29 (u w — 7).
This concludes the proof. O

Remark 1. We note, the Case 1 does not use the fact that A > %. Moreover, as will be shown
later, the proof of the main result has two possible regimes, and for each of them we will apply the
corresponding cases from Lemma 3.

Lemma 4 (Descent lemma). Suppose that Assumptions 1 and 2 hold. Then, after K iterations of
Algorithm 1, we have two possible options.

Option 1. Ifforallk =0, .. — 1 the inequality ||V f (z)] < L" holds, A\ > 0, and v < 16L0

then
K-1

K—1 K—1
> W Fen) = f7) < llwo = 2" |* = llox =27 = D 29{0k, 2 —2") + Y [16:]*.
k=0 k=0

Option 2. If A > % and v < min {ﬁ, ﬁ} then

> Afae) = £) < o — 2% P = lox — 2= ) 296k, 2 — 27)
keTUT, keTUTs
Y 2R - Y 2w — o) — D
’ 16L; ’

keT1UT> keTs

where

L
1= 1) = e o k-1 970l < 22

A L
1

= T3() = {k € 0.0coo K =1 19 5@0)] > 3 |

Proof. The final result follows directly from Lemma 3. Specifically, for the first option, we use only
Case I from Lemma 3, and for the second one, we apply Cases I, 2, 3, respectively. Hence, aggre-
gating the inequalities established therein yields the desired conclusion and completes the proof. [

Remark 2. It is worth noting that Lemma 4 covers the case of L1 = 0. Indeed, in this case, we have
Lo/L, = oo, meaning that |V f(xy)|| < Lo/L, is always satisfied, i.e., one can consider Option 1
only.

17
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B.2 PROOF OF THEOREM 1

Theorem 2 (Theorem 1). Let Assumptions I, 2, and 3 hold. Then, after K iterations of Clip-SGD
(Algorithm 1) with

)\:max{2Lomin{4R0,I%},Q(IXUKé (ln (4§(>) Q}, (12)
1

1 1
= —————min<{4Ry, — ¢, 13
7 160X 1n (%) mln{ 0 Ly } (13

we have the following result.

e IfARy < L%, then

K-1
1 " ~ LoR% Ryo
f (K kgio ‘Tk) - f = O < K 7K(a,1)/a
with probability at least 1 — §.

2+a |2 (4K
‘1f4RoZL11andKQ((L1RO) o (5)>

) oA LoR? LiRic
pgnin (flaw) = f7) =0 (max {K ' @
with probability at least 1 — 26.

Proof. The main idea behind the proof lies in the careful analysis of regimes characterized by the
relationship between the initial distance to the optimum () and L% To be more precise, we

consider two different regimes: 4Ry < !/r, and 4Ry > 1/r,. Using this, we construct the proof as
follows.

Part 1. First, we decompose Lemma 4 according to the introduced regimes and define “good”
probability events Ey, implying the desired result.

Part 2. Next, we propose unified bounds for the terms from the first part, in both regimes as well.
Part 3. The third part is related to the second regime only.

Part 4. The fourth part concludes the proof, i.e., we show that P{ E}, } is large enough.

Part 1: Decomposition.

Regime 1: 4Ry < 1/L,. The proof for this regime closely follows the proof of Theorem E.6 from
Sadiev et al. (2023). Let us denote the probabilistic event E: the inequalities

t—1 t—1
= 290, 3 — ) + ) 292(6.1 < RS,
1=0 1=0
Rir < V2R,
hold simultaneously for¢ = 0, ..., k. We want to show via induction that P{E}, } > 1— %‘s. The case

of k = 0 is obvious. Then, let us assume that the event Ep_; with T' < K holds with the probability
P{Er_1} >1-— %. Also this event implies that 2; € B, 5p (%) forallt = 0,...,7 — 1.
Therefore, we have that E'r_1 implies

a3)
ler — 2%l = lzr-1 —vg9r — 27| < [lzr—1 — 27| + A < 2Ro.

18
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Consequently, {z;}]_, C Bag,(x*) follows from Er_;. Therefore, the event Er_; implies

Prop. 2 L
IVf()ll < LoRiexp(LiRy) < vV2LoRoexp (\/§L1R0> < 4LoRy < fLO (14)
1

forallt =0,...,T — 1. Thus, we can apply Lemma 4 (Option 1): Er_; implies that

t—1

Y @) = ) < o = a*|* = [l — 2| 227 O, — x7) +Z2v l6:)* (15)
=0

holds for ¢t = 1,...,T. It is worth mentioning that (12) and (13) give v < ﬁ. What is more,
event Er_ implies that

t—1 t—1 t—1

o F @) = 1) < llwo = 2| = llae — 27" = Y 29(0s, 20— a*) + Y 297)0” < 2R3

=0 =0 =0

fort =1,...,T — 1. Moreover, the bound f(z;) — f* > 0 with (15) leads to

T-1 T-1
R <R3 = 29(0,m — 2") + > 2976, (16)
t=0 t=0

Next, we define random vectors

n = {xt - LL'*, ||$t - 37*” S \/5R07
=

0, otherwise,
forallt =0,...,T — 1. According to the definition, 7, is bounded with probability 1:
[ne]l < V2R.

Moreover, the event E7_; implies ||z; — 2*|| < v/2Rq forallt = 0,...,T — 1. As a result, we get
Nt = x¢ — «* within this event. Now let us decompose (16) using the notation of 6%, 6,’? and n;:

lor —2* P <RE— > 2q0rm)— Y. 2v(0hm)
teT, (T)UT:(T) teT (T)UTo(T)
@ @
N 02 0|12
+ > e - 0]+ > %R [l6r)]
teTy (T)UT>(T) teT (T)UT>(T)
©)] @
+ ) (17)
teT (T)UT>(T)
®

where we also use the definitions of T1(T),T>(T), and T3(T), and the fact that in this regime
T5(T) =0forany T > 0.

Regime 2: 4Ry > /1, Similarly to the first regime, let us denote the probabilistic event Fy: the
inequalities

- Y w2+ > 296 <R,

LT (t)UTa(t) LeT (t)UT>(t)
_ _ < L1729\
> 2w —a7) < 2L,
1eT3(t)
Ry < V2R

19
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hold simultaneously for ¢ = 0, ..., k. If the first and third inequalities coincide with the previous
case, the second inequality is also necessary for our analysis. We want to show via induction that

k

P{E;} > 1 - % - Zo min{r, C1 }doP{|T5(k)| = r}, where C; and 6y will be defined later.

The case of k& = 0 is obvious. Then, let us assume that the event Er_; with T < K holds with
T-1

probability P{Er_1} > 1 — TZD% S~ min{r, €y }0oP{|T3(T — 1)| = 7}. Also this event

r=0

implies that 7; € B 5 (2*) forallt =0,...,T — 1. Therefore, we have

a3)
o7 —2*[| = lzr—1 —ygr — 2" < lzr—1 — 27| +9A < 2R

within event E7_;. Consequently, {z;}._, C Bag,(z*) follows from Er_1, and we can apply
Lemma 4 (Option 2): event Er_; implies that inequality

Yo @) =) S lwo =P = o -2t P = Y 2y(0m —a")

LeT (t)UTa(t) LeT (t)UT>(t)

2010 112 A o T3]
+ E 216" — E 2v(01, 2 — x™) — 6L, (18)
I€Ty (H)UTs (1) 1€T5(¢)

holds for t = 1,...,T. Also let us clarify that v < min {16% ﬁ} due to (13). What is more,

the event E'p_; implies that

S @) - ) < lwo— P~ e - Y 29w —a)

1€T, () UTx(t) 1E€T, () UTx(t)
2 2 N * ,7)\|T3(t)|
+ Y el — Y 2w —at) - 6L,
LeTy (t)UT>(t) 1€Ts(t)
YAIT5(2)|
< oR? - A
< 28y 32L,

fort =1,...,T — 1. Moreover, Er_; with f(a:) — f* > 0 implies

YAITS(T 1)

0< 25 - 32L,

4K

due to (13). Therefore, the events Ej and Ej, N {|T3(k)| < Cy := 64 - 160(L1 Ro)?In ()} are
equal. What is more, from (18) we have

lor -2 <R - Y lpm-aht Y 22
teT1 (T)UT:(T) teTy (T)UTs(T)
A N ANTs5(T
161,
teTs(T)

within event E7_1. Next, we define random vectors

_ Tt — $*, ||xt - x*” S \/§R07
1 0, otherwise,

forallt =0,...,T — 1. According to the definition, 7; is bounded with probability 1:

Inel < V2R.

20
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Moreover, the event E7_ implies ||z; — 2*|| < V2Rg forallt =0,...,T — 1. As a result, we get
1 = x¢ — & within this event. Now let us decompose (19) using the notation of 6}, 6,’? and n;:

R% < R(2) - Z 2'7<97§La nt> - Z 27<9tb’ nt>
teTy (T)UT>(T) teT (T)UT>(T)

@ @
D DR ol | 7 e o | 7 | D S e N TR

teTy (T)UT>(T) teT (T)UT>(T)

® @

A ANT3(T
DI LD SEMORRESE 0
teTy (T)UT:(T) teTs(T) 1

® ®

Part 2: Bounds for @ — &.

In this part of the proof, we can bound terms @ — ® from (17) and (20). For Regime 1, it is worth
mentioning that event E'r_; implies

T (T)=A0,...,T -1} 21
due to (14). What is more, according to (12), we have

A
|V f(x)|| <4LoRy < 5

forallt = 0,...,T — 1 within the event E7_;. Considering the second regime (4R > 1/L,), by
definition of T;(T") from Lemma 4, we have that for all ¢t € T1(T) U T5(T)

V5ol < 5.

Consequently, using (21) for the case 4Ry < 1/L,, we will bound terms @ — ® in the unified form.
To continue, we can apply Lemma 1 to obtain that

16211 < 22, (22)
2(1 «
lot] < 5o (23)
Ee, [161]°] <1842 70° (24)

forallt € T1(T) UT5(T). Hence, we can apply (22), (23) and (24) to construct bounds for @ — ®.
Upper bound for @©. First of all, we have

Eft [727<01?7 77t>] =0,

since Ee, [ - ] = Eg,[ - |&-1,&—2, - - -], E¢, [m¢] = mi, and Eg, [0}] = 0. Moreover,
22) (13 3R2
—2y(0¢ )| < 27 10% < 6YARy < —— 0 =
=200t )| < 20 [0 ] < 60ARe < 5 s

What is more, let us define 07 = E [4+2 (6}, m;)?]. Then, we get
w2 112 w2
0f < Ee, [42110¢ PImill*] < 892 R3E, |01

Ry

2
As a consequence, we can apply Bernstein’s inequality with b = % and G = m:
5

b? ]
2 —_—
P¢|®| > band E o; <G <2exp (—2201)/3> =55
teTy (T)UT(T) G K

21
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Thus, we get

P<|® <bor Z o2 >G 71_i

2K
teT (T)UT(T)

Moreover, the event Er_1 implies

(24)
oot Y SPREE [I071°] S 144920 0" RA(IT(T) + IT(T)
teTy (T)UT>(T) teTy (T)UT>(T)
144~2 X252 2K( 4K
< 144N 0" REK = VA—QR < 16v°A*Rg In <>
3 4
2 Ry

= Too (&) ~ ¢

Upper bound for @. From the event Ep_1 it follows that

(23) 4. 2%y0*Ro K
D DR TR D U1 A | T et L

teT (T)UT>(T) teT (T)UT>(T)
_ 4 2°9A0" Ro[K 12,09 16Rf _ Ry
B e - 360 — 5

Upper bound for ®. We bound @ in the same way as @. First, we get

Ee, [49° (161 - Ee, [Il6717]]] = 0.
In addition, we have

(12),(13) R%

(22)
o o = B [l ]| < sen TS o = e
0

2
Also let us define 67 = Eg, {167 (|\9§‘H2 —Ee, {HG}JHQD } . Thus, one can obtain

6—t2 < CE&

192 16217 — Be, [lox17]]| < ser®Ee, [Ilor1]

. . . R cR2 .
Consequently, we can apply Bernstein’s inequality with b = <* and G = {58

b? )
§ ~2
teTy (T)UTo(T)

At the same time,

5
P < E 52 >1— —
® <b or 6; > G 1 5
teTy (T)UT:(T)
Moreover, the event Fp_; implies
@ 144cy2 X200 K (12)

> ats S serme [I] O Dieern ()

teT (T)UT>(T) teTy (T)UT>(T)
(13) cR(Q)
< — =G.
— 100 ¢

Upper bound for ®. From Er_ it follows that

4 7292 N2 K (12) 4K
> 0B [[017] < 1220 K = LTS S 8 (5)
teTy (T)UTo(T)
2 Ri i
- 200~ 5°

22
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Upper bound for ®. The event Ep_1 implies
(23) 20042 200 2y2 204 (12) 13) R2
Z ZH‘ngQ 4.2°%y*g KS647>\ K 2)\212<4K) S&-
)\204 2 )\2(1 5

teTy (T)UT2(T)

Part 3: Bound of ©.

This part is needed only for the second regime since for the first regime |75(7")| = 0. The main idea
lies in the careful decomposition of each term from ®. In the deterministic case, it was shown that
|T5| is bounded by a constant (Gorbunov et al., 2025). We aim to achieve a similar effect using just

Markov’s inequality. We start with the reformulation of each term from ® with the notation of 6,
(see Table 2):

R . A
(0¢,m¢) = min {17 HVf(fUt)‘Ffﬂ} (Vf(xe) + &eme)

- ‘fﬁ“{ STV } (V). i
_ _mm{l,M} i {1, g r b 9
‘mi“{ IV F (@) +£tll} )

(
_mi“{ IIfot+€t||} 2uvm [
(

- mm{ T F ) +£t||} Sea1he): 2

where in the last equation we use ¢ € T3(7T'). Next, let us consider some B such that 0 < B < %
We have

| A 0 C AIVFERl A
P{mm{l’ V7 +st||} 2V ]~ 0} ‘P{ IV i) + &l =~ 2}
— P2V ()| > [V F () + &I}
> P{2|VF@) = IV F )l + &)

>p{le) <3}

> P{ll&)l < B},

| st

V

where we also use that ||V f(z)| > 3. Moreover,

o

P{ll&]l < BY =P{ll&]* < B} > 1~ %

due to the Markov’s inequality. Therefore, using (25), we obtain that

~ . A A *
20 = - [m‘“ {1’ [V F@) + &l } "3 ||Vf<xt>||] WV lae), @ =)
. A .

””“““{1’ IV F@) + &l } (& z =)
< 2 [1& ] el

where we use the convexity of f, identity 1y = x; — x* within the event Ep_1, and inequality
|€:]] < B. What is more, the event Ep_1 with [|£]| < B implies

2y [[& [l lme | < 4y B Ro.

Choosing B = we finally have in this case

128L Ry’

N * ’7)‘
_9 _a) < .
V02 —27) < 07

23
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Part 4: Final bound.

In this part, we combine the derived bounds and estimate the probability of Er. First, let us denote

E @] < 1 or Z 2> 7}23
® = S = Oy 4K ’
E teTy (T)UT:(T) 1001n (T)
R? R}
Es ={1® < =2 or o2 > 0 7
v=qel=3 2 © 7 5000 In (1K)

teTh (T)UT:(T)
EMarkov = {|lé7-1]| £ Bor (T — 1) ¢ T3(T) or |T3(T —1)| > C; — 1}.

According to the parts 1,2 and 3, we obtain

(T

— 1) T-1 .
P{Er 1} >1~ Kk Z min{r, C1}P{|T5(T — 1)| = r},
r=0

IP’{E®}21—21

K’
P{Es}>1— —
Ea) =1 =55
= 128%(L1Ry)“c®
]P){EMarkov} < % ]P){(T_ 1) S TB(T) and |T3(T_ 1)‘ < Ol - 1}

with C = 64 - 160(L1 Ry)? In (%). Moreover, we have

o aga 128%(L1 Ry)“o™ In (£ 128%(L1 Ro)* In (3£
17128 (L1Ry)%o S (L1Ro)*o n<5):1f (L1 Ro) n(5)21*50,
A 90K 9K
. 128% In(4£ ) (L1 Ro)™ . . . .
with K > 95, . Next, we consider again two possible regimes.

Regime 1: 4Ry < 1/L1. Part 3 is not needed in this regime. Thus, we get that Er_1 N Ee N Eg
implies
2~ p2 0 0 0 0 0 2R2

which also guarantees that the event Ep holds. Thus, we get

_ — — T6
P{ET} > P{ET_l N Egp N E@} >1- P{ET_l} — ]P{E@} - P{E@} >1- ?

This finishes the inductive proof for 4Ry < 1/r,. In particular, if ' = K, Fx implies
) - )
flak) = f*
_2m
K ~ vK’

Substituting (13) in the inequality above, noting that we are in the first regime (4Ry < L%), and
applying Jensen’s inequality to the LHS, we conclude that

K-1 2
(kEw)roolm{5ige)) e
=0

with probability at least 1 — 4.

Regime 2: 4Ry > L% First, Ep_1 with FEparkoy implies

YA T3(T)|

= > 20umd == > 290um) = 290r-a ) {T — 1€ To(I)} < 57—

t€T3(T) teT3(T—1)
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where we also use that T5(7 — 1) C T3(T"). Hence, the probability event E7_1 N Eg N Eg N Enarkov
implies

YA T3(T)|

R < Ry + R — —57—

which also guarantees that the event E'r holds. Thus, we get

P{Er} >P{Er_1 N Ey N Es N Erakov} > 1 —P{Er_1} —P{Eo} — P{Es} — P{EMmarkov }

s T-1
>1— S ;} min{r, C1 }oP{|T5(T — 1)| = r}

— (50]P{T —1e Tg(T) and |T3(T — 1)| S Cl — 1},

where the last term comes from the event Eypov. Next, let us consider the last two terms in the
RHS of the inequality above. First, we introduce events

X :={T —1€TsT)and |T5(T — 1)| < Cy — 1},
Y :={T —1€Ts(T)and |T5(T — 1)| > C1},
Z:={T—1¢T5(T)}.

Therefore, we get

PUT(T = 1)| = r} = P{|T5(T - 1) = r[X}P{X}
+ P{|Ts(T - 1| = r[Y}P{Y}
+P{|T(T - 1) = r[Z}P{Z}

and

P{T — 1€ T3(T)and [T5(T —1)| < C, — 1} =P{T — 1 € T3(T) and |T3(T — 1)| < C;, — 1| X }P{X}
+P{T —1€T3(T)and |T3(T — 1)| < C; — 1|Y}P{Y}
+P{T — 1€ T3(T) and |T5(T —1)| < C, — 1|Z}P{Z}.

Next, we consider conditional probabilities with respect to X, Y, Z. According to the definition of
X, we have

T-1
3" min{r, C1}6P{IT5(T — 1)| = 7|X} + 5oP{T — 1 € Ty(T) and |T5(T — 1)| < Cy — 1] X}
r=0

Ci—1

= Y r6P{|T5(T — 1) = r|X} + o
r=0
Ci—1

= > r6P{|T5(T)| = r + 11X} + o,
r=0

where the first equation comes from P{|75(7 — 1)| = r|X} = 0forallr = Cy,...T — 1, and the
second equation holds due to P{A|B} = P{A N B|B}. What is more,

Ci—1
S P{T(T)| =r+1]X} =1
r=0

25
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since |T3(T")| with respect to X can be equal only to 1,...,Cy. Thus, we get

T-1

S min{r, C1}SoP{|T5(T — 1) = r|X} + 6B{T — 1 € T3(T) and |T5(T — 1)| < C; — 1|X}
r=0

Ci1—1

= > r6oP{|T5(T)| = r + 1| X} + &
r=0
C1—1 Ci1—1
= Y r0P{T5(T)| =r+ 11X} + Y GP{|T3(T)| =r+1|X}
r=0 r=0
Ci—1
= > (r+ D&P{T5(T)| = r + 1|X}
r=0
C1
= rooP{|T5(T)| = r|X}
r=1
T
= min{r, C1 }6oP{|T5(T)| = r|X}, @7
r=0

where in the last equation we add extra zeros for r = 0 and » > C; + 1. For event Y, we obtain

T—-1
S min{r, C1}oP{|T5(T — 1)] = r|Y'} + 5P{T — 1 € Ty(T) and |T5(T — 1)| < Cy — 1|V}
r=0

T-1

=Y Cr8P{|T5(T — 1)| = r|Y}
r=C1

T—1
= > C10P{|T5(T)| =7 + 1Y},
T:C]

where in the first equation we apply the notation of Y, and in the second inequality we use that
P{A|B} = P{A N B|B}. Consequently, we get

T-1
S min{r, Cy }8P{|T5(T — 1)] = r[Y'} + 6,P{T — 1 € T5(T) and |T5(T = 1)| < C; — 1]V}
r=0

T-1
= > CioP{|T5(T)| =7 + 1Y}
T:C]

T
= Y CiooP{|T5(T)| = r[v}
r=C1+1
T

= min{r, C1 }6,P{|T5(T)| = r[Y'}, (28)

r=0
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where we add extra zeros for r = 0, ..., Cy. For event Z, we get

T—1
3" min{r, C1}oP{|T5(T — 1)| = rZ} + 6oP{T — 1 € T5(T) and |T5(T — 1)| < C, — 1|2}

r=0

T-1

= min{r, C1 }doP{|T5(T — 1)| = r|Z}
r=0
T-1

= min{r, C1 }5P{|T5(T)| = r|Z}
r=0

Il
M=

min{r, Cy }ooP{|T3(T)| = r|Z}, (29)

ﬁ
Il
=)

where in the first equation we use the notation of Z, in the second one we use P{A|B} = P{AN
B|B}, and in the last equation we add P{|75(T")| = T'|Z}, which is equal to 0. Multiplying (27),
(28) and (29) by P{ X },P{Y'}, P{Z}, respectively, and summing up, we derive

T-1
> min{r, Cy }oP{|T5(T = 1)] = r} + 6oP{T — 1 € T5(T) and |T5(T —1)| < Cy — 1}
r=0

=" min{r, C1 }6oP{|T5(T)| = r}.

r=0

As a result, we have

TS < .
P{Er} >1— S ;Omm{r, C1Y0oP{|T5(T)| = r}.

This concludes the inductive proof. In particular, taking &g = C% and

128%In (4£) (L1 Ry)~ 128 1n (4£) (L1 Ry)~ L1 Ro)*+oIn” (4
2 n(ﬁ)( 1 O) :CI' n(5>( 1 0) :64128(1160( 1 0) n(é)’
930 96 )
we get that
T
P{Ex}>1-0- min{r,Cy}5oP{|T5(K)| =1} >1—05— Cdp = 1 — 2.
r=0

In particular, E'xc implies

AT5(K)|
2 op2 _ i )
R <2R; 320,
What is more, we have
. YAT5(K
S ) ) <oy - DI
3214
keT (K)UT:(K)
Therefore, we get
1 2R} VAT (K)|
Y () - < o - .
K =T gy i K —[5(K)| ~ 32L,(K — [T3(K)])

Considering the RHS, it can be shown that it is the decreasing function of |T5(K)|. Indeed, denoting

2R2 B YAz
K-z 32L1(K —z)’

¢(r) =
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one can obtain

2R2 YAK
/ — 0 _ < 0
V) = K=o T BL(K —a) S
due to the lower bound on K. Consequently, we get
1 2R?
—_— ) — ) < —=.
g 1 2
Dividing both sides by -y, substituting (13), and lower bounding the LHS, we obtain that
. N\ _ A LOR% L1 R%O’
pgnin (Flze) = f7) =0 (maX{ K et (30)
. (L1Ro)**e lnz(%) . . ..
with K = Q ———— "= | holds with probability at least 1 — 2§. Combining (26) and (30),
we finish the proof. O
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C FROM THE BEST ITERATE TO A SINGLE IMPLEMENTABLE ITERATE

In Theorem 1 we state a bound for the best iterate over the “good” indices Jx = T3 (K) U To(K).
This appendix shows that one can select a single, fully implementable iterate with (essentially) the
same rate by sampling only m = [log(1/4)]| uniformly random candidates from the run and picking
the one with the smallest robust mini-batch estimate of f.

Selection rule. Run CLIP-SGD for K steps with the same (), ) as in Theorem 1. After that, do:

1. Sample m = [log(1/d)] indices independently and uniformly: 7q,...,7, ~
Unif{0,1,..., K — 1}.
2. For each i € {1,...,m}, form a robust mini-batch estimate f; of f(x,) using B fresh

i.i.d. samples {&; ,} £ |, independent of the training randomness, and any robust mean es-
timator valid under finite a-moment noise (e.g., median-of-means or Catoni (Lugosi and
Mendelson, 2019)).

3. Output 7 € argmin;—j . m fl and return x=.
In order to show that the robust mean properly approximates the true function value, we introduce
an additional assumption (needed only for this section).

Assumption 4 (Loss a-moment). Let « € (1,2] be the same as in Assumption 3. There exists
oy > 0 such that for all x € R4,

Ee[[f(z,6) — f(@)]"] < of,
where the samples {&; ,} used to compute f, are drawn i.i.d. from the same distribution as in (1)

and independently of the training process.

Theorem 3 (Single implementable iterate via randomization and robust evaluation). Suppose As-
sumptions 1-4 hold. Run CLIP-SGD for K steps with the (\,~) of Theorem 1. Let m = [log(1/6)].
There exists a constant Co, > 0 (depending only on o and the chosen robust mean) such that if

Of\ac1, M 2R3
> L — =
B > CQ(A) log5, where A K
Cilog(1/6
then with probability at least 1 — 3§ — %(/) we have

flaz) — f* < 3A.
In particular, substituting the choices of (\, ) from Theorem 1 yields

N ~ LoR? L1R%o
flaz)— f* < (’)(max{ % K-U/a

Moreover, recalling Cy = ©((L1Ro)?*log(4K/6)) from Appendix B and the lower bound on K in
the large-radius regime, the success probability is at least 1 — 49.

Proof sketch. Let Ji = Ty (K) U T2(K). Appendix B shows that on the “good” event Ex (which
holds with probability at least 1 — 26),
1 2R2
S — -1 < =2 1
e D IRUCOR R o G

keJk
and |T5(K)| < C;. Conditioning on Fg, draw 71, ..., 7, uniformly. With probability at least
1- migl all; € Jx. Equation (31) implies E[f (z,,)— f*] < A := 2R3 /(yK) forany 7; € Jy, and
by Markov, Pr (min; f(z.,) — f* <24 | Ex) > 1— 4 for m = [log(1/6)]. Under Assumption 4,
robust mean estimation over B fresh samples gives max; | f; — f(x,)| < ep with probability at
least 1 — 6, where eg < C0f (W)l_l/a. Choosing B as in the statement ensures e < A,
hence f(z7) < min; f(z,,) + A < 3A. A union bound completes the proof. O
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Remarks. (i) The validation does not modify optimization process; it adds only mB =
(7)((0 f /A)ﬁ log2%) extra stochastic loss evaluations. For a@ = 2, this reduces to the familiar
B = ©O((oy/A)?log(m/4)). (ii) Assumption 4 is the loss-level analogue of Assumption 3 and is
used only in this section to justify robust estimation of f(x); all main theorems and proofs in the
body remain unchanged. (iii) When L; = 0 or K is much larger than the lower bound of Theorem 1
(large-radius case), the success probability simplifies to at least 1 — 4.
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