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ABSTRACT

Gradient clipping is a widely used technique in Machine Learning and Deep
Learning (DL), known for its effectiveness in mitigating the impact of heavy-tailed
noise, which frequently arises in the training of large language models. Addition-
ally, first-order methods with clipping, such as Clip-SGD, exhibit stronger conver-
gence guarantees than SGD under the (L0, L1)-smoothness assumption, a prop-
erty observed in many DL tasks. However, the high-probability convergence of
Clip-SGD under both assumptions – heavy-tailed noise and (L0, L1)-smoothness
– has not been fully addressed in the literature. In this paper, we bridge this crit-
ical gap by establishing the first high-probability convergence bounds for Clip-
SGD applied to convex (L0, L1)-smooth optimization with heavy-tailed noise.
Our analysis extends prior results by recovering known bounds for the determin-
istic case and the stochastic setting with L1 = 0 as special cases. Notably, our
rates avoid exponentially large factors and do not rely on restrictive sub-Gaussian
noise assumptions, significantly broadening the applicability of gradient clipping.

1 INTRODUCTION

Stochastic optimization forms the backbone of modern machine learning (Shalev-Shwartz and Ben-
David, 2014) and deep learning (Goodfellow et al., 2016), providing the computational efficiency
required to train models at scale. While full-gradient methods offer precise optimization, they are of-
ten impractical for real-world applications due to their prohibitive computational costs and memory
demands. In contrast, Stochastic Gradient Descent (SGD) (Robbins and Monro, 1951) has emerged
as the de facto standard for training deep learning models, thanks to its simplicity, scalability, and
effectiveness in high-dimensional settings. However, despite its widespread use, SGD alone is often
insufficient for capturing the full complexity of modern optimization problems.

Gradient clipping is one of the most widely adopted extensions of SGD, providing a simple yet
powerful mechanism for controlling gradient magnitudes in the presence of noisy updates. Clip-
SGD and its variants have demonstrated significant practical utility across a range of challenging
machine learning tasks. For instance, Pascanu et al. (2013) employed gradient clipping to stabilize
the training of recurrent neural networks, which are particularly prone to gradient explosions due to
their architectural structure. More recently, gradient clipping has become a crucial component in the
training of large language models (LLMs) such as BERT (Devlin et al., 2019), GPT-3 (Brown et al.,
2020), Switch Transformers (Fedus et al., 2022), and LLaMA (Touvron et al., 2023).

Gradient clipping is particularly effective in stabilizing the training of deep learning models in the
presence of heavy-tailed noise in stochastic gradients. This phenomenon, where the probability
density of gradient noise decays polynomially, leading to potentially unbounded variance, has been
observed in real-world settings such as the pre-training of BERT models (Zhang et al., 2020c).
Under such conditions, classical SGD can suffer from divergence, even in expectation, making it
poorly suited for training in these high-variance environments. In contrast, gradient clipping not
only mitigates these explosive gradient updates but also plays a critical role in establishing high-
probability convergence guarantees. Recent studies (Gorbunov et al., 2020; Cutkosky and Mehta,
2021; Sadiev et al., 2023; Nguyen et al., 2023; Chezhegov et al., 2024) have shown that employing
a clipping threshold that grows with the number of iterations can yield high-probability convergence
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bounds with only polylogarithmic dependence on the confidence level. In contrast, neither classical
SGD nor popular adaptive methods such as AdaGrad (Duchi et al., 2011) and Adam (Kingma and
Ba, 2014) can achieve such favorable convergence bounds (Sadiev et al., 2023; Chezhegov et al.,
2024), highlighting the advantages of gradient clipping in handling heavy-tailed noise.

Gradient clipping is also particularly well-suited for optimization problems characterized by relaxed
smoothness assumptions, which better capture the complex landscapes typical of deep learning. For
example, Zhang et al. (2020b) empirically demonstrated that the local smoothness constant along the
training trajectory of various deep learning models often scales linearly with the gradient norm. This
observation led Zhang et al. (2020b) to the introduction of the more general (L0, L1)-smoothness
assumption, which strictly extends the classical L-smoothness by allowing the smoothness constant
to depend on the gradient magnitude. This assumption aligns more closely with the real-world
behavior of deep learning models, where the loss surface can vary significantly across different re-
gions. Crucially, it has been shown that first-order methods incorporating gradient clipping can
achieve faster convergence rates under (L0, L1)-smoothness compared to their unclipped counter-
parts (Zhang et al., 2020b;a; Koloskova et al., 2023; Gorbunov et al., 2025; Vankov et al., 2025).
However, a critical aspect of all these results is the careful selection of the clipping threshold, which
must be set as a specific constant determined by the parameters L0 and L1.

This observation highlights a fundamental mismatch in the design of gradient clipping strategies:
under the (L0, L1)-smoothness assumption, the clipping threshold is typically set as a fixed constant
determined by problem-specific parameters (L0 and L1), while in the presence of heavy-tailed noise,
the threshold is often required to grow with the total number of iterations to ensure stability and
convergence. This apparent conflict raises a critical open question:

How should the clipping threshold be chosen to effectively address
heavy-tailed noise and (L0, L1)-smoothness?

Our contribution. In this paper, we resolve the above open question by providing the first high-
probability convergence analysis of Clip-SGD under the joint assumptions of heavy-tailed noise
and (L0, L1)-smoothness. Specifically, for convex (L0, L1)-smooth problems with stochastic gra-
dients having bounded central α-th moment for some α ∈ (1, 2], we establish a high-probability
convergence rate of

Õ
(
max

{
L0R

2
0

K
,
max{1, L1R0}R0σ

K(α−1)/α

})
,

where Õ hides numerical and polylogarithmic factors, K = Ω̃
(

(L1R0)
2+α

δ

)
is the number of itera-

tions required to achieve a high-probability bound with confidence level 1 − δ, and R0 is an upper
bound on the initial distance to the solution. Our result not only recovers the known deterministic
convergence rates for generalized smoothness (Gorbunov et al., 2025; Vankov et al., 2025), but also
fully reproduces the stochastic convergence guarantees in the special case of L1 = 0 (Sadiev et al.,
2023). Importantly, our analysis avoids the exponentially large factors that can arise from the gen-
eralized smoothness assumption, marking a significant improvement over previous approaches. For
a detailed comparison, see Table 1.

2 PRELIMINARIES

Notation. The Euclidean norm in Rd is denoted as ∥x∥ =
√
⟨x, x⟩. The norm ∥X∥2, where X ∈

Rd×d, is the spectral norm of the matrix. The Eξ[·] denotes the expectation w.r.t. random variable ξ.
The ball with the center at x ∈ Rd and radius r is defined as a Br(x) := {y ∈ Rd| ∥x− y∥ ≤ r}.
The clipping operator is denoted as clip(x, λ) := min

{
1, λ

∥x∥

}
x. We often use R0 to denote

some upper bound on the distance between the starting point and the solution of the problem.

Problem. We focus on the classical stochastic optimization problem, which can be stated as

min
x∈Rd

{f(x) := Eξ∼D[f(x, ξ)]} . (1)

This formulation is foundational in machine learning (Shalev-Shwartz and Ben-David, 2014), where
f represents the loss function of the model, x are the parameters to be optimized, D is the underlying
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Table 1: Comparison of the state-of-the-art high-probability convergence results for Clip-SGD
applied to convex problems satisfying the heavy-tailed noise assumption (Assumption 3) and/or
(L0, L1)-smoothness assumption (Assumption 2).

Reference L-smooth (L0, L1)-smooth Stochasticity Clipping level ComplexityLight tails Heavy tails
Sadiev et al. (2023) ✓ ✓✗(1) ✓ ✓ Θ

(
max{LR0, σK

1/α}
)

Õ
(

LR2
0

K + R0σ
K(α−1)/α

)
Gorbunov et al. (2025)
Vankov et al. (2025)

Lobanov et al. (2024)
✓ ✓ ✗(2) ✗ Θ

(
L0

L1

)
O
(

LR2
0

K

)
(3)

Gaash et al. (2025) ✓ ✓ ✓ ✗(4) Θ
(
max

{
L0

L1
, σ

√
K

L1R0

})
Õ
(

L0R
2
0

K + R0σ√
K

+ (L1R0)
2
)

This work ✓ ✓ ✓ ✓ Θ
(
max

{
L0

L1
, σK1/α

})
Õ
(
max

{
L0R

2
0

K , max{1,L1R0}R0σ

K(α−1)/α

})
(5)

(1) Sadiev et al. (2023) make all assumptions on a ball centered at x∗ and having radius ∼ 2R0 and show that the iterates do not escape this ball with high
probability. On such a set, (L0, L1)-smoothness implies L-smoothness with L = L0(1 + L1R0 exp(L1R0)), making the final bound dependent on the
exponentially large factor of L1R0.
(2) Deterministic result.
(3) Gorbunov et al. (2025) prove this bound for K = Ω((L1R0)

2), while Vankov et al. (2025); Lobanov et al. (2024) obtain it for K = Ω̃(L1R0).
(4) Gaash et al. (2025) derive their result under the assumption that the noise is sub-Gaussian (3).
(5) This bound holds for K = Ω̃

(
(L1R0)

2+α

δ

)
.

data distribution, and ξ captures the stochasticity introduced by sampling the data. We consider Clip-
SGD (Algorithm 1) applied to this problem.

Algorithm 1 Clip-SGD
1: Input: Starting point x0, level of clipping λ, learning rate γ
2: for k = 0, . . . ,K − 1 do
3: Sample ∇f(xk, ξk)
4: xk+1 = xk − γclip(∇f(xk, ξk), λ)
5: end for

Assumptions. In this part, we introduce and briefly discuss the assumptions used in the analysis.
First, let us introduce the assumption of convexity.
Assumption 1 (Convexity). The function f is convex, i.e., for all x, y ∈ Rd the next inequality
holds:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩.

Next, we will use the assumption of (L0, L1)-smoothness.
Assumption 2 ((L0, L1)-smoothness). The function f is (L0, L1)-smooth, i.e. for all x, y ∈ Rd the
next inequality holds:

∥ ∇f(x)−∇f(y) ∥≤

(
L0 + L1 sup

u∈[x,y]

∥∇f(u)∥

)
∥ x− y ∥ .

Historically, the first version of the above assumption was formulated by Zhang et al. (2020b) for
twice differentiable functions as follows:∥∥∇2f(x)

∥∥
2
≤ L0 + L1 ∥∇f(x)∥ , x ∈ Rd.

Later, it was generalized to the case of functions not necessarily having second derivatives by Zhang
et al. (2020a). Assumption 2 was first introduced by Chen et al. (2023), and it is equivalent to the
one proposed by Zhang et al. (2020a). This assumption is strictly more general than

∥∇f(y)−∇f(x)∥ ≤ L ∥y − x∥ , ∀x, y ∈ Rd, (2)

known asL-smoothness: it reduces to the standardL-smoothness withL = L0 ifL1 = 0. Moreover,
one can construct functions that satisfy Assumption 2 but not L-smoothness, e.g., exponent of norm
f(x) = exp(∥x∥)+exp(−∥x∥), power of norm f(x) = ∥x∥n for n > 2, and exponent of the linear
function f(x) = exp(⟨a, x⟩) (Chen et al., 2023; Gorbunov et al., 2025).

Finally, we assume unbiasedness and boundedness of the α-th central moment.
Assumption 3 (Stochastic oracle). The stochastic oracle ∇f(x, ξ) is unbiased and have bounded
α-th central moment with α ∈ (1, 2], i.e.

E [∇f(x, ξ)] = ∇f(x); E [∥∇f(x, ξ)−∇f(x)∥α] ≤ σα.
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This assumption has become relatively standard – it has already been considered in (Zhang et al.,
2020c; Cutkosky and Mehta, 2021; Sadiev et al., 2023; Nguyen et al., 2023; Chezhegov et al.,
2024). Prominent examples of distributions that satisfy Assumption 3 include Lévy α-stable noise,
as well as synthetic one-dimensional distributions that can be easily constructed. In turn, case α = 2
corresponds to one of the most classical assumptions on the stochastic oracle (Nemirovski et al.,
2009; Ghadimi and Lan, 2013; Takáč et al., 2013).

High-probability convergence bounds. A vast body of work in stochastic optimization has fo-
cused on establishing convergence guarantees in expectation. Specifically, for an iterative process
{xk}k=0 and a target criterion C({xk}), the typical goal is to identify the smallest number of itera-
tions K needed to ensure that E

[
C
(
{xk}K−1

k=0

)]
≤ ε is satisfied. However, this expectation-based

approach only captures the average performance of the algorithm and does not fully reflect the vari-
ability inherent in the stochastic process. In contrast, high-probability bounds, which ensure that the
desired criterion is satisfied with high confidence, are often more informative. These bounds take the
form P

{
C
(
{xk}K−1

k=0

)
≤ ε
}
≥ 1− δ, directly controlling the likelihood of worst-case deviations.

While it is possible to derive high-probability bounds from expectation bounds using tools like
Markov’s inequality, this approach typically results in convergence rates with an inverse-power de-
pendence on δ. Modern methods aim for much tighter, polylogarithmic dependence on 1

δ , which
significantly reduces the required number of iterations for a given confidence level. Achieving this
improved scaling generally requires either imposing stronger assumptions, e.g., sub-Gaussian noise

E
[
exp

(
∥∇f(x,ξ)−∇f(x)∥2

/σ2
)]

≤ exp(1), (3)

or employing advanced techniques such as gradient clipping, truncation, or normalization.

3 RELATED WORK

Convergence under (L0, L1)-smoothness. Early studies on the convergence of first-order meth-
ods under (L0, L1)-smoothness has primarily focused on the non-convex setting (Zhang et al.,
2020b;a; Zhao et al., 2021; Chen et al., 2023; Hübler et al., 2024b; Khirirat et al., 2024; Craw-
shaw et al., 2022; Faw et al., 2023; Wang et al., 2022; 2023; Li et al., 2024; Bilel, 2024; Liu
and Zhou, 2024; Vankov et al., 2025), which we discuss in Appendix A. In the convex setting,
the analysis is more recent and less developed. Koloskova et al. (2023) provided convergence
guarantees for Clip-GD under convexity, (L0, L1)-smoothness and L-smoothness, deriving a com-
plexity bound of O

(
max

{
(L0+λL1)R

2
0/ε,
√

R4
0L(L0+λL1)

2
/λ2ε

})
. The leading term in this com-

plexity bound is independent of L1 and L, if λ ∼ L0/L1, and can significantly outperform stan-
dard GD. Building on this, Takezawa et al. (2024) analyzed GD with Polyak stepsizes and de-
rived O

(
max

{
L0R

2
0/ε,
√

R4
0LL2

1/ε
})

complexity bound. Li et al. (2023) considered GD and Nes-
terov’s accelerated gradient (Nesterov, 1983) under the broad class of functions satisfying the so-
called (r, ℓ)-smoothness and derive O

(
ℓR2

0/ε
)

and O
(√

ℓR2
0/ε
)

complexities respectively, where
ℓ := L0 + L1G and G is dependent on smoothness parameters (L0, L1), initial gradient norm, and
functional suboptimality. However, through the constants L andG, the bounds from Koloskova et al.
(2023); Takezawa et al. (2024); Li et al. (2023) include exponentially large factors ofL1R0, a signifi-
cant drawback addressed by the more recent results of Gorbunov et al. (2025); Vankov et al. (2025);
Lobanov et al. (2024), which currently provide the tightest known bounds for deterministic con-
vex (L0, L1)-smooth problems. Additionally, Tyurin (2024) present a unified analysis of GD (with
specific stepsizes) for both convex and non-convex problems under a more general ℓ(∥∇f(x)∥)-
smoothness condition, and Yu et al. (2025b) study Mirror Descent and its variants under a version
of (r, ℓ)-smoothness (Li et al., 2023), adapted to non-Euclidean norms.

Most of the works discussed above also present the convergence results for the stochastic methods
(Zhang et al., 2020b;c; Zhao et al., 2021; Chen et al., 2023; Crawshaw et al., 2022; Faw et al., 2023;
Wang et al., 2022; 2023; Li et al., 2024; Hübler et al., 2024b; Gorbunov et al., 2025; Yu et al., 2025b).
In addition, Yang et al. (2024) propose and analyze a variant of Normalized SGD with independent
normalization. Yu et al. (2025a) establish new convergence results for an accelerated version of SGD
with both constant and adaptive stepsizes under (L0, L1)-smoothness and relaxed affine variance
assumptions. Furthermore, Tovmasyan et al. (2025) introduce a generalized smoothness condition
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called ψ-smoothness and derive new convergence bounds for the Stochastic Proximal Point Method
(Bertsekas, 2011) under this framework. However, these papers do not address the heavy-tailed
noise settings, and only Faw et al. (2023); Wang et al. (2023); Li et al. (2024); Yu et al. (2025a)
provide high-probability convergence guarantees. However, the bounds from Faw et al. (2023);
Wang et al. (2023) have inverse-power dependencies on δ, while the results of Li et al. (2024); Yu
et al. (2025a) rely on a sub-Gaussian noise assumption (3)1.

High-probability convergence under the light-tailed noise. High-probability convergence guar-
antees have long been a critical component in the analysis of stochastic first-order methods, par-
ticularly when the noise in the stochastic gradients is light-tailed. In these settings, methods like
SGD and its variants can achieve convergence rates with the polylogarithmic dependence on the
failure probability δ. Under the sub-Gaussian noise assumption, this behavior has been rigorously
established for SGD (Nemirovski et al., 2009; Harvey et al., 2019), its accelerated counterparts
(Ghadimi and Lan, 2012; Dvurechensky and Gasnikov, 2016), and adaptive methods like AdaGrad
(Li and Orabona, 2020; Liu et al., 2023). Recent extensions to even broader classes of noise, such as
sub-Weibull distributions, have further expanded this theoretical framework (Madden et al., 2024).

The most closely related work to ours is that of Gaash et al. (2025), who derive high-probability
convergence rates with polylogarithmic dependence on δ for convex (L0, L1)-smooth optimization
under the assumption of sub-Gaussian noise in the stochastic gradients. Their approach involves a
variant of Clip-SGD that uses two independent stochastic gradients – one for the update direction
and another for the clipping multiplier. While this technique effectively avoids the exponentially
large factors of L1R0, its performance in the presence of heavy-tailed noise remains unclear.

High-probability convergence under the heavy-tailed noise. Gradient clipping is one of the
most popular approaches to deal with the heavy-tailed noise in the literature on the high-probability
convergence. Early work in this direction includes the truncated Stochastic Mirror Descent method
proposed by Nazin et al. (2019), which established high-probability complexity bounds for con-
vex and strongly convex problems under the bounded variance assumption (Assumption 3 with
α = 2). Building on this foundation, Gorbunov et al. (2020) provided the first comprehensive
high-probability bounds for Clip-SGD (Algorithm 1) and introduced an accelerated variant using
the Stochastic Similar Triangles Method (SSTM) (Gasnikov and Nesterov, 2016). Subsequent work
extended these results to broader problem classes, including non-smooth optimization (Gorbunov
et al., 2024a; Parletta et al., 2024), unconstrained variational inequalities (Gorbunov et al., 2022),
and problems satisfying Assumption 3 with α < 2 (Cutkosky and Mehta, 2021; Sadiev et al., 2023;
Nguyen et al., 2023; Gorbunov et al., 2024b). Adaptive variants have also been developed: Li and
Liu (2023) analyzed Clip-AdaGrad with scalar stepsizes, while Chezhegov et al. (2024) obtained
similar bounds for both scalar and coordinate-wise versions of Clip-AdaGrad and Clip-Adam. In
the zeroth-order setting, Kornilov et al. (2023) proposed a clipped variant of SSTM. For distributed
setup, Lee et al. (2025) provided in-expectation convergence rates for the TailOPT method. More-
over, standard clipping was successfully adapted to address differential privacy (Khah et al., 2025)
with high-probability convergence.

Beyond gradient clipping, several alternative strategies for achieving high-probability convergence
have been proposed. These include robust distance estimation with inexact proximal point meth-
ods (Davis et al., 2021), gradient normalization (Cutkosky and Mehta, 2021; Hübler et al., 2024a),
and sign-based methods (Kornilov et al., 2025). Notably, some of these approaches, such as those
proposed by Hübler et al. (2024a) and Kornilov et al. (2025), do not require prior knowledge of the
tail parameter α, albeit at the cost of sub-optimal convergence rates. For symmetric distributions,
recent work has provided high-probability guarantees for non-linear transformations like standard
clipping, coordinate-wise clipping, and normalization (Armacki et al., 2023; 2024), while Puchkin
et al. (2024) has explored median-based clipping under structured non-symmetric noise.

Despite these advancements, existing high-probability convergence results for the (L0, L1)-smooth
case (with the heavy-tailed noise) still suffer from the presence of exponentially large factors involv-
ing L1R0 in their bounds.

1Yu et al. (2025a) use a more general version of (3) with σ2 = A(f(x)− f(x∗)) +B ∥∇f(x)∥+ C.
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4 MAIN RESULT

In this section, we provide our main convergence result for Clip-SGD method (Algorithm 1). The
next theorem provides new high-probability convergence rates for Clip-SGD.
Theorem 1. Suppose that Assumptions 1, 2 and 3 hold. Then, after K iterations of Clip-SGD
(Algorithm 1) with

λ = max

{
2L0 min

{
4R0,

1

L1

}
, 9

1
ασK

1
α

(
ln

(
4K

δ

))− 1
α

}
,

γ =
1

160λ ln
(
4K
δ

) min

{
4R0,

1

L1

}
,

we have:

• If 4R0 ≤ 1
L1

, then

f

(
1

K

K−1∑
k=0

xk

)
− f∗ = Õ

(
max

{
L0R

2
0

K
,

R0σ

K(α−1)/α

})
with probability at least 1− δ.

• If 4R0 ≥ 1
L1

and K = Ω

(
(L1R0)

2+α ln2(K
δ )

δ

)
min

k=0,...,K−1
(f(xk)− f∗) = Õ

(
max

{
L0R

2
0

K
,
L1R

2
0σ

K(α−1)/α

})
holds with probability at least 1− δ.

Proof sketch. The proof begins with the establishment of a descent lemma (Lemma 3, Appendix B),
formulated in a case-based manner to account for the various possible relationships between
∥∇f(xk)∥, the clipping threshold λ, and the ratio L0

L1
, in line with existing analyses under (L0, L1)-

smoothness (Koloskova et al., 2023; Takezawa et al., 2024; Gorbunov et al., 2025). Following the
approach of Sadiev et al. (2023), we define a sequence of events Ek, which imply the main result for
k = K. We then use an inductive argument to derive sufficiently strong lower bounds on the proba-
bilities of these events, proving by induction that P{Ek} ≥ 1− kδ

K , which yields the desired bound
for k = K. However, our proof introduces an additional layer of complexity by distinguishing two
separate cases based on the relationship between the initial distance to the optimum, R0, and 1

L1
.

In the first case
(
4R0 ≤ 1

L1

)
, our proof follows from the result from Sadiev et al. (2023) (though

we provide the full proof for the convenience). This is expected, as we show that with high proba-
bility, the iterates remain within the ball B√

2R0
(x∗). Consequently, for any x, y within this set, the

terms L1 ∥∇f(x)∥ and exp(L1 ∥y − x∥) from Proposition 2 can be bounded by O(L0) and O(1),
respectively, implying that the objective function is L-smooth on B√

2R0
(x∗) with L = O(L0).

In contrast, in the second case (4R0 ≥ 1
L1

), we must additionally control the effect of rare, large
gradient norms that exceed the clipping threshold. Specifically, for any 0 < T ≤ K, we show that
ET−1 implies∑

l∈T1(t)∪T2(t)

γ(f(xl)− f∗) ≤ ∥x0 − x∗∥2 − ∥xt − x∗∥2 (4)

−
∑

l∈T1(t)∪T2(t)

2γ⟨θl, xl − x∗⟩+
∑

l∈T1(t)∪T2(t)

2γ2∥θl∥2 (5)

−
∑

l∈T3(t)

2γ⟨θ̂l, xl − x∗⟩ − γλ|T3(t)|
16L1

(6)
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holds for t = 1, . . . , T , where θl := clip(∇f(xl, ξl), λ)−∇f(xl), θ̂l := clip(∇f(xl, ξl), λ)−
clip(∇f(xl), λ/2), and

T1(t) :=

{
k ∈ 0, . . . , t− 1 | ∥∇f(xk)∥ ≤ L0

L1

}
,

T2(t) :=

{
k ∈ 0, . . . , t− 1 | λ

2
≥ ∥∇f(xk)∥ >

L0

L1

}
,

T3(t) :=

{
k ∈ 0, . . . , t− 1 | ∥∇f(xk)∥ >

λ

2

}
.

As in the first case, we bound the contributions from (4) and (5) by O(R0) with high probability
using Bernstein’s inequality, along with assumptions on γ and λ. However, the key term in (6) is
bounded using a different argument. Specifically, we show that the inequality −2γ⟨θ̂l, xl − x∗⟩ ≤
γλ

32L1
follows from the condition ∥ξl∥ ≤ B := λ

128L1R0
for l ∈ T3(t), where we slightly abuse

notation by defining ξl := ∇f(xl, ξl)−∇f(xl). Furthermore, the construction of ET−1 guarantees
that |T3(T −1)| ≤ C1 := 10240(L1R0)

2 ln
(
4K
δ

)
, sinceET−1 also implies 0 ≤ 2R2

0−
γλ|T3(T−1)|

32L1
.

To complete the inductive step, we apply Markov’s inequality to estimate P{∥ξk−1∥ ≤ B} under
the conditions k − 1 ∈ T3(k) and |T3(k − 1)| ≤ C1 − 1. This step leads to the requirement

K = Ω

(
(L1R0)

2+α ln2(K
δ )

δ

)
, which arises from applying Markov’s inequality up to C1 times.

Finally, we emphasize that in the second case (4R0 ≥ 1
L1

), we prove by induction that

P{Ek} ≥ 1− kδ

K
−

k∑
r=0

min

{
r

C1
, 1

}
δP{|T3(k)| = r},

which significantly differs from the induction assumptions used in previous works (Gorbunov et al.,
2020; Sadiev et al., 2023; Gorbunov et al., 2024b). For complete technical details, we refer the
reader to Appendix B.

5 DISCUSSION OF THE RESULT

In this section, we discuss our main convergence results, highlighting their significance in the context
of existing work, including a detailed comparison with prior analyses, and addressing the challenges
associated with heavy-tailed noise and generalized smoothness.

5.1 COMPARISON WITH GAASH ET AL. (2025)

The closest related work to ours is the recent study by Gaash et al. (2025), which also analyzes
the high-probability convergence of Clip-SGD under generalized smoothness conditions. Prior to
conducting the comparison, we introduce the algorithm (see Algorithm 2) under consideration in
(Gaash et al., 2025). For simplicity, we omit the projection operator on some set X from the original
version since it is unnecessary for the convergence guarantees of Algorithm 2.

Algorithm 2 Clip-SGD with double sampling (Gaash et al., 2025)

1: Input: Start point x0, level of clipping λ, learning rate γ
2: for k = 0, . . . ,K − 1 do
3: Sample ∇f(xk, ξck),∇f(xk, ξk) independently

4: xk+1 = xk − γmin

{
1, λ

∥∇f(xk,ξck)∥

}
∇f(xk, ξk)

5: end for

Light-tailed noise. The analysis from Gaash et al. (2025) is restricted to the case of sub-Gaussian
noise, which is substantially lighter-tailed than the noise distributions considered in our work (Zhang

7
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et al., 2020c). This assumption simplifies the convergence analysis, as sub-Gaussian noise is inher-
ently more amenable to standard concentration inequalities. In contrast, we focus on the more
challenging setting of heavy-tailed noise, characterized by only a bounded central α-th moment,
which introduces significant technical difficulties in establishing high-probability guarantees.

Role of clipping. Furthermore, under the simpler L-smoothness assumption (2), the need for clip-
ping in the light-tailed noise setting largely disappears. In this case, the inherent concentration of
sub-Gaussian noise is often sufficient to control the gradient norms, making clipping unnecessary.
However, when the generalized (L0, L1)-smoothness assumption is introduced, clipping becomes
essential even with light-tailed noise, as it restricts the range of gradient norms, ensuring the validity
of the generalized smoothness assumption. In contrast, for heavy-tailed noise, the clipping thresh-
old λ must address two competing objectives: (i) it must remain constant to effectively control the
gradient norms for the application of the (L0, L1)-smoothness condition, and (ii) it must scale with
the number of iterations to mitigate the impact of rare, extreme gradients. Our analysis demon-
strates that standard clipping can simultaneously address both of these challenges, a property that is
unnecessary in the purely light-tailed regime where gradient norms are naturally more controlled.

Practicality. Finally, the algorithm analyzed in Gaash et al. (2025) employs a double-sampling
strategy, where the gradient direction and the clipping threshold are computed using two independent
samples. This approach, while providing strong theoretical guarantees, can significantly increase the
computational cost and memory requirements, potentially limiting its practical applicability in large-
scale machine learning problems. In contrast, our analysis considers the standard, single-sample
variant of Clip-SGD, demonstrating that strong convergence guarantees can be obtained without
requiring such algorithmic modifications. This distinction is critical, as it reflects a more realistic
scenario for practical applications, where computational efficiency is a key concern.

Upper bounds. Our main result establishes the following upper bound on the convergence rate:

Õ
(
max

{
L0R

2
0

K
,
max{1, L1R0}R0σ

K(α−1)/α

})
with K = Ω

(
(L1R0)

2+α ln2
(
K
δ

)
δ

)
.

This result recovers several known special cases from the literature. When L1 = 0, the bound sim-
plifies to the convergence rate for L-smooth settings previously established in Sadiev et al. (2023),
which corresponds to the classical smooth optimization framework. On the other hand, if the noise
level is zero (i.e., σ = 0), our bound reduces to the deterministic convergence rates derived in the
context of GD with smoothed gradient clipping by Gorbunov et al. (2025).

For comparison, the recent work by Gaash et al. (2025) obtained an upper bound of the form

Õ
(
max

{
L0R

2
0

K
,
R0σ√
K

})
with K = Ω

(
ln

(
K

δ

)
(L1R0)

2

)
.

While this bound shares a similar structure to ours, their lower bound on K is (L1R0)
α times

smaller. This difference arises from the different ways in which gradient clipping manages extreme
gradient magnitudes, as discussed in the paragraph on the role of clipping from the previous sub-
section. Furthermore, the lower bound on K in (Gaash et al., 2025) does not explicitly include a 1/δ
factor, due to their reliance on sub-Gaussian noise assumptions, which provide inherently stronger
tail control (see equation (3)). In contrast, our analysis, which handles the more general heavy-tailed
noise case, requires the use of Markov’s inequality to control the probability of rare, high-magnitude
gradient events (when ∥∇f(xk)∥ ≥ λ

2 ≥ L0

L1
), leading to a stricter dependence on δ.

Nevertheless, the term proportional to 1/δ in our result has only a polylogarithmic dependence on
K. This means that our result ensures that mink=0,...,K−1(f(xk)− f∗) ≤ ε holds with probability
at least 1− δ after

K = Õ

(
max

{
L0R

2
0

ε
,

(
max{1, L1R0}R0σ

ε

) α
α−1

,
(L1R0)

2+α

δ

})
iterations.

5.2 ON THE IN-EXPECTATION BOUNDS AND THE CHOICE OF THE ITERATE

Is our bound stronger than the in-expectation result? It is natural that the bound we provide
may initially appear counterintuitive – the factor 1/δ is indeed non-standard for the high-probability

8
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convergence results. However, at present, no in-expectation results that we could compare to are
available for the class of problems under consideration.

Let us, however, assume the existence of an in-expectation bound of the form E [f(xK)− f∗] ≤ ε

with K = K(ε) = O
(

1
ε + 1

ε
α

α−1

)
where we ignore the problem parameters L0, L1, R0, σ. This

rate in fact coincides with the best-known results for the convex L-smooth case (Sadiev et al., 2023;
Nguyen et al., 2023). To obtain a high-probability bound from this, the only general tool is Markov’s
inequality, which would yield f(xK) − f∗ ≤ ε with probability at least 1 − δ, provided that K =

K(εδ) = O
(

1
εδ + 1

(εδ)
α

α−1

)
. In contrast, our result guarantees K = Õ

(
1
ε + 1

ε
α

α−1
+ 1

δ

)
, which

is strictly better for all δ ∈ (0, 1).

More precisely, the inverse-power dependence on δ appears only in the term that is independent of
ε (up to logarithmic factors). This means that, unless δ is much smaller than ε, the δ-dependent
term is not dominant – the second term is. Consequently, if an in-expectation bound for the convex
(L0, L1)-smooth case exists, which would almost certainly yield K = O

(
1
ε + 1

ε
α

α−1

)
up to a

problem-dependent constants, then our bound is strictly stronger than one obtained via such an
expectation-based result.

How to choose the final iterate? From a practical perspective, one may ask: which point
should be chosen as the final output? The convergence guarantees allow us to take either
mink=0,...,K−1(f(xk) − f∗) ≤ ε (see Theorem 1), or, as follows from the proof, a point selected
through ergodicity over T1(K) ∪ T2(K). However, two issues arise in practice: i) computing the
minimum requires evaluating the full model at every step, which is prohibitively expensive; ii) the
sets T1(K) and T2(K) are stochastic, and their exact time indices are unknown.

In machine learning and deep learning applications, however, it is crucial to produce concrete model
weights that can be directly deployed. To address this, we propose a robust method for selecting
the final iterate without weakening the convergence guarantees. Our approach is based on uniform
sampling combined with robust estimation of function values. Details are provided in Appendix C.

6 CONCLUSION

In this paper, we presented the first high-probability convergence analysis for Clip-SGD under the
joint assumptions of heavy-tailed noise and (L0, L1)-smoothness. Our results establish that for
convex (L0, L1)-smooth optimization problems with stochastic gradients having bounded central
α-th moment with α ∈ (1, 2], Clip-SGD with specifically selected clipping level achieves a high-
probability convergence rate of

Õ
(
max

{
L0R

2
0

K
,
max{1, L1R0}R0σ

K(α−1)/α

})
for K = Ω̃

(
(L1R0)

2+α

δ

)
.

Our approach successfully avoids the exponentially large factors of L1R0.

While our work resolves a critical gap in the convergence theory of stochastic gradient methods un-
der generalized smoothness and heavy-tailed noise, several important open questions remain. First,
it would be interesting to investigate the optimality of the lower bound on K, i.e., its dependence
on δ. Second, it would be valuable to extend these high-probability convergence results to the ac-
celerated methods, such as the ones based on Nesterov’s momentum, which are known to exhibit
faster convergence under classical smoothness. Third, our analysis is limited to convex optimization,
and extending these results to the non-convex case remains a significant challenge, especially un-
der heavy-tailed noise. Fourth, understanding how these techniques can be adapted to handle more
complex structures, such as variational inequalities and saddle-point problems, represents another
promising direction for future research. Finally, the application of these methods in distributed and
federated learning, where the gradient noise can vary significantly across nodes, is another important
open problem, particularly in light of recent interest in scalable, decentralized optimization methods.

We hope that our results inspire further research in these directions and contribute to the broader
understanding of stochastic optimization under realistic noise and smoothness assumptions.
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Gorbunov, E., Sadiev, A., Danilova, M., Horváth, S., Gidel, G., Dvurechensky, P., Gasnikov, A.,
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A NOTATION TABLE, AUXILIARY FACTS, AND EXTRA RELATED WORK

Table 2: Auxiliary notation used in the proofs.

Symbol Formula
gt min

{
1, λ

∥∇f(xt,ξt)∥

}
∇f(xt, ξt)

θt gt −∇f(xt)
θ̂t gt − clip(∇f(xt), λ/2)
θut gt − Eξt [gt]
θbt Eξt [gt]−∇f(xt)
Rt ∥xt − x∗∥

The next lemma is used to control the bias and variance of the clipped stochastic gradient.

Lemma 1 (Lemma 5.1 from (Sadiev et al., 2023)). Let X be a random vector from Rd and X̂ =

clip(X,λ). Then,
∥∥∥X̂ − E

[
X̂
]∥∥∥ ≤ 2λ. Moreover, if for some σ ≥ 0 and α ∈ (1, 2] we have

E [X] = x ∈ Rd, E [∥X − x∥α] ≤ σα, and ∥x∥ ≤ λ
2 , then∥∥∥E [X̂]− x
∥∥∥ ≤ 2ασα

λα−1
,

E
[∥∥∥X̂ − x

∥∥∥2] ≤ 18λ2−ασα,

E
[∥∥∥X̂ − E

[
X̂
]∥∥∥2] ≤ 18λ2−ασα.

Moreover, our analysis involves sums of martingale-difference sequences, to which Bernstein’s in-
equality can be applied (Bennett, 1962; Dzhaparidze and Van Zanten, 2001; Freedman et al., 1975).
Lemma 2 (Bernstein’s inequality). Let the sequence of random variables {Xi}i≥1 form a martin-
gale difference sequence, i.e., E [Xi | Xi−1, . . . , X1] = 0 for all i ≥ 1. Assume that conditional
variances σ2

i = E
[
X2

i | Xi−1, . . . , X1

]
exist and are bounded and also assume that there exists

deterministic constant c > 0 such that |Xi| ≤ c almost surely for all i ≥ 1. Then for all b > 0,
G > 0 and n ≥ 1

P

{∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ > b and
n∑

i=1

σ2
i ≤ G

}
≤ 2 exp

(
− b2

2G+ 2cb
3

)
.

Below, we also list some useful properties of Assumption 2.
Proposition 1 (Gorbunov et al. (2025), Lemma 2.2). Suppose that Assumption 2 holds. Then,

ν ∥∇f(x)∥2 ≤ 2(L0 + L1 ∥∇f(x)∥)(f(x)− f∗),

where ν is the solution of x exp(x) = 1.
Proposition 2 (Chen et al. (2023)). Assumption 2 is equivalent to

∥∇f(y)−∇f(x)∥ ≤ (L0 + L1 ∥∇f(x)∥) exp (L1 ∥y − x∥) ∥y − x∥ , ∀x, y ∈ Rd.

Finally, in the next paragraph, we give an overview of prior convergence results derived for (L0, L1)-
smooth non-convex problems.

Convergence under (L0, L1)-smoothness. Early studies on the convergence of first-order meth-
ods under (L0, L1)-smoothness has primarily focused on the non-convex setting. Zhang et al.
(2020b) introduced this smoothness condition and demonstrated that Clip-GD achieves an itera-
tion complexity of O

(
max

{
L0∆/ε2, (1+L2

1)∆/L0

})
with ∆ := f(x) − infx∈Rd f(x) for finding

ε-approximate first-order stationary point. The dominant term in the derived bound is independent
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of L1 and can be significantly smaller than the complexity of GD. This foundational work has since
been extended to include methods with momentum and clipping (Zhang et al., 2020a), as well as
variants like Normalized GD (Zhao et al., 2021; Chen et al., 2023), its momentum-based counter-
part (Hübler et al., 2024b), its distributed version with compression (Khirirat et al., 2024), SignGD
(Crawshaw et al., 2022), adaptive methods like AdaGrad and Adam (Faw et al., 2023; Wang et al.,
2022; 2023; Li et al., 2024), and Armijo-like gradient methods (Bilel, 2024). More recently, Vankov
et al. (2025) further improved these results by deriving a tighter complexity bound for Clip-GD of
O (max {L0∆/ε2, L1∆/ε}).
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B MISSING PROOFS

B.1 LEMMAS

Lemma 3 (Different cases). Suppose that Assumptions 1 and 2 hold. Then, the sequence {xk}Kk=0,
generated by Algorithm 1 after K iterations, satisfies following inequalities.

Case 1. If ∥∇f(xk)∥ ≤ L0

L1
, we have

γ(f(xk)− f∗) ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 − 2γ⟨θk, xk − x∗⟩+ 2γ2∥θk∥2

with θk := gk −∇f(xk), γ ≤ 1
16L0

and any λ > 0.

Case 2. If λ
2 ≥ ∥∇f(xk)∥ ≥ L0

L1
, then

γ(f(xk)− f∗) ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 − 2γ⟨θk, xk − x∗⟩+ 2γ2∥θk∥2

with θk := gk −∇f(xk), γ ≤ 1
8L1λ

.

Case 3. If ∥∇f(xk)∥ ≥ λ
2 ≥ L0

L1
, we get

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − γλ

16L1
− 2γ⟨θ̂k, xk − x∗⟩

with θ̂k := gk − clip(∇f(xk), λ/2), γ ≤ 1
16L1λ

.

Proof. We start our proof using the update rule of Algorithm 1:

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2γ⟨gk, xk − x∗⟩+ γ2∥gk∥2. (7)

The rest of the proof depends on the relation between λ, ∥∇f(xk)∥, and L0

L1
.

Case 1: ∥∇f(xk)∥ ≤ L0

L1
. Using the definition of θk (see Table 2), we can decompose (7) as follows:

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2γ⟨∇f(xk), xk − x∗⟩ − 2γ⟨θk, xk − x∗⟩
+ 2γ2∥∇f(xk)∥2 + 2γ2∥θk∥2. (8)

Using Proposition 1 with ∥∇f(xk)∥ ≤ L0

L1
and ν ≥ 1

2 , we get

∥∇f(xk)∥2 ≤ 4(L0 + L1 ∥∇f(xk)∥)(f(xk)− f∗) ≤ 8L0(f(xk)− f∗), (9)

where we also use ∥∇f(xk)∥ ≤ L0

L1
in the last step. Applying the convexity of f (Assumption 1)

and substituting (9) into (8), one can obtain

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2γ⟨θk, xk − x∗⟩+ 2γ2∥θk∥2 − (2γ − 16γ2L0)(f(xk)− f∗).

Then, the above inequality combined with the stepsize condition γ ≤ 1
16L0

imply

γ(f(xk)− f∗) ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 − 2γ⟨θk, xk − x∗⟩+ 2γ2∥θk∥2.
Case 2: λ

2 ≥ ∥∇f(xk)∥ > L0

L1
. In this case, Proposition 1 gives

∥∇f(xk)∥2 ≤ 4(L0 + L1 ∥∇f(xk)∥)(f(xk)− f∗) ≤ 8L1 ∥∇f(xk)∥ (f(xk)− f∗). (10)

Therefore, using the same decomposition (8) as in Case 1, applying (10) and choosing γ ≤ 1
8L1λ

,
we obtain

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2γ⟨∇f(xk), xk − x∗⟩ − 2γ⟨θk, xk − x∗⟩
+ 2γ2∥∇f(xk)∥2 + 2γ2∥θk∥2

≤ ∥xk − x∗∥2 − 2γ⟨θk, xk − x∗⟩+ 2γ2∥θk∥2

− (2γ − 16γ2L1 ∥∇f(xk)∥)(f(xk)− f∗)

≤ ∥xk − x∗∥2 − 2γ⟨θk, xk − x∗⟩+ 2γ2∥θk∥2

− (2γ − 8γ2L1λ)(f(xk)− f∗)

≤ ∥xk − x∗∥2 − 2γ⟨θk, xk − x∗⟩+ 2γ2∥θk∥2 − γ(f(xk)− f∗),
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where we use ∥∇f(xk)∥ ≤ λ
2 . Rearranging the terms, we conclude this part of the proof.

Case 3: ∥∇f(xk)∥ > λ
2 ≥ L0

L1
. Using this relation and the definition of θ̂k (see Table 2), we

decompose (7):
∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2γ⟨gk, xk − x∗⟩+ γ2∥gk∥2

≤ ∥xk − x∗∥2 − γλ

∥∇f(xk)∥
⟨∇f(xk), xk − x∗⟩ − 2γ⟨θ̂k, xk − x∗⟩+ γ2λ2. (11)

Applying the convexity of f , and then combining it with (10), one can get

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − γλ

∥∇f(xk)∥
⟨∇f(xk), xk − x∗⟩ − 2γ⟨θ̂k, xk − x∗⟩+ γ2λ2

≤ ∥xk − x∗∥2 − γλ

∥∇f(xk)∥
(f(xk)− f∗)− 2γ⟨θ̂k, xk − x∗⟩+ γ2λ2

(10)
≤ ∥xk − x∗∥2 − γλ

8L1
− 2γ⟨θ̂k, xk − x∗⟩+ γ2λ2.

Using that γ ≤ 1
16L1λ

, we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − γλ

8L1
− 2γ⟨θ̂k, xk − x∗⟩+ γ2λ2

≤ ∥xk − x∗∥2 − γλ

16L1
− 2γ⟨θ̂k, xk − x∗⟩.

This concludes the proof.

Remark 1. We note, the Case 1 does not use the fact that λ ≥ 2L0

L1
. Moreover, as will be shown

later, the proof of the main result has two possible regimes, and for each of them we will apply the
corresponding cases from Lemma 3.
Lemma 4 (Descent lemma). Suppose that Assumptions 1 and 2 hold. Then, after K iterations of
Algorithm 1, we have two possible options.

Option 1. If for all k = 0, . . . ,K − 1 the inequality ∥∇f(xk)∥ ≤ L0

L1
holds, λ > 0, and γ ≤ 1

16L0
,

then
K−1∑
k=0

γ(f(xk)− f∗) ≤ ∥x0 − x∗∥2 − ∥xK − x∗∥2 −
K−1∑
k=0

2γ⟨θk, xk − x∗⟩+
K−1∑
k=0

∥θk∥2.

Option 2. If λ ≥ 2L0

L1
and γ ≤ min

{
1

16L0
, 1
16L1λ

}
, then∑

k∈T1∪T2

γ(f(xk)− f∗) ≤ ∥x0 − x∗∥2 − ∥xK − x∗∥2 −
∑

k∈T1∪T2

2γ⟨θk, xk − x∗⟩

+
∑

k∈T1∪T2

2γ2∥θk∥2 −
∑
k∈T3

2γ⟨θ̂k, xk − x∗⟩ − γλ|T3|
16L1

,

where

T1 := T1(K) :=

{
k ∈ 0, . . . ,K − 1

∣∣∣ ∥∇f(xk)∥ ≤ L0

L1

}
,

T2 := T2(K) :=

{
k ∈ 0, . . . ,K − 1

∣∣∣λ
2
≥ ∥∇f(xk)∥ >

L0

L1

}
,

T3 := T3(K) :=

{
k ∈ 0, . . . ,K − 1

∣∣∣ ∥∇f(xk)∥ > λ

2

}
.

Proof. The final result follows directly from Lemma 3. Specifically, for the first option, we use only
Case 1 from Lemma 3, and for the second one, we apply Cases 1, 2, 3, respectively. Hence, aggre-
gating the inequalities established therein yields the desired conclusion and completes the proof.

Remark 2. It is worth noting that Lemma 4 covers the case of L1 = 0. Indeed, in this case, we have
L0/L1 = ∞, meaning that ∥∇f(xk)∥ ≤ L0/L1 is always satisfied, i.e., one can consider Option 1
only.
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B.2 PROOF OF THEOREM 1

Theorem 2 (Theorem 1). Let Assumptions 1, 2, and 3 hold. Then, after K iterations of Clip-SGD
(Algorithm 1) with

λ = max

{
2L0 min

{
4R0,

1

L1

}
, 9

1
ασK

1
α

(
ln

(
4K

δ

))− 1
α

}
, (12)

γ =
1

160λ ln
(
4K
δ

) min

{
4R0,

1

L1

}
, (13)

we have the following result.

• If 4R0 ≤ 1
L1

, then

f

(
1

K

K−1∑
k=0

xk

)
− f∗ = Õ

(
L0R

2
0

K
,

R0σ

K(α−1)/α

)
with probability at least 1− δ.

• If 4R0 ≥ 1
L1

and K = Ω

(
(L1R0)

2+α ln2( 4K
δ )

δ

)
min

k=0,...,K−1
(f(xk)− f∗) = Õ

(
max

{
L0R

2
0

K
,
L1R

2
0σ

K(α−1)/α

})
with probability at least 1− 2δ.

Proof. The main idea behind the proof lies in the careful analysis of regimes characterized by the
relationship between the initial distance to the optimum (R0) and 1

L1
. To be more precise, we

consider two different regimes: 4R0 ≤ 1/L1 and 4R0 ≥ 1/L1. Using this, we construct the proof as
follows.

Part 1. First, we decompose Lemma 4 according to the introduced regimes and define “good”
probability events Ek, implying the desired result.

Part 2. Next, we propose unified bounds for the terms from the first part, in both regimes as well.

Part 3. The third part is related to the second regime only.

Part 4. The fourth part concludes the proof, i.e., we show that P{Ek} is large enough.

Part 1: Decomposition.

Regime 1: 4R0 ≤ 1/L1. The proof for this regime closely follows the proof of Theorem E.6 from
Sadiev et al. (2023). Let us denote the probabilistic event Ek: the inequalities

−
t−1∑
l=0

2γ⟨θl, xl − x∗⟩+
t−1∑
l=0

2γ2∥θl∥2 ≤ R2
0,

Rk ≤
√
2R0

hold simultaneously for t = 0, . . . , k. We want to show via induction that P{Ek} ≥ 1− kδ
K . The case

of k = 0 is obvious. Then, let us assume that the eventET−1 with T ≤ K holds with the probability
P{ET−1} ≥ 1 − (T−1)δ

K . Also this event implies that xt ∈ B√
2R0

(x∗) for all t = 0, . . . , T − 1.
Therefore, we have that ET−1 implies

∥xT − x∗∥ = ∥xT−1 − γgT − x∗∥ ≤ ∥xT−1 − x∗∥+ γλ
(13)
≤ 2R0.
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Consequently, {xt}Tt=0 ⊆ B2R0
(x∗) follows from ET−1. Therefore, the event ET−1 implies

∥∇f(xt)∥
Prop. 2
≤ L0Rt exp (L1Rt) ≤

√
2L0R0 exp

(√
2L1R0

)
≤ 4L0R0 ≤ L0

L1
(14)

for all t = 0, . . . , T − 1. Thus, we can apply Lemma 4 (Option 1): ET−1 implies that

t−1∑
l=0

γ(f(xl)− f∗) ≤ ∥x0 − x∗∥2 − ∥xt − x∗∥2 −
t−1∑
l=0

2γ⟨θl, xl − x∗⟩+
t−1∑
l=0

2γ2∥θl∥2 (15)

holds for t = 1, . . . , T . It is worth mentioning that (12) and (13) give γ ≤ 1
16L0

. What is more,
event ET−1 implies that

t−1∑
l=0

γ(f(xl)− f∗) ≤ ∥x0 − x∗∥2 − ∥xt − x∗∥2 −
t−1∑
l=0

2γ⟨θl, xl − x∗⟩+
t−1∑
l=0

2γ2∥θl∥2 ≤ 2R2
0

for t = 1, . . . , T − 1. Moreover, the bound f(xl)− f∗ ≥ 0 with (15) leads to

R2
T ≤ R2

0 −
T−1∑
t=0

2γ⟨θt, xt − x∗⟩+
T−1∑
t=0

2γ2∥θt∥2. (16)

Next, we define random vectors

ηt =

{
xt − x∗, ∥xt − x∗∥ ≤

√
2R0,

0, otherwise,

for all t = 0, . . . , T − 1. According to the definition, ηt is bounded with probability 1:

∥ηt∥ ≤
√
2R0.

Moreover, the event ET−1 implies ∥xt − x∗∥ ≤
√
2R0 for all t = 0, . . . , T − 1. As a result, we get

ηt = xt − x∗ within this event. Now let us decompose (16) using the notation of θut , θbt and ηt:

∥xT − x∗∥2 ≤ R2
0 −

∑
t∈T1(T )∪T2(T )

2γ⟨θut , ηt⟩︸ ︷︷ ︸
①

−
∑

t∈T1(T )∪T2(T )

2γ⟨θbt , ηt⟩︸ ︷︷ ︸
②

+
∑

t∈T1(T )∪T2(T )

4γ2
[
∥θut ∥

2 − Eξt

[
∥θut ∥

2
]]

︸ ︷︷ ︸
③

+
∑

t∈T1(T )∪T2(T )

4γ2Eξt

[
∥θut ∥

2
]

︸ ︷︷ ︸
④

+
∑

t∈T1(T )∪T2(T )

4γ2
∥∥θbt∥∥2︸ ︷︷ ︸

⑤

, (17)

where we also use the definitions of T1(T ), T2(T ), and T3(T ), and the fact that in this regime
T3(T ) ≡ 0 for any T ≥ 0.

Regime 2: 4R0 ≥ 1/L1 Similarly to the first regime, let us denote the probabilistic event Ek: the
inequalities

−
∑

l∈T1(t)∪T2(t)

2γ⟨θl, xl − x∗⟩+
∑

l∈T1(t)∪T2(t)

2γ2∥θl∥2 ≤ R2
0,

−
∑

l∈T3(t)

2γ⟨θ̂l, xl − x∗⟩ ≤ γλ|T3(t)|
32L1

,

Rk ≤
√
2R0
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hold simultaneously for t = 0, . . . , k. If the first and third inequalities coincide with the previous
case, the second inequality is also necessary for our analysis. We want to show via induction that

P{Ek} ≥ 1 − kδ
K −

k∑
r=0

min{r, C1}δ0P{|T3(k)| = r}, where C1 and δ0 will be defined later.

The case of k = 0 is obvious. Then, let us assume that the event ET−1 with T ≤ K holds with

probability P{ET−1} ≥ 1 − (T−1)δ
K −

T−1∑
r=0

min{r, C1}δ0P{|T3(T − 1)| = r}. Also this event

implies that xt ∈ B√
2R0

(x∗) for all t = 0, . . . , T − 1. Therefore, we have

∥xT − x∗∥ = ∥xT−1 − γgT − x∗∥ ≤ ∥xT−1 − x∗∥+ γλ
(13)
≤ 2R0

within event ET−1. Consequently, {xt}Tt=0 ⊆ B2R0
(x∗) follows from ET−1, and we can apply

Lemma 4 (Option 2): event ET−1 implies that inequality∑
l∈T1(t)∪T2(t)

γ(f(xl)− f∗) ≤ ∥x0 − x∗∥2 − ∥xt − x∗∥2 −
∑

l∈T1(t)∪T2(t)

2γ⟨θl, xl − x∗⟩

+
∑

l∈T1(t)∪T2(t)

2γ2∥θl∥2 −
∑

l∈T3(t)

2γ⟨θ̂l, xl − x∗⟩ − γλ|T3(t)|
16L1

(18)

holds for t = 1, . . . , T . Also let us clarify that γ ≤ min
{

1
16L0

, 1
16L1λ

}
due to (13). What is more,

the event ET−1 implies that∑
l∈T1(t)∪T2(t)

γ(f(xl)− f∗) ≤ ∥x0 − x∗∥2 − ∥xt − x∗∥2 −
∑

l∈T1(t)∪T2(t)

2γ⟨θl, xl − x∗⟩

+
∑

l∈T1(t)∪T2(t)

2γ2∥θl∥2 −
∑

l∈T3(t)

2γ⟨θ̂l, xl − x∗⟩ − γλ|T3(t)|
16L1

≤ 2R2
0 −

γλ|T3(t)|
32L1

for t = 1, . . . , T − 1. Moreover, ET−1 with f(xt)− f∗ ≥ 0 implies

0 ≤ 2R2
0 −

γλ|T3(T − 1)|
32L1

⇒ |T3(T − 1)| ≤ 64 · 160(L1R0)
2 ln

(
4K

δ

)
due to (13). Therefore, the events Ek and Ek ∩ {|T3(k)| ≤ C1 := 64 · 160(L1R0)

2 ln
(
4K
δ

)
} are

equal. What is more, from (18) we have

∥xT − x∗∥2 ≤ R2 −
∑

t∈T1(T )∪T2(T )

2γ⟨θt, xt − x∗⟩+
∑

t∈T1(T )∪T2(T )

2γ2∥θt∥2

−
∑

t∈T3(T )

2γ⟨θ̂t, xt − x∗⟩ − γλ|T3(T )|
16L1

(19)

within event ET−1. Next, we define random vectors

ηt =

{
xt − x∗, ∥xt − x∗∥ ≤

√
2R0,

0, otherwise,

for all t = 0, . . . , T − 1. According to the definition, ηt is bounded with probability 1:

∥ηt∥ ≤
√
2R0.
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Moreover, the event ET−1 implies ∥xt − x∗∥ ≤
√
2R0 for all t = 0, . . . , T − 1. As a result, we get

ηt = xt − x∗ within this event. Now let us decompose (19) using the notation of θut , θbt and ηt:

R2
T ≤ R2

0 −
∑

t∈T1(T )∪T2(T )

2γ⟨θut , ηt⟩︸ ︷︷ ︸
①

−
∑

t∈T1(T )∪T2(T )

2γ⟨θbt , ηt⟩︸ ︷︷ ︸
②

+
∑

t∈T1(T )∪T2(T )

4γ2
[
∥θut ∥

2 − Eξt

[
∥θut ∥

2
]]

︸ ︷︷ ︸
③

+
∑

t∈T1(T )∪T2(T )

4γ2Eξt

[
∥θut ∥

2
]

︸ ︷︷ ︸
④

+
∑

t∈T1(T )∪T2(T )

4γ2
∥∥θbt∥∥2︸ ︷︷ ︸

⑤

−
∑

t∈T3(T )

2γ⟨θ̂t, ηt⟩︸ ︷︷ ︸
⑥

−γλ|T3(T )|
16L1

. (20)

Part 2: Bounds for ① − ⑤.

In this part of the proof, we can bound terms ① − ⑤ from (17) and (20). For Regime 1, it is worth
mentioning that event ET−1 implies

T1(T ) = {0, . . . , T − 1} (21)

due to (14). What is more, according to (12), we have

∥∇f(xt)∥ ≤ 4L0R0 ≤ λ

2

for all t = 0, . . . , T − 1 within the event ET−1. Considering the second regime (4R0 ≥ 1/L1), by
definition of Ti(T ) from Lemma 4, we have that for all t ∈ T1(T ) ∪ T2(T )

∥∇f(xt)∥ ≤ λ

2
.

Consequently, using (21) for the case 4R0 ≤ 1/L1, we will bound terms ① − ⑤ in the unified form.
To continue, we can apply Lemma 1 to obtain that

∥θut ∥ ≤ 2λ, (22)

∥∥θbt∥∥ ≤ 2ασα

λα−1
, (23)

Eξt

[
∥θut ∥

2
]
≤ 18λ2−ασα (24)

for all t ∈ T1(T ) ∪ T2(T ). Hence, we can apply (22), (23) and (24) to construct bounds for ① − ⑤.

Upper bound for ①. First of all, we have

Eξt [−2γ⟨θut , ηt⟩] = 0,

since Eξt [ · ] = Eξt [ · |ξt−1, ξt−2, . . .], Eξt [ηt] = ηt, and Eξt [θ
u
t ] = 0. Moreover,

|−2γ⟨θut , ηt⟩| ≤ 2γ ∥θut ∥ ∥ηt∥
(22)
≤ 6γλR0

(13)
≤ 3R2

0

20 ln
(
4K
δ

) = c.

What is more, let us define σ2
t = E

[
4γ2⟨θut , ηt⟩2

]
. Then, we get

σ2
t ≤ Eξt

[
4γ2∥θut ∥

2∥ηt∥2
]
≤ 8γ2R2

0Eξt

[
∥θut ∥

2
]
.

As a consequence, we can apply Bernstein’s inequality with b = R2
0

5 and G =
R4

0

100 ln( 4K
δ )

:

P

|①| > b and
∑

t∈T1(T )∪T2(T )

σ2
t ≤ G

 ≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

δ

2K
.
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Thus, we get

P

|①| ≤ b or
∑

t∈T1(T )∪T2(T )

σ2
t > G

 ≥ 1− δ

2K
.

Moreover, the event ET−1 implies∑
t∈T1(T )∪T2(T )

σ2
t ≤

∑
t∈T1(T )∪T2(T )

8γ2R2
0Eξt

[
∥θut ∥

2
] (24)
≤ 144γ2λ2−ασαR2

0(|T1(T )|+ |T2(T )|)

≤ 144γ2λ2−ασαR2
0K =

144γ2λ2σαR2
0K

λα

(12)
≤ 16γ2λ2R2

0 ln

(
4K

δ

)
(13)
≤ R4

0

100 ln
(
4K
δ

) = G.

Upper bound for ②. From the event ET−1 it follows that

−
∑

t∈T1(T )∪T2(T )

2γ⟨θbt , ηt⟩ ≤
∑

t∈T1(T )∪T2(T )

2γ
∥∥θbt∥∥ ∥ηt∥ (23)

≤ 4 · 2αγσαR0K

λα−1

=
4 · 2αγλσαR0K

λα

(12),(13)
≤ 16R2

0

360
≤ R2

0

5
.

Upper bound for ③. We bound ③ in the same way as ①. First, we get

Eξt

[
4γ2

[
∥θut ∥

2 − Eξt

[
∥θut ∥

2
]]]

= 0.

In addition, we have∣∣∣4γ2 [∥θut ∥2 − Eξt

[
∥θut ∥

2
]]∣∣∣ (22)

≤ 32γ2λ2
(12),(13)
≤ R2

0

50 ln
(
4K
δ

) = c.

Also let us define σ̂2
t = Eξt

[
16γ4

(
∥θut ∥

2 − Eξt

[
∥θut ∥

2
])2]

. Thus, one can obtain

σ̂2
t ≤ cEξt

∣∣∣4γ2 [∥θut ∥2 − Eξt

[
∥θut ∥

2
]]∣∣∣ ≤ 8cγ2Eξt

[
∥θut ∥

2
]
.

Consequently, we can apply Bernstein’s inequality with b = R2
0

5 and G =
cR2

0

100 :

P

|③| > b and
∑

t∈T1(T )∪T2(T )

σ̂2
t ≤ G

 ≤ 2 exp

(
− b2

2G+ 2cb/3

)
≤ δ

2K
.

At the same time,

P

|③| ≤ b or
∑

t∈T1(T )∪T2(T )

σ̂2
t > G

 ≥ 1− δ

2K
.

Moreover, the event ET−1 implies∑
t∈T1(T )∪T2(T )

σ̂2
t ≤

∑
t∈T1(T )∪T2(T )

8cγ2Eξt

[
∥θut ∥

2
] (24)
≤ 144cγ2λ2σαK

λα

(12)
≤ 16cγ2λ2 ln

(
4K

δ

)
(13)
≤ cR2

0

100
= G.

Upper bound for ④. From ET−1 it follows that∑
t∈T1(T )∪T2(T )

4γ2Eξt

[
∥θut ∥

2
] (24)
≤ 72γ2λ2−ασαK =

72γ2λ2σαK

λα

(12)
≤ 8γ2λ2 ln

(
4K

δ

)
(13)
≤ R2

0

200
≤ R2

0

5
.
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Upper bound for ⑤. The event ET−1 implies∑
t∈T1(T )∪T2(T )

4γ2
∥∥θbt∥∥2 (23)

≤ 4 · 22αγ2σ2αK

λ2α−2
≤ 64γ2λ2σ2αK

λ2α

(12)
≤ γ2λ2 ln2

(
4K

δ

)
(13)
≤ R2

0

5
.

Part 3: Bound of ⑥.

This part is needed only for the second regime since for the first regime |T3(T )| = 0. The main idea
lies in the careful decomposition of each term from ⑥. In the deterministic case, it was shown that
|T3| is bounded by a constant (Gorbunov et al., 2025). We aim to achieve a similar effect using just
Markov’s inequality. We start with the reformulation of each term from ⑥ with the notation of θ̂t
(see Table 2):

⟨θ̂t, ηt⟩ = min

{
1,

λ

∥∇f(xt) + ξt∥

}
⟨∇f(xt) + ξt, ηt⟩

−min

{
1,

λ

2 ∥∇f(xt)∥

}
⟨∇f(xt), ηt⟩

=

[
min

{
1,

λ

∥∇f(xt) + ξt∥

}
−min

{
1,

λ

2 ∥∇f(xt)∥

}]
⟨∇f(xt), ηt⟩

−min

{
1,

λ

∥∇f(xt) + ξt∥

}
⟨ξt, ηt⟩

=

[
min

{
1,

λ

∥∇f(xt) + ξt∥

}
− λ

2 ∥∇f(xt)∥

]
⟨∇f(xt), ηt⟩

−min

{
1,

λ

∥∇f(xt) + ξt∥

}
⟨ξt, ηt⟩, (25)

where in the last equation we use t ∈ T3(T ). Next, let us consider some B such that 0 < B ≤ λ
2 .

We have

P
{
min

{
1,

λ

∥∇f(xt) + ξt∥

}
− λ

2 ∥∇f(xt)∥
≥ 0

}
= P

{
λ ∥∇f(xk)∥

∥∇f(xt) + ξt∥
≥ λ

2

}
= P {2 ∥∇f(xk)∥ ≥ ∥∇f(xt) + ξt∥}
≥ P {2 ∥∇f(xk)∥ ≥ ∥∇f(xt)∥+ ∥ξt∥}

≥ P
{
∥ξt∥ ≤ λ

2

}
≥ P {∥ξt∥ ≤ B} ,

where we also use that ∥∇f(xk)∥ ≥ λ
2 . Moreover,

P {∥ξt∥ ≤ B} = P {∥ξt∥α ≤ Bα} ≥ 1− σα

Bα

due to the Markov’s inequality. Therefore, using (25), we obtain that

−2γ⟨θ̂t, ηt⟩ = −
[
min

{
1,

λ

∥∇f(xt) + ξt∥

}
− λ

2 ∥∇f(xt)∥

]
⟨∇f(xt), xt − x∗⟩

+ 2γmin

{
1,

λ

∥∇f(xt) + ξt∥

}
⟨ξt, xt − x∗⟩

≤ 2γ ∥ξt∥ ∥ηt∥ ,
where we use the convexity of f , identity ηt = xt − x∗ within the event ET−1, and inequality
∥ξt∥ ≤ B. What is more, the event ET−1 with ∥ξt∥ ≤ B implies

2γ ∥ξt∥ ∥ηt∥ ≤ 4γBR0.

Choosing B = λ
128L1R0

, we finally have in this case

−2γ⟨θ̂t, xt − x∗⟩ ≤ γλ

32L1
.
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Part 4: Final bound.

In this part, we combine the derived bounds and estimate the probability of ET . First, let us denote

E① =

|①| ≤ R2
0

5
or

∑
t∈T1(T )∪T2(T )

σ2
t >

R4
0

100 ln
(
4K
δ

)
 ,

E③ =

|③| ≤ R2
0

5
or

∑
t∈T1(T )∪T2(T )

σ2
t >

R4
0

5000 ln
(
4K
δ

)
 ,

EMarkov = {∥ξT−1∥ ≤ B or (T − 1) /∈ T3(T ) or |T3(T − 1)| > C1 − 1} .

According to the parts 1, 2 and 3, we obtain

P {ET−1} ≥ 1− (T − 1)δ

K
−

T−1∑
r=0

min{r, C1}P{|T3(T − 1)| = r},

P {E①} ≥ 1− δ

2K
,

P {E③} ≥ 1− δ

2K
,

P
{
EMarkov

}
≤ 128α(L1R0)

ασα

λα
· P {(T − 1) ∈ T3(T ) and |T3(T − 1)| ≤ C1 − 1}

with C1 = 64 · 160(L1R0)
2 ln

(
4K
δ

)
. Moreover, we have

1− 128α(L1R0)
ασα

λα
≥ 1−

128α(L1R0)
ασα ln

(
4K
δ

)
9σαK

= 1−
128α(L1R0)

α ln
(
4K
δ

)
9K

≥ 1− δ0,

with K ≥ 128α ln( 4K
δ )(L1R0)

α

9δ0
. Next, we consider again two possible regimes.

Regime 1: 4R0 ≤ 1/L1. Part 3 is not needed in this regime. Thus, we get that ET−1 ∩ E① ∩ E③

implies

R2
T ≤ R2

0 +
R2

0

5
+
R2

0

5
+
R2

0

5
+
R2

0

5
+
R2

0

5
= 2R2

0,

which also guarantees that the event ET holds. Thus, we get

P{ET } ≥ P{ET−1 ∩ E① ∩ E③} ≥ 1− P{ET−1} − P{E①} − P{E③} ≥ 1− Tδ

K
.

This finishes the inductive proof for 4R0 ≤ 1/L1. In particular, if T = K, EK implies

K−1∑
k=0

(f(xk)− f∗)

K
≤ 2R2

0

γK
.

Substituting (13) in the inequality above, noting that we are in the first regime (4R0 ≤ 1
L1

), and
applying Jensen’s inequality to the LHS, we conclude that

f

(
1

K

K−1∑
k=0

xk

)
− f∗ = Õ

(
max

{
L0R

2
0

K
,
R0σ

K1− 1
α

})
(26)

with probability at least 1− δ.

Regime 2: 4R0 ≥ 1
L1

. First, ET−1 with EMarkov implies

−
∑

t∈T3(T )

2γ⟨θ̂t, ηt⟩ = −
∑

t∈T3(T−1)

2γ⟨θ̂t, ηt⟩ − 2γ⟨θ̂T−1, ηT−1⟩I {T − 1 ∈ T3(T )} ≤ γλ|T3(T )|
32L1

,

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

where we also use that T3(T −1) ⊆ T3(T ). Hence, the probability eventET−1∩E①∩E③∩EMarkov
implies

R2
T ≤ R2

0 +R2
0 −

γλ|T3(T )|
32L1

,

which also guarantees that the event ET holds. Thus, we get

P{ET } ≥ P{ET−1 ∩ E① ∩ E③ ∩ EMarkov} ≥ 1− P{ET−1} − P{E①} − P{E③} − P{EMarkov}

≥ 1− Tδ

K
−

T−1∑
r=0

min{r, C1}δ0P{|T3(T − 1)| = r}

− δ0P{T − 1 ∈ T3(T ) and |T3(T − 1)| ≤ C1 − 1},

where the last term comes from the event EMarkov. Next, let us consider the last two terms in the
RHS of the inequality above. First, we introduce events

X := {T − 1 ∈ T3(T ) and |T3(T − 1)| ≤ C1 − 1},
Y := {T − 1 ∈ T3(T ) and |T3(T − 1)| ≥ C1},
Z := {T − 1 /∈ T3(T )}.

Therefore, we get

P{|T3(T − 1)| = r} = P{|T3(T − 1)| = r|X}P{X}
+ P{|T3(T − 1)| = r|Y }P{Y }
+ P{|T3(T − 1)| = r|Z}P{Z}

and

P{T − 1 ∈ T3(T ) and |T3(T − 1)| ≤ C1 − 1} = P{T − 1 ∈ T3(T ) and |T3(T − 1)| ≤ C1 − 1|X}P{X}
+ P{T − 1 ∈ T3(T ) and |T3(T − 1)| ≤ C1 − 1|Y }P{Y }
+ P{T − 1 ∈ T3(T ) and |T3(T − 1)| ≤ C1 − 1|Z}P{Z}.

Next, we consider conditional probabilities with respect to X,Y, Z. According to the definition of
X , we have

T−1∑
r=0

min{r, C1}δ0P{|T3(T − 1)| = r|X}+ δ0P{T − 1 ∈ T3(T ) and |T3(T − 1)| ≤ C1 − 1|X}

=

C1−1∑
r=0

rδ0P{|T3(T − 1)| = r|X}+ δ0

=

C1−1∑
r=0

rδ0P{|T3(T )| = r + 1|X}+ δ0,

where the first equation comes from P{|T3(T − 1)| = r|X} = 0 for all r = C1, . . . T − 1, and the
second equation holds due to P{A|B} = P{A ∩B|B}. What is more,

C1−1∑
r=0

P{|T3(T )| = r + 1|X} = 1
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since |T3(T )| with respect to X can be equal only to 1, . . . , C1. Thus, we get

T−1∑
r=0

min{r, C1}δ0P{|T3(T − 1)| = r|X}+ δ0P{T − 1 ∈ T3(T ) and |T3(T − 1)| ≤ C1 − 1|X}

=

C1−1∑
r=0

rδ0P{|T3(T )| = r + 1|X}+ δ0

=

C1−1∑
r=0

rδ0P{|T3(T )| = r + 1|X}+
C1−1∑
r=0

δ0P{|T3(T )| = r + 1|X}

=

C1−1∑
r=0

(r + 1)δ0P{|T3(T )| = r + 1|X}

=

C1∑
r=1

rδ0P{|T3(T )| = r|X}

=

T∑
r=0

min{r, C1}δ0P{|T3(T )| = r|X}, (27)

where in the last equation we add extra zeros for r = 0 and r ≥ C1 + 1. For event Y , we obtain

T−1∑
r=0

min{r, C1}δ0P{|T3(T − 1)| = r|Y }+ δ0P{T − 1 ∈ T3(T ) and |T3(T − 1)| ≤ C1 − 1|Y }

=

T−1∑
r=C1

C1δ0P{|T3(T − 1)| = r|Y }

=

T−1∑
r=C1

C1δ0P{|T3(T )| = r + 1|Y },

where in the first equation we apply the notation of Y , and in the second inequality we use that
P{A|B} = P{A ∩B|B}. Consequently, we get

T−1∑
r=0

min{r, C1}δ0P{|T3(T − 1)| = r|Y }+ δ0P{T − 1 ∈ T3(T ) and |T3(T − 1)| ≤ C1 − 1|Y }

=

T−1∑
r=C1

C1δ0P{|T3(T )| = r + 1|Y }

=

T∑
r=C1+1

C1δ0P{|T3(T )| = r|Y }

=

T∑
r=0

min{r, C1}δ0P{|T3(T )| = r|Y }, (28)
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where we add extra zeros for r = 0, . . . , C1. For event Z, we get

T−1∑
r=0

min{r, C1}δ0P{|T3(T − 1)| = r|Z}+ δ0P{T − 1 ∈ T3(T ) and |T3(T − 1)| ≤ C1 − 1|Z}

=

T−1∑
r=0

min{r, C1}δ0P{|T3(T − 1)| = r|Z}

=

T−1∑
r=0

min{r, C1}δ0P{|T3(T )| = r|Z}

=

T∑
r=0

min{r, C1}δ0P{|T3(T )| = r|Z}, (29)

where in the first equation we use the notation of Z, in the second one we use P{A|B} = P{A ∩
B|B}, and in the last equation we add P{|T3(T )| = T |Z}, which is equal to 0. Multiplying (27),
(28) and (29) by P{X},P{Y },P{Z}, respectively, and summing up, we derive

T−1∑
r=0

min{r, C1}δ0P{|T3(T − 1)| = r}+ δ0P{T − 1 ∈ T3(T ) and |T3(T − 1)| ≤ C1 − 1}

=

T∑
r=0

min{r, C1}δ0P{|T3(T )| = r}.

As a result, we have

P{ET } ≥ 1− Tδ

K
−

T∑
r=0

min{r, C1}δ0P{|T3(T )| = r}.

This concludes the inductive proof. In particular, taking δ0 := δ
C1

and

K ≥
128α ln

(
4K
δ

)
(L1R0)

α

9δ0
= C1·

128α ln
(
4K
δ

)
(L1R0)

α

9δ
= 64·128α·160

(L1R0)
2+α ln2

(
4K
δ

)
δ

,

we get that

P{EK} ≥ 1− δ −
T∑

r=0

min{r, C1}δ0P{|T3(K)| = r} ≥ 1− δ − C1δ0 = 1− 2δ.

In particular, EK implies

R2
K ≤ 2R2

0 −
γλ|T3(K)|

32L1
.

What is more, we have ∑
k∈T1(K)∪T2(K)

γ(f(xk)− f∗) ≤ 2R2
0 −

γλ|T3(K)|
32L1

.

Therefore, we get

1

K − |T3(K)|
∑

k∈T1(K)∪T2(K)

γ(f(xk)− f∗) ≤ 2R2
0

K − |T3(K)|
− γλ|T3(K)|

32L1(K − |T3(K)|)
.

Considering the RHS, it can be shown that it is the decreasing function of |T3(K)|. Indeed, denoting

ϕ(x) =
2R2

0

K − x
− γλx

32L1(K − x)
,
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one can obtain

ϕ′(x) =
2R2

0

(K − x)2
− γλK

32L1(K − x)2
≤ 0

due to the lower bound on K. Consequently, we get

1

K − |T3(K)|
∑

k∈T1(K)∪T2(K)

γ(f(xk)− f∗) ≤ 2R2
0

K
.

Dividing both sides by γ, substituting (13), and lower bounding the LHS, we obtain that

min
k=0,...,K−1

(f(xk)− f∗) = Õ
(
max

{
L0R

2
0

K
,
L1R

2
0σ

K
α−1
α

})
(30)

with K = Ω

(
(L1R0)

2+α ln2( 4K
δ )

δ

)
holds with probability at least 1− 2δ. Combining (26) and (30),

we finish the proof.
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C FROM THE BEST ITERATE TO A SINGLE IMPLEMENTABLE ITERATE

In Theorem 1 we state a bound for the best iterate over the “good” indices JK := T1(K) ∪ T2(K).
This appendix shows that one can select a single, fully implementable iterate with (essentially) the
same rate by sampling onlym = ⌈log(1/δ)⌉ uniformly random candidates from the run and picking
the one with the smallest robust mini-batch estimate of f .

Selection rule. Run CLIP-SGD for K steps with the same (λ, γ) as in Theorem 1. After that, do:

1. Sample m = ⌈log(1/δ)⌉ indices independently and uniformly: τ1, . . . , τm ∼
Unif{0, 1, . . . ,K − 1}.

2. For each i ∈ {1, . . . ,m}, form a robust mini-batch estimate f̂i of f(xτi) using B fresh
i.i.d. samples {ξi,b}Bb=1, independent of the training randomness, and any robust mean es-
timator valid under finite α-moment noise (e.g., median-of-means or Catoni (Lugosi and
Mendelson, 2019)).

3. Output τ̂ ∈ argmini=1,...,m f̂i and return xτ̂ .

In order to show that the robust mean properly approximates the true function value, we introduce
an additional assumption (needed only for this section).

Assumption 4 (Loss α-moment). Let α ∈ (1, 2] be the same as in Assumption 3. There exists
σf > 0 such that for all x ∈ Rd,

Eξ

[ ∣∣f(x, ξ)− f(x)
∣∣α ] ≤ σα

f ,

where the samples {ξi,b} used to compute f̂i are drawn i.i.d. from the same distribution as in (1)
and independently of the training process.

Theorem 3 (Single implementable iterate via randomization and robust evaluation). Suppose As-
sumptions 1-4 hold. Run CLIP-SGD forK steps with the (λ, γ) of Theorem 1. Letm = ⌈log(1/δ)⌉.
There exists a constant Cα > 0 (depending only on α and the chosen robust mean) such that if

B ≥ Cα

(σf
A

) α
α−1

log
m

δ
, where A :=

2R2
0

γK
,

then with probability at least 1− 3δ − C1 log(1/δ)

K
we have

f(xτ̂ )− f⋆ ≤ 3A.

In particular, substituting the choices of (λ, γ) from Theorem 1 yields

f(xτ̂ )− f⋆ ≤ Õ
(
max

{
L0R

2
0

K
,

L1R
2
0 σ

K(α−1)/α

})
.

Moreover, recalling C1 = Θ
(
(L1R0)

2 log(4K/δ)
)

from Appendix B and the lower bound on K in
the large-radius regime, the success probability is at least 1− 4δ.

Proof sketch. Let JK := T1(K) ∪ T2(K). Appendix B shows that on the “good” event EK (which
holds with probability at least 1− 2δ),

1

K − |T3(K)|
∑
k∈JK

γ (f(xk)− f⋆) ≤ 2R2
0

K
, (31)

and |T3(K)| ≤ C1. Conditioning on EK , draw τ1, . . . , τm uniformly. With probability at least
1−mC1

K all τi ∈ JK . Equation (31) implies E[f(xτi)−f⋆] ≤ A := 2R2
0/(γK) for any τi ∈ JK , and

by Markov, Pr
(
mini f(xτi)−f⋆ ≤ 2A | EK

)
≥ 1− δ for m = ⌈log(1/δ)⌉. Under Assumption 4,

robust mean estimation over B fresh samples gives maxi |f̂i − f(xτi)| ≤ εB with probability at
least 1 − δ, where εB ≤ Cασf

( log(m/δ)
B

)1−1/α
. Choosing B as in the statement ensures εB ≤ A,

hence f(xτ̂ ) ≤ mini f(xτi) +A ≤ 3A. A union bound completes the proof.
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Remarks. (i) The validation does not modify optimization process; it adds only mB =
Õ
(
(σf/A)

α
α−1 log2 1

δ

)
extra stochastic loss evaluations. For α = 2, this reduces to the familiar

B = Θ
(
(σf/A)

2 log(m/δ)
)
. (ii) Assumption 4 is the loss-level analogue of Assumption 3 and is

used only in this section to justify robust estimation of f(x); all main theorems and proofs in the
body remain unchanged. (iii) When L1 = 0 or K is much larger than the lower bound of Theorem 1
(large-radius case), the success probability simplifies to at least 1− 4δ.
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D NUMERICAL EXPERIMENTS

In this section, we present the results of numerical experiments on a toy example. As the convex
function satisfying Assumption 2, we chose the one-dimensional function f(x) = ∥x∥42, for which
L0 and L1 are known: L0 = 4 and L1 = 3, respectively. In order for the simulated stochastic
gradient to satisfy Assumption 3, we, in turn, model the Clip-SGD iteration as follows:

xk+1 = xk − γclip(∇f(xk) + s · ξk, λ),
where

• γ denotes the stepsize parameter;
• λ denotes the clipping threshold;
• ξk is a random variable generated from Lévy α-stable distribution with parameters 1.1 and
0, which guarantees that Assumption 3 holds;

• s is the scaling parameter of the stochasticity.

D.1 WHICH TYPE OF CLIPPING PREVAILS DEPENDING ON THE LEVEL OF STOCHASTICITY?

The goal of the subsequent experiment is to track the more favorable clipping level depending on
the stochasticity. That is, depending on whether parameter s is large or small, we want to observe
what clipping level is required for better convergence.

The baseline choice of the stepsize and clipping for (L0, L1)-smoothness in the deterministic case
is given by the following values:

γ = 1/L0 = 0.25; λ = L0/L1 = 1.33. (32)
For the stochastic case, we selected empirical parameters similar to the dependence given in Theo-
rem 1, without taking the scaling factor into account:

γ = 0.0003; λ = 80. (33)
Remark 3. Regarding (33), the stepsize parameter γ was chosen to be approximately theoretical;
however, the clipping level was not – we considered several clipping levels, including the theoretical
one, and selected the best. This does not contradict the theory, since the theoretical threshold λ from
Theorem 1 is chosen for an entire class of problems rather than for a specific problem.

To demonstrate the trade-off between the deterministic and stochastic options for parameter selec-
tion, we consider two cases: s = 0.01 is the case with a low stochastic effect, and s = 1000 is the
case with a high level of randomness. Results are provided below (see Fig. 1 and 2).

Figure 1: 100 runs of Clip-SGD with the low scale level
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Figure 2: 100 runs of Clip-SGD with the high scale level

The experiment is designed as follows. We consider two parameter-selection cases: (32) correspond-
ing to the deterministic setting, and (33) to the stochastic one. For each option, we run the Clip-SGD
algorithm 100 times with 30k iterations, and the plots show medians of the runs (bold line), as well
as the 5th and 95th percentiles (the boundaries of the shaded region of the corresponding color).

As we can observe, in the case of a small scaling factor s (Fig. 1), the main issue is the general-
ized smoothness, since the effect of such stochasticity is negligible compared to the region of large
gradients. At the same time, with a large scaling factor s (Fig. 2), the stochasticity substantially
complicates the problem, and its contribution to determining the length direction (since we consider
one-dimentional problem) becomes stronger than the effect of the generalized smoothness.

As a result, this experiment confirms that there is a trade-off between the level of stochasticity and
the region of large gradients. Thus, we have validated the importance of the problem addressed in
our work and this is exactly demonstrated in Theorem 1.

D.2 STANDARD CLIPPING VS INDEPENDENT SAMPLES FROM GAASH ET AL. (2025)

The next experiment compares the classical Clip-SGD with Clip-SGD using independent sampling
for normalization and direction, as studied in Gaash et al. (2025). For clarity, we again examine
different levels of stochastic scaling s with the same choice of parameters (33). The design of the
experiment remains the same as the previous one. Recall that in Gaash et al. (2025), the iteration
is as shown in Algorithm 2. To model such behavior of the method, we consider the following
iteration:

xk+1 = xk − γck(∇f(xk) + s · ξk); ck = min

{
1,

λ

∥∇f(xk) + s · ηk∥

}
,

where ξk and ηk are independent random variables from Lévy α-stable distribution.

To compare these algorithms, we present convergence plots for s = 0.01 and s = 1000, respectively.
As we can see, at a low level of stochasticity (Fig. 3), the algorithms behave almost identically, which
is natural – in this case, the main role of clipping is to handle generalized smoothness; moreover,
the stochastic gradient is very similar to the true one. Nevertheless, at a high level of stochasticity
(Fig. 4), we observe that the independent sampling from Gaash et al. (2025) behaves very unstably
due to the absence of noise normalization of ξk, which strongly affects the final magnitude of the
direction.
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Figure 3: 100 runs of Clip-SGD and Clip-SGD with independent sampling for low scale level

Figure 4: 100 runs of Clip-SGD and Clip-SGD with independent sampling for high scale level

This part of the experiments serves as direct confirmation of our reasoning in Section 5.1: clipping
based on independent sampling can be a good option only in the case of light-tailed stochasticity,
since the effect of noise on the true gradient becomes negligible. This means that the main role
of clipping in Gaash et al. (2025) is to handle only (L0, L1)-smoothness. At the same time, the
standard clipping can provide strong theoretical guarantees and practical significance, as this variant
of gradient truncation is significantly more robust, even for toy examples.
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