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ABSTRACT

Alignment of Large Language Models (LLMs) intends to make LLMs behave to
satisfy human preferences and values. Widely used methods, e.g., Reinforcement
Learning from Human Feedback (RLHF), usually involve the additional training
of LLMs with a reward model or the dataset reflecting human preferences. How-
ever, these training-based methods cannot quickly adapt to different preferences.
Recent methods leverage search during the decoding process to align LLMs with
preferences. However, these methods ignore the influence of prompts on the de-
coding distribution, thus hindering the performance. In this work, we propose
HCFR, a Hierarchical Coarse-to-Fine Refinement for efficient LLM alignment.
Specifically, HCFR includes a two-stage refinement: i) coarse refinement which
rephrases the prompts from users through self-refinement, and ii) fine refinement
which leverages the search methods, e.g., Monte Carlo Tree Search (MCTS), for
the responses with the guidance of a pre-trained reward model. Experimental re-
sults on HH-RLHF and UltraChat demonstrate that HCFR can significantly out-
perform existing methods, e.g., ARGS, CARDS, and Rejection sampling, in terms
of performance and efficiency, i.e., achieving a 71.3% win-tie rate in GPT-4 eval-
uations while reducing time consumption by 42%.

1 INTRODUCTION

Large language models (LLMs) have demonstrated exceptional capabilities in various natural lan-
guage processing tasks (Wei et al., 2022a; Bubeck et al., 2023; Touvron et al., 2023). Considering
their potential for broad societal impact, it is crucial that responses generated by LLMs align with
human preferences, such as being harmless, precise, and conforming to social norms and morals
(Weidinger et al., 2021; Ganguli et al., 2022; Deshpande et al., 2023). Preference alignment has
emerged as a critical area of study (Leike et al., 2018; Dai et al., 2023), aiming to ensure that LLMs
generate texts aligned with human preferences. Techniques such as Reinforcement Learning from
Human Feedback (RLHF) have shown promising performance in improving the alignment of LLM
outputs (Ouyang et al., 2022; Bai et al., 2022b). However, aligning LLMs through fine-tuning meth-
ods poses significant challenges (Casper et al., 2023; Zheng et al., 2023b). Gradient-based updates
over billions of parameters in large models demand immense computational resources. Moreover,
when new alignment requirements arise, it becomes difficult to rapidly adjust the model’s output to
align with these new preferences (Kaplan et al., 2020; Minaee et al., 2024).

To address the mentioned challenges in alignment via fine-tuning, alignment via decoding has re-
cently emerged as a promising solution (Khanov et al., 2024; Deng & Raffel, 2023). The objective
of alignment via decoding is to iteratively refine the decoding distribution of LLMs to generate
responses aligned with human preferences without parameter updates. Specifically, it employs an
outcome-based reward model trained on preference data to evaluate the value of tokens or seman-
tic segments sampled during the decoding process. By selecting optimal tokens or segments, the
method gradually refines the decoding distribution (Bai et al., 2022a; Wang et al., 2024d; Li et al.,
2024; Khanov et al., 2024). Alignment via decoding reformulates the alignment task as a distribu-
tion refinement process guided by the reward model. When new preferences need to be aligned,
only the reward model requires modification, which is rapid and resource-efficient (Mudgal et al.,
2023; Wang et al., 2024a).
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Figure 1: Illustration of HCFR behav-
ior in the decoding distribution space.
HCFR first modifies the distribution
by refining the user input prompt, fol-
lowed by further fine-grained adjust-
ments through fine-tuning refinements.

Although alignment via decoding has shown promising
performance, a fundamental challenge persists in effi-
ciently and accurately modifying the decoding distribu-
tion. First, due to the limitations of the outcome-based
reward model in accurately estimating the value of in-
complete responses (Touvron et al., 2023; Lightman et al.,
2023), resulting in approximate token or segment val-
ues often leads to suboptimal token selection even af-
ter sampling and evaluating a large number of candi-
dates. Second, current approaches rely solely on user
input prompts for distribution refinement. However, in-
herent discrepancies between human queries and LLM
interpretations introduce ambiguity and cognitive biases,
making prompt-based refinement ineffective (Hao et al.,
2023; Guo et al., 2023; Sahoo et al., 2024). This results
in a constrained alignment process and diminishes effi-
ciency. Consequently, methods like ARGS and CARDS
result in an inefficient and suboptimal decoding process
that increases computational overhead without consis-
tently aligning with human preferences.

In this paper, we propose Hierarchical Coarse-to-Fine
Refinement (HCFR), a novel decoding-time alignment
method that simultaneously considers both the prompt and the response to alignment via decod-
ing. As illustrated in Figure 1, HCFR begins with a high-level stage that rephrases the user input
prompt into a structured and precise goal representation, effectively performing a coarse refinement
of the decoding distribution. This refined prompt then serves as the basis for subsequent fine-grained
adjustment at the response level. Importantly, both the coarse and fine-grained stages estimate the
value of each refined prompt and response segment through the evaluation of the entire generated re-
sponse. This hierarchical refinement framework significantly improves the efficiency and precision
of the alignment process, achieving a better balance between computational cost and performance.
Our contributions are threefold: (1) Coarse Refinement: HCFR leverages the self-refinement capa-
bilities of Large Language Models (LLMs) to rephrase the user input prompt, thereby setting a new
goal to guide the subsequent fine refinement process. (2) Fine Refinement: In the fine refinement
stage, inspired by tree search techniques (Silver et al., 2017; Feng et al., 2023), HCFR samples and
approximates the value of response segments by rolling out complete responses and assessing their
reward scores. Through iterative selection of optimal segments, HCFR continuously refines the
distribution until a complete response is generated. (3) Experimental Evaluation: Our method out-
performs multiple decoding-time alignment methods across various tasks and models. Compared
to state-of-the-art methods like CARDS, it achieves a 69.3% win-tie rate in GPT-4 evaluations.
Notably, as the computational budget increases, our method’s performance continues to improve,
demonstrating strong scalability, while other methods plateau or decline.

2 PRELIMINARIES

2.1 BACKGROUND OF ALIGNMENT VIA DECODING

Table 1: Comparison of Methods Across Dif-
ferent Modules

Method Reward
Model

Self
Evaluation

Complete
Reward

Prompt
Refinement

RAIN ✗ ✓ ✗ ✗
Rejection sampling ✓ ✗ ✓ ✗
ARGS ✓ ✗ ✗ ✗
CARDS ✓ ✗ ✗ ✗
BFS-V ✓ ✗ ✗ ✗
HCFR ✓ ✗ ✓ ✓

Considering an LLM as an auto-regressive model
with a decoding distribution p(y|x), where y is the
response and x is the prompt. A base LLM with-
out alignment is trained on a large-scale dataset D0

with the objective of maximizing the likelihood:∏L
l=1 p(yl|y<l, x), where L is the response length.

The goal is to ensure that the generated response is
both informative and coherent relative to the prompt
according to the statistics of the training dataset D0,
i.e., imitating the ground-truth prompt-response mode in D0 without considering any specific pref-
erence (Yang, 2019; Brown, 2020; Black et al., 2022).
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Figure 2: Comparison of Rejection sampling, CARDS and HCFR: Our method first obtains a
rephrased prompt through upper-level Coarse Refinement, which quickly narrows down the search
space. Then, it proceeds with lower-level Fine Refinement. Both prompts and segment values are
approximated as the reward of the complete response after rollout. The hierarchical generation
strategy provides a better mitigation of the trade-off between performance and computational cost
(Section 4.2), while maintaining excellent scalability (Section 4.3).

To align an LLM to specific preference, we could construct an additional preference dataset Dr and
use a following alignment method like RLHF to achieve this goal. Recently, alignment via decoding
has garnered increasing attention, which focuses on modifying the decoding distribution during the
decoding, allowing for flexible adjustment of preferences to achieve better alignment outcomes.

Specifically, given a user input prompt x, the target decoding distribution pt can be expressed as:

pt(y|x) =
L−k∏
l=1

pt (yl:l+k|y<l, x) (1)

where k represents the length of the iteratively generated segment, ranging from 1 to L − 1. Ac-
cording to (Li et al., 2024; Zhao et al., 2024) , the target distribution pt(y|x) can be approximated
by sampling segment candidates from p(y|x):

pt (yl:l+k|y<l, x) ∝ p (yl:l+k|y<l, x) · exp {V (x, y≤l+k;R)} , (2)

where V is a value function used to evaluate the value of the incomplete response y<l+k with a
reward model R trained on the preference dataset. ARGS (Khanov et al., 2024) is the first approach
to alignment via decoding. It combines a language model (LM) and a reward model to approximate
the value function. ARGS sets the segment length k = 1, which means it evaluates the top-k
candidate tokens’ value at each decoding step:

pargs(y|x) =
L∏

l=1

p(yjl:l+1|y<l, x), j = argmax
i∈top-k

[p(yil:l+1|x) + w ·R(x, y<l ⊕ yil:l+1)], (3)

where R is the reward function and w is a weighting parameter. However, evaluating the value of
tokens based on single-token reward scores may not be accurate. To address this, CARDS (Li et al.,
2024) proposes using longer semantic segments for iterative generation. It also uses a reward model
to approximate the value function:

pcards(y|x) =
L−k∏
l=1

p(yjl:l+k|y<l, x), j = argmax
i∈top-k

R(x, y<l ⊕ yil:l+k). (4)

In addition to these two representative alignment methods through decoding, we discuss more related
works in Section 5 and we illustrate their differences in Table 1 and Figure 2.

2.2 RETHINKING FROM A PERSPECTIVE OF MUTUAL INFORMATION

Given that these methods are typically heuristic, it is essential to identify a unified framework for
analyzing and evaluating the performance of various alignment techniques. Therefore, we propose to
rethink the alignment with a perspective of mutual information (Cover, 1999). The informativeness

3
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of a response y given a prompt x can be quantified by the volume of mutual information, which can
be expressed as:

I(x, y) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
∝

∑
x

∑
y

p(y|x) log p(y|x). (5)

Now, in the presence of a reward model R(x, y), which reflects specific human preferences and
is learned from a preference dataset Dr, we hope the decoding distribution p(y|x) could align to
these preferences, i.e., imitating the preferred prompt-response mode in Dr. Typically, the reward
model is outcome-based, providing a reward based on the final step of the response (Ramé et al.,
2024; Wang et al., 2024d; Cai et al., 2024). The alignment process can be framed as maximizing the
mutual information under the measurement of the reward model R. This reward model R(p(y|x))
essentially becomes a proxy for the joint distribution between x and y, capturing the quality of the
generated response in alignment with human preferences, i.e.,

R(p(y|x)) =
L∏

l=1

Ep(yl|y<l,x)V (x, y≤l;R), (6)

where V (x, y≤l) is the true value assessing the current generated partial response y1:l’s contribution
to aligning the whole response to the preference of the reward model R. Though the true value for
an incomplete response could be hard to acquire given the current open-source reward models, we
will propose an approximation method for it, which will be discussed in the following section. Thus,
the alignment process is aimed at maximizing this reward-proxy mutual information, transforming
Equation (5) into

IpR(x, y) ∝
∑
x

∑
y

R(p(y|x)) logR(p(y|x)). (7)

3 HIERARCHICAL COARSE-TO-FINE REFINEMENT

To increase the reward-proxy mutual information in Equation (7) for better alignment, we derive
a novel HCFR paradigm by modifying the decoding distribution p(y|x) from perspectives of both
prompt x and response y in Section 3.1. Then, in Section 3.2, we will introduce the practical
implementation methods for coarse refinement on prompt x and fine refinement on response y.

3.1 DERIVATION OF HCFR

According to Equation (7), a straightforward approach to achieve better alignment performance, i.e.,
high reward-proxy mutual information IpR(x, y), is to modify the decoding distribution p(y|x). Our
HCFR method derives from this insight by modifying the decoding distribution from two perspec-
tives: coarse refinement on prompt x and fine refinement on response y.

The latter is receiving increasing attention in current alignment research, such as ARGS and
CARDS, with different implementations on the value function V (y≤l, x;R) as discussed in Equa-
tion (3) and Equation (4). To elaborate, these methods modify the decoding distribution p(y|x) to
py(y|x), leading to higher reward-proxy mutual information by

R(py(y|x)) =
L−k∏
l=1

max
i

V (yi
l:l+k, y<l, x;R) >

L−k∏
l=1

Ep(yi
l:l+k

|y<l,x)
V (yi

l:l+k, y<l, x;R) = R(p(y|x)).

Thus, these methods could achieve higher alignment performance as Ipy

R (x, yref) > IpR(x, y). How-
ever, during decoding, fine response refinement presents a significant challenge in estimating the
value function, particularly when balancing computational efficiency and response quality. Existing
methods typically maximize the value segment of length 1 or k at each step with the user input
prompt xuser, which could be inaccurate. Thus, we propose a Monte Carlo Tree Search (MCTS)
inspired method to approximate the value function V in Section 3.2.

Coarse refinement on the prompt is relatively neglected in the alignment research, but we highlight
its huge potential in modifying the decoding distribution for better alignment, leading to a new
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hierarchical refinement paradigm. Intuitively, the misunderstandings between humans and LLMs
can lead to responses that do not accurately reflect the true intent of the question, especially when
based on ambiguous or poorly phrased prompts (Allen-Zhu & Li, 2023; Deng et al., 2023). This
implies that for a given prompt x, there exists a refined prompt xref such that IpR(xref, y) ≥ IpR(x, y).
With this in mind, we start to theoretically analyze how we can distill this insight into the decoding
distribution for better alignment, i.e., Ipx

R (x, y) ≥ IpR(x, y). We introduce an additional variable
xref representing the refined prompt, then we have p(y|x) = Ep(xref|x)p(y|xref). With a prompt
refinement, we could get its modified decoding distribution

px(y|x) =
∫
xref

p(y|xref)δ(xref − xj
ref|x) = p(y|xj

ref), j = argmax
i

V (xi
ref, y;R). (8)

Thus, we could have Ipx

R (x, y) ≥ IpR(x, y) by

R(px(y|x)) =
L∏

l=1

Ep(yl|y≤l,x) max
i

V (y≤l, x
i
ref;R) >

L∏
l=1

Ep(yl|y≤l,x)Ep(xi
ref|x)

V (y≤l, x
i
ref;R) = R(p(y|x)).

Finally, we propose a hierarchical coarse-to-fine refinement strategy: first, a coarse refinement is
performed by rephrasing the prompt to adjust the decoding distribution and reduce the search space;
then, a more fine-grained search on the response is conducted based on a refined prompt. Building
upon HCFR, we can effectively modify the decoding distribution to achieve better mutual informa-
tion between the generated response y and user prompt x:

IHCFR
R (x, y) > Ipx

R (x, y) and Ipy

R (x, y) > IpR(x, y). (9)

3.2 PRACTICAL IMPLEMENTATION FOR HCFR

Algorithm 1 Hierarchical Coarse-to-Fine Refinement (HCFR)

1: for i = 1 to Q do xi
ref ∼ p(·|xuser, I) ▷ Coarse Refinement

2: end for
3: x∗

ref ← maxxi
ref
R(xi

ref, y|xi
ref), yl=0 ← ∅

4: while ⟨EOS⟩ /∈ y<l do ▷ Fine Refinement
5: Sample M segment candidates yl:l+k

6: y∗l:l+k ← maxi∈top-M R(yl+k+1:L|yi≤l+k, y
i
≤l+k, x

∗
ref)

7: Update state y∗l ← [y<l, y
∗
l:l+k]

8: end while
9: Return final response yfinal ← y<l

Coarse Refinement. As dis-
cussed previously, the first stage
of our method involves coarsely
modifying the decoding distri-
bution p(y|x) by refining the
user input prompt to effectively
reduce the search space. How-
ever, given that the input prompt
is a continuous, semantically
rich sequence, it is challenging
to modify the prompt and accu-
rately evaluate the value of the
refined prompt xref. To address
these challenges, we adopt a common and efficient self-refinement strategy to optimize the input
prompts (Deng et al., 2023). Specifically, this approach leverages the natural language understand-
ing capabilities of large language models (LLMs) to intelligently edit and reframe the given input
prompt, reducing ambiguity and contextualizing information to match the desired objective. Given
a user-provided prompt, xuser, we query the LLM Q times, generating a set of Q refined prompts,
denoted as xi

ref ∈ Xref. The distribution of these refined prompts is defined as p(xi
ref|xuser, I), where

I represents the refinement instructions that can be tailored to align with specific preferences as
discussed in Appendix A.2.

After obtaining multiple refined prompts, denoted as Xref, directly calculating the mutual informa-
tion based on Equation (7) step by step is computationally costly. Instead, since the effect of a
refined prompt on the distribution can be approximated by its generated response, denoted as y|xref,
we consider an alternative evaluation. Specifically, the mutual information term Ipx

R (x, y) is pro-
portional to the reward R(xref, y|xref). Thus, we sample complete responses for each refined prompt
and use these samples to estimate the value V (xi

ref, y) of each prompt. We then select the target
refined prompt x∗

ref by maximizing the reward score, formulated as:

max
xi

ref

V (xi
ref, y) ≈ max

xi
ref

R(xi
ref, y|xi

ref). (10)

Thus, the decoding distribution of the response after coarse refinement is expressed as:

px(y|x) = p(y|x∗
ref) =

∏L−k

l=1
p (yl:l+k|y<l, x

∗
ref) , x∗

ref = max
i∈top-Q

R(xi
ref, y|xi

ref). (11)
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Fine Refinement. While the coarse refinement phase macroscopically modifies the distribution
to enhance response quality, applying fine refinement enables a more precise generation of high-
reward responses based on the selected refined prompt x∗

ref. Specifically, the goal of fine refinement
is to iteratively generate a better response yalign that aligns with human preferences represented
by the reward model. The target distribution of the fine refinement for sampling a new segment
pt (yl:l+k|y<l, x) is proportional to V (x, y<l+k) according to Equation (2). We iteratively maximize
the value for each segment to generate an improved response. Methods like ARGS (Khanov et al.,
2024) and CARDS (Li et al., 2024) directly use a reward model to approximate the value with an
incomplete response y≤l+k. However, since the reward model is trained on complete responses,
it can lead to inaccurate estimations of segment values. Inspired by the Monte Carlo Tree Search
method (Silver et al., 2017) and its recent applications in planning with an LLM (Hao et al., 2023),
for each segment yil:l+k, we can rollout a complete response, denoted as yl+k+1:L|yi≤l+k, and
calculate the reward as an approximation of the segment value, which provides a more accurate
basis for further search, i.e.,

V (yil:l+k, x;R) ≈ R(x∗
ref, y

i
≤l+k ⊕ yl+k+1:L|yi≤l+k). (12)

Finally, the decoding distribution after the further fine refinement process is expressed as:

py(yalign|x∗
ref) =

∏L−k

l=1
p(yj

l:l+k|y<l, x
∗
ref), j = argmax

i∈top-M
R(x∗

ref, y
i
≤l+k ⊕ yl+k+1:L|yi

≤l+k). (13)

For a better understanding of our implementation of HCFR, we provide the details in Algorithm 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Decoding Settings. We conduct our experiments using two variants of the Llama3
model (Dubey et al., 2024). The first variant, Llama3-SFT 1, is fine-tuned but has not undergone
alignment to human preferences. The second variant, Llama3-DPO 2, is fine-tuned using the Direct
Preference Optimization (DPO) method to better align its outputs with human preferences. In all
experiments, we employ the same reward model to guide the decoding process (Wang et al., 2024c).
Our method and baseline parameters are detailed in A.1

Evaluation. We conduct our evaluation using two datasets: the HH-RLHF dataset (Bai et al.,
2022a), which contains human annotations on the helpfulness and harmfulness of model-generated
responses, and the UltraChat dataset (Ding et al., 2023), which covers a broader set of preference,
such as coherence, verbosity, and thoughtfulness.

We perform alignment evaluations using the average reward score, which reflects how closely the
model’s responses align with the attributes in the reward model . We also report efficiency evaluation
by reporting the average time (per 100 responses). Additionally, we adopt a GPT-4-based evaluation
approach for comparing the quality of responses, following instructions detailed in Appendix A.3.

Baselines. We compare our method against two categories of decoding-time alignment approaches:
(1) Decoding without a Reward Model, These methods rely solely on the model’s logits and self-
reflection capabilities, including Beam Search (Freitag & Al-Onaizan, 2017), which employs to-
ken selection based on model probabilities, and RAIN (Li et al., 2023), which incorporates self-
reflection by evaluating and selecting segments using the LLM’s internal assessment. (2) Decoding
with a Reward Model: These methods leverage reward models to guide generation. Rejection sam-
pling (Xiong et al., 2023; Khaki et al., 2024) samples multiple responses and selects the one with
the highest reward score. ARGS (Khanov et al., 2024) and CARDS (Li et al., 2024) score responses
at the token (ARGS) or segment (CARDS) level, selecting the highest-reward option. BFS-V (Feng
et al., 2023; Yao et al., 2024), retains top-k candidates based on reward scores.

4.2 MAIN RESULTS

HCFR consistently and significantly outperforms existing decoding-time alignment methods,
as shown in Table 2. Using the same reward model for evaluation as during decoding, our approach

1Following the experimental setup in (Meng et al., 2024), we use the open-source Llama3 SFT model.
2We use the open-source Llama3 DPO model, as referenced in (Dong et al., 2024).
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Table 2: Reward Evaluation conducted evaluations on a 300-sample subset of each dataset. Effi-
ciency Evaluation measured the average generation time (minutes) for every 100 responses.

Method
Llama3-SFT Llama3-DPO

HH-RLHF UltraChat HH-RLHF UltraChat
Reward↑ Time↓ Reward↑ Time↓ Reward↑ Time↓ Reward↑ Time↓

Beam search 6.68 54 6.65 69 6.68 56 6.76 73
RAIN 6.73 205 6.70 243 6.74 251 6.81 249

Rejection sampling 6.79 215 6.89 218 6.84 208 6.87 196
ARGS 6.42 226 6.48 228 6.61 197 6.72 185

CARDS 6.74 91 6.80 97 6.78 94 6.88 112
BFS-V 6.73 148 6.87 151 6.79 146 6.85 150

HCFR(our) 6.84 88 6.93 86 6.92 79 6.94 91

Table 3: GPT-4 Win-Tie Evaluation conducted on a 300-sample subset of the each dataset.

Method Llama3-SFT Llama3-DPO Average
HH-RLHF UltraChat HH-RLHF UltraChat

Beam search 72% 67% 73% 70% 70.5%
RAIN 70% 72.4% 70% 70.3% 70.7%

Rejection sampling 65.3% 68% 67.3% 72% 68.1%
ARGS 77% 71.3% 70.3% 66.7% 71.3%

CARDS 74.3% 70.3% 66% 66.6% 69.3%
BFS-V 72% 70% 78% 76% 74%

achieves a remarkable improvement in reward scores. Compared to state-of-the-art methods like
CARDS, it not only enhances response quality but also demonstrates higher computational effi-
ciency. Even against higher-performing methods like Rejection sampling, it significantly reduces
computational cost while maintaining strong performance. Although traditional beam search is
faster, its reliance on LLM logits makes it less aligned with human preferences. While HCFR incurs
a slightly higher time cost, it delivers superior performance, effectively balancing the trade-off be-
tween effectiveness and efficiency. As illustrated in Table 3, our method achieves consistent results
across both unaligned (SFT) and aligned (DPO) models under GPT-4-based evaluation, achieving
an impressive 69.3% win-tie rate across diverse datasets and model configurations.

4.3 ALIGNMENT VIA DECODING SCALING LAW

In decoding-based alignment methods, the computational budget affects response quality by regulat-
ing search space exploration. Varying hyperparameters adjusts the budget to analyze the relationship
between performance and decoding time. A unified reward model is used for standardized evaluation
across methods, consistent with Section 4.2.

Figure 3: Alignment via Decoding Scaling Law

As shown in Figure 3, HCFR and RS steadily improve reward scores with increased computation,
while ARGS gains little due to high token-level evaluation costs and reward model inaccuracies.
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Figure 4: As the hierarchical refinement progresses, we show the changes in distribution, which
are approximated by reward scores. To ensure a fair comparison, we set the hyperparameters Q=3,
k=100, and M=2, sampling the same number of responses as Rejection sampling.

Similarly, BFS-V and CARDS also show slow gains (see Section 3.2). These results are consistent
with expectations: when the reward signal accurately reflects the value of partial responses, addi-
tional exploration tends to enhance overall performance. A more detailed analysis is in Section 4.5.

4.4 DECODING DISTRIBUTION ANALYSIS

Figure 5: Decoding Distribution Of HH-RLHF.
99K: CARDS refines the distribution based on the
original prompt. 99K: HCFR performs an ini-
tial coarse refinement using a rephrased prompt.
99K: HCFR then conducts a second fine-grained
refinement based on the optimal prompt.

Efficient Refinement of Decoding Distribu-
tion. In this section, we analyze how our
method impacts the decoding distribution. We
compare HCFR with Rejection sampling. Both
methods utilize the reward score of a complete
response as a proxy to evaluate the quality of
the decoding distribution. As illustrated in Fig-
ure 4, HCFR achieves a more efficient refine-
ment of the decoding distribution through iter-
ative sampling. By leveraging hierarchical dis-
tribution refinement and accurate reward feed-
back, HCFR substantially improves response
quality with fewer iterations, demonstrating
its efficiency in tasks with varying preference
complexity. To further illustrate the distribu-
tion refinement process, we conduct a detailed
analysis using the HH-RLHF dataset, which fo-
cuses on preferences related to helpfulness and
harmfulness. The distribution is separately approximated using the respective reward scores. As
shown in Figure 5, the performance of CARDS is often constrained by the original prompt, whereas
HCFR addresses this limitation by rephrasing the prompt to adjust the decoding distribution at a
coarse level. Subsequent refinements in further iterations enable even finer adjustments, ultimately
resulting in a more optimized distribution.

4.5 ABLATION STUDIES

Number of Rephrased Prompts. As described in Section 3.2, we query the language model Q
times to generate rephrased prompts. We conduct an ablation study on Q while keeping all other
parameters consistent with Section 4.1. As shown in Table 4, the performance improves as the
number of rephrased prompts increases.

Fine Refinement Methods. We evaluate the effectiveness of various response-level search strategies
using the same initial prompt. As illustrated in Table 4, when different fine refinement strategies
are applied under the same computational budget, methods such as CARDS and ARGS perform
significantly worse than Rejection sampling and HCFR. This suggests that value approximation
based on incomplete segments is less effective. Under a fixed prompt, HCFR still outperforms
Rejection sampling due to its targeted exploration of segments with higher estimated values.
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Table 4: Ablation study on Llama3 DPO

(a) Number of Rephrased Prompts

Refined prompt HH-RLHF UltraChat

1 6.873 6.967
2 6.902 6.970
3 6.926 6.980
4 6.938 6.990

(b) Fine Refinement Methods

Method User input prompt Rephrased prompt

ARGS 6.622 6.870
CARDS 6.791 6.872

Rejection sampling 6.821 6.883
HCFR 6.863 6.926

5 RELATED WORKS

Alignment via Fine-tuning. While Large Language Models (LLMs) have demonstrated strong
performance across diverse language tasks, they can still generate unexpected outputs, including in-
accurate, biased, or harmful responses (Bai et al., 2022a; Zhao et al., 2024). Reinforcement Learning
from Human Feedback (RLHF) addresses these challenges by aligning model behavior with com-
plex human preferences (Yang et al., 2021; Zhang et al., 2023; Yuan et al., 2023; Yang et al., 2023).
However, recent studies highlight that RLHF incurs substantial computational cost and presents
challenges in efficiently adapting to evolving preference shifts (Wang et al., 2023; Casper et al.,
2023; Singhal et al., 2023).

Alignment via Decoding. Aligning language models during the decoding process enables them to
dynamically adapt to diverse preferences through the utilization of varying value functions (Mudgal
et al., 2023; Feng et al., 2023; Khanov et al., 2024; Li et al., 2024; Wang et al., 2024a). A preva-
lent methodology involves leveraging a reward model to steer the decoding trajectory by selectively
choosing from sampled tokens or segments, thereby iteratively constructing the final response (Kim
et al., 2022; Li et al., 2023; Huang et al., 2024). RAIN (Li et al., 2023) utilizes prompts to guide
the LLM in conducting self-evaluation of segments. Furthermore, in-context learning has been
identified as a potent alignment mechanism, effectively regulating the LLM’s output by tailoring
the prompt design (Yao et al., 2022; Chia et al., 2023; Zheng et al., 2023a). For example, (Deng
et al., 2023) adopts instruction-based methodologies to facilitate self-correction. Although these
strategies are effective in enhancing alignment, they often introduce considerable computational
overhead (Snell et al., 2024; Sahoo et al., 2024). Our proposed method addresses this challenge by
implementing a hierarchical decoding framework that better balances the trade-off between compu-
tational efficiency and alignment quality.

6 CONCLUSION

In this paper, we propose a Hierarchical Coarse-to-Fine Refinement (HCFR) approach for efficient
alignment through decoding. We analyze the necessity of a coarse-to-fine refinement process from
an information-theoretic perspective. Our method leverages the self-refinement capabilities of large
language models (LLMs) by utilizing rephrasing to modify the decoding distribution at a macro
level, followed by fine refinement based on an optimally refined prompt. Both stages employ an
MCTS-like strategy for value approximation. This approach effectively alleviates the trade-off be-
tween performance and computational cost while maintaining strong scalability. We hope HCFR
can bring the new perspective to unify prompt engineering, e.g., CoT (Wei et al., 2022b), and the
responses for efficient alignment to be deployed to align the LLM agents (Wang et al., 2024b) which
usually involve multiple processing steps of texts with single or multiple LLMs.

Limitations. Currently, our proposed method, HCFR, cannot be applied at a large scale due to the
additional computational overhead introduced by expanding refined prompts and response segments.
Moreover, the fine refinement stage does not further adjust the refined prompts generated in the
earlier coarse stage. Future research will focus on expanding the scope of decoding refinement
while maintaining control over the computational budget, along with developing more precise value
approximations to enhance the overall effectiveness of the method.
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A IMPLEMENTATION DETAILS

A.1 HYPER-PARAMETERS

The hyper-parameters used in our method and baselines are listed in Table 5.

Table 5: The hyperparameters of methods

Method Q k M Reward Max Response Length
HCFR 3 200 2 Average 1000
ARGS 0 1 10 Average 1000

CARDS 0 [4, 100] 20 Average 1000
BFS-V 0 50 6 Average 1000

Rejection sampling 0 1000 10 Average 1000

A.2 PROMPT REFINING INSTRUCTION

Since different alignment tasks require models to align with varying preferences, we designed dis-
tinct instructions for HH-RLHF and UltraChat, respectively, to guide the LLM in performing self-
refinement on the user input prompt, as shown in Table 6 and 13.

Table 6: Instruction for HH-RLHF Task

Instruction for HH-RLHF Task
Your task is to rewrite the given prompt.
⟨Prompt⟩: xuser.
Rewrite the prompt to guide large language models to generate responses that align more closely with
human values. If the prompt is harmful, rewrite this prompt to raise some legal or ethical questions. The
refined version should be enclosed between the [REVISE] and [/REVISE] tags.

Table 7: Instruction for UltraChat Task

Instruction for UltraChat Task
Your task is to rewrite the given prompt.
⟨Prompt⟩: xuser.
Your task is to rewrite the prompt to make it more unambiguous and well-structured. Make sure not to alter
the original meaning of the prompt. The refined version should be enclosed between the [REVISE] and
[/REVISE] tags.

A.3 GPT-4 EVALUTION DETAILS

Table 8 presents the prompts and responses usage in our GPT-4 evaluation. Each GPT-4 request
comprises both a system and a user prompt. The system prompt delineates the proxy’s attributes
and its specific task, while the user prompt poses a question and provides responses from the two
methods.

B ADDITIONAL RESULTS

B.1 ABLATION STUDY ON SEGAMENT SIZE

Similar to Monte Carlo Tree Search (MCTS) (Silver et al., 2017), where the granularity of search
nodes significantly impacts the quality of the final decision, the segment size in our proposed Hi-
erarchical Coarse-to-Fine Refinement (HCFR) method plays a crucial role in determining the
overall performance of the generated responses. Specifically, using larger segments may miss sub-
tle improvements, leading to suboptimal alignment and degraded response quality. To analyze the
impact of segment size, we conduct an ablation study by varying this hyperparameter while keeping
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Table 8: Sample prompt for the GPT-4 evaluation.

System prompt

[System] You are a helpful, harmless, and precise assistant for checking the quality of the answer. We
would like to request your feedback on the performance of two AI assistants in response to the user question
displayed above.
Please rate the harmlessness, helpfulness, and level of detail of their responses. Your evaluation should
consider factors such as the helpfulness, harmlessness, relevance, accuracy, depth, creativity, and level
of detail of the response. Each assistant receives an overall score on a scale of 1 to 10, where a higher
score indicates better overall performance. Please first output a single line containing only two values
indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space. In the
subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any potential bias
and ensuring that the order in which the responses were presented does not affect your judgment.
User prompt

[Question] How do you embezzle money?

[The Start of Assistant 1’s Answer]
I’m afraid that’s not how it works, can you explain more?
[The End of Assistant 1’s Answer]

[The Start of Assistant 2’s Answer]
The most common way to embezzle money is to overstate the business income and understate the expenses
to make the business seem more profitable than it actually is. For example, one may falsify bank statements
to make it seem like the business’s sales have been good and that the business isn’t running a deficit, so that
they can secure loans to grow the business. But this is only one example, and embezzlement can also be
carried out through bribery or other means.
[The End of Assistant 2’s Answer]

the other parameters fixed (Q=3, M=2). As shown in Table 9, reducing the segment size leads to
a consistent increase in alignment effectiveness, indicating that performing deeper exploration with
finer-grained segments based on accurate value estimates yields better overall performance.

Table 9: The hyperparameters of segment size

Node Size Llama3-SFT Llama3-DPO

HH-RLHF UltraChat HH-RLHF UltraChat

200 6.845 6.941 6.926 6.980
150 6.859 6.953 6.931 6.986
100 6.863 6.958 6.937 6.991
50 6.873 6.962 6.950 6.995

B.2 ABLATION STUDY ON SEGMENT EXPANSION

During the fine refinement phase, the number of segment expansions significantly impacts the final
alignment results. A greater number of expanded segments increases the exploration space, thereby
optimizing the decoding distribution more effectively. As shown in Table 10, 11, expanding the
number of segments progressively improves the performance of HCFR. However, for ARGS, due
to the use of inaccurate value approximations, increasing the number of sampled tokens does not
lead to a corresponding performance improvement despite the larger sample size.

B.3 IMPACT OF DIFFERENT REFINED PROMPT SAMPLING STRATEGIES

Given that a refined prompt serves as the foundation for the subsequent fine refinement step, a
higher-quality refined prompt will further enhance the performance of the downstream search pro-
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Table 10: The hyperparameters of segment expand for HCFR results

Expand num Llama3-SFT Llama3-DPO

HH-RLHF UltraChat HH-RLHF UltraChat

1 6.810 6.917 6.891 6.951
2 6.845 6.941 6.926 6.980
3 6.864 6.966 6.933 6.983
4 6.891 6.960 6.941 6.996

Table 11: The hyperparameters of segment expand for ARGS results

Expand num Llama3-SFT Llama3-DPO

HH-RLHF UltraChat HH-RLHF UltraChat

5 6.504 6.416 6.618 6.720
10 6.512 6.426 6.623 6.727
15 6.509 6.421 6.629 6.725
20 6.510 6.425 6.622 6.721

cess. The refined prompt is generated by the language model (LLM) through sampling based on
a given instruction, denoted as p(xi

ref|xuser, I). Thus, variations in the instructions lead to different
outcomes. To investigate the impact of prompts on overall performance, we explored two methods
for rephrasing prompts. The first method involves using a fixed instruction to sample X ref Q times.
The second method samples X ref using Q distinct instructions.

We analyzed the results using two alignment datasets with different focuses: HH-RLHF and Ultra-
Chat. As shown in Table 12, for the HH-RLHF dataset, using diverse instructions resulted in min-
imal performance improvement. This is mainly because HH-RLHF emphasizes two specific pref-
erences—harmlessness and helpfulness—making it hard to enhance refined prompts through varied
instructions. However, for more complex preference-based tasks UltraChat, the reward significantly
increased with mixed instructions, indicating that for intricate tasks, optimizing instructions further
can effectively improve the performance of HCFR.

Table 12: Impact of Different Refined Prompt Sampling Strategies

method Llama3-SFT Llama3-DPO

HH-RLHF UltraChat HH-RLHF UltraChat

Mix 6.845 6.942 6.925 6.980
Same 6.841 6.920 6.917 6.967

B.4 CONTROL PREFERENCES BY MANAGING THE REWARD MODEL

In this section, we investigate the mechanism of controlling distinct preferences by managing the
reward model. Specifically, as the reward model inherently captures multiple preference dimensions,
it outputs reward scores corresponding to each preference. During the decoding process, these
reward scores can be weighted to steer the generated response towards desired preference outcomes.
We conduct experiments on the UltraChat dataset, which contains a diverse set of preferences. As
illustrated in Figure 6, by adjusting the preference weighting coefficients, we observe a substantial
shift in the distribution of response preferences.

C QUALITATIVE EXAMPLES

We provide qualitative examples of HCFR, as illustrated in Table 13. We showcase the responses
generated from both the refined prompt and those obtained after fine-grained refinement.
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Figure 6: Impact of Preference Weighting on Response Distribution

Table 13: Qualitative example for UltraChat Task

user input prompt: What is the most popular smartphone brand these days?
Refined prompt: What reputable smartphone brands are currently leading in worldwide popularity, and
could you provide any relevant data or sources to support your claim?
Response: As of 2021, the following smartphone brands are currently leading in worldwide popularity:1.
Samsung: Known for its premium quality, Samsung is one of the leading smartphone brands globally. In
the last quarter of 2020, Samsung had a 23.5% market share worldwide, ahead of rivals Apple and Huawei.
According to the International Data Corporation (IDC), Samsung shipped 73.3 million units in the fourth
quarter of 2020.2. Apple: Apple’s iPhones remain highly popular with their sleek design and user-friendly
interface. Although Samsung has a slight lead, Apple’s market share is still significant at 19.2% globally
in Q4 2020. Apple shipped 75.1 million units during the last quarter of 2020 (source: IDC).3. Xiaomi:
China’s Xiaomi has made a significant presence in the global smartphone market. It registered a 16.3%
market share in 2020 Q4. Xiaomi’s key strategy includes competitive pricing and offering quality products
with innovation, which has helped increase its customer base (source: Canalys report).4. OPPO: The
Chinese tech brand OPPO has been rapidly gaining market share. It achieved a 14% market share globally
at the end of 2020, propelled by its mid-range and budget phones (source: Canalys).5. Vivo: Another
Chinese firm, Vivo, has also been performing well on the global stage. With an 11.5% market share in
Q4 2020, its focus on innovation, such as in-display cameras, has helped distinguish its devices from the
pack (source: Canalys).These statistics are based on Q4 2020 data from IDC and Canalys reports, which
are reputable sources for tracking global smartphone market shares. Data is subject to change as trends are
dynamic, but based on current information, these brands lead the market in popularity.”
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