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ABSTRACT
This paper describes the GestureMaster entry to the GENEA (Gen-
eration and Evaluation of Non-verbal Behaviour for Embodied
Agents) Challenge 2022. Given speech audio and text transcriptions,
GestureMaster can automatically generate a high-quality gesture
sequence to accompany the input audio and text transcriptions in
terms of style and rhythm. GestureMaster system is based on the
recent ChoreoMaster publication[12]. ChoreoMaster can generate
dance motion given a piece of music. We make some adjustments
to ChoreoMaster to suit for the speech-driven gesture generation
task. We are pleased to see that among the participating systems,
our entry attained the highest median score in the human-likeness
evaluation. In the appropriateness evaluation, we ranked first in
upper-body study and second in full-body study.
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1 INTRODUCTION
Non-verbal-behaviour such as gestures are vital in human com-
munication. Automatically generating high-quality gestures from
audio and text transcriptions remains a challenging task. The GE-
NEA Challenge 2022 [21] on speech-driven gesture generation aims
to bring together researchers that use different methods for non-
verbal-behaviour generation and evaluation.

Recent deep learning-based approaches like StyleGestures[1]
have successfully been applied to synthesizing gesture poses. These
methods grasp some deeper relationships between audio, text tran-
scriptions and gestures than traditional techniques. However, these
methods are limited by the representation power of proposed neural
networks. Neural networks characterize data by projecting it into a
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low-dimensional latent space, while high-frequency motion details
of gestures are considered to be noised and internally ignored. This
lowers the quality of generated gestures, causing them to be "dull"
and "blurred".

We have developed GestureMaster system. It is adjusted from re-
cent music-to-dance system Choreomaster[12]. Given paired audio,
text transcriptions and gestures, we first build a gesture database.
This database consists of gesture clips split from training gestures
by an automatically split algorithm. Then, we find a style signature
by StyleGestures-like network by mapping audio into a desired
gesture feature, and a rhythm signature for each clip of audio and
gestures. The style signature and the rhythm signature are then
incorporated within a graph-based motion synthesis framework. It
can generate high-quality gestures with high-level human-likeness
and high appropriateness score for the associated held-out speech,
in terms of timing or rhythm. To improve the smoothness of gesture
transitions, in the graph search, the rotations are interpolated by
Slerp of adjacent motion clips.

2 RELATEDWORK
In this section, we discuss previous work in related areas.

2.1 Graph-based Motion Synthesis
Graph-based motion synthesis has long been an important topic in
computer animation. Lamouret et al. [15] proposed the first proto-
type system to synthesize motions by cutting-and-pasting together
existing motion clips from the database. Arikan et al. [2], Kovar
et al. [13] and Lee et al. [17] formally introduced the concept of
graph-based motion synthesis, casting the problem as finding paths
in a pre-constructed motion graph. Lee et al. [18] proposed motion
fields. They mapped motion data into a high-dimensional general-
ization of a vector field. Then they trained a reinforcement learning
model to generate responses to user input. Clavet and Büttner [3]
proposed motion matching, which is a k-Nearest Neighbor search
method of searching a large database of animations for the anima-
tion which best fits the given context and has been widely used in
video games. Holden et al. [11] proposed learned motion matching
approach to generate locomotion animation with a neural network
regressor.

Recently, Kang et al. [12] proposed ChoreoMaster, a production-
ready music-driven dance motion synthesis system. Given a piece
of music, ChoreoMaster could build a motion graph and search
matched motion clips with a dynamic programming algorithm. Our
key idea is directly derived from ChoreoMaster and we adapt this
system to gesture generation.
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Figure 1: Overview of our proposed system GestureMaster. Given an input of audio and text transcriptions, we split them into
clips. For each audio clip, we calculate its rhythm signature (see Figure 2) and style signature using StyleGestures. Then the
graph-based gesture motion synthesis module searchs matched gesture motion nodes from database with lowest cost, in terms
of rhythm, style and transition (see equation 2).

2.2 Co-speech Gesture Generation
Deep learning approaches have been widely used in co-speech
gesture generation. Hasegawa et al. [10] generated 3D motion se-
quences using a bi-directional LSTM network given speech audio.
Kucherenko et al. [14] incorporated representation learning for the
motion to generate smoother gestures, given audio as input only.
Yoon et al. [20] trained a LSTM model on TED-talk videos to map
text transcriptions to 2D gestures. Alexanderson et al. [1] proposed
StyleGestures which was based on normalizing flows to generate
gestures with different styles such as hand height and hand velocity.

Ferstl et al. [4] trained a classifer to automatically detect gesture
phases. Ferstl et al. [6] analysed the predictability of gesture param-
eters such as velocity, initial acceleration, size, arm swivel and hand
opening. Then Ferstl et al. [7] proposed a database-driven approach.
They build a large corpus of co-speech gestures and selected indi-
vidual gestures based on predicted gesture parameters given speech
audio. Yang et al. [19] utilized a graph-based framework to success-
fully synthesize body motions for social conversations. Recently
Habibie et al. [9] proposed a motion matching-based framework for
controllable gesture synthesis from speech and the 3D gesture was
passed to a conditional GAN to refine gesture sequence. Different
from these approaches, GestureMaster add a rhythm embedding
module and a style embedding module into searching framework to
improve appropriateness and use a global dynamic programming
optimization to generate gesture sequences.

3 DATA PREPARATION
The dataset provided by the challenge organizer is adapted from
Talking With Hands 16.2M[16]. It comes from recording of dyadic

interactions between different speakers. Each dyad has been sep-
arated into two independent sides with one speaker each. The
training dataset inlcudes 293 recordings with an overall length of
18 hours. Each recording consists of audio, text transcripts and
gesture motion.

3.1 Gesture Segmentation
Gesture phases are a hierarchy of movements that composes or
describes gesticulation. Identifying actual gesture phases (rest po-
sition, preparation, stroke, hold, retraction/recovery, and partial
recovery) is non-trivial and in many cases requires subjective judg-
ment. For example, Ferstl et al. [4, 5] trained a classifer to automati-
cally detect gesture phases. The labelling process of gesture phases
cannot be seen as deterministic and 100% accuracy is unlikely. For
simplification, we do not consider the type of gesture phases in
our system. We just split each gesture motion in training dataset
into clip-level gesture clips automatically by time interval of words
larger than 0.4 seconds in text transcriptions. These gesture clips
can be used to build a motion graph for graph-based optimization
in section 4.

The choice of time interval is a trade-off between human likeness
and appropriateness. In our experiments, we use two criteria to
choose the hyperparameter time interval threshold:

1. The average time of gesture clips should not be too large. Oth-
erwise the total number of gesture clips is small, which decreases
the diversity of rhythm of gesture clips in the database and lowers
the final appropriateness score.

2. The average time of gesture clips should not be too small.
Otherwise given a speech with same duration, more gesture clips
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and transitions are needed to generate whole gesture sequences,
which lowers the final human likeness score.

The choice of time interval threshold is also related to the speech
rate of different speakers. In Talking With Hands 16.2M dataset,
based on these two criteria, we find setting time interval threshold
equal to 0.4 seconds lead to best generated gestures.

We manually remove gesture clips with low quality such as mo-
tions with jitter or wrong rotations. For motion capture without
finger animation, we simply search and transfer the rotations from
finger motion capture with lowest position distance. Then these
gesture clips are semi-automatically annotated with rhythm signa-
tures and style signatures for graph-based motion synthesis. Finally
We mirror the gesture clips and build a gesture database with more
than 6000 clips, range from 1 seconds to more than 10 seconds,
determined by the length of each clip.

3.2 Rhythm Embedding
The term rhythm is often expressed in terms of beat. Beat cor-
responds to pulses of sound in audio, while gesture motion beat
corresponds to pausing or sharp truning of gesture movements.
The proposed rhythm signature consists of 32 bits in our system
(see Figure 2). In each rhythm signature, bits denote the presence of
beats (1 : present, 0 : not present) which correspond to the evenly-
spaced beats indicated by the time signature. For rhythm signature
of audio and text transcriptions, bits denote the presence of words.
For rhythm signature of gesture motion, bits denote the presence
of pausing, sharp turning or stroke gesture. Obviously, a time of
silence will result in a rhythm signature in which all bits are zeros.
The distance between two rhythm signatures can be defined using
Hamming distance, the number of bit positions in which the two bit
patterns differ. Lower hamming distance indicates a better match
of rhythm between audio and gesture motion.

For audio, rhythm signature is annotated automatically using
word-level timing information in text transcriptions (see Figure 2).
For each audio clip, we use the present time of each word in text
transcriptions and label the bits as 1 automatically.

For gestures, rhythm signature is annotated automatically using
speed curve of two hands (see Figure 3). We compute the max speed
curve of two hands for each gesture clip and record the time of
local minima. We suppose the local minima denotes the start time
of pausing, sharp turning or stroke gesture and label the bits as 1
automatically. For each gesture clip, the attached rhythm signature
is a vector consists of 32 bits. After automatically labeling of rhythm
signature of gesture clips, wemanually correct the rhythm signature
of gesture clips which the speed curves fail to represent the presence
of pausing, sharp turning or stroke gesture.

3.3 Style Embedding
StyleGestures is a probabilistic model which could generate gestures
with different style, such as gesture speed, radius and height. We
splice these features together as a style signature. We calculate
mean speed, mean radius and mean height of each gesture clip
in database offline. And we adopt StyleGestures as a backbone of
style embedding network and train the model on training dataset. In
synthesis period, we could feed audio into StyleGestures to generate

desired gestures and style signature for graph-based optimization
(see Figure 1).

4 SYSTEM OVERVIEW
In this section, we discuss the pipeline of proposed system (see
Figure 1), including motion graph construction and graph-based
optimization. We explain how the rhythm embedding module and
style embedding module are incorporated into our graph-based
motion synthesis framework.

4.1 Motion Graph Construction
A motion graph is a directed graph where each node denotes a
motion clip in the database while each edge depicts the cost of
transition between two adjacent nodes.

In our system, each node in our motion graph corresponds to a
gesture clip. In ourmotion graph, the edge transition cost𝑇 (𝐷𝑝 , 𝐷𝑞)
between two nodes 𝐷𝑝 and 𝐷𝑞 is defined as:

𝑇 (𝐷𝑝 , 𝐷𝑞) = _1𝑇𝑝 + _2𝑇𝑟 (1)
Where𝑇𝑝 ,𝑇𝑟 is summed distance of positions, rotations between

joints in transitional frames of two adjacent nodes, respectively.
_1 and _2 are the corresponding weights. An edge is created in
the graph if the transition cost between adjacent nodes is below
a threshold 𝛿𝑇 . A higher 𝛿𝑇 results in more edges in the graph
but may also cause artifacts as bad transition edges may also be
included in the graph.

We build motion graph for upper body and lower body sepa-
rately. For upper body motion graph, a style signature and a rhythm
signature are also attached to each graph node.

4.2 Graph-based Optimization
In the graph-based framework, each synthesized motion corre-
sponds to a path in the motion graph. In our system, gesture gen-
eration can be viewd as finding optimal paths. Given audio and
text transcriptions, we first split transcriptions into several clips
with time interval threshold 0.4 seconds and we obtain an audio
sequence 𝑀 = {𝑀𝑖 |𝑖 = 1, . . . , 𝑛}, where 𝑀𝑖 represents clip 𝑖 of in-
put audio. Then we calculate the rhythm signature 𝑅𝑀𝑖

of𝑀𝑖 (see
Figure 2). The goal of our system is to assign a gesture motion node
𝐷𝑖 in the motion graph to each𝑀𝑖 and to minimize the following
cost:

𝐶 = _3Σ
𝑛
𝑖=1𝐶𝑑 (𝑖) + _4Σ

𝑛−1
𝑖=1 𝐶𝑡 (𝑖, 𝑖 + 1) (2)

where 𝐶𝑑 ,𝐶𝑡 are the data term and transition term, respectively.
_3, _4 are the corresponding weights.

Data term. 𝐶𝑑 (𝑖) is the sum of rhythm signature and style signa-
ture matching cost between audio clip𝑀𝑖 and motion node 𝐷𝑖 :

𝐶𝑑 (𝑖) = _5𝐺𝑧 (𝑍𝑀𝑖
, 𝑍𝐷𝑖

) + _6𝐺𝑟 (𝑅𝑀𝑖
, 𝑅𝐷𝑖

) (3)
where𝐺𝑧 ,𝐺𝑟 are style signature L2 distance and rhythm signa-

ture Hamming distance between audio and gestures. Style signature
of audio clip𝑍𝑀𝑖

is calculated using StyleGestures while style signa-
ture of gesture clip 𝑍𝐷𝑖

is calculated offline (see Section 3.3). _5, _6
are weights. Specifically, for optimization of lower body, we set
_5 = _6 = 0 and data term 𝐶𝑑 (𝑖) = 0.
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Figure 2: Rhythm signature of audio examples. Bits denote the presence of words (1 : present, 0 : not present).

Figure 3: Rhythm signature of gestures examples. Bits denote the presence of pausing, sharp turning or stroke gesture (1 :
present, 0 : not present).

Transition term.𝐶𝑡 ensures a smooth transition between adjacent
motion clips in the synthesized motion.

𝐶𝑡 (𝑖, 𝑖 + 1) = 𝑇 (𝐷𝑖 , 𝐷𝑖+1) (4)

The optimal gesture motion sequences are synthesized using a
dynamic programming algorithm[8]. We handle the transitions in
the graph search using Slerp interpolation between two adjacent
gesture clips. After generating upper body motion and lower body
motion separately, we blend the two motions to create a full body
motion. We smooth all synthesized gestures using Savitzky-Golay
filter. For arm, hand and head joints, the length of the filter window
and the order of the polynomial are 7 and 2 while for other joints
are 7 and 1, respectively.

5 EVALUATION
For upper body graph, we set the hyperparameters to: _1, ..._6 =

0.7, 0.3, 1.0, 3.0, 1.0, 0.1, 𝛿𝑇 = 8, Z = 10000. For lower body graph, we
set the hyperparameters to: _1, ..._6 = 0.7, 0.3, 0.0, 0.0, 0.0, 0.0, 𝛿𝑇 =

8, Z = 0. Our gesture synthesis system is tested on a desktop with a
3.70GHz i7-8700K CPU, 32GB RAM and a GTX 3070 GPU.

Study participants were recruited through a crowdsourcing plat-
form. Participants were required to reside in a set of six English-
speaking countries, specifically UK, IE, USA, CAN, AUS, and NZ,
and participants were required to have English as their first lan-
guage. Each study incorporated attention checks per person, to
make sure that participants were paying attention to the task and
remove insincere test-takers.

The evaluation of the submitted gesture motion will likely con-
sider two aspects such as its perceived human-likeness, without
accounting for the speech and its appropriateness for the asso-
ciated held-out speech, in terms of timing and semantic content.
Study participants were recruited through the crowdsourcing plat-
form Prolific. The groundtruth natural motion was labelled FNA in
the fullbody study andUNA in the upper-body study. Our condition
ID in the upper-body evaluation was USQ and our condition ID in
the full-body evaluation was FSA. The evaluations also included
two baseline systems, one based on text-input only [20], and one
based on audio-input only [14].
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Figure 4: Box plots visualising the ratings distribution in the
two studies. Red bars are the median ratings (each with a
0.05 confidence interval); yellow diamonds are mean ratings
(also with a 0.05 confidence interval). Box edges are at 25
and 75 percentiles, while whiskers cover 95% of all ratings
for each condition. Conditions are ordered descending by
sample median for each tier.

5.1 Human Likeness Study
121 participants successfully passed the attention checks and com-
pleted the full-body human-likeness study, while 150 participants
successfully passed the attention checks and completed the upper-
body human-likeness study. In human likeness study, study partic-
ipants were asked "How human-like does the gesture motion ap-
pear?" then gave their ratings in response to this question on a scale
from 0 (worst) to 100 (best). GestureMaster (FSA, USQ) ranked first
and even above the groundtruth motion from the motion-capture
recordings in both full-body and upper-body tiers. Bar plots and
significance comparisons are shown in Figure 4 and Firure 5. Sum-
mary statistics (sample median and sample mean) for the ratings of
all conditions in each of the two studies are shown in Table 1. The
human likeness study shows that GestureMaster could generate
natural gestures.
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Figure 5: Significance of pairwise differences between con-
ditions. White means that the condition listed on the 𝑥-axis
rated significantly above the condition on the 𝑦-axis, black
means the opposite (𝑦 rated below 𝑥), and grey means no
statistically significant difference at the level 𝛼 = 0.05 after
Holm-Bonferroni correction. Conditions are listed in the
same order as in Figure 4, which is different for each of the
two studies.

5.2 Appropriateness Study
247 participants successfully passed the attention checks and com-
pleted the full-body appropriateness, while 304 participants success-
fully passed the attention checks and completed the upper-body
appropriateness study. In appropriateness study, participants were
given pair of videos – both from the same condition and thus having
the same motion quality, but one matched to the speech and the
othermismatched, coming from unrelated speech. Participants were
then asked to pick the one video from the pair that best matched
the speech. GestureMaster (FSA, USQ) ranked first in upper-body
tier and second in full-body tier. Bar plots are shown in Figure 6.

Benefit from the matching rhythm signature of audio and ges-
tures, the appropriateness for the associated held-out speech per-
form well, in terms of timing.
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Human-likeness Appropriateness
Number of responses Percent matched

ID Median Mean Match. Equal Mismatch. (splitting ties)

FNA(GT) 70 ∈ [69, 71] 66.7 ± 1.2 590 138 163 74.0 ∈ [70.9, 76.9]
FBT 27.5 ∈ [25, 30] 30.5 ± 1.4 278 362 250 51.6 ∈ [48.2, 55.0]
FSB 30 ∈ [28, 31] 32.5 ± 1.5 397 163 330 53.8 ∈ [50.4, 57.1]
FSC 53 ∈ [51, 55] 52.3 ± 1.4 347 237 295 53.0 ∈ [49.5, 56.3]
FSD 34 ∈ [32, 36] 35.1 ± 1.4 329 256 302 51.5 ∈ [48.1, 54.9]
FSF 38 ∈ [35, 40] 38.3 ± 1.6 388 130 359 51.7 ∈ [48.2, 55.1]
FSG 38 ∈ [35, 40] 38.6 ± 1.6 406 184 319 54.8 ∈ [51.4, 58.1]
FSH 36 ∈ [33, 38] 36.6 ± 1.4 445 166 262 60.5 ∈ [57.1, 63.8]
FSI 46 ∈ [45, 48] 46.2 ± 1.3 403 178 312 55.1 ∈ [51.7, 58.4]
FSA(Ours) 71 ∈ [70, 73] 68.1 ± 1.4 393 216 269 57.1 ∈ [53.7, 60.4]

(a) Full-body study

Human-likeness Appropriateness
Number of responses Percent matched

ID Median Mean Match. Equal Mismatch. (splitting ties)

UNA(GT) 63 ∈ [61, 65] 59.9 ± 1.3 691 107 189 75.4 ∈ [72.5, 78.1]
UBA 33 ∈ [31, 34] 34.6 ± 1.4 424 264 303 56.1 ∈ [52.9, 59.3]
UBT 36 ∈ [34, 39] 37.0 ± 1.4 341 367 287 52.7 ∈ [49.5, 55.9]
USJ 53 ∈ [52, 55] 53.6 ± 1.3 461 164 365 54.8 ∈ [51.6, 58.0]
USK 41 ∈ [40, 44] 41.5 ± 1.4 454 185 353 55.1 ∈ [51.9, 58.3]
USL 22 ∈ [20, 25] 27.2 ± 1.3 282 548 159 56.2 ∈ [53.0, 59.4]
USM 41 ∈ [40, 42] 41.9 ± 1.4 503 175 328 58.7 ∈ [55.5, 61.8]
USN 44 ∈ [41, 45] 44.2 ± 1.4 503 175 328 58.7 ∈ [55.5, 61.8]
USO 48 ∈ [47, 50] 47.3 ± 1.4 439 209 335 55.3 ∈ [52.1, 58.5]
USP 29.5 ∈ [28, 31] 32.4 ± 1.4 440 180 376 53.2 ∈ [50.0, 56.4]
USQ(Ours) 69 ∈ [68, 70] 67.5 ± 1.2 504 182 310 59.7 ∈ [56.6, 62.9]

(b) Upper-body study

Table 1: Summary statistics of user-study ratings from all user studies, with confidence intervals at the level 𝛼 = 0.05. “Percent
matched” identifies how often participants preferred matched over mismatched motion in terms of appropriateness.

6 CONCLUSION
We have proposed GestureMaster, a graph-based gestures synthesis
system. We build a gesture database including more than 6000
gesture clips with style signature and rhythm signature. Given
audio and text transcriptions, a graph-based optimization is adopted
to generate high-quality gesture motion. The evaluation results
demonstrate that GestureMaster can synthesize gestures with high
human-likeness score as well as high appropriateness score for
associated speech in terms of rhythm.

There is a gap between GestureMaster and ground truth motion
in the appropriateness study. In future research, a better rhythm
embedding module could be used for better rhythm matching. Se-
mantic content could also be considered to improve appropriateness.
Because of imbalanced data, we do not evaluate the appropriateness
for the individual gesticulation style of the indicated test speaker
in each clip. Howerer, GestureMaster could simply generate ges-
tures for each speaker by building different graphs for different
speakers, indicating the potential of GestureMaster to generate
individual-related gestures.
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