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Abstract

Since its introduction, softmax attention has become the backbone of modern transformer
architectures due to its expressiveness and scalability across a wide range of tasks. However,
the main drawback of softmax attention is the quadratic memory requirement and computa-
tional complexity with respect to the sequence length. By replacing the softmax nonlinearity,
linear attention and similar methods have been introduced to avoid the quadratic bottleneck
of softmax attention. Despite these linear forms of attention being derived from the original
softmax formulation, they typically lag in terms of downstream accuracy. While strong
intuition of the softmax nonlinearity on the query and key inner product suggests that it has
desirable properties compared to other nonlinearities, the question of why this discrepancy
exists still remains unanswered. This work demonstrates that linear attention is a first-order
approximation of the softmax numerator by deriving its full recurrent form. We further show
empirically that the denominator’s function can be effectively replaced by a simple vector
norm. Using this form, each part of softmax attention can be described in the language of
recurrent neural networks (RNNs). Describing softmax attention as an RNN allows for the
ablation of the components of softmax attention to understand the importance of each part
and how they interact. In this way, our work helps explain why softmax attention is more
expressive than its counterparts[T]

1 Introduction and Background

The formulation of softmax attention was proposed by Bahdanau et al.| (2015) as a weighting mechanism
for aligning recurrent neural networks (RNNs) in encoder-decoder architectures for language translation
Sutskever et al.| (2014). However, the modern day usage of the attention in a transformer architecture was
first employed by [Vaswani et al.| (2017)) as a way to do sequence mixing within the context of language
translation. This formulation used the softmax activation function to model token routing without the use of
a traditional recurrent network. Since its introduction, the attention mechanism has been widely adopted in
various domains such as computer vision [Dosovitskiy et al.| (2021)), generative models |[Esser et al.| (2024]),
timeseries analysis Nie et al.| (2023)), audio processing |Baevski et al.| (2020), graphs [Velickovié¢ et al.| (2018),
and many more applications.

While softmax attention is a powerful mechanism that is used in a variety of areas, a major drawback is its
quadratic complexity with respect to the sequence length, N. Linear attention swaps the softmax nonlinearity
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with a decomposable kernel function, reducing the complexity from quadratic to linear with respect to the
sequence length. The original introduction of linear attention Katharopoulos et al.| (2020) replaced the
nonlinearity with an elu(x) 4+ 1 kernel. Since the original formulation, other methods have been developed
that replace the nonlinearity on the QK-softmax inner product with various other functions such as ReLU [Xie
et al.| (2025), cosine similarity [Mongaras et al.| (2025]), cosine reweighting |Qin et al| (2022)), or by decomposing
the QK-softmax inner product Wang et al.| (2020)); |[Zhuoran et al.| (2021)). Although these methods are linear
in complexity, none are as performant as softmax attention in terms of downstream accuracy.

In this work, we propose a recurrent reformulation of softmax attention and use this to describe the elements
of softmax attention that make it more performant compared to its linear and sparse counterparts. While
softmax attention is the driving method used in many architectures, the question of why the discrepancy
between softmax attention and linear attention exists remains unanswered. This work provides a principled
analysis of softmax attention by deriving a recurrent formulation using its Taylor series expansion. Through
this formulation, we experiment to reveal how each recurrent component contributes to downstream accuracy
using targeted ablations. We demonstrate that softmax attention is not merely a heuristic construction but
a structured process with interpretable, sequential dynamics. In doing so, we bridge the gap between the
observed empirical performance for linearized attention (and its variants) and the theoretical underpinnings
of softmax attention.

2 Related Work

Expressiveness of Linear Attention Many approaches have attempted to make linear attention more
expressive to match softmax attention, while still retaining linear complexity. |Choromanski et al.| (2021))
used linear approximations of the softmax kernel to achieve more performant linear attention mechanisms.
As linear attention can be interpreted as an RNN [Katharopoulos et al.| (2020), [Peng et al.| (2025]) proposed
receptance weighted key values (RWKV) attempting to enhance the expressivity of RNNs with a receptance
vector for time mixing. While this method helped to address computational complexity of RNN training, it
still relied on linear attention in its formulation. Mamba [Dao and Gu/ (2024]) employed state space models |Gu
et al.| (2022) to develop an efficient and expressive form of linear attention. [Sun et al.| (2025) formulated linear
attention as a step in gradient decent of a hidden view. Another approach treats modeling the hidden state
as a step in gradient decent [Sun et al.| (2025) which can be viewed as a type of linear attention. |Behrouz et al.
(2024) proposed Titans, which built upon this gradient formulation creating different variants of the hidden
view gradient descent. ATLAS |Behrouz et al.| (2025)) develops a new kind of recurrent models, leveraging
test-time compute as in Behrouz et al.|(2024)). They include a proof show that recurrent models using higher
order hidden states are more expressive. |Sieber et al.| (2024)) makes a similar derivation as this work, but in
the context of control systems, but did not apply this derivation to a recurrent architecture. Nauen et al.
(2024) makes a simple derivation, but only explores second-order models. Although all of these methods are
more expressive than linear attention, they are difficult to implement efficiently in hardware, akin to RNNs,
and fall short to the accuracy of softmax attention.

Softmax Attention Improvements Another direction of research explores how to improve softmax
attention. A number of works attempt to improve softmax attention by increasing sparsity to reduce
dependence on context length such as Longformer |Beltagy et al.| (2020), BigBird |Zaheer et al.| (2020)), and
randomized feature attention |Peng et al.| (2021). RoFormer |Su et al.| (2024) adds relative positional encodings
to improve long sequence modeling and is used in most modern transformer models. [Zhai* et al.| (2023)
prevents attention score entropy collapse by reparameterizing the weight matrices, modern transformers
use norms to fix this issue. Newer improvements such as the Forgetting Transformer |Lin et al.| (2025 and
DeepSeek [Liu et al.| (2024) make changes to the input of the attention mechanism such as combining the key
and value matrices to reduce the KV cache size, or adding a “forget” gate. Many of these improvements
make softmax attention slightly less computational, less memory intensive, or more expressive. However, the
core mechanism driving the modeling capability is still softmax attention.

Why Softmax? There are several works that also attempt to address the question: What makes softmax
attention so performant? This fundamental question has eluded researchers for some time. For example,
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Miller| (2023) noticed softmax attention cannot “zero out” attention heads. More specifically, when lim,, in¢
for all tokens, x;, it is desirable for the head output to produce zero, thus giving no weight to any tokens. In
actuality, it produces a uniform distribution over the tokens instead. To fix this issue, [Miller| (2023]) adds a
constant to the denominator. This work emphasizes how softmax has subtle problems even though it works
well in practice. [Smith| (2025)) asks why attention works, building upon Miller| (2023) to change the attention
mechanism. However, the focus of this work is on the improvements to attention, rather than exploring
exactly what makes attention work. Deng et al.|(2023) examines the performance gap between linear and
softmax attention, but only in a classification and empirical context. Why linear attention is lacking compared
to softmax attention, in general, remains not fully understood. Han et al|(2024) shows that linear attention
is lacking an injective property and cannot model local features while softmax attention is injective and can
model local features. (Collins et al.| (2024]) uses Lipschitzness to explain in-context learning in softmax. These
provide intuition but, ultimately, these properties do not fully explain the expressiveness gap.

Katharopoulos et al.| (2020)) introduced a formulation for linear attention using recurrent network components.
In their work, they also mention that their “formulation does not impose any constraint on the feature function
and it can be used for representing any transformer model, in theory even those using softmazx attention.”
This inspired our current work to formulate softmax attention as a RNN and use this formulation to describe
what makes softmax attention expressive, in general. Moreover, we attempt to explain exactly why linear
attention is not as expressive as softmax attention by showing linear attention approximates a subset of
elements that comprise softmax attention.

3 Methodology

We first motivate our approach using the traditional formulation of causal softmax attention for calculating
the output of the layer, Oy, at time ¢:

Sty QKLY
Zt QtK;J: (1)
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Oy = Softmax(Q; - K1.¢) - Vi =

We would like to rearrange this equation such that one can interpret the attention mechanism in a recurrent
form. However, the exponentiation in softmax couples @; and K, preventing a direct regrouping. For
instance, in linear attention the attention function is replaced by ¢(Q;) - ¢¥(K,)*. This decoupling allows
causal linear attention to be reformulated into a recurrent structure, as follows:

t
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In order to derive a recurrent representation for softmax, we analyze the numerator and denominator of
softmax attention separately. We first examine causal softmax attention without the denominator and show
there exists a recurrent form. We use the Taylor series expansion of softmax to achieve this formulation
(Section [3.1)). Having a recurrent form, Section [3.2] shows linear attention, as in equation [2] is a first order
approximation of softmax attention. Appendix [B]shows another motivating example—the quadratic case—for
an intuition of how the recurrent form expands for higher order Taylor series approximations. In Section [3.3]
the denominator is reinterpreted, using the language of RNNs with results provided in Section [

3.1 Recurrent Softmax Attention

Causal softmax attention, equation [T} is composed of exponentials of inner products between the query vector,
@:, and key vectors, K. Using a decomposed inner product form, causal softmax attention can be rewritten
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as an RNN by taking the Taylor series expansion of the exponential function. Here, we set the multiplicative
inverse of the denominator to G; for simplicity. Although the derivation is for the causal case, it can be
extended to the bidirectional case as in Appendix [C}

Note that, in the explanation below, we make use of several properties:

1. Decomposed Inner Product Property: (A - B)" is equivalent to (A®") - (B®") by equation
equation [7] A full derivation of this property is available in Appendix [A]

2. Inner Product Equivalence: (A4, B) = Z 1(A® B), ZZ LA B;

3. Kronecker Products Shorthand: A°" =®! A=A®A® - -®@AcR"

where A,B € R?, A® B € R? is the Hadamard product, A- B” € R is the inner product, A” - B € R%*¢
is an outer product, and the lack of an explicit operation denotes either: (1) scalar multiplication with
another scalar, vector, or matrix or (2) matrix-vector multiplication, similar to “slicing multiplication” in
most numerical packages. With these properties, we can now reformulate softmax attention as follows:

1
=Gy Z Z —'(Qt - KTy, By definition of the Taylor Series of e
n!
s=1n=0
an
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s=1n=0 n!
1 t
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Where Q € RV4 K ¢ RMd vV c RMe G e RN, Q, e R, K, ¢ RL,V € R, G, € R
N and M are the sequence dimensions, indexed by t and s respectively.

d (and e in Figure|l]) are the embedding dimensions where d is indexed by i.

n is the n'® order term in the Taylor expansion.

Thus, the softmax attention numerator does have a recurrent formulation. This formulation can also be seen
visually in Figure[I] Rather than the output coming from a single recurrent equation, softmax is a sum of
infinite recurrent outputs, each weighted by % Fach of the RNNs that comprise the output of softmax
attention have a hidden state of shape R?"¢ due to the n*" order Kronecker product on the queries and keys.
The n'" order Kronecker product can be thought of as creating nt" order multiplicative interactions between
dimensions of the keys and queries. The hidden state for each of the infinite RNNs can be thought of as
accumulating information of n* order interaction terms on the dimension of @ and K.
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Figure 1: Softmax attention as an RNN. We define G in place for the softmax denominator. Linear attention
is equivalent to the n = 1, first order, term. Expanded plots can be found in Appendix [G]

3.2 Linear Attention is a First Order Approximation

With this recurrent formulation, notice that taking the n = 1 term of the Taylor Series sum results in the
well known form of linear attention, as seen in Equation [2}

t t t
o) = Q®1 )Y (BN V=Y KT Vo=QH, H,=Y KI'-V, (3)
s=1 c—

s=1

Equation [3] and the left portion of Figure [I] show that linear attention is a linear approximation of softmax
attention when ¢ = 1) = I;. As linear attention is just a single term in softmax attention, this derivation
shows how linear attention is a subset of softmax attention and provides an intuitive explanation as to why
linear attention is typically less performant. Even when other functions are used for ¢ and 1, they can only
manipulate a single recurrent chain—they cannot model the higher order terms from softmax. These terms
in softmax attention allow it to model combinatorial interactions between inner product dimensions—thus, it
is at least as expressive as linear attention. Also notice that each subsequent RNN comprising softmax uses a
larger hidden state, modeling higher-order interactions on the combinatorial dimension of () and K. Linear
attention works with a single, smaller hidden state operating only on the dimension of @) and K, without
higher-order interactions. To highlight the difference between softmax attention and linear attention, we also
derive a quadratic approximation in Appendix [B] which models pairwise interactions on the dimension and
has a hidden state quadratically larger than linear attention.

This result raises an important difference between linear attention, with functions on ) and K, versus
nonlinear attention, which uses a non-decomposable function on the inner product of @ and K. Despite
the two forms appearing similar, they are fundamentally different in their ability to model higher order
interactions. A function on each of the vectors, ¢(Q:) and ¢ (K) restricts the vector space dimensions of Q;
and K. For example, ReLU restricts vectors to the positive portion of the vector space. On the other hand,
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the exponential function on the inner product space does not restrict the vector space. Instead, this function
creates n'" degree multiplicative factors between dimensions of Q; and K for all n € [0,00). Practically,
these multiplicative dimensions become less influential for larger n, as they are weighted by %, but they
cannot be disregarded entirely.

3.3 Reinterpreting the Denominator

In traditional softmax attention the denominator is calculated as:

1

Gi= —F——
t KT
ZS:l th s

(4)

where G can have values from 0 to 1 ﬂ Typically, these values are calculated from the same @Q; and Kj
values as the numerator. However, we hypothesize that the exact normalization is not the most crucial aspect
of GG;. Rather, we observe that G; could be interpreted like a gate or norm that stabilizes the numerator,
especially for long contexts when ¢ becomes large. We note that this re-interpretation of the denominator
may not be strictly accurate, but does provide a convenient mechanism for capturing some aspects of the
softmax denominator. This stabilization aspect is hypothesized to be the crucial function of G, rather than
the exact form of Gy. Therefore, we reformulate G; as a gate via:

t

1 ‘ KT = 1 n n n 1 n
(Gate) G Ty =S QP HE = G (RSN Ve ()
s=1 n=0

s=1

This assumption of the role of G; allows us to approximate it like an output gate in a recurrent structure at
time ¢. This representation also ties the softmax attention mechanisms to traditional properties of expressive
recurrent networks, such as the LSTM Hochreiter and Schmidhuber| (1997) and GRU |Cho et al.| (2014)).
However, this interpretation as a gate may be too broad of an assumption as it also allows the sequence to
grow without bound. This issue can be mitigated by dividing by the sequence length, clamping the inner
product (for example, we clamp the pre-exponential value to 5), and clipping the gradient. While these tricks
help ensure the gate is numerically stable, they are not particularly elegant solutions and complicate the
overall implementation. Alternatively, G; can be interpreted as a norm at time ¢, normalizing the numerator
according to its length and values. This can be realized via:

t o] t
T 1
(Norm) S v = IS @pm | =S (R ()
s=1 n=0 s=1
where ||-|| denotes a vector norm. The optimal type of norm is not immediately clear, and could be any

number of formulations such as Ly, RM S, or others. We test each interpretation of GG; under a recurrent
perspective, as either a gate or a norm, to understand its equivalence to the traditional softmax denominator.

4 Results

To evaluate our hypothetical softmax alternative, we train multiple Llama 2 |Touvron et al.| (2023]) 'Touvron
et al.|(2023) models for next token language modeling. Keeping the rest of the architecture constant, we
replace the attention mechanism with the proposed variations. We show log loss to emphasize the differences
between each model. Section shows our proposed replacement is empirically equivalent to softmax. Section
examines the scalability of the proposed replacement. Section evaluates linear attention against
normal softmax and our proposed methods. As our method uses a Taylor expansion, Section [£:4] looks at the
performance of different linear attention variations via progressive additions of higher order powers. Section
ablates various elements of the recurrent softmax attention.

2@ can be greater than 1 if the denominator is less than 1, which is rare, only occurring for small ¢.
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4.1 Softmax Equivalence

Experimental Setup In our experiments, we test both replacing the denominator with a gate as in
equation [fland with a norm as in equation [6] alongside normal softmax attention. To evaluate the applicability
to various domains, we retrain on three datasets: The Pile |Gao et al.| (2021), SlimPajama |Shen et al.| (2023)),
and FineWeb [Penedo et al.| (2024)). The Pile is a dataset created by Eleuther AI composed of 825 GiB of
English text on various domains such as code, technical papers, math, and articles. SlimPajama is a 627
billion token dataset that is a cleaner subset of RedPajama Weber et al| (2024), a dataset of various web crawl
data. FineWeb is a cleaned and de-duplicated 5-trillion token dataset compiled from 96 different common
crawl snapshots. Each tested model is about 300 million parameters and trained on a sequence length of 1024.
Adding a gate or norm requires up to an additional d parameters per layer, which is insignificant relative to
the model size. More hyperparameters for our models can be found in Appendix

Fineweb Log Train Loss SlimPajama Log Train Loss Pile Log Train Loss
- - = Norm
13 13 / \
Norm
: [/ i ol : L7

Fineweb Log Test Loss SlimPajama Log Test Loss Pile Log Test Loss

— R T S Step

20k 40k 60k 80k 10k 20 30k 50k 60k 20k 40k 60k 80k

Figure 2: Test and train loss on various datasets for softmax attention and the proposed methods with gate
or norm replacements. Expanded plots can be found in Appendix [G]

Result Figure[2] shows the resulting loss curves for each dataset and model variant. The loss for the normed
model variant follows the model trained with native softmax attention precisely while the model with a gate
performs slightly worse. We employ the Lo vector norm for this analysis and find that it is numerically stable.
The gate was semi-unstable during training. We noticed recoverable loss spikes during training where the
model loss would spike and resume after some number of steps. Dividing by the sequence length, clipping the
inner product before exponentiation, and performing gradient clipping, helped produce fewer spikes, however
some instability was still observed. This result implies that the function of G; is most similar to a norm
operation. Moreover, the norm does not need to mirror the traditional softmax exponentiation—a simple
vector norm approximates this well. We note, however, that this does not prove the denominator can be a
simple recurrent gate or norm—we only claim that performance is similar.

4.2 Scaling

To investigate if scaling laws hold, we scale the model in two ways. We scale the model from 300M parameters
to 2B parameters, keeping all other hyperparameters constant to evaluate the scalability of the model itself.
We also scale the sequence length from 1024 to 4096, keeping all other hyperparameters constant to examine
how our method scales with longer sequences. These scaling are tested upon the FineWeb |Penedo et al.
(2024)) dataset. The scaled comparisons are found in Figure 3] showing our proposed attention formulation
scales identically to softmax (with both the sequence length and the model size). Again we observe that the
norm better mirrors softmax performance and is more numerically stable.
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Figure 3: Test and train loss on the FineWeb dataset for large models (about 2B parameters) on 1024
sequence length and small models (about 300 million parameters) on 4096 sequence length for softmax
attention and the proposed methods with gate or norm replacements. Some experiments were cut short due
to time constraints

4.3 Linear Attention

As the proposed softmax decomposition has a direct relationship to linear attention, we evaluate the method
against several variations of linear attention. Figure [l shows that softmax attention and our proposed methods
outperform each linear attention variant by a significant gap. Additional details are provided in Appendix [F]
This behavior supports the assertions in Section showing linear attention is a subset of softmax attention.

Fineweb Log Test Loss Fineweb Log Train Loss
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1.4

Linear Cosine
Linear ReLU
inear Rel 12

nea
S

Linear Cosine
Linear ReLU
tep-s

20k 40k 60k 80k 0 20k 40k 60k 80k 100k

1.3

Gate

Gate

Norm
Norm
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Figure 4: Test and train loss on the FineWeb dataset for various linear attention methods, softmax attention,
and the proposed methods with gate or norm replacements.

4.4 Taylor Series Terms

As our method uses a Taylor series, we investigate how performance behaves as higher order terms are added
to the less expressive attention variations. That is, we use the recurrent formulation for a particular type
of linear attention and gradually add in higher order terms from the softmax Taylor expansion of softmax.
The results are shown in Figure [5| for three types of linear attention: cosine similarity Mongaras et al.|

(2025), ReLU (2025)), and elu(z) + 1 kernel Katharopoulos et al.| (2020). As more terms are added

to the softmax approximation, the performance smoothly transitions from “linear attention performance”
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to “softmax attention performance.” After adding in terms up to n = 10, we observe that the recurrent
approximation mirrors softmax with negligible differences. For the linear attention variants, however, we
find that adding more terms (described in Appendix [F]) improves performance but never fully reaches the
performance of softmax attention (even for n = 10). We hypothesize this performance gap exists because
linear attention variants have functions on the independent vectors, ¢(Q) and ¥ (K), restricting the reachable
vector space when combined; whereas softmax does not restrict this vector space. We leave exploring this
observation to future work. We note that cosine attention does not gain any benefit from additional terms and
hypothesize that due to inner product values being between 0 and 1, the resulting higher order interaction
terms are less than 1, limiting the magnitude of higher order terms and therefore the impact of these higher
order terms on the resulting output.

Softmax Log Train Loss Cosine Log Train Loss
— Full Softmax — 2nd Order Softmax = 4th Order Softmax — 6th Order Softmax — Linear Cosine = 2nd Order Cosine = 3rd Order Cosine ) C — Softmax
8th Order Softmax — 10th Order Softmax 2

Linear Cosine

2nd Order Cosine
3rd Order Cosine

2nd Order Softmax

4th Order Softmax 16 |

6th Order Softmax Softmax

8th Order Softmax
10th Order Softmax

Full Softmax
Step Step

0 5k 10k 15k 20k 25k 30k 0 5k 10k 15k 20k 25k 30k

ReLU Log Train Loss ELU Log Train Loss
= Linear ReLU = 2nd Order RelLU 3rd Order ReLU 4th Order ReLU 1 0r = Softmax = Linear ELU = 2nd Order ELU 3rd Order ELU 4th Order ELU = Softmax

Linear ELU

2
Li RelU
inear Rel ’ 2nd Order ELU

2nd Order ReLU 3rd Order ELU

3rd Order ReLU 4th Order ELU

4th Order ReLU

A

Softmax

Step Step

0 5k 10k 15k 20k 25k 30k 0 5k 10k 15k 20k 25k 30k

Figure 5: Log train loss for softmax attention and various linear attention method when summing more
powers of the inner product. The nth order denotes the sum of powers from 0 to n.

4.5 Ablation Analysis

To further investigate various recurrent elements, we conduct an ablation study using the 300M parameter
model, varying both the gated and normed variants of our method. The results of these ablations are
plotted in Figure [f] The leftmost plots ablate several elements of the recurrent softmax denominator, Gy, by
removing, detaching, and dividing by the sequence length, S (with varying combinations of all three). We
find that detaching the denominator from the computation graph significantly hurts downstream performance.
Removing the denominator and dividing by the sequence length gives similar performance to softmax, but
also creates instability. Adding a gate helps to somewhat stabilize the training, though not entirely. Finally,
we find that removing the denominator and adding a norm is what appears to mirror softmax most closely.

Gate The middle column of plots in Figure [6] ablates the gate method employed by combining sequence
length normalization with an input gate or output gate (more fully explained in Appcndix, and investigating
ReLU linear attention with a gate. The results shows that having a gate helps to stabilize training loss, but
must be accompanied by sequence length normalization for good test performance. Furthermore, replacing
the exponential with a decomposable ReLU kernel significantly hurts performance, regardless of gating or
sequence length normalization. This result emphasizes the importance of the exponential function on the
inner product of @ and K, as well as indicating that some sort of sequence length normalization is required.
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Figure 6: Test and train loss on various datasets for softmax attention and the proposed methods with gate
or norm replacements. Expanded plots can be found in Appendix [G]

Norm The rightmost column in Figure [6] varies the norm method employed, investigating the Ly norm,
RMS norm, layer norm, and Ls norm with sequence normalization. We also investigate the use of an Lo
norm with the decomposable ReLU kernel. The results shows that any type of normalization, with or without
learnable parameters, works just as well as softmax. However, replacing the exponential with a decomposable
ReLU kernel significantly degrades performance. This graph further emphasizes that the important aspects
of softmax attention are an exponential plus a vector norm. The choice of norm does not appear to influence
training stability or test performance. However, there are differences between a vector norm (e.g., Lo) and a
sequence length normalization (e.g., division by S or gating). The vector norm appears to achieve the best
performance, implying it is a necessary aspect of softmax, but the exact form seems to be unimportant.

5 Conclusions and Limitations

This work connects linear and softmax attention under a unifying recurrent formulation. A Taylor series
expansion of the softmax attention numerator was employed to develop a recurrent form and competing
hypotheses for approximating the softmax denominator were investigated. Linear attention was shown to
be a first order approximation of softmax. Using the recurrent softmax attention formulation, equivalence
was shown empirically and the crucial elements of softmax attention were analyzed in an ablation study.
Additional experiments showed that a tenth order Taylor series approximation is sufficient similar to softmax.
Finally, different types of normalization and gates were explored showing that any vector norm is sufficient to
approximate the functionality of the softmax attention denominator. The theory developed in this work is
crucial to understanding the performance bounds of softmax compared to other forms of attention. Moreover,
this theory may be employed to uncover more performant or efficient attention mechanisms.

Limitations The current formulation covers only linear attention and softmax attention, future work can
expand it to more complicated recurrent architectures such as RWKV |Peng et al.| (2025)) and state-space
models like Mamba Dao and Gu| (2024). As recurrent architectures similar to RWKV and Mamba are
extensions of linear attention, the theory developed in this work should extend to the additions made in these
works. Only the causal next token prediction task was investigated. While the derivations should generalize to
other domains, both bidirectional and causal, further investigation is necessary to ensure this generalization.
Future work can also incorporate changes from these recurrent models to softmax attention to potentially
improve efficiency or performance of softmax attention implementations. Finally, the hyperparameters for
the architectures presented were not exhaustively investigated, which could influence the final loss values.
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A Inner Product Decomposition

Let A, B € R?
Define A ® B € R? as the Hadamard product of A and B.

Define A - B € R as the inner/dot product of A and B
d

Note that the inner product is defined as A - B = Z (A® B), Z A;B;
i=1

n
Define A®" = ® A=A A® - ®@AecRY asn - 1 Kronecker products
i=1
The lack of an explicit operation denotes either: (1) scalar multiplication with another scalar, vector, or matrix.

or (2) matrix-vector multiplication, similar to “slicing multiplication” in most numerical packages.

Using the notation mention in Section [3.I] we show the decomposed form for an inner product space to the
h power is equivalent to the inner product of n' order Kronecker products of each vector.

(4-B)"

M=

(A® B), By equation equation 2]

7

<.
—

a |l

d d
(A® B), Z A®B), Z A®B), Power to product of n terms
i=1 i=1 i=1
d d d
:ZZ Z A©B);(A®B); ... (A®B), By rearranging the sums
i=1 j=1 k=1
combinatorial multiplication from 7 ... k
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= {(A ©) B)®"] ‘ By equation equation 3]
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an
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Rearrange the nth order Kronker Product (7)
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A® ) (B®") Change to inner product by equation equation 2 (8)
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B Quadratic Derivation

To provide a simple example of the recurrent form derived in Section we note that A®2 = A® A € RY
and show the recurrent form.

¢
O = Z(Qt KJ)?V,
s=1
t d 2
= Z lz (Qt © Kg);| Vs By equation equation [2]
s=1 Li=1
t  d?
= Z Z Q: ®Qy),; (K ® Ky), Vs By equation equation [7]
d2 t
= Z Z (Qt ®@Qr); (Ks ® Ks); Vs rearrange summations
i=1 s=1
d? t
= Z Qt ® Qr); Z (K, ® Ky) By factoring out Q
=1 s=1
¢
= (Q: ® Q1) Z (( ) & (KST)) - Vs By equation equation
s=1
i 2
=(Qi®Qy)H, Hy= Z ((K?) ® (K;‘F)) .V, e RT Define hidden state
s=1
C Bidirectional Derivation
N
Ot = Gt Zth Ks Vg
s=1
N oo 1
=Gy ; nZ::O E(Qt -KI)"v, By definition of the Taylor Series of e
N o 1 d"
n n\T . .
= Gy Z Z ] Z (QF )i (K2™) )i Vs By equation equation [7]
s=1n=0 1=1
oo 1 d" N
=Gy Z o Z Z (@F™), ((K§n)T)i Vs By rearranging sums
n=0  i=1 s=1
0o 1 d" N
=Gy Z o Z ( t®n)z Z <(K§®n)T)l Vs By factoring out Q
n=0  i=1 s=1
) 1 N
= Gy Z ] (QF™) Z (KE™T) -V, By equation equation 2]
n=0 " s=1
) 1 N
=Gy E( PHY,  HP =) (KEMT) -V, e R Define hidden state
n=0 """ s=1
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The only difference between the causal and bidirectional formulations is the range on the sequence sum
indexed by s. In the causal case, the index ends at ¢t while the bidirectional case sums to the end of the
sequence. This means the hidden state operates on the entire sequence for each token rather than just the
past s < t.

D Model Parameters

Unless otherwise mentioned, the below are the parameters we used in our models. As our base model is llama
2 |Touvron et al.| (2023). RoPE [Su et al.| (2024)) is used on the attention matrix and the MLPs follow SwiGLU
Shazeer| (2020]).

1. batch size - 36

2. learning rate - le-4

3. warmup steps - 10,000

4. warmup type - linear warmup from 0, linear decay
5. num steps - 100,000

6. precision - float32 and bfloat16 mixed precision
Weight decay - 0.01

Max sequence length - 1024 for general experiments, 4096 for length scaling experiment

© » N

Test percentage - 0.001

10. Optimizer - AdamW

11. Adam betas - 0.9 and 0.999

12. Hidden size - 1024 (3072 for the large model)

13. MLP intermediate size - 2048 (6144 for the large model)
14. Num attention heads - 16

15. Num hidden layers - 20

16. Tokenizer - llama2-7b-hf

17. Gradient clipping - 1.0 clipping for gated models, no clipping for all other experiments

Each model was trained for a maximum of 2 days. For most experiments, we use distributed data parallel
processing to train on two 80 GB, A100 GPUs with the exception of the large model, trained on 4 GPUs,
and 4096 sequence length, trained on 6 GPUs.

E Additional Gate Information

The input and output gates referenced in this paper are very similar to that of an LSTM Hochreiter and
Schmidhuber| (1997) and similar to that used by |Qiu et al. (2025). The input gate controls how much
information is being added to the LSTM hidden state while the output gate modulates the output of the
LSTM cell. As seen in Figure[7] these gating mechanisms can be translated to the original linear attention
formulation where the input gate is a scalar between [0, 1] at time ¢, modulating the K7V outer product while
the output gate is a scalar between [0, 1] at time ¢ modulating output after the Q;H; inner product. These
ideas extend to softmax attention, where it can be computed as an infinite sum of these RNNs—although the
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implementation is intractable. However, the gates can be translated to multiplicative values on the QKT
attention matrix. As the rows/queries define the output at time ¢, the output gate can be defined along the
rows. Similarly, as the columns define the input at time s, the input gate can be defined along the columns.
This idea is equivalent to applying the output gate after performing the full attention operation and applying
the input gate to the values. Mathematically, this can be expressed as follows:

t t
0= [Gire@ iG] v, =ain Y@K (o]
s=0

s=0
0= {Gm 0K oMo G"“t} Vo =G"e {eQ'KT ® M} (Gt & V]

Where Q € RV4 K € RMA v ¢ RMe Gin ¢ [0, 1], G e [0,1]M
And Q; e R, K, e R4V, e R, G € [0,1], G € [0,1]
e

(e

Inner Prod
ond
A A
d| Hiq }f-l-\ > d Hy
e e
()
d| (K™
e A
d| a
Outer Prod

Figure 7: Linear attention as an RNN with an input and output gate.
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F Linear Attention Expansions

This section provides details on how linear methods are augmented from their base implementation, as
presented in Section For linear attention variants the activation functions, ¢ and 1, are applied to @) and
K as in the native linear attention.

(Softmax) O, = Z % (QF™) - Z (KE™)T) V, — Z Z %(Qt - KD)"v,
n=0 s=1 s=1n=0

(Lincar) — 0,= 3"~ (6(QF") - Y (W) Ve =303 (0@ - w(K)D);
n=0 s=1 s=1n=0
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G Expanded Figures

Fineweb Log Test Loss

= Gate = Norm = Softmax

SlimPajama Log Test Loss

— Gate = Norm = Softmax
135
13
Norm
1.25
Softmax
12
115
11 Step
10k 20k 30k 40k 50k 60k
Pile Log Test Loss
= Gate = Norm = Softmax
12
Gate
Norm
Softmax
11

20k 40k 60k 80k

Fineweb Log Train Loss

— Gate — Norm — Softmax

1.4
13

L2 Softmax
11
1

Ste|
0.9 P
0 20k 40k 60k 80k
SlimPajama Log Train Loss
— Gate = Norm = Softmax
1.4
Gate
Norm

13

Softmax
1.2
11
1

Ste|
0.9 P
0 10k 20k 30k 40k 50k 60k 70k
Pile Log Train Loss
— Gate = Norm = Softmax
14
Softmax

1.2
1
0.8

Step

Figure 8: Expanded test and train loss plots on various datasets for softmax attention and the proposed
methods with gate or norm replacements. (expanded Figure

20



Published in Transactions on Machine Learning Research (10/2025)

Fineweb Log Test Loss
— Softmax = Softmax + Detach Denom — Softmax + Detach Denom + Gate
= Softmax + No Denom +DivS = Softmax + No Denom + DivS + Gate — Softmax + No Denom + Norm

1.6

15
Softmax + Detach Denom + Gate

Softmax + Detach Denom

14

13
Softmax + No Denom + DivS + Gate

Softmax + No Denom + DivS

12
Softmax + No Denom + Norm
Softmax
11
20k 40k 60k 80k
Fineweb Log Test Loss
— Softmax = GateOnly — DivSOnly = InputGate+DivS = Gate+DivS — Linear ReLU +Gate + DivS

14

13

12 Linear ReLU + Gate + DivS
DivS Only

Input Gate + DivS

< Gate Only

Gate + DivS.

Softmax

20k 40k 60k 80k

Fineweb Log Test Loss

= Softmax = L2 Norm Exp = RMSNorm Exp = Layer Norm Exp == L2 Norm RelLU

L2 Norm Exp

RMS Norm Exp
Laver Norm Exp

L2 Norm ReLU

Softmax

20k 40k 60k 80k

Fineweb Log Train Loss

— Softmax = Softmax + Detach Denom = Softmax + Detach Denom + Gate
= Softmax + No Denom + DivS = Softmax + No Denom + DivS + Gate = Softmax + No Denom + Norm

18
Softmax + Detach Denom + Gate
Softmax + Detach Denom
16
1.4
1.2
| Softmax+NoDenom + Divs + Gate
Softmax + No Denom + DivS
Softmax + No Denom + Norm  Softmax Step
0.8
0 20k 40k 60k 80k

Fineweb Log Train Loss

— Softmax = GateOnly — DivSOnly = InputGate +DivS = Gate + DivS Linear RelLU + Gate + DivS

16

Linear ReLU + Gate + DivS

Gate Only

1.4
1.2

DivS Only

Input Gate + DivS

1
Gate + DivS
Softmax
0.8
Step
0 20k 40k 60k 80k
Fineweb Log Train Loss

— Softmax = L2 Norm Exp — RMSNormExp — Layer Norm Exp = L2 Norm ReLU

16

L2 Norm Exp

14
RMS Norm Exp
Layer Norm Exp L2 Norm ReLU
Softmax
12
1
Ste|
0.8 P
0 20k 40k 60k 80k 100k

Figure 9: Expanded test and train loss on various datasets for softmax attention and the proposed methods
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