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ABSTRACT

Partial label learning (PLL) aims to train multi-class classifiers from instances
with partial labels (PLs)—a PL for an instance is a set of candidate labels where
a fixed but unknown candidate is the true label. In the last few years, the instance-
independent generation process of PLs has been extensively studied, on the ba-
sis of which many practical and theoretical advances have been made in PLL,
whereas relatively less attention has been paid to the practical setting of instance-
dependent PLs, namely, the PL depends not only on the true label but the instance
itself. In this paper, we propose a theoretically grounded and practically effective
approach called PrOgressive Purification (POP) for instance-dependent PLL: in
each epoch, POP updates the learning model while purifying each PL for the next
epoch of the model training by progressively moving out false candidate labels.
Theoretically, we prove that POP enlarges the region appropriately fast where the
model is reliable, and eventually approximates the Bayes optimal classifier with
mild assumptions; technically, POP is flexible with arbitrary losses and compatible
with deep networks, so that the previous advanced PLL losses can be embedded
in it and the performance is often significantly improved.

1 INTRODUCTION

Over-parameterized deep neural networks owe their popularity much to their ability to (nearly) per-
fectly memorize large numbers of training examples, and the memorization is known to decrease
the generalization error Feldman (2020). On the other hand, scaling the acquisition of examples
for training neural networks inevitably introduces non-fully supervised data annotation, a typical
example among which is partial label Nguyen & Caruana (2008); Cour et al. (2011); Zhang et al.
(2016; 2017b); Feng & An (2018); Xu et al. (2019); Yao et al. (2020b); Lv et al. (2020); Feng et al.
(2020b); Wen et al. (2021)—a partial label for an instance is a set of candidate labels where a fixed
but unknown candidate is the true label. Partial label learning (PLL) trains multi-class classifiers
from instances that are associated with partial labels. It is therefore apparent that some techniques
should be applied to prevent memorizing the false candidate labels when PLL resorts to deep learn-
ing, and unfortunately, empirical evidence has shown general-purpose regularization cannot achieve
that goal Lv et al. (2021).

A large number of deep PLL algorithms have recently emerged that aimed to design regularizers Yao
et al. (2020a;b); Lyu et al. (2022) or network architectures Wang et al. (2022a) for PLL data. Further,
there are some PLL works that provided theoretical guarantees while making their methods compat-
ible with deep networks Lv et al. (2020); Feng et al. (2020b); Wen et al. (2021); Wu & Sugiyama
(2021). We observe that these existing theoretical works have focused on the instance-independent
setting where the generation process of partial labels is homogeneous across training examples. With
an explicit formulation of the generation process, the asymptotical consistency Mohri et al. (2018)
of the methods, namely, whether the classifier learned from partial labels approximates the Bayes
optimal classifier, can be analyzed.

However, the instance-independent process cannot model the real world well since data labeling
is prone to different levels of error in tasks of varying difficulty. Intuitively, instance-dependent
(ID) partial labels should be quite realistic as some poor-quality or ambiguous instances are more
difficult to be labeled with an exact true label. Although the instance-independent setting has been
extensively studied, on the basis of which many practical and theoretical advances have been made
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in PLL, relatively less attention has been paid to the practically relevant setting of ID partial labels.
Very recently, one solution has been proposed Xu et al. (2021) which learned directly from ID partial
labels, nevertheless, it is still unclear in theory whether the learned classifier is good. Motivated by
the above observations, we set out to investigate ID PLL with the aim of proposing a learning
approach that is model-independent and theoretically explain when and why the proposed method
works.

In this paper, we propose PrOgressive Purification (POP), a theoretically grounded PLL framework
for ID partial labels. Specifically, we use the observed partial labels to pretrain a randomly initialized
classifier (deep network) for several epochs, and then we update both partial labels and the classifier
for the remaining epochs. In each epoch, we purify each partial label by moving out the candidate
labels for which the current classifier has high confidence of being incorrect, and subsequently
we train the classifier with the purified partial labels in the next epoch. As a consequence, the
false candidate labels are gradually sifted out and the classification performance of the classifier is
improved. We justify POP and outline the main contributions below:

• We propose a novel approach named POP for the ID PLL problem, which purifies the partial labels
and refines the classifier iteratively. Extensive experiments validate the effectiveness of POP.

• We prove that POP can be guaranteed to enlarge the region where the model is reliable by a
promising rate, and eventually approximates the Bayes optimal classifier with mild assumptions.
This proof process does not rely on the assumption of the instance-independent setting. To the
best of our knowledge, this is the first theoretically guaranteed approach for the general ID PLL
problem.

• POP is flexible with respect to losses, so that the losses designed for the instance-independent PLL
problems can be embedded directly. We empirically show that such embedding allows advanced
PLL losses can be applied to the ID problem and achieve state-of-the-art learning performance.

2 RELATED WORK

In this section, we briefly go through the seminal works in PLL, focusing on the theoretical works
and discussing the underlying assumptions behind them.

Non-deep PLL There have been substantial non-deep PLL algorithms from the pioneering work Jin
& Ghahramani (2003). From a practical standpoint, they have been studied along two different
research routes: the identification-based strategy and the average-based strategy. The identification-
based strategy purifies each partial label and extracts the true label heuristically in the training phase,
so as to identify the true labels Chen et al. (2014); Zhang et al. (2016); Tang & Zhang (2017); Feng &
An (2019); Xu et al. (2019). On the contrary, the average-based strategy treats all candidates equally
Hüllermeier & Beringer (2006); Cour et al. (2011); Zhang & Yu (2015). On the theoretical side, Liu
and Dietterich Liu & Dietterich (2012) analyzed the learnability of PLL by making a small ambiguity
degree condition assumption, which ensures classification errors on any instance have a probability
of being detected. And Cour et al. Cour et al. (2011) proposed a consistent approach under the
small ambiguity degree condition and a dominance assumption on data distribution (Proposition
5 in Cour et al. (2011)). Liu and Dietterich Liu & Dietterich (2012) proposed a Logistic Stick-
Breaking Conditional Multinomial Model to portray the mapping between instances and true labels
while assuming the generation of the partial label is independent of the instance itself. It should be
noted that the vast majority of non-deep PLL works have only empirically verified the performance
of algorithms on small data sets, without formalizing the statistical model for the PLL problem, and
therefore even less so for theoretical analysis of when and why the algorithms work.

Deep PLL In recent years, deep learning has been applied to PLL and has greatly advanced the
practical application of PLL. Yao et al. Yao et al. (2020a;b) and Lv et al. Lv et al. (2020) proposed
learning objectives that are compatible with stochastic optimization and thus can be implemented
by deep networks. Soon Feng et al. Feng et al. (2020b) formalized the first generation process
for PLL. They assumed that given the latent true label, the probability of all incorrect labels being
added into the candidate label set is uniform and independent of the instance. Thanks to the uniform
generation process, they proposed two provably consistent algorithms. Wen et al. Wen et al. (2021)
extended the uniform one to the class-dependent case, but still keep the instance-independent as-
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sumption unchanged. In addition, a new paradigm called complementary label learning Ishida et al.
(2017); Yu et al. (2018); Ishida et al. (2019); Feng et al. (2020a) has been proposed that learns from
instances equipped with a complementary label. A complementary label specifies the classes to
which the instance does not belong, so it can be considered to be an inverted PLL problem. How-
ever, all of them made the instance-independent assumption for analyzing the statistic consistency.
Wu and Sugiyama Wu & Sugiyama (2021) proposed a framework that unifies the formalization of
multiple generation processes under the instance-independent assumption. Wang et al. Wang et al.
(2022a) proposed a data-augmentation-based framework to disambiguate partial labels with con-
trastive learning. Zhang et al. Zhang et al. (2021a) exploited the class activation value to identify
the true label in candidate label sets.

Very recently, some researchers are beginning to notice a more general setting—ID PLL. Learning
with the ID partial labels is challenging, and all instance-independent approaches cannot handle the
ID PLL problem directly. Specifically, the theoretical approaches mentioned above utilize mainly
the loss correction technique, which corrects the prediction or the loss of the classifier using a
prior or estimated knowledge of data generation processes, i.e., a set of parameters controlling the
probability of generating incorrect candidate labels, or it is often called transition matrix Patrini
et al. (2017). The transition matrix can be characterized fixedly in the instance-independent setting
since it does not need to include instance-level information, a condition that does not hold in ID PLL.
Furthermore, it is ill-posed to estimate the transition matrix by only exploiting partially labeled data,
i.e., the transition matrix is unidentifiable Xia et al. (2020). Therefore, some new methods should
be proposed to tackle this issue. Xu et al. Xu et al. (2021) introduced a solution that infers the latent
label posterior via variational inference methods Blei et al. (2017), nevertheless, its effectiveness
would be hardly guaranteed. In this paper, we propose POP for the ID PLL problem and theoretically
prove that the learned classifier approximates well to the Bayes optimal.

3 PROPOSED METHOD

3.1 PRELIMINARIES

First of all, we briefly introduce some necessary notations. Consider a multi-class classification
problem of c classes. Let X = Rq be the q-dimensional instance space and Y = {1, 2, . . . , c} be
the label space with c class labels. In supervised learning, let p(x, y) be the underlying “clean”
distribution generating (x, yx) ∈ X × Y from which n i.i.d. samples {(xi, y

xi)}ni=1 are drawn.

In PLL, there is a partial label space S := {S|S ⊆ Y, S ̸= ∅} and the PLL training set D =
{(xi, Si)|1 ≤ i ≤ n} is sampled independently and identically from a “corrupted” density p̃(x, S)
over X × S . It is generally assumed that p(x, y) and p(x, S) have the same marginal distribution
of instances p(x). Then the generation process of partial labels can thus be formalized as p(S|x) =∑

y p(S|x, y)p(y|x). We define the probability that, given the instance x and its class label yx,
j-label being included in its partial label as the flipping probability:

ξj(x) = p(j ∈ S|x, yx), ∀j ∈ Y,

The key definition in PLL is that the latent true label of an instance is always one of its candidate
label, i.e., ξy

x

(x) = 1.

We consider use deep models by the aid of an inverse link function Reidand & Williamson (2010)
ϕ : Rc → ∆c−1 where ∆c−1 denotes the c-dimensional simplex, for example, the softmax, as
learning model in this paper. Then the goal of supervised multi-class classification and PLL is
the same: a scoring function f : X 7→ ∆c−1 that can make correct predictions on unseen inputs.
Typically, the classifier takes the form:

h(x) = argmax
j∈Y

fj(x).

The Bayes optimal classifier h⋆ (learned using supervised data) is the one that minimizes the risk
w.r.t the 0-1 loss (or some classification-calibrated loss Bartlett et al. (2006)), i.e.,

h⋆ = argmin
h

R01 = argmin
h

E(X,Y )∼p(x,y)

[
1{h(X )̸=Y }

]
.

For strictly proper losses Gneiting & Raftery (2007), the scoring function f∗ recovers the class-
posterior probabilities, i.e., f⋆(x) = p(y|x),∀x ∈ X . When the supervision information available
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is partial label, the PLL risk under p̃(x, S) w.r.t. a suitable PLL loss L : Rk ×S → R+ is defined as

R̃ = E(X,S)∼p̃(x,S)

[
L(h(X), S)

]
.

Minimizing R̃ induces the classifier and it is desirable that the minimizer approach h⋆. In addition,
let o = argmaxj ̸=yx p(y = j|x) be the class label with the second highest posterior possibility
among all labels.

3.2 OVERVIEW

In the latter part of this section, we will introduce a concept pure level set as the region where the
model is reliable. We prove that given a tiny reliable region, one could progressively enlarge this
region and improves the model with a sufficient rate by disambiguating the partial labels. Motivated
by the theoretical results, we propose an approach POP that works by progressively purifying the
partial labels to move out the false candidate labels, and eventually the learned classifier could
approximate the Bayes optimal classifier.

POP employs the observed partial labels to pre-train a randomly initialized classifier for several
epochs, and then updates both partial labels and the classifier for the remaining epochs. We start
with a warm-up period, in which we train the predictive model with a well-defined PLL loss Lv et al.
(2020). This allows us to attain a reasonable predictive model before it starts fitting incorrect labels
Zhang et al. (2017a). After the warm-up period, we iteratively purify each partial label by moving
out the candidate labels for which the current classifier has high confidence of being incorrect, and
subsequently we train the classifier with the purified partial labels in the next epoch. After the model
has been fully trained, the predictive model can perform prediction for unseen instances.

3.3 THE POP METHOD

We assume that the hypothesis class H is sufficiently complex (and deep networks could meet this
condition), such that the approximation error equals zero, i.e., argminh R = argminh∈H R and
we have enough training data i.e., n → ∞. The classifier is able to at least approximate the Bayes
optimal classifier h⋆ and the gap between the learned f(x) and the the scoring function f⋆(x) cor-
responding to h⋆ is determined by the inconsistency between incorrect candidate labels and output
of the Bayes optimal classifier.

For two instance x and z that satisfy p(yz|z) − p(o|z) ≥ p(yx|x) − p(o|x), i.e.,
the margin between the posterior of ground-truth label p(yz|z) and the second high-
est posterior possibility p(o|z) is larger than that in point x, the indicator function[
1{j ̸=h⋆(z)}

∣∣∣p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x), j ∈ Sz

]
equals 1 if the candidate label j of

z is inconsistent with the output of the optimal Bayes classifier h⋆(z). Then, the gap between fj(x)
and f⋆

j (x) , i.e., the approximation error of the classifier, could be controlled by the inconsistency
between the incorrect candidate labels and the output of the Bayes optimal classifier h⋆ for all the
instances z. Therefore, we assume that there exist constants α, ϵ < 1, such that for f(x),

|fj(x)−f⋆
j (x)| ≤ αE(z,S)∼p̃(z,S)

[
1{j ̸=h⋆(z)}

∣∣∣p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x), j ∈ Sz

]
+
ϵ

6
(1)

where the scoring function f∗ corresponding to h∗ on strictly proper losses Gneiting & Raftery
(2007) recovers the class-posterior probabilities, i.e., f⋆

j (x) = p(y = j|x). In addition, for the
probability density function d(u) of cumulative distribution function D(u) = Px∼p(x,y)(u(x) ≤ u)
where 0 ≤ u ≤ 1 and the margin u(x) = p(yx|x) − p(o|x). we assume that there exist constants
c⋆, c⋆ > 0 such that c⋆ < d(u) < c⋆. Then, the worst-case density-imbalance ratio is denoted
by l = c⋆

c⋆
. As the flipping probability of the incorrect label in the instance-dependent generation

process is related to its posterior probability, we assume that there exists a constant t > 0 such that:

ξj(x) ≤ p(y = j|x)t. (2)

Motivated by the pure level set in binary classification Zhang et al. (2021b), we define the pure level
set in instance-dependent PLL, i.e., the region where the model is reliable:
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Definition 1 (Pure (e, f)-level set). A set L(e) := {x∥p(yx|x)− p(o|x) |≥ e} is pure for f if
yx = argmaxj fj(x) for all x ∈ L(e).

Assume that there exists a set L(e) for all x ∈ L(e) which satisfies yx = argmaxj fj(x), we have

E(z,S)∼p̃(z,S)

[
1{j ̸=h⋆(z)}

∣∣∣p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x), j ∈ Sz

]
= 0 (3)

which means that there is a tiny region L(e) := {x∥p(yx|x)− p(o|x) |≥ e} where the model f is
reliable.

Let enew be the new boundary and ϵ
6lα (p(y

x|x) − e) ≤ e − enew ≤ ϵ
3lα (p(y

x|x) − e). As the
probability density function d(u) of the margin u(x) = p(yx|x) − p(o|x) is bounded by c⋆ <
d(u) < c⋆, we have the following result for x that satisfies e > p(yx|x)− p(o|x) ≥ enew

1:

E(z,S)∼p̃(z,S)

[
1{j ̸=h⋆(z)}

∣∣∣p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x), j ∈ Sz

]
≤ ϵ

3α
. (4)

Combining Eq. (1) and Eq. (4), there is

|fj(x)− f⋆
j (x)| ≤

ϵ

2
. (5)

Denote by m = argmaxj fj(x) the label with the highest posterior probability for the current
prediction. If fm(x)− fj ̸=m(x) ≥ e+ ϵ, we have 2

p(yx|x) ≥ p(y = j|x) + e (6)

which means that the label j is incorrect label. Therefore, we could move the label j out from
the candidate label set to disambiguate the partial label, and then refine the learning model with the
partial label with less ambiguity. In this way, we would move one step forward by trusting the model
with the tiny reliable region with following theorem.

We start with a warm-up period, as the classifier is able to attain reasonable outputs before fitting
label noise Zhang et al. (2017a). Note that the warm-up training is employed to find a tiny reliable
region and the ablation experiments show that the performance of POP does not rely on the warm-up
strategy. The predictive model θ could be trained on partially labeled examples by minimizing any
PLL loss function. Here we adopt PRODEN loss Lv et al. (2020) to to find a tiny reliable region:

LPLL =

n∑
i=1

c∑
j=1

wijℓ(fj(xi), Si). (7)

Here, ℓ is the cross-entropy loss and the weight wij is initialized with with uniform weights and
then could be tackled simply using the current predictions for slightly putting more weights on more
possible labels Lv et al. (2020):

wij =

{
fj (xi) /

∑
j∈Si

fj (xi) if j ∈ Si

0 otherwise (8)

Theorem 1 Assume that we have enough training data(n → ∞) and there is a pure (e, f)-level
set where x ∈ L(e) can be correctly classified by f . For each x and ∀j ∈ S and j ̸= m, if
fm(x) − fj(x) ≥ e + ϵ, we move out label j from the candidate label set and then update the
candidate label set as Snew. Then the new classifier fnew(x) is trained on the updated data with the
new distribution p̃(x, Snew). Let enew be the minimum boundary that L(enew) is pure for fnew. Then,
we have

p(yx|x)− enew ≥ (1 +
ϵ

6αl
)(p(yx|x)− e).

The detailed proof can be found in Appendix A.1. Theorem 1 shows that the purified region γ =
p(yx|x)− e would be enlarged by at least a constant factor with the given purification strategy.

1More details could be found in Appendix A.1.
2More details could be found in Appendix A.2.

5



Under review as a conference paper at ICLR 2023

Algorithm 1 POP Algorithm
Input: The PLL training set D = {(x1, S1), ..., (xn, Sn)}, initial threshold e0, end threshold eend, total round
R, step-size es;
1: Initialize the predictive model θ by warm-up training with the PLL loss Eq. 7, and threshold e = e0;
2: for r = 1, ..., R do
3: Train the predictive model f on D;
4: for i = 1, ..., n do
5: for j ∈ Si do
6: if fmi(xi)− fj(xi) ≥ e+ ϵ then
7: Purify the incorrect label j by removing it from the candidate label set Si;
8: end if
9: end for

10: end for
11: if e ≤ eend, and there is no purification for any candidate label set then
12: Decrease e with step-size es;
13: end if
14: end for
Output: The final predictive model f

After the warm-up period, the classifier could be employed for purification. According to Theorem
1, we could progressively move out the incorrect candidate label with the continuously strict bound,
and subsequently train an effective classifier with the purified labels with the PLL loss Lv et al.
(2020) since the PLL loss Lv et al. (2020) is model-independent and could operates in a mini-
batched training manner to update the model with the labeling-confidence weight. Specifically, we
set a high threshold e0 and calculate the difference fm(xi) − fj(xi) for each candidate label. If
there is a label j for xi satisfies fm(xi)− fj(xi) ≥ e0, we move out it from the candidate label set
and update the candidate label set. We depart from the theory by reusing the same fixed dataset over
and over, but the empirics are reasonable.

If there is no purification for all partial labels, we begin to decrease the threshold e and continue the
purification for improving the training of the model. In this way, the incorrect candidate labels are
progressively removed from the partial label round by round, and the performance of the classifier
is continuously improved. The algorithmic description of POP is shown in Algorithm 1.

Then we prove that if there exists a pure level set for an initialized model, our proposed approach
can purify incorrect labels and the classifier f will finally match the Bayes optimal classifier h after
sufficient rounds R under the instance-dependence PLL setting .

Theorem 2 For any flipping probability of each incorrect label ξj(x), define e0 =
(1+t)α+ ϵ

6

1+α . And
for a given function f0 there exists a level set L(e0) which is pure for f0. If one runs purification
in Theorem 1 with enough traing data (n → ∞) starting with f0 and the initialization: (1) e0 ≥
(1+t)α+ ϵ

6

1+α , (2) R ≥ 6l
ϵ log( 1−ϵ

1
c−e0

), (3)eend ≥ ϵ, then we have:

Px∼D[yffinal(x) = h⋆(x)] ≥ 1− c⋆ϵ

The proof of Theorem 2 is provided in Appendix A.3. According to Theorem 2, the learned clas-
sifier under the instance-dependent PLL setting will be consistent with the Bayes optimal classifier
eventually. Theorem 2 shows that the classifier can be guaranteed to eventually approximate the
Bayes optimal classifier.

4 EXPERIMENTS

4.1 DATASETS

We adopt five widely used benchmark datasets including MNIST LeCun et al. (1998), Kuzushiji-
MNIST Clanuwat et al. (2018), Fashion-MNIST Xiao et al. (2017), CIFAR-10 Krizhevsky & Hinton
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Table 1: Classification accuracy (mean±std) of each comparing approach on benchmark datasets
corrupted by the ID generation process.

MNIST Kuzushiji-MNIST Fashion-MNIST CIFAR-10 CIFAR-100

POP 99.28±0.02% 91.09±0.14% 96.93±0.07% 93.00±0.26% 71.82±0.08%
VALEN 99.03±0.02% 90.15±0.02% 96.31±0.12% 92.01±0.09% 71.48±0.12%

RCR 98.81±0.07% 90.62±0.22% 96.64±0.10% 86.11±0.43% 71.07±0.25%
PICO 98.76±0.04% 88.87±0.06% 94.83±0.17% 89.35±0.17% 66.30±0.24%

PRODEN 99.01±0.02% 90.48±0.14% 96.14±0.07% 78.87±0.26% 55.59±0.08%
RC 99.09±0.09% 90.56±0.14% 96.17±0.08% 80.13±0.14% 56.41±0.17%
CC 99.08±0.10% 90.40±0.20% 96.12±0.10% 76.17±0.11% 56.48±0.06%
LW 98.98±0.05% 89.82±0.2% 93.23±0.08% 43.16±0.63% 49.63±0.12%

CAVL 98.95±0.05% 87.85±0.06% 95.84±0.06% 75.41±4.77% 58.17±0.11%
CLPL 98.83±0.05% 90.21±0.08% 93.18±0.08% 51.61±0.39% 30.84±0.40%

Table 2: Classification accuracy (mean±std) of each comparing approach on the real-world datasets.
Lost BirdSong MSRCv2 Mirflickr Malagasy Soccer Player Yahoo!News

POP 78.57±0.45% 74.47±0.36% 45.86±0.28% 61.09±0.10% 72.29±0.33% 54.48±0.10% 66.38±0.07%
VALEN 76.87±0.86% 73.39±0.26% 49.97±0.43% 59 13±0.12% 69.44±0.06% 55.81±0.10% 66.26±0.13%

PRODEN 76.47±0.25% 73.44±0.12% 45.10±0.16% 59.59±0.52% 69.34±0.09% 54.05±0.15% 66.14±0.10%
RC 76.26±0.46% 69.33±0.32% 49.47±0.43% 58.93±0.10% 70.69±0.14% 56.02±0.59% 63.51±0.20%
CC 63.54±0.25% 69.90±0.58% 41.50±0.44% 58.81±0.54% 69.53±0.34% 49.07±0.36% 54.86±0.48%
LW 73.13±0.32% 51.45±0.26% 49.85±0.49% 54.50±0.81% 59.34±0.25% 50.24±0.45% 48.21±0.29%

CAVL 73.96±0.51% 69.63±0.93% 46.62±1.29% 57.13±0.10% 65.82±0.06% 52.92±0.40% 60.97±0.13%
CLPL 63.39±0.12% 62.90±3.33% 37.8±0.71% 58.87±0.10% 64.25±0.29% 48.23±0.03% 49.42±0.13%

(2009), CIFAR-100 Krizhevsky & Hinton (2009). These datasets are manually corrupted into ID
partially labeled versions. Specifically, we set the flipping probability of each incorrect label corre-
sponding to an instance x by using the confidence prediction of a neural network trained using su-
pervised data parameterized by θ̂ Xu et al. (2021). The flipping probability ξj(x) =

fj(x;θ̂)

maxj∈Ȳ fj(x;θ̂)
,

where Ȳi is the set of all incorrect labels except for the true label of xi. The average number of
candidate labels (avg. #CLs) for each benchmark dataset corrupted by the ID generation process is
recorded in Appendix A.4.

In addition, five real-world PLL datasets which are collected from different application domains are
used, including Lost Cour et al. (2011), Soccer Player Zeng et al. (2013), Yahoo!News Guillaumin
et al. (2010), MSRCv2 Liu & Dietterich (2012), and BirdSong Briggs et al. (2012). The average
number of candidate labels (avg. #CLs) for each real-world PLL dataset is also recorded in Appendix
A.4.

4.2 BASELINES

The performance of POP is compared against five deep PLL approaches:

• PRODEN Lv et al. (2020): A progressive identification approach which approximately minimizes
a risk estimator and identifies the true labels in a seamless manner;

• RC Feng et al. (2020b): A risk-consistent approach which employs the loss correction strategy to
establish the true risk by only using the partially labeled data;

• CC Feng et al. (2020b): A classifier-consistent approach which also uses the loss correction strat-
egy to learn the classifier that approaches the optimal one;

• VALEN Yao et al. (2020a): An ID PLL approach which recovers the latent label distribution via
variational inference methods;

• LW Wen et al. (2021): A risk-consistent approach which proposes a leveraged weighted loss to
trade off the losses on candidate labels and non-candidate ones.

• CAVL Zhang et al. (2021a): A progressive identification approach which exploits the class activa-
tion value to identify the true label in candidate label sets.

• CLPL Cour et al. (2011): A avearging-based disambiguation approach based on a convex learning
formulation.
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Table 3: Classification accuracy (mean±std) of each comparing approach on benchmark datasets
corrupted by the ID generation process.

MNIST Kuzushiji-MNIST Fashion-MNIST CIFAR-10 CIFAR-100

PRODEN 97.70±0.03% 87.60±0.23% 87.21±0.11% 76.77±0.63% 55.12±0.12%
PRODEN+POP 97.87±0.04% 88.70±0.02% 87.62±0.04% 79.00±0.28% 57.68±0.14%

RC 97.72±0.02% 87.25±0.06% 87.06±0.14% 76.49±0.52% 55.18±0.70%
RC+POP 98.08±0.03% 87.78±0.09% 87.45±0.05% 78.89±0.17% 57.66±0.11%

CC 97.25±0.11% 83.31±0.07% 86.01±0.13% 72.87±0.82% 55.56±0.23%
CC+POP 97.99±0.06% 83.98±0.10% 86.32±0.06% 77.03±0.58% 56.18±0.06%

LW 96.80±0.07% 84.46±0.22% 86.25±0.01% 46.77±0.66% 48.00±0.16%
LW+POP 97.47±0.06% 84.71±0.07% 86.40±0.05% 48.54±0.04% 49.61±0.27%

CAVL 96.25±0.40% 79.38±0.69% 84.66±0.05% 62.69±1.65% 47.35±0.16%
CAVL+POP 96.71±0.11% 79.83±0.12% 85.04±0.10% 63.12±0.23% 47.61±0.06%

CLPL 96.11±0.21% 83.31±0.24% 83.16±0.25% 53.61±0.31% 22.31±0.11%
CLPL+POP 96.51±0.22% 83.63±0.11% 83.71±0.15% 54.22±0.51% 23.37±0.29%

Table 4: Classification accuracy (mean±std) of each comparing approach on the real-world datasets.
Lost BirdSong MSRCv2 Mirflickr Malagasy Soccer Player Yahoo!News

PRODEN 76.47±0.25% 73.44±0.12% 45.10±0.16% 59.59±0.52% 69.34±0.09% 54.05±0.15% 66.14±0.10%
PRODEN+POP 78.57±0.45% 74.47±0.36% 45.86±0.28% 61.09±0.10% 72.29±0.33% 54.48±0.10% 66.38±0.07%

RC 76.26±0.46% 69.33±0.32% 49.47±0.43% 58.93±0.10% 70.69±0.14% 56.02±0.59% 63.51±0.20%
RC+POP 78.56±0.45% 70.77±0.26% 51.18±0.59% 59.65±0.52% 71.04±0.10% 56.49±0.03% 63.86±0.22%

CC 63.54±0.25% 69.90±0.58% 41.50±0.44% 58.81±0.54% 69.53±0.34% 49.07±0.36% 54.86±0.48%
CC+POP 65.47±0.93% 71.50±0.06% 43.21±0.43% 59.89±0.48% 71.19±0.40% 49.36±0.02% 55.22±0.05%

LW 73.13±0.32% 51.45±0.26% 49.85±0.49% 54.50±0.81% 59.34±0.25% 50.24±0.45% 48.21±0.29%
LW+POP 75.30±0.26% 52.35±0.26% 52.42±0.86% 55.46±0.27% 60.85±0.57 50.94±0.47% 48.6±0.12%

CAVL 73.96±0.51% 69.63±0.93% 46.62±1.29% 57.13±0.10% 65.82±0.06% 52.92±0.40% 60.97±0.13%
CAVL+POP 75.32±0.11% 70.13±0.22% 46.92±0.13% 58.63±0.48% 67.70±0.19% 53.44±0.10% 61.37±0.11%

CLPL 63.39±0.12% 62.90±3.33% 37.8±0.71% 58.87±0.10% 64.25±0.29% 48.23±0.03% 49.42±0.13%
CLPL+POP 64.73±0.14% 64.06±0.48% 39.32±0.24% 60.31±0.27% 66.04±0.25% 49.11±0.21% 50.33±0.18%

• PICO Wang et al. (2022b): a data-augmentation-based method which identifies the true label via
contrastive-learning with learned prototypes for image datasets.

• RCR Wu et al. (2022): a data-augmentation-based method which identifies the true label via con-
sistency regularization with random augmented instances for image datasets.

For the benchmark datasets, we use the same data augmentation strategy for the data-augmentation-
free methods (VALEN, PRODEN, RC, CC, LW and CAVL) to make fair comparisons with the data-
augmentation-based methods (PICO and RCR). However, data augmentation cannot be employed
on the realworld datasets that contain extracted feature from audio and video data, we just compared
our methods with the data-augmentation-free methods on realworld datasets.

For all the deep approaches, We used the same training/validation setting, models, and optimizer
for fair comparisons. Specifically, a 5-layer LeNet is trained on MNIST, Kuzushiji-MNIST and
Fashion-MNIST, the Wide-ResNet-28-2 Zagoruyko & Komodakis (2016) is trained on CIFAR-10
and CIFAR-100, and the linear model is trained on real-world PLL datasets, respectively. The hyper-
parameters are selected so as to maximize the accuracy on a validation set (10% of the training set).
We run 5 trials on the benchmark datasets and the real-world PLL datasets. The mean accuracy as
well as standard deviation are recorded for all comparing approaches. All the comparing methods
are implemented with PyTorch.

4.3 EXPERIMENTAL RESULTS

Table 1 and Table 2 report the classification accuracy of each approach on benchmark datasets
corrupted by the ID generation process and the real-world PLL datasets, respectively. Due to the
inability of data augmentation to be employed on extracted feature , we didn’t compare our methods
with PICO and RCR on realworld datasets. The best results are highlighted in bold. We can observe
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Figure 2: Hyper-parameter sensitivity
on CIFAR-10.

that POP achieves the best performance against other approaches in most cases and the performance
advantage of POP over comparing approaches is stable under varying the number of candidate labels.

In addition, to analysis the purified region in Theorem 1, we employ the confidence predictions of
f(x, θ̃) (the network in Section 4.1) as the posterior and plot the curve of the estimated purified
region in every epoch on Lost in Figure 1. We can see that although the estimated purified region
would be not accurate enough, the curve could show that the trend of continuous increase for the
purified region.

4.4 FURTHER ANALYSIS

As the framework of POP is flexible for the loss function, we integrate the proposed method with
the previous methods for instance-independent PLL including PRODEN, RC, CC, LW, CAVL and
CLPL. In this subsection, we empirically prove that the previous methods for instance-independent
PLL could be promoted to achieve better performance after integrating with POP.

Table 3 and Table 4 report the classification accuracy of each method for instance-independent PLL
and its variant integrated with POP on benchmark datasets corrupted by the ID generating proce-
dure and the real-world datasets, respectively. We didn’t use any data augmentation on benchmark
datasets in this part of experiments. As shown in Table 3 and Table 4, the approaches integrated with
POP including PRODEN+POP, RC+POP, CC+POP , LW+POP, CAVL+POP and CLPL+POP achieve
superior performance against original method, which clearly validates the usefulness of POP frame-
work for improving performance for ID PLL.

Figure 3 illustrates the variant integrated with POP performs under different hyper-parameter con-
figurations on CIFAR-10 while similar observations are also made on other data sets. The hyper-
parameter sensitivity on other datasets could be founded in Appendix A.4. As shown in Figure 3, it
is obvious that the performance of the variant integrated with POP is relatively stable across a broad
range of each hyper-parameter. This property is quite desirable as POP framework could achieve
robust classification performance.

5 CONCLUSION

In this paper, the problem of partial label learning is studied where a novel approach POP is proposed.
we consider ID partial label learning and propose a theoretically-guaranteed approach, which could
train the classifier with progressive purification of the candidate labels and is theoretically guaran-
teed to eventually approximates the Bayes optimal classifier for ID PLL. Experiments on benchmark
and real-world datasets validate the effectiveness of the proposed method. If PLL methods become
very effective, the need for exactly annotated data would be significantly reduced. As a result, the
employment of data annotators might be decreased which could lead to a negative societal impact.
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A APPENDIX

A.1 PROOFS OF THEOREM 1

Assume that there exists a set L(e) for all x ∈ L(e) which satisfies yx = argmaxj fj(x) and
p(yx|x)− p(o|x) ≥ e, we have

E(z,S)∼p̃(z,Snew)

[
1{j ̸=h⋆(z)}

∣∣∣p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x), j ∈ Sz

]
= 0 (9)

Let enew be the new boundary and ϵ
6lα (p(y

x|x) − e) ≤ e − enew ≤ ϵ
3lα (p(y

x|x) − e). As the
probability density function d(u) of the margin u(x) = p(yx|x) − p(o|x) is bounded by c⋆ <
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d(u) < c⋆, we have the following result for x that satisfies p(yx|x)− p(o|x) ≥ enew
3

E(z,S)∼p̃(z,Snew)

[
1{j ̸=h⋆(z)}

∣∣∣j ∈ Sz,p(y
z|z)− p(o|z) ≥ p(yx|x)− p(o|x)

]
≤E(z,S)∼p̃(z,Snew)

[
1{j ̸=h⋆(z)}

∣∣∣p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)
]

=Pz

[
j ̸= h⋆(z)

∣∣∣p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)
]

=
Pz [j ̸= h⋆(z), p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

≤ Pz [j ̸= h⋆(z), p(yz|z)− p(o|z) ≥ e]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)] +
Pz [j ̸= h⋆(z), enew ≤ p(yz|z)− p(o|z) < e]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

=
Pz [j ̸= h⋆(z), p(yz|z)− p(o|z) ≥ e]

Pz [p(yz|z)− p(o|z) ≥ e]

Pz [p(y
z|z)− p(o|z) ≥ e]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

+
Pz [j ̸= h⋆(z), enew ≤ p(yz|z)− p(o|z) < e]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

=E(z,S)∼p̃(z,S)

[
1{h(z)̸=yz}

∣∣∣p(yz|z)− p(o|z) ≥ e
]

︸ ︷︷ ︸
=0(According to Eq. (9))

Pz [p(y
z|z)− p(o|z) ≥ e]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

+
Pz [j ̸= yz, enew ≤ p(yz|z)− p(o|z) < e]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

=
Pz [enew ≤ p(yz|z)− p(o|z) < e]

Pz [p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)]

≤ c⋆(e− enew)

c⋆ (p(yx|x)− e)
.

(10)

Due to that ϵ
6lα (p(y

x|x)− e) ≤ e− enew ≤ ϵ
3lα (p(y

x|x)− e) holds, we can further relax Eq. (10)
as follows:

E(z,S)∼p̃(z,Snew)

[
1{j ̸=h⋆(z)}

∣∣∣j ∈ Sz, p(y
z|z)− p(o|z) ≥ p(yx|x)− p(o|x)

]
≤ c∗(e− enew)

c∗ (p(yx|x)− e)

≤ c∗

c∗ (p(yx|x)− e)

ϵ

3lα
(p(yx|x)− e)

=
ϵ

3α
.

(11)

Then, we can find that the assumption that the gap between fj(x) and f⋆
j (x) should be controlled

by the risk at point z implies:∣∣fj(x)− f⋆
j (z)

∣∣
≤αE(z,S)∼p̃(z,Snew)

[
1{h(z)̸=yz}

∣∣∣p(yz|z)− p(o|z) ≥ p(yx|x)− p(o|x)
]
+

ϵ

6

≤α
ϵ

3α
+

ϵ

6

≤ ϵ

2
.

(12)

Hence, for x s.t. p(yx|x)− p(o|x) ≥ enew, according to Eq. (12) we have

fyx(x)− fj ̸=yx(x) ≥ (p(y = yx|x)− ϵ

2
)− (p(y = j|x) + ϵ

2
)

= p(y = yx|x)− p(y = j|x)− ϵ

≥ p(y = yx|x)− p(o|x)− ϵ

≥ enew − ϵ

≥ 0,

(13)

3Details of Eq. (3) in the paper submission
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Figure 3: Hyper-parameter sensitivity on Lost.

which means that j(x) will be the same label as h⋆ and thus the level set L(enew) is pure for f .
Meanwhile, the choice of enew ensures that

p(yx|x)− enew ≥ p(yx|x)− (e− ϵ

6lα
(p(yx|x)− e))

= p(yx|x)− e+
ϵ

6lα
(p(yx|x)− e)

= (1 +
ϵ

6lα
)(p(yx|x)− e).

(14)

Here, the proof of Theorem 1 has been completed.

A.2 DETAILS OF EQ. (5)

If fm(x)− fj ̸=m ≥ e+ ϵ, according to Eq. (12) we have:

p(yx|x) ≥ p(y = m|x)
= p(y = j|x) + p(y = m|x)− p(y = j|x)
≥ p(y = j|x) + p(y = m|x)− p(y = j|x)

≥ p(y = j|x) + (fm(x)− ϵ

2
)− (fj(x) +

ϵ

2
)

= p(y = j|x) + (fm(x)− fj(x))− ϵ

≥ p(y = j|x) + (e+ ϵ)− ϵ

= p(y = j|x) + e.

(15)

A.3 PROOFS OF THEOREM 2

To begin with, we prove that there exists at least a level set L(e0) pure to f0. Considering x

satisfies p(yx|x) − p(o|x) ≥ e0, we have Pz

[
j ̸= h⋆(z)

∣∣∣j ∈ Sz, p(y
z|z)− p(o|z) ≥ e0

]
≤

p(yz|z) − e0 + ξj(z). Due to the assumption |fj(x) − f⋆
j (x)| ≤

αE(z,S)∼p̃(z,S)

[
1{j ̸=h⋆(z)}

∣∣∣j ∈ Sz, p(y
z|z)− p(o|z) ≥ p(yx|x)− p(o|x)

]
+ ϵ

6 , it suffices
to satisfy α(p(yx|x) − e0 + ξ) + ϵ

6 ≤ e0 to ensure that fj(x) has the same prediction with h⋆

when p(yx|x) − p(o|x) ≥ e0. Since we have ξj(x) ≤ p(y = j|x)t ≤ p(yx|x)t, by choosing
e0 ≥ (1+t)α+ ϵ

6

1+α ≥ (1+t)αp(yx|x)+ ϵ
6

1+α one can ensure that initial f0 has a pure L(e0)-level set.

Then in the rest of the iterations we ensure the level set p(yz|z)−p(o|z) ≥ e is pure. We decrease e
by a reasonable factor to avoid incurring too many corrupted labels while ensuring enough progress
in label purification, i.e. ϵ

6lα (p(y
x|x) − e) ≤ e − enew ≤ ϵ

3lα (p(y
x|x) − e), such that in the

14
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Table 5: Characteristic of the benchmark datasets corrupted by the ID generation process.

Dataset #Train #Test #Features #Class Labels avg. #CLs
MNIST 60000 10000 784 10 8.71

Fashion-MNIST 60,000 10,000 784 10 3.46
Kuzushiji-MNIST 60,000 10,000 784 10 3.87

CIFAR-10 50,000 10,000 3,072 10 3.68
CIFAR-100 50,000 10,000 3,072 100 4.64

Table 6: Characteristic of the real-world PLL datasets.
Dataset #Train #Test #Features #Class Labels avg. #CLs Task Domain

Lost 898 224 108 16 2.23 automatic face naming Cour et al. (2011)
MSRCv2 1,406 352 48 23 3.16 object classification Liu & Dietterich (2012)
Mirflickr 2224 556 1536 14 2.76 web image classification Huiskes & Lew (2008)
BirdSong 3,998 1,000 38 13 2.18 bird song classification Briggs et al. (2012)
Malagasy 4243 1069 384 44 8.35 POS Tagging Garrette & Baldridge (2013)

Soccer Player 13,978 3,494 279 171 2.09 automatic face naming Zeng et al. (2013)
Yahoo! News 18,393 4,598 163 219 1.91 automatic face naming Guillaumin et al. (2010)

level set p(yx|x) − p(o|x) ≥ enew we have |fj(x) − f⋆
j (x)| ≤ ϵ

2 . This condition ensures the
correctness of flipping when e ≥ ϵ. The the purified region cannot be improved once e < ϵ since
there is no guarantee that fj(x) has consistent label with h⋆ when p(yx|x) − p(o|x) < ϵ and
|fj(x) − f⋆

j (x)| ≤ ϵ
2 . To get the largest purified region, we can set eend = ϵ. Since the probability

density function d(u) of the margin u(x) = p(yx|x) − p(o|x) is bounded by c⋆ ≤ d(u) ≤ c⋆, we
have:

Px∼D[yffinal(x) ̸= h⋆] ≤ P[p(yx|x)− p(o|x) < eend]

= Px∼D[p(yx|x)− p(o|x) < ϵ]

≤ c⋆ϵ.

(16)

Then Px∼D[yffinal(x) = h⋆] = 1− Px∼D[yffinal(x) ̸= h⋆] ≥ 1− c⋆ϵ.

The rest of the proof is the total round R ≥ 6αl
ϵ log( 1−ϵ

1
c−e0

), which follows from the fact that each
round of label flipping improves the the purified region by a factor of (1 + ϵ

6lα ):(
1 +

ϵ

6lα

)R

(p(yx|x)− e0) ≥ p(yx|x)− ϵ

⇒
(
1 +

ϵ

6lα

)R

≥ p(yx|x)− ϵ

p(yx|x)− e0

⇒ R log
(
1 +

ϵ

6lα

)
≥ log

(
p(yx|x)− ϵ

p(yx|x)− e0

)
⇒ R

ϵ

6lα
≥ R log

(
1 +

ϵ

6lα

)
≥ log

(
p(yx|x)− ϵ

p(yx|x)− e0

)
⇒ R ≥ 6lα

ϵ
log

(
p(yx|x)− ϵ

p(yx|x)− e0

)
≥ 6lα

ϵ
log(

1− ϵ
1
c − e0

).

(17)

A.4 DETAILS OF EXPERIMENTS

We collect four widely used benchmark datasets including MNIST LeCun et al. (1998), Kuzushiji-
MNIST Clanuwat et al. (2018), Fashion-MNIST Xiao et al. (2017), CIFAR-10 Krizhevsky & Hinton
(2009), CIFAR-100 Krizhevsky & Hinton (2009). In addition, five real-world PLL datasets are
adopted, which are collected from several application domains including Lost Cour et al. (2011),
Soccer Player Zeng et al. (2013) and Yahoo!News Guillaumin et al. (2010) for automatic
face naming from images or videos, MSRCv2 Liu & Dietterich (2012) for object classification, and
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BirdSongBriggs et al. (2012) for bird song classification. Figure 3 illustrates the variant integrated
with POP performs under different hyper-parameter configurations on Lost.

The average number of candidate labels (avg. #CLs) for each benchmark dataset corrupted by the ID
generation process is recorded in Table-5 and the average number of candidate labels (avg. #CLs)
for each real-world PLL dataset is recorded in Table-6.
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