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Abstract

Truck-involved collisions pose a significant safety and operational
risk within supply chains, often resulting in costly disruptions, in-
juries, and delays. Accurate and interpretable prediction of injury
severity is critical for supporting proactive safety interventions
and risk mitigation strategies. This study presents a SHAP-guided
Recursive Feature Elimination (SHAP-RFE) framework for identi-
fying the most informative features related to injury severity in
truck crashes, using data from the 2022 Fatality Analysis Reporting
System (FARS).

We compare SHAP-RFE against two benchmark feature selection
methods: Principal Component Analysis (PCA) and a literature-
informed feature set synthesized from 58 prior studies. Our ap-
proach achieves the highest adjusted macro F1-score, while se-
lecting a compact set of 26 interpretable features. Notably, 20 of
these overlap with domain-validated risk factors, confirming strong
alignment with existing research.

The results highlight SHAP-RFE’s ability to balance performance
and interpretability in imbalanced multiclass classification tasks.
This interpretable framework offers practical value for transporta-
tion safety planners and logistics decision-makers seeking to reduce
crash impact and enhance supply chain resilience.
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1 Introduction

Truck-involved collisions pose a significant safety and operational
risk within logistics and supply chain management, affecting trans-
portation reliability, insurance liability, and service continuity. In
the United States alone, trucks transported over 11.84 billion tons
of freight in 2019, with commercial vehicles accounting for nearly
30% of all traffic-related fatalities [1,2]. Globally, the freight truck-
ing market was valued at $2.2 trillion in 2022 and is projected to
reach $3.4 trillion by 2030, underscoring the high economic stakes
associated with truck safety and efficiency [3]. As freight demand
rises, especially with the growth of e-commerce and just-in-time
logistics—understanding and mitigating truck collision severity has
become an urgent research and management priority.

Although machine learning (ML) has been increasingly applied
to forecasting, optimization, and risk detection tasks in logistics, its
application to injury severity prediction in truck-involved crashes
remains limited. Moreover, many existing models in this domain em-
phasize predictive performance over interpretability, reducing their
usefulness in real-world, high-stakes decision-making contexts. In
transportation safety—where legal, operational, and policy implica-
tions are substantial—interpretable ML methods are essential for
enabling actionable insights and fostering trust among practitioners
and regulators.

To address this gap, we adapt and evaluate a SHAP-guided Recur-
sive Feature Elimination (SHAP-RFE) framework for interpretable
feature selection in multiclass injury severity prediction. Originally
introduced by Huang et al. (2024) for binary classification of dri-
ver mental states using physiological data, SHAP-RFE combines
SHapley Additive Explanations (SHAP)—a game-theoretic method
for feature attribution—with recursive elimination to identify com-
pact, high-importance feature subsets [4]. Unlike traditional filter-
or wrapper-based methods, this approach seeks to balance pre-
dictive performance with transparency, making it well-suited for
high-stakes, safety-critical applications such as transportation risk
modeling.

Feature selection plays a pivotal role in injury severity modeling
by reducing dimensionality, enhancing generalizability, and improv-
ing model transparency—particularly when used to guide safety
interventions or policy decisions [5]. In the context of commercial
trucking, identifying a focused, interpretable set of risk factors can
directly inform targeted safety strategies and resource allocation.

This study asks: Can SHAP-RFE provide a feature selection method
that balances interpretability and predictive performance, outperform-
ing standard approaches such as Principal Component Analysis (PCA)
and literature-informed variables—in truck-involved injury severity
classification?
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To investigate this, we apply SHAP-RFE to real-world crash data
from the Fatality Analysis Reporting System, 2022 and benchmark
it against two baselines: (i) PCA, an unsupervised technique that
emphasizes variance rather than interpretability, and (ii) a literature-
informed feature set derived from an extensive synthesis of 58 prior
studies. This three-way comparison enables a comprehensive eval-
uation of SHAP-RFE’s utility as a methodologically grounded and
operationally relevant feature selection framework in commercial
vehicle safety analytics.

2 Related Work

Machine learning (ML) techniques have seen increasing adoption
in traffic safety research, yet their application to truck-involved
crash injury severity prediction remains limited. The vast majority
of prior studies in this domain rely on traditional statistical mod-
els—including multinomial logit, ordered probit, and random param-
eters logit—to examine crash-related outcomes [6,7,8]. While these
models offer interpretability and simplicity, they impose restrictive
assumptions about linearity, independence among predictors, and
fixed functional forms, which limit their ability to capture the non-
linear and high-dimensional interactions common in real-world
crash data.

A smaller but growing body of work has explored machine learn-
ing (ML) methods, particularly ensemble models like gradient boost-
ing and deep neural networks, for crash severity prediction. These
models have demonstrated strong predictive performance and are
especially capable of capturing nonlinear relationships and complex
feature interactions [9,10]. However, they often prioritize predictive
accuracy over interpretability, and most studies use all available
features without applying formal feature selection. When feature
importance is reported, it is typically done post hoc and based on
model-specific heuristics, limiting the transparency and actionabil-
ity of findings.

To improve interpretability, some recent studies have adopted
SHapley Additive Explanations (SHAP), a model-agnostic method
for attributing feature influence. For example, Yang et al. (2021) and
Abdulrashid et al. (2024) apply SHAP to analyze feature contribu-
tions in crash severity models. However, in both cases, SHAP is
used only descriptively after model training. It is not integrated
into a systematic feature selection pipeline—limiting its potential
to guide the development of compact, interpretable models suitable
for operational use [10,11].

Our study addresses these gaps by proposing a SHAP-guided Re-
cursive Feature Elimination (SHAP-RFE) framework that combines
transparency and predictive rigor. By integrating SHAP within
a recursive feature selection loop—and benchmarking it against
PCA and a literature-informed set grounded in over 58 empirical
studies—we contribute a methodologically grounded, operationally
relevant approach for risk factor identification in truck-involved
crash severity prediction.

3 Methodology

This study follows a three-phase methodological pipeline to evalu-
ate the effectiveness of SHAP-guided Recursive Feature Elimination
(SHAP-REFE) for interpretable feature selection in truck-involved
crash severity prediction. First, we prepare the dataset from FARS
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2022 and define the injury severity target variable. Second, SHAP-
RFE is applied using a CatBoost classifier to iteratively eliminate
low-importance features based on multiclass SHAP aggregation.
Finally, we benchmark SHAP-RFE against two baseline approaches:
Principal Component Analysis (PCA) and literature-informed fea-
ture sets. All three subsets are evaluated using the same model
architecture and macro F1-score.

3.1 Dataset and Preprocessing

We used the Fatality Analysis Reporting System (FARS) 2022, a
nationally maintained database by the National Highway Traffic
Safety Administration (NHTSA), which provides police-reported fa-

tal crash records across the United States. Five structured files—Accident,

Vehicle, Person, Distract, and DriverRF—were merged using unique
case and vehicle identifiers to create an event-level dataset contain-
ing vehicle configuration, crash details, driver demographics, and
injury outcomes.

To focus the analysis on truck-involved collisions, the data was
filtered using vehicle body type and configuration codes to isolate
commercial trucks. The injury severity target variable was derived
from the KABCO scale and grouped into three classes: no injury
(Class 0), minor injury (Class 1), and major/fatal injury (Class 2),
consistent with prior injury severity modeling studies [12,13]. A
binary fault indicator was constructed by examining crash-level
and vehicle-level contributing factors to identify whether the com-
mercial truck driver or other vehicle was at fault.

Preprocessing involved removing features with high missingness,
low variance, or strong multicollinearity, followed by imputation
using mean, median, or mode based on variable type. Categorical
variables were one-hot encoded, with high-cardinality features
manually grouped into broader, interpretable categories to reduce
dimensionality. An 80-20 train-test split was applied, and SMOTE
was used on the training set to address class imbalance [14].

The final dataset consisted of 4,098 observations and 74 features,
reduced from an initial 5,085 records and 109 variables following
filtering and preprocessing.

3.2 SHAP-RFE Feature Selection

To identify a compact and interpretable subset of features for multi-
class injury severity prediction, we implemented SHAP-guided Re-
cursive Feature Elimination (SHAP-RFE). This approach combines
model-agnostic Shapley-based feature attribution with recursive
feature removal to optimize both interpretability and predictive
utility.

SHAP (SHapley Additive exPlanations), introduced by Lundberg
and Lee [15], is an explainable Al technique grounded in cooperative
game theory. It attributes a model’s output to its input features by
computing each feature’s marginal contribution across all possible

subsets. For a given instance j and feature i, the SHAP value qﬁl.(] )
represents how much feature i contributes to the model prediction
for that instance.

Unlike traditional feature importance scores—such as Gini gain
or split count in decision trees—SHAP satisfies desirable theoretical
properties including local accuracy, consistency, and missingness.
These properties ensure that feature attributions are additive, sta-
ble across models, and faithful to the actual prediction function.
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Moreover, while tree-based importance scores can be biased toward
high-cardinality features or unstable under data perturbations [16],
SHAP provides more robust, interpretable explanations at both
global and individual levels.

We used CatBoost, a gradient boosting algorithm optimized for
categorical features and tabular data, to generate SHAP values via
its internal TreeSHAP implementation. Given the multiclass nature
of our task (three injury severity levels), SHAP produces a separate
attribution vector per class. To obtain a unified importance ranking
across all classes, we aggregated SHAP values using the following
formula:

n K
Importance(x;) = % Z Z ‘(ﬁl(i)
J=1k=1
where ¢l({<) is the SHAP value of feature x; for class k and instance
j,and K ‘= 3 is the number of injury severity classes. This aggre-
gation ensures that features influential across multiple classes are
appropriately weighted in the ranking.

Recursive elimination was performed by iteratively removing the
feature with the lowest aggregated SHAP importance, retraining
the model, and re-evaluating performance at each step. The recur-
sive elimination process continued until the performance curve
exhibited an elbow, indicating that further feature removal would
lead to a sharp degradation in model performance. To determine
this point, we plotted the adjusted macro F1-score at each itera-
tion and identified the inflection point where gains plateaued and
predictive accuracy began to decline.

We selected the adjusted macro F1-score as our evaluation metric,
as it offers a balanced view of performance in imbalanced multiclass
settings. Unlike standard accuracy, which can be biased toward the
majority class, the adjusted macro F1-score accounts for the relative
frequency of each class, weighting each F1-score accordingly. For
K classes, the adjusted macro F1 is computed as:

K
Adjusted Macro F1 = Tk pq
j ;; o Fl

where F1; is the F1-score for class k, ny is the number of true
instances in class k, and N is the total number of instances.

This SHAP-RFE approach enables interpretable and theoretically
grounded feature selection tailored to the needs of safety-critical,
supply chain relevant prediction tasks.

3.3 Baseline Feature Selection Methods

To benchmark the effectiveness of SHAP-RFE, we compared it
against two widely used baseline feature selection strategies: Prin-
cipal Component Analysis (PCA) and a literature-informed feature
set derived from prior studies on truck-involved crash severity.

PCA serves as an unsupervised dimensionality reduction method
that transforms the original feature space into a set of orthogonal
components that capture the highest variance. We applied PCA
to the full dataset (excluding categorical variables) and retained
the top k components, where k matched the number of features
selected by SHAP-RFE. Although PCA is frequently used to reduce
dimensionality and potentially improve performance, it sacrifices
interpretability, as the resulting components are linear combina-
tions of original features without direct semantic meaning.
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Independent Variable

Driver violation/behaviour 42

Collisions type 37

Time of day 31

Driver age 30

‘Weather conditions 28

Driver speed 23 D dant Variable
Road surface conditions 22 Injury Severity 38
Crash location 21

Substance use 20

Road configuration 19

Day of week 19

Restraint use 17

Driver gender 12

Driver fatigue 11

Time of year 11

Median type 14

Number of vehicles 12

Figure 1: Classification of key variables from prior studies
on truck-involved injury severity.

The literature-informed feature set was constructed by reviewing
variables consistently identified as significant in 58 prior empir-
ical studies on truck crash severity from the past decade. These
included driver age, time of crash, vehicle configuration, crash type,
and environmental conditions, among others. This set represents
a theory-driven, domain-grounded approach based on expert un-
derstanding rather than algorithmic inference. Figure 1 provides a
structured overview of the most commonly studied variables across
the literature, organized by their roles as independent factors influ-
encing injury severity.

All three feature sets—SHAP-RFE, PCA, and literature-informed—were

evaluated using the same CatBoost classifier and macro F1-score.
This triangulated comparison provides a balanced assessment of
SHAP-RFE’s ability to preserve predictive performance while im-
proving interpretability over both data-driven and theory-based
alternatives.

4 Results

The goal of this study is to evaluate the effectiveness of SHAP-
guided Recursive Feature Elimination (SHAP-RFE) in selecting a
compact and interpretable subset of features for multiclass injury
severity prediction in truck-involved crashes. We compare SHAP-
RFE against two baseline methods—Principal Component Analysis
(PCA) and a literature-informed feature set using the same CatBoost
model architecture and training pipeline.

4.1 Injury Severity Distribution and Class
Imbalance

Before applying any sampling or modeling strategies, we exam-
ined the class distribution of the injury severity target variable. As
shown in Figure 2, the dataset was highly imbalanced, with the ma-
jority of cases classified as No Injury (0), while Minor Injury (1) and
Major Injury (2) were significantly underrepresented. This imbal-
ance posed a challenge for multiclass classification, as conventional
accuracy metrics tend to overrepresent the majority class.

To address this, we applied the Synthetic Minority Over-sampling
Technique (SMOTE) to the training data, generating synthetic ex-
amples for the minority classes to equalize class distribution. The
resulting class balance is illustrated in Figure 3, showing an even
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Figure 2: Class distribution of injury severity before applying
SMOTE.

representation across all three severity levels. This balancing step
ensured fairer model training and improved the reliability of evalu-
ation metrics.
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Figure 3: Class distribution of injury severity after applying
SMOTE.

As previously mentioned, we used the adjusted macro F1-score
to assess model performance. This metric offers a balanced view
across classes by accounting for class frequency and averaging
per-class F1-scores accordingly. It is particularly appropriate for
imbalanced multiclass settings like ours.

4.2 Feature Performance Comparison

To assess the effectiveness of SHAP-guided Recursive Feature Elim-
ination (SHAP-RFE), we compared it against two baseline feature
selection methods: Principal Component Analysis (PCA) and a
literature-informed feature set derived from prior studies on truck-
involved crash severity.

All three feature sets were evaluated using the same CatBoost
model architecture, trained on the SMOTE-balanced dataset, and
assessed using the adjusted macro F1-score. As shown in Table 1,
SHAP-RFE achieved the highest performance, with an adjusted
macro F1-score of 0.45, followed by PCA (0.41) and the literature-
informed features (0.32).

Chodri et al.

Table 1: Comparison of feature selection methods based on
adjusted macro F1-score and interpretability.

Method # Features Adjusted Macro F1
SHAP-RFE 27 0.45
PCA 128 0.41
Literature-informed 44 0.32

These results suggest that SHAP-RFE effectively balances pre-
dictive performance and interpretability. While PCA provided mod-
erately strong performance, its components are not directly inter-
pretable, limiting its usefulness for decision-makers. The literature-
informed feature set, although rooted in prior domain knowledge,
underperformed relative to data-driven methods, highlighting the
value of adaptive, model-aware selection strategies.

4.3 Overlap with Literature-Informed Features

To evaluate the domain relevance of the SHAP-RFE-selected fea-
tures, we compared them against a literature-informed set derived
from 58 prior studies on truck-involved crash severity. As shown
in Table 2, 20 out of the 26 SHAP-RFE features overlapped with
variables previously identified in the literature, including well-
established risk factors such as driver age, crash type, vehicle age,
time of day, and collision impact point [17,18].

This substantial overlap confirms that SHAP-RFE not only iden-
tifies statistically relevant features but also aligns strongly with
existing domain knowledge. At the same time, the method uncov-
ered five features not commonly reported in prior studies—such as
driver home state, license restrictions, truck fault, driver weight,
and National Highway System (NHS) route presence. These may
reflect emerging or context-specific factors that warrant further
investigation and validation in future studies.

Overall, the overlap analysis highlights SHAP-RFE’s strength
in bridging data-driven insights with theory-driven relevance. It
demonstrates that interpretable machine learning methods can
effectively surface both core and novel predictors, improving the
potential for generalizability and policy impact.

5 Discussions

This study proposed and evaluated a SHAP-guided Recursive Fea-
ture Elimination (SHAP-RFE) framework for interpretable feature
selection in the context of truck-involved crash injury severity.
Compared to Principal Component Analysis (PCA) and a literature-
informed feature set, SHAP-RFE achieved the highest adjusted
macro F1-score (0.45) while selecting only 26 features. This demon-
strates its ability to balance predictive performance with inter-
pretability—an essential consideration in safety-critical applica-
tions.

5.1 Practical Contributions

While feature selection is a critical component of machine learning
workflows, many prior studies on injury severity have relied on
traditional statistical models or applied ML without robust feature
selection [19,20]. These approaches often overlook variable redun-
dancy, interaction effects, and lack interpretability. By embedding
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Table 2: Comparison of SHAP-RFE Selected Features with
Literature-Informed Features

SHAP-RFE Feature Found in Literature

Driver Age v
Time of Day v
Crash Type v
Only Trucks

Cargo Type

Highway Type

Number of Vehicles

Crash Region

Other Vehicle Fault

Season

Collision Impact Point

First Harmful Event

License Endorsement Status
Rural/Urban

Posted Speed Limit

Driver Home State

Driver Weight

License Restrictions
Number of Trailers

Vehicle age

Pre-crash Event

Driver Height

Trafficway Type v
National Highway System Route

Truck Fault v
Manner of Collision v

AN N N N N S NENEN

SNENEN

SHAP values into an iterative elimination process, this study in-
troduces a data-driven yet transparent feature selection method
tailored for logistics and fleet risk modeling, an area where the bal-
ance between interpretability and predictive performance is often
missing.

5.2 Implications for Supply Chain and Safety

Truck collisions and resulting injury severity carry significant con-
sequences for logistics operations, including delivery delays, in-
creased insurance costs, driver retention issues, and reputational
risk. The ability to identify interpretable, high-impact crash risk
factors provides actionable insights to transportation managers and
safety analysts to design more targeted interventions. SHAP-RFE
transforms feature selection from a technical preprocessing step
into a diagnostic tool that supports real-world decision-making and
operational resilience.

5.3 Future Work

Future work will focus on leveraging the selected SHAP-RFE fea-
tures to build a fully optimized injury severity prediction model.
This includes hyperparameter tuning, model comparisons (e.g., Ran-
dom Forest, SVM), and evaluation across additional FARS datasets
from different years. Broader extensions may involve applying the
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SHAP-RFE framework to other vehicle types, integrating SHAP-
based insights into risk monitoring dashboards, and generating
actionable guidance for fleet operators or transportation policy-
makers based on model outputs.
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