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Abstract
Variational Bayes (VB) has become a widely-used tool for Bayesian inference in statistics and machine learning. Nonetheless,
the development of the existing VB algorithms is so far generally restricted to the case where the variational parameter space
is Euclidean, which hinders the potential broad application of VB methods. This paper extends the scope of VB to the case
where the variational parameter space is a Riemannian manifold. We develop an efficient manifold-based VB algorithm
that exploits both the geometric structure of the constraint parameter space and the information geometry of the manifold
of VB approximating probability distributions. Our algorithm is provably convergent and achieves a convergence rate of
orderO(1/

√
T ) andO(1/T 2−2ε) for a non-convex evidence lower bound function and a strongly retraction-convex evidence

lower bound function, respectively. We develop in particular two manifold VB algorithms, Manifold Gaussian VB and
Manifold Wishart VB, and demonstrate through numerical experiments that the proposed algorithms are stable, less sensitive
to initialization and compares favourably to existing VB methods.

Keywords Marginal likelihood · Variational Bayes · Natural gradient · Stochastic approximation · Riemannian manifold

1 Introduction

Increasingly complicated models in modern statistics and
machine learning have called for more efficient Bayesian
estimationmethods. Of theBayesian tools, Variational Bayes
(VB) (Waterhouse et al. 1996; Jordan et al. 1999) stands
out as one of the most versatile alternatives to conventional
Monte Carlo methods for statistical inference in complicated
models. VB approximates the posterior probability distribu-
tion by a member from a family of tractable distributions
indexed by variational parameters λ belonging to a parame-
ter space M. The best member is found by minimizing the
Kullback-Leibler divergence from the candidate member to
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the posterior. VB methods have found their application in a
wide range of problems including variational autoencoders
(Kingma and Welling 2013), text analysis (Hoffman et al.
2013), Bayesian synthetic likelihood (Ong et al. 2018a), deep
neural nets (Tran et al. 2019), to name but a few.

Most of the existing VB methods work with cases where
the variational parameter space M is (a subset of) the
Euclidean space R

d . This paper considers the VB problem
where M is a Riemannian manifold, which naturally arises
in many modern applications. For example, in Gaussian VB
where the VB approximating distribution is a multivariate
Gaussian with mean μ and covariance Σ , λ = (μ,Σ)

belongs to the product manifold M = M1 ⊗ M2 where
M1 is an Euclidean manifold and M2 is the manifold
of symmetric and positive definite matrices. We develop
manifold-based VB algorithms that cast Euclidean-based
constrained VB problems as manifold-based unconstrained
optimization problems under which the solution can be effi-
ciently found by exploiting the geometric structure of the
constraints. Optimization algorithms that work on manifolds
often enjoy better numerical properties. See the monograph
of Absil et al. (2009) for recent advances.

Many Euclidean-based VB methods employ (Euclidean)
stochastic gradient decent (SGD) for solving the required
optimization problem, and it is well-known that the natural
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gradient (Amari 1998) is of major importance in SGD. The
natural gradient, a geometric object itself, takes into account
the information geometry of the family of approximating
distributions to help stabilize and speed up the updating
procedure. For a comprehensive review and recent develop-
ment of the natural gradient descent in Euclidean spaces, the
reader is referred toMartens (2020). Extending natural gradi-
ent decent for use in Riemannian stochastic gradient decent
is a non-trivial task and of interest in many VB problems.
This paper develops a mathematically formal framework for
incorporating the natural gradient into manifold-based VB
algorithms. The contributions of this paper are threefold:

– We develop a doubly geometry-informed VB algorithm
that exploits both the geometric structure of the manifold
constraints of the variational parameter space, and the
information geometry of the manifold of the approximat-
ing family, which leads to a highly efficient VB algorithm
for Bayesian inference in complicated models.

– The proposedmanifoldVB algorithm is provably conver-
gent and achieves a convergence rate of orderO(1/

√
T )

and O(1/T 2−2ε), with ε ∈ (0, 1) and T the number of
iterations, for a non-convex lower bound function and a
strongly retraction-convex lower bound function, respec-
tively.

– We develop in detail a Manifold Gaussian VB algo-
rithm and a Manifold Wishart VB algorithm, both can
be used as a general estimation method for Bayesian
inference. The numerical experiments demonstrate that
these manifold VB algorithms work efficiently, are more
stable and less sensitive to initialization as compared to
some existing VB algorithms in the literature. We would
like to emphasize that making VB more stable and less
initialization-sensitive is of major importance in the cur-
rent VB literature. We also apply our VB method to
estimating a financial time series model and demonstrate
its high accuracy in comparison with a “gold standard”
Sequential Monte Carlo method.

The paper is organized as follows. Section 2 reviews the
VB method on Euclidean spaces and sets up notations.
Section 3 develops the manifold-based VB algorithm and
Sect. 4 studies its convergence properties. Section 5 presents
the Manifold Gaussian VB and the Manifold Wishart VB
algorithms, and their applications. Section 6 concludes. The
technical proofs are presented in the Appendix.

2 VB algorithms on Euclidean spaces

This section gives a brief overview of VBmethods where the
variational parameterλ lies in (a subset of) a Euclidean space.
It also gives the definition of the natural gradient, and the

motivation for extending the Euclidean-based VB problem
into manifolds.

Let y be the data and p(y|θ) the likelihood function based
on a postulated model, with θ the set of model parameters
to be estimated. Let p(θ) be the prior. Bayesian inference
requires computing expectations with respect to the posterior
distribution whose density (with respect to some reference
measure such as the Lebesgue measure) is

p(θ |y) = p(θ)p(y|θ)

p(y)
,

where p(y) = ∫
p(θ)p(y|θ)dθ , called the marginal likeli-

hood. It is often difficult to compute such expectations, partly
because the density p(θ |y) itself is intractable as the normal-
izing constant p(y) is often unknown. For simple models,
Bayesian inference is often performed using Markov Chain
Monte Carlo (MCMC), which estimates expectations w.r.t.
p(θ |y) by sampling from it. For models where θ is high
dimensional or has a complicated structure, MCMC meth-
ods in their current development are either not applicable
or very time consuming. In the latter case, VB is often an
attractive alternative to MCMC. VB approximates the poste-
rior p(θ |y) by a probability distribution with density qλ(θ),
λ ∈ M - the variational parameter space, belonging to some
tractable family of distributions such as Gaussian. The best
λ is found by minimizing the Kullback-Leibler (KL) diver-
gence from qλ(θ) to p(θ |y)

λ∗ = arg min
λ∈M

{

KL(qλ‖p(·|y)) =
∫

qλ(θ) log
qλ(θ)

p(θ |y)dθ

}

.

It is easy to see that

KL(qλ‖p(·|y)) = −
∫

qλ(θ) log
p(θ)p(y|θ)

qλ(θ)
dθ + log p(y),

thus minimizing KL is equivalent to maximizing the lower
bound on log p(y)

L(λ) =
∫

qλ(θ) log
p(θ)p(y|θ)

qλ(θ)
dθ. (2.1)

SGD techniques are often employed to solve this optimiza-
tion problem. The VB approximating distribution qλ(θ)with
the optimized λ is then used for Bayesian inference. See Tran
et al. (2021) for an accessible tutorial introduction to VB.

Let

N = {qλ(θ) : λ ∈ M}
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be the set of VB approximating probability distributions
parameterized by λ, and

IF (λ) : = Covqλ(∇λ log qλ(θ))

= Eqλ [∇λ log qλ(θ)(∇λ log qλ(θ))�] (2.2)

be the Fisher information matrix w.r.t. qλ. By the Taylor
expansion, we have that

KL(qλ||qλ+ε) ≈ KL(qλ||qλ) + (∇λ′KL(qλ||qλ′)|λ′=λ)
�ε+

+ 1

2
ε� IF (λ)ε

= −Eqλ(∇λ log qλ(θ))�ε + 1

2
ε� IF (λ)ε

= 1

2
ε� IF (λ)ε. (2.3)

This shows that the local KL divergence around the point
qλ ∈ N is characterized by the Fisher matrix IF (λ). For-
mally, N can be made into a Riemannian manifold with the
Riemannian metric induced by the Fisher information matrix
(Rao 1945; Amari 1998).

Assume that the objective function L is smooth enough,
then

L(λ + ε) ≈ L(λ) + ∇λL(λ)�ε.

The steepest ascent direction ε for maximizing L(λ +
ε) among all the directions with a fixed length ‖ε‖ :=
ε� IF (λ)ε = l is

argmax
ε:ε� IF (λ)ε=l

{
∇λL(λ)�ε

}
. (2.4)

By themethod of Lagrangianmultipliers, this steepest ascent
is

ε = ∇nat
λ L(λ) := I−1

F (λ)∇λL(λ). (2.5)

Amari (1998) termed this the natural gradient and popular-
ized it in machine learning. In the statistics literature, the
steepest ascent in the form (2.5) has been used for a long time
and is often known as Fisher’s scoring in the context of max-
imum likelihood estimation (see, e.g., Longford (1987)). We
adopt the term natural gradient in this paper. The efficiency
of the natural gradient over the ordinary gradient has been
well documented (Sato 2001; Hoffman et al. 2013; Tran et al.
2017). A remarkable property of the natural gradient is that
is is invariant under parameterization (Martens 2020), i.e. it
is coordinate-free and an intrinsic geometric object. This fur-
ther motivates the use of natural gradient in optimization on
manifolds.

Most of the VB methods and natural gradient descent are
developed for cases where the variational parameter λ lies in
an unconstrained Euclidean space. In many situations, how-
ever, λ belongs to a non-linear constrained space that forms
a differential manifold. A popular example is Gaussian VB
where the covariance matrix Σ of size d ×d is subject to the
symmetric and positive definite constraint. Ong et al. (2018b)
avoid the difficulty of dealing with this constraint by using
a factor decomposition Σ = BB� + D2, where B a full-
rank matrix of size d × p with p ≤ d, and D a diagonal
matrix. Such a decomposition is invariant under orthogonal
transformations of B, i.e.

Σ = BB� + D2 = B ′B ′� + D2

for all B ′ = BO with O an orthogonal matrix, i.e. OO� =
Ip. That is, the variational parameter B lies in a quotient
manifold where each point in this manifold is an equivalence
class

[B] = {BO : OO� = Ip}. (2.6)

This manifold structure is not considered in Ong et al.
(2018b). Zhou et al. (2020) take into account this manifold
structure and report some improvement over the plain VB
methods. Another example is Wishart VB where the VB dis-
tribution qλ(θ) is an inverse-Wishart distribution IW (ν,Σ).
Here, the variational parameter Σ lives in the manifold of
the symmetric and positive definite matrices.

Related work

As we employ the SGD method for optimizing the lower
boundL(λ), our paper is related to the recent development of
SGD algorithms onRiemannianmanifolds. Bonnabel (2013)
is one of the first to develop SGD where the cost function is
defined on a Riemannian manifold. It is showed in his paper
that under some suitable conditions the Reimannian SGD
algorithm converges to a critical point of the cost function.
In a recent paper, Kasai et al. (2019) propose an adaptive
SGD on Riemannian manifolds, which uses different learn-
ing rates for different coordinates. Their method is proved
to converge to a critical point of the cost function at a rate
O(log(T )/

√
T ). For a recent discussion of generalization of

Euclidean adaptive SGD algorithms, such as Adam and Ada-
grad, to Riemannian manifolds, see Bécigneul and Ganea
(2018). The monograph of Absil et al. (2009) provides an
excellent account of recent development on optimization on
matrix manifolds. Companion user-friendly software such as
Manopt (Boumal et al. 2014) has been developed to assist fast
growing research in Riemannian optimization.

The natural gradient has been widely used in the machine
learning literature; see, e.g., Sato (2001), Hoffman et al.
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(2013), Khan and Lin (2017) and Martens (2020). However,
most of the existing work only consider cases where the vari-
ational parameterλ belongs to anEuclidean space. Zhou et al.
(2020) is the only paper that we are aware of develops a VB
method on manifolds. However, their paper only considers
the Factor Gaussian VB for the particular quotient manifold
in (2.6), and does not consider natural gradient. Our paper
develops a general VB method for Riemannian manifolds
that incorporates the natural gradient, and provides a careful
convergence analysis.

3 VB onmanifolds with the natural gradient

This section presents our proposed VB algorithm on mani-
folds. Recall that we are interested in a VB problem where
the variational parameter λ lies in a Riemannian manifold
M, i.e. we wish to solve the following optimization problem

argmax
λ∈M

L(λ).

In order to incorporate the natural gradient into Riemannian
SGD,we view themanifoldM as embedded in aRiemannian
manifold M ⊂ R

d , whose Riemannian metric is defined
by the Fisher information matrix IF (λ). Let TλM be the
tangent space to M at λ ∈ M. The inner product between
two tangent vectors ζλ, ξλ ∈ TλM is defined as

< ζλ, ξλ >= ζ�
λ IF (λ)ξλ. (3.1)

For VB on manifolds without using the natural gradient, this
inner product is the usual Euclidean metric, i.e.< ζλ, ξλ >=
ζ�
λ ξλ. The metric in (3.1) is often referred to as the Fisher-
Rao metric. Let L be a differentiable function defined onM
such that its restriction onM is the lower boundL. Similar to
(2.4)–(2.5), it can be shown that the steepest ascent direction
at λ ∈ M for optimizing the objective function L(λ), i.e. the
direction of

argmax
ηλ∈TλM,‖ηλ‖=1

DL(λ)[ηλ],

is the natural gradient

∇nat
λ L(λ) = I−1

F (λ)∇λL(λ), λ ∈ M. (3.2)

Here, DL(λ)[ηλ] denotes the directional derivative of L at
λ in the direction of ηλ, and ∇λL(λ) is the usual Euclidean
gradient vector of L(λ). We note that, for λ ∈ M,

∇nat
λ L(λ) = I−1

F (λ)∇λL(λ) = I−1
F (λ)∇λL(λ) = ∇nat

λ L(λ).

We recall that the Riemannian gradient of a smooth function
f (λ) on a Riemannian manifold M, embedded in R

d and
equipped with the Riemannian metric <,>, is the unique
vector grad f (λ) in the tangent space TλM at λ ∈ M such
that

< grad f (λ), ξλ >= D f (λ)[ξλ], ∀ξλ ∈ TλM.

The following lemma is important for the purpose of this
paper. It shows that the natural gradient ∇nat

λ L(λ) is a Rie-
mannian gradient defined in the ambient manifoldM, which
leads to a formal framework for associating the natural gradi-
ent to the Riemannian gradient of the lower bound L defined
in the manifold M.

Lemma 3.1 The natural gradient of the function L on the
Riemannian manifold M with the Fisher-Rao metric (3.1)
is the Riemannian gradient of L. In particular, the natural
gradient at λ belongs to the tangent space toM at λ.

We now need to associate the Riemannian gradient∇nat
λ L(λ)

to the Riemannian gradient of the lower bound L(λ) defined
inM; the latter is what we need for using Riemannian SGD
to optimize L(λ). This is done in the two cases:M is a sub-
manifold (Sect. 3.1) andM is a quotientmanifold (Sect. 3.2).

3.1 Riemannian submanifolds

Suppose that M is a submanifold of M. In order to define
the Riemannian gradient of the lower bound L defined on
the manifold M, we need to equip M with a Riemannian
metric. In most cases, this metric is inherited from that of
M in a natural way. Since TλM is a subspace of TλM, the
Riemannian metric of ζλ, ξλ ∈ TλM can be defined as

< ζλ, ξλ >= ζ�
λ IF (λ)ξλ,

with ζλ, ξλ viewed as vectors in TλM. With this metric, we
can define the orthogonal complement (TλM)⊥ of TλM in
TλM, i.e. TλM = TλM ⊕ (TλM)⊥. Write

gradL(λ) = Projλ gradL(λ) + Proj⊥λ gradL(λ)

where Projλ and Proj⊥λ denote the projections on TλM and
(TλM)⊥, respectively. Recall that

gradL(λ) = ∇nat
λ L(λ) = I−1

F (λ)∇λL(λ), λ ∈ M.

Then, theRiemannian gradient ofL is the projection of gradL
on TλM

gradL(λ) = Projλ gradL(λ). (3.3)
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This is because

< gradL(λ), ηλ > =< gradL(λ) − Proj⊥λ gradL(λ), ηλ >

=< gradL(λ), ηλ >

= DL(λ)[ηλ] = DL(λ)[ηλ], ∀ηλ ∈ TλM.

In some cases, such as Gaussian VB in Sect. 5.1, TλM ∼=
TλM, then gradL(λ) = gradL(λ), i.e. the natural gradient is
the Riemannian gradient ofL. In some other cases, however,
using the inheritedmetricmight lead to a projectionProjλ that
is cumbersome to compute. In such cases, one needs to use an
alternative Riemannian metric onM such that the projection
Projλ is easy to compute. Below we give an example in the
case of Stiefelmanifold, which is a popularmanifold inmany
applications.
Stiefel manifolds. Suppose that M is a Stiefel manifold
M = S(p, n) defined as

S(p, n) = {W ∈ Mat(n, p) : W�W = Ip}, (3.4)

where Mat(n, p) is the set of real matrices of size n × p.
We can think of M as embedded in M = R

d , d = n · p,
equipped with the Fisher-Rao metric

< ζW , ξW >= (
vec(ζW )

)�
IF (W )vec(ξW ), (3.5)

ζW , ξW ∈ TWM ∼= Mat(n, p); where vec(·) denotes the
vectorization operator and

IF (W ) = covqW (∇vec(W ) log qW (θ)),

is theFishermatrix defined in (2.2)withqW (θ) the variational
distribution. The natural gradient of function L at W ∈ M
is

gradL(W ) = vec−1
(
IF (W )−1∇vec(W )L(W )

)

∈ Mat(n, p), (3.6)

where vec−1 is the inverse of vec, sending a np-vector to the
corresponding matrix in Mat(n, p). It is easy to see that the
tangent space of M at W is

TWM = {Z ∈ Mat(n, p) : Z�W + W�Z = 0p×p}.

If we equipM with the Riemannian metric defined in (3.5),
the projection on TWM is cumbersome to compute. We
therefore opt to use the usual Euclidean metric

< ζW , ξW >Euc= trace(ζ�
W ξW ) = (

vec(ζW )
)�vec(ξW ),

with ζW , ξW ∈ TWM. The following lemmagives an expres-
sion for the Riemannian gradient of L defined on the Stiefel

manifold, and is useful for many applications involving
Stiefel manifolds. Similar results to Lemma 3.2 can be found
in the literature (see., e.g., Edelman et al. (1998)), however,
here we state and prove the results specifically for the case
G is the natural gradient.

Lemma 3.2 Let L be a function on the Stiefel manifold M
equipped with the usual Euclidean metric. The Riemannian
gradient of L at W is

gradL(W ) = (In − WW�)G + Wskew(W�G) (3.7)

with G = gradL(W ) given in (3.6), and skew(A) := (A −
A�)/2.

3.2 Quotient manifolds

This section derives the Riemannian gradient of L whenM
is a quotient manifold induced from the ambient manifold
M. Suppose that M ⊂ R

d is a Riemannian manifold with
the Riemannian metric < ·, · >M. Suppose that there is an
equivalence relation on M defined as

λ, λ′ ∈ M, λ ∼ λ′ if and only if qλ = qλ′ ,

and thus L(λ) = L(λ′). This is the case of Gaussian VB
with the covariance matrixΣ having a factor decomposition.
Define the equivalence class

[λ] = {λ′ ∈ M : qλ′ = qλ},

i.e., the class of all parameterizations λ that represent the
same distribution. Let

M := M/ ∼:= {[λ] : λ ∈ M}

and define the canonical projection

π : M → M = M/ ∼, λ �→ [λ]. (3.8)

Then we can endow the quotient set M with the topology
induced fromM by the projectionπ . This makesM become
a smooth manifold called the quotient manifold, see Absil
et al. (2009). If we define L : M → R, [λ] �→ L([λ]) =
L(λ), i.e. L = L ◦ π , then L is the function defined on M
that we want to optimise. For optimisation onM, one needs
to be able to represent numerically tangent vectors at each
[λ] ∈ M. Geometrical objects in M, such as points λ and
tangent vectors, are vectors in the usual sense, so they can be
numerically represented in computer for numerical computa-
tion. However, geometrical objects in the quotient manifold
M are abstract, much of reseach in quotient manifolds has
been focused on how to represent these geometrical objects
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numerically. The key tool is the concept of horizontal lift;
see, e.g. Absil et al. (2009); Kobayashi and Nomizu (1969).

By the level set theorem (Tu 2011, Chapter 2), π−1([λ]) is
an embedded submanifold in M, hence, it admits a tangent
space

Vλ := Tλ

(
π−1([λ])),

called the vertical space, which is a linear subspace of TλM.
LetHλ be the orthogonal complement of Vλ in TλM, called
the horizontal space, i.e. TλM = Hλ⊕Vλ.The orthogonality
here isw.r.t. themetric defined onM. For each tangent vector
ξ[λ] at [λ] ∈ M, there exists an unique vector ξλ in the
horizontal spaceHλ such that (Kobayashi and Nomizu 1969,
Prop. 1.2)

Dπ(λ)[ξλ] = ξ[λ],

ξλ is called the horizontal lift of ξ[λ]. Then, as L = L ◦ π ,

DL(λ)[ξλ] = DL
(
π(λ)

)(
Dπ(λ)[ξλ]

)

= DL
([λ])(ξ[λ]), (3.9)

which shows that the directional derivative of L in the direc-
tion of ξ[λ] is characterised by the directional derivative of L
in the direction of the horizontal lift ξλ. Intuitively, for the
optimization purposes, we can ignore the vertical space and
just focus on the horizontal space, as the objective functionL
doesn’t change along the vertical space. It’s worth noting that
the property (3.9) does not depend on any particular choice
λ in [λ].

Let gradL(λ) be the Riemannian gradient of L at λ ∈ M.
We have that, for all ηλ ∈ Vλ

< gradL(λ), ηλ >M= DL(λ)[ηλ] = 0,

asL(λ) doesn’t change along the vertical space, which shows
that gradL(λ) ∈ Hλ. Let gradL([λ]) be the tangent vector
toM at [λ] that has gradL(λ) as its horizontal lift. Then, by
equipping M with the inner product inherited from M,

< gradL([λ]), η[λ] >M :=< gradL(λ), ηλ >M
= DL(λ)[ηλ]
= DL([λ])(η[λ]), ∀η[λ] ∈ T[λ]M

(3.10)

we have that gradL([λ]) is the Riemannian gradient of L at
[λ] ∈ M. We note that (3.10) does not depend on the choice
of λ ∈ [λ]. So, with the inherited inner product fromM, the
usual Riemannian gradient ofL onM is the horizontal lift of
the Riemannian gradient of L onM. This remarkable prop-
erty of quotient manifolds makes it convenient for numerical
optimisation problems.

Remark 3.1 Technically, in order for the inherited Rieman-
nian metric on M to be well-defined, it is often required in
the literature that < ξλ, ηλ >M does not depend on λ ∈ [λ].
This condition is typically not satisfied whenM is equipped
with the Fisher-Rao metric as considered in this paper. How-
ever, as we show above, the Riemannian gradient of L is still
well-definedwithout this requirement, as (3.10) holds for any
λ ∈ [λ].

3.3 Retraction

After deriving the Riemannian gradient, which is the steep-
est ascent direction of the lower bound function L at the
current point on the manifold, we need to derive the expo-
nential map1, denoted by Expλ(ξλ), that projects a point on
the tangent space back to the manifold. Exponential map is a
standard concept in differential geometry. Intuitively, expo-
nential maps aremappings that, given a point λ on amanifold
and a tangent vector ξλ at λ, generalize the concept “λ + ξλ”
in Euclidean spaces. Expλ(ξλ) is a point on the manifold
that can be reached by leaving from λ and moving in the
direction ξλ while remaining on the manifold. We refer to
Absil et al. (2009) for a precise definition and examples. One
major drawback of exponential maps is that their calcula-
tion is often cumbersome in practice. Retraction, the first
order approximation of the exponential map, is often used
instead. A retraction Rλ : TλM → M at λ ∈ M has the
important property that it preserves gradients, i.e. the curve
γξλ : t �→ Rλ(tξλ) satisfies Dγξλ(0)[ξλ] = ξλ for every
ξλ ∈ TλM. See (Absil et al. 2009, Chapter 4) for a formal
definition of retraction and Manton (2002) for an interpreta-
tion of retraction from a local optimization perspective. Also
see Fig. 1 (Left) for a visualization.

Closed-form formulae for retractions on common mani-
folds are available in the literature, see, for example, Absil
et al. (2009). For instance, a popular retraction on the Stiefel
manifold is

RW (ξW ) = qf(W+ξW ), W ∈ S(p, n), ξW ∈ TWS(p, n).

(3.11)

Here qf(A) = Q, where A = QR is the QR decomposition
of A ∈ Mat(n, p), Q ∈ S(p, n) and R ∈ Mat(n, p) is
upper triangular. See Sato and Aihara (2019) for an efficient
computation of this retraction based on the Cholesky QR
factorization. For quotient manifolds, a popular retraction is

R[λ](ξ[λ]) = π(λ + ξλ), [λ] ∈ M, ξ[λ] ∈ T[λ]M,

1 In general, an exponential map at λ is defined locally near λ. In order
to define exponential map on the entire tangent space, the manifold
needs to be complete, see, e.g., Tu (2011).
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Fig. 1 Left: Tangent space at λ and the retraction map. Right: Vector
transport

ξλ is the horizontal lift of ξ[λ], and π is the canonical projec-
tion in (3.8).

3.4 Momentum

The momentummethod, which uses a moving average of the
gradient vectors at the previous iterates to accelerate conver-
gence and also help reduce noise in the estimated gradient, is
widely used inEuclidean-based stochastic gradient optimiza-
tion. Extending themomentummethod tomanifolds requires
parallel translation, a tool in differential geometry for mov-
ing tangent vectors from one tangent space to another, while
still preserving the length and angle (to some fixed direction)
of the original tangent vectors. Similar to exponential map, a
parallel translation is often approximated by a vector trans-
portwhich is much easier to compute; see (Absil et al. 2009,
Chapter 8) for a formal definition. See Fig. 1 (Right) for a
visualization. Let Γλt→λt+1(ξλt ) denote the vector transport
of tangent vector ξλt ∈ TλtM to tangent space Tλt+1M. A
simple vector transport is the projection of ξλt on Tλt+1M, i.e.
Γλt→λt+1(ξλt ) = ProjTλt+1M(ξλt ). Roy and Harandi (2017)
is the first to use themomentummethod in Riemannian SGD,
but they do not provide any convergence analysis.

3.5 Manifold VB algorithm

The pseudo-code in Algorithm 1 summarizes our VB algo-

rithm on manifolds. We use the “hat” notation in ̂∇nat
λ L(λ)

to emphasize that the natural gradient is obtained from a
noisy and unbiased estimator ∇̂λL(λ) of the Euclidean gra-
dient as we often don’t have access to the exact ∇λL(λ).
That is, starting from an initial λ0, the initial momentum
gradient Y0 can be found by projecting the natural gradient

estimate ̂∇nat
λ L(λ0) on Tλ0M. The relevant projections were

described in Sects. 3.1 and 3.2 . At a step t , from λt , we move
on the tangent space TλtM along the direction Yt to find the
next iterate λt+t by retraction, λt+1 = Rλt (εYt ). Then, we

calculate the natural gradient estimate ̂∇nat
λ L(λt+1) at λt+1,

whose projection on Tλt+1M gives the Riemannian gradient
gradL(λt+1). Finally, the new momentum gradient Yt+1 is
calculated from the vector transport of Yt (to Tλt+1M) and
gradL(λt+1).

4 Convergence analysis

To be consistent with the standard notation in the optimiza-
tion literature, and with an abuse of notation, let us define
the cost function as L(·) := −L(·). That is, our optimization
problem is

argmin
λ∈M

L(λ). (4.1)

In this section, for notational simplicity, we will denote by
∇L(λ) theRiemannian gradient of the cost functionL, and by
∇̂L(λ) its unbiased estimator. Let {λt , t ≤ 0} be the iterates
fromAlgorithm1, andFt be theσ -field generated by {λs, s ≤
t}. Because of the unbiasedness, we can write

∇̂λL(λt ) = ∇λL(λt ) + ΔMt ,

with {ΔMt } amartingale differencew.r.t. {Ft }, i.e.E(ΔMt+1

|Ft ) = 0. For the purpose of convergence analysis, we write
our manifold VB algorithm as follows

⎧
⎪⎨

⎪⎩

λ0 ∈ M, Y0 ∈ Tλ0M
λt+1 = Rλt (−Yt ),∀0 ≤ t ∈ N

Yt+1 = ζΓλt→λt+1(Yt ) + γ (∇L(λt+1) + ΔMt+1),

(4.2)

with ζ, γ ∈ (0, 1), 0 ≤ t ∈ N.Theminus sign in Rλt (−Yt )
results from the change in the notationL(·) := −L(·) above,
and with the suitable choice of ζ and γ we can recover Algo-
rithm 1.

We next need some definitions.

Definition 4.1 (Huang et al. 2015a, Section 3.3) A neighbor-
hood S ⊂ M of x∗ is said to be totally retractive if there is
δ > 0 such that for any y ∈ S, Ry(B(0y, δ)) ⊃ S and Ry is
a diffeomorphism on B(0y, δ), where B(0y, δ) is the ball of
radius δ in TyM centered at the origin 0y .

Definition 4.2 (Huang et al. 2015b, Definition 3.1) For a
function f : M �→ R on a Riemannian manifold M with
retraction R, define mλ,η(t) = f (Rλ(tη)) for λ ∈ M, η ∈
TλM. The function f is retraction-convex with respect to the
retraction R in a set S if for all λ ∈ M, η ∈ TλM, |η| = 1,
mλ,η(t) is convex for all t which satisfy Rλ(sη) ∈ S for all
s ∈ [0, t]. Moreover, f is strongly retraction-convex in S if

mλ,η(t) is strongly convex, that is ã0 ≤ d2mλ,η

dt2
(t) ≤ ã1 for

some positive constants ã1, ã0.

Remark 4.1 If mλ,η(t) is strongly convex with ã0 ≤
d2mλ,η

dt2
(t) ≤ ã1 then

f (λ) − f (λ∗) ≤ ã0
2

∣
∣
∣
∣
dmλ∗,η
dt

(t)

∣
∣
∣
∣

2
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Input: Learning rate ε, momentum weight ω, and a lower bound
function L(λ) on a manifold M.

Output: A local mode λ∗ of L(λ).
Initialization: λ0 ∈ M, Y0 ∈ Tλ0M;
t = 0, stop=false;
while not stop do

λt+1 = Rλt (εYt ); /* retraction */
if stopping rule is met then

stop=true;
else

Compute the natural gradient estimate ̂∇nat
λ L(λt+1);

Compute the Riemannian gradient gradL(λt+1);
Yt+1 := ωΓλt→λt+1 (Yt ) + (1 − ω)gradL(λt+1); /* steepest ascent direction with momentum */
t := t + 1;

end
end

Algorithm 1: VB on Manifold Algorithm

where λ = Rλ∗(tη). If we assume that f is strongly
retraction-convex in S and for any λ̃ ∈ S, there exists η̃

such that Rλ∗(η̃) = λ̃ and the derivative DRλ(η) is bounded,

then the chain rule implies |dmλ∗,η
dt

(t)| ≤ c|∇ f (λ)| with
λ = Rλ∗(tη). As a result,

f (λ) − f (λ∗) ≤ ã0c2

2
|∇ f (λ)|2, λ ∈ M.

In Theorem 1, we show the convergence of (4.2) under suit-
able conditions imposed on the objective function L. It is
worth emphasizing that the convergence analysis in this sec-
tion is done in a general setting for Riemannian SGD with
momentum rather than restricting on the VB problem in the
previous sections. It can therefore be applied to more general
settings.

Theorem 1 Assume that

(i) There exists a totally retractive neighborhood of λ∗, S,
such that λt ∈ S for any t ≥ 0.

(ii) ∇L andΔMt are bounded such that |∇L|+ |ΔM | ≤ bL
almost surely for some constant bL > 0.

(iii) ∇L(λ) is L̃-Lipschitz with respect to retraction R, that
is, |∇L(Rλ(η)) − ∇L(λ)| ≤ L̃|η| for λ ∈ S, η ∈ TλM.

Consider the sequence (λt )t∈N obtained from (4.2) using γ =
1√
T
. The following holds true:

min
t∈[1,T ] E|∇L(λt+1)|2 ≤ C√

T
, for some C > 0. (4.3)

Moreover,when theobjective functionL is strongly retraction-
convex, for ε ∈ (0, 1), by choosing γ = 1

T ε , there exists a
constant Cε such that

E(λT − λ∗)2 ≤ CεT
2ε−2.

The proof can be found in the Appendix. We note that the
first assumption in Theorem 1 is standard, see, for example
Huang et al. (2015a). The condition |∇L| + |ΔM | ≤ bL is
essential to make sure that Yt stays bounded. That is, it does
not diverge to infinity, which is the key property of the algo-
rithm. While the Lipschitz property of ∇L(λ) guarantee that
we can expand L using Taylor expansion. The assumption
related to the martingale difference ΔMt is justified by the
fact that the estimator ∇̂L is unbiased.

5 Applications

5.1 Manifold Gaussian VB

Gaussian VB (GVB) uses a multivariate Gaussian dis-
tribution N (μ,Σ) for the VB approximation qλ, λ =
(μ, vec(Σ)). GVB has been extensively used in the litera-
ture, often with some simplifications imposed on Σ ; e.g., Σ
is a diagonal matrix diag(σ 2

1 , ..., σ 2
d ) or has a factor struc-

ture Σ = BB� + D2. One of the reasons of imposing these
simplifications is to deal with the symmetric and positive
definiteness constraints on Σ . We do not impose any simpli-
fications onΣ , and dealwith these constraints by considering
theVB optimization problem on themanifoldM of symmet-
ric and positive definite matrices M = {Σ ∈ Mat(d, d) :
Σ = Σ�, Σ > 0}. We can think of M as embedded in
M = R

d2 .
From (2.1), the gradient of the lower bound is Tran et al.

(2021)

∇λL(λ) = Eqλ

[∇λ log qλ(θ) × hλ(θ)
]
,

with

h(θ) := log
p(θ)p(y|θ)

qλ(θ)
.

123
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Here, we use the so-called score-function VB as in Tran
et al. (2017), which does not require the gradient of the log-
likelihood. We follow Tran et al. (2017) and use a control
variate for the gradient of lower bound

∇λL(λ) = Eqλ

[∇λ log qλ(θ) × h(θ)
]

= Eqλ

[∇λ log qλ(θ) × (
h(θ) − c

)]
, (5.1)

where c is a vector selected to minimize the variance of the
gradient estimate

ci = cov(∇λi log qλ(θ),∇λi log qλ(θ) × h(θ))

V(∇λi log qλ(θ))
,

for i = 1, ..., dλ,withdλ the size ofλ, which can be estimated
by sampling from qλ.

Mardia and Marshall (1984) show that the Fisher infor-
mation matrix for the multivariate Gaussian distribution
N (μ,Σ) is

IF (λ) =
(

Σ−1 0
0 IF (Σ)

)

where IF (Σ) is an d2 × d2 matrix with entries

(
IF (Σ)

)
σi j ,σkl

= 1

2
tr

(

Σ−1 ∂Σ

∂σi j
Σ−1 ∂Σ

∂σkl

)

.

One can derive that IF (Σ) ≈ Σ−1 ⊗ Σ−1, with ⊗ the Kro-
necker product. Therefore

IF (λ)−1 ≈
(

Σ 0
0 Σ ⊗ Σ

)

, (5.2)

which gives a convenient form for obtaining an approxi-
mate natural gradient. The natural gradient w.r.t. μ and Σ

is approximated as

∇nat
μ L(λ) = Σ∇μL(λ), (5.3)

∇nat
Σ L(λ) = vec−1

(
(Σ ⊗ Σ)∇vec(Σ)L(λ)

)

= Σ∇ΣL(λ)Σ. (5.4)

As TΣM = Mat(d, d) ∼= TΣM ∼= R
d2 , the projection in

(3.3) is the identity, hence∇nat
Σ L(λ) is the Riemannian gradi-

ent of lower boundLw.r.t.Σ . The Manifold GVB algorithm
is outlined in Algorithm 2. One of the most popular retrac-
tions used for the manifold M of symmetric and positive
definite matrices is (see the Manopt toolbox of Boumal et al.
(2014))

RΣ(ξ) = Σ + ξ + 1

2
ξΣ−1ξ, ξ ∈ TΣM (5.5)
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Fig. 2 Plots of lower bound over iteration for the manifold GVB
algorithms with (cross red) and without (solid blue) using the natu-
ral gradient. Both algorithms were run for 500 iterations. The lower
bound estimates have been smoothened by a moving avarage with a
window of size 10

and vector transport

ΓΣ1→Σ2(ξ) = EξE�, E = (Σ2Σ
−1
1 )1/2, ξ ∈ TΣ1M.

(5.6)

TheMatlab code implementing theManifoldGVBalgorithm
is made available online at https://github.com/VBayesLab.

Numerical experiments

We apply the Manifold GVB algorithm to fitting a logis-
tic regression model using the German Credit dataset. This
dataset, available on the UCI Machine Learning Repository
https://archive.ics.uci.edu/ml/index.php, consists of obser-
vations on 1000 customers, each was already rated as being
“good credit” (700 cases) or “bad credit” (300 cases). The
covariates include credit history, education, employment sta-
tus, etc. and lead to totally 25 predictors after using dummy
variables to represent the categorical covariates.

A naive GVB implementation is to only update Σ when
its updated value satisfies the symmetric and positive defi-
niteness constraint. This naive implementation didn’t work
at all in this example. To see the usefulness of incorporat-
ing the natural gradient into the Manifold GVB, we compare
Algorithm 2 with a version without using the natural gradi-
ent. As shown in Fig. 2, using the natural gradient leads to a
much faster andmore stable convergence. Also, theManifold
GVB without the natural gradient requires a large number
of samples used in estimating the gradient (5.1) (we used
S = 10, 000), compared to S = 100 for the Manifold GVB
with the natural gradient. TheCPU running time for theMan-
ifold GVB algorithms with and without the natural gradient
is 43 and 280 seconds, respectively.

Tran et al. (2019) develop aGaussian VB algorithmwhere
Σ is factorized asΣ = BB� +D2 with B a vector, and term

123
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Algorithm: Manifold Gaussian VB

Input: Learning rate ε, momentum weight ω, prior p(θ) and likelihood p(y|θ)

Output: An estimate μ and Σ

Initialization: μ = μ0 and Σ = Σ0;

Compute gradient estimates ∇̂μL(λ), ∇̂ΣL(λ);

Compute natural gradients ̂∇nat
μ L(λ) = Σ∇̂μL(λ) and ̂∇nat

Σ L(λ) = Σ∇̂ΣL(λ)Σ ;

Initialize the momentum: mμ = ̂∇nat
μ L(λ) and mΣ = ̂∇nat

Σ L(λ);
stop=false;
while not stop do

μ = μ + εmμ; /* update μ */
Σold = Σ , Σ = RΣ(εmΣ); /* update Σ */
if stopping rule is met then

stop=true;
else

Compute gradient estimates ∇̂μL(λ), ∇̂ΣL(λ);

Compute natural gradient estimates ̂∇nat
μ L(λ) = Σ∇̂μL(λ) and ̂∇nat

Σ L(λ) = Σ∇̂ΣL(λ)Σ ;

Compute the momentum: mμ = ωmμ + (1 − ω) ̂∇nat
μ L(λ), mΣ = ωΓΣold→Σ(mΣ) + (1 − ω) ̂∇nat

Σ L(λ) ;
end

end
Algorithm 2: Manifold Gaussian VB.

their algorithm NAGVAC. Figure 3 plots the lower bound
estimates of the Manifold GVB and NAGVAC. Manifold
GVB stopped after 921 iterations and NAGVAC stopped
after 1280 iterations, and their CPU running times are 19
seconds and 12 seconds, respectively. As shown, the Mani-
fold GVB algorithm converges quicker than NAGVAC and
obtains a larger lower bound. We note, however, that NAG-
VAC is less computational demanding than Manifold GVB
in high-dimensional settings such as deep neural networks.

To assess the training stability of the Manifold GVB and
NAGVAC algorithms, we use the same initialization μ0 and
Σ0 for both algorithms and run each for 20 different replica-
tions. The standard deviations of the estimates of μ (across
the different runs, then averaged over the 25 coordinates)
for NAGVAC and Manifold GVB are 0.03 and 0.01, respec-
tively. This demonstrates that theManifoldGVBalgorithm is
more stable than NAGVAC. To assess their sensitivity to the
initialization, in each algorithm, we now use a random ini-
tialization but fix the random seed in the updating stage. The
standard deviations of the estimates ofμ (across the different
runs, then averaged over the 25 coordinates) for NAGVAC
andManifold GVB are 0.0074 and 0.0009, respectively. This
demonstrates that the Manifold GVB algorithm is less sen-
sitive to the initialization than NAGVAC.

Application to financial time series data

This section applies the MGVB method to analyze a finan-
cial stock return data set, and comparesMGVB to Sequential
Monte Carlo (SMC). We consider the GARCH model of
Bollerslev (1986) for modelling the underlying volatility
dynamics in the Standard & Poor 500 stock indices observed
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Fig. 3 Lower bound plots for the manifold GVB algorithm (cross red)
and the NAGVAC algorithm (solid blue). The lower bounds have been
smoothened by a moving average with a window of size 10

from 4 Jan 1988 to 26 Feb 2007 (1000 observations). Let
{yt , t = 1, ..., n} be the stock returns. We consider the fol-
lowing GARCH model

yt = σtεt , εt ∼ N (0, 1)

σ 2
t = w + ασ 2

t−1 + β y2t−1, t = 1, 2, ...n.

The parameters θ are w > 0, α > 0 and β > 0, with the
constraint α + β < 1 to ensure the stationarity. To impose
this constraint, we parameterize α and β as α = ψ1(1− ψ2)

and β = ψ1ψ2 with 0 < ψ1, ψ2 < 1. We use an inverse
Gamma prior IG(1, 1) for w and an uniform prior U (0, 1)
for ψ1 and ψ2. Finally, we use the following transformation

θw = log(w), θψ1 = log
ψ1

1 − ψ1
, θψ2 = log

ψ2

1 − ψ2
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Fig. 4 The posterior estimates for the GARCH model parameters by
SMC and MGVB
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Fig. 5 Left: lower bound. Right: true posterior mean of vi j v.s. their
Manifold Wishart VB estimates

and work with the unconstrained parameters θ̃ =
(θw, θψ1 , θψ1), but we will report the results in terms of the
original parameters θ = (w, α, β).

We compare the MGVB method to SMC. In this applica-
tion with only three unknown parameters, SMC is applicable
and can be considered as the “gold standard” as it produces an
asymptotically exact approximation of the posterior p(θ̃ |y).
We implement the likelihood annealing SMCmethod of Tran
et al. (2014), which is a robust SMC sampling technique that
first draws samples from an easily-generated distribution and
thenmoves these samples via annealing distributions towards
the posterior distribution through weighting, resampling and
Markov moving. We run SMC with 10,000 particles and the
annealing distributions are adaptively designed such that the
effective sample size is always at least 80%. Figure 4 plots the
posterior estimates for the model parameters θ by SMC and
MGVB, which shows that the MGVB estimates are almost
identical to that of SMC. The CPU running time for MGVB
and SMC is 10.4 and 380.5 seconds, respectively.

5.2 ManifoldWishart variational Bayes

Suppose that we are interested in approximating the posterior
distribution of a covariance matrix V of size d by an inverse-
Wishart distribution

qλ(V ) = inverse-Wishart(νq ,Σq).

The density qλ is

qλ(V ) =
|Σq |νq/2

2dνq/2Γd(νq/2)
|V |− 1

2 (νq+d+1) exp
( − 1

2
trace(ΣqV

−1)
)
,

with

Γd(ν): = π
1
4 d(d−1)

d∏

j=1

Γ
(
ν − j − 1

2

)

the multivariate gamma function. The gradient of log qλ(V )

w.r.t. νq and Σq are

∇νq log qλ(V ) = 1

2
log |Σq | − 1

2
d log 2− 1

2
ψd

(νq

2

) − 1

2
log |V |,

and

∇Σq log qλ(V ) = 1

2
νqΣ

−1
q − 1

2
V−1,

where ψd(ν): = ∂ logΓd(ν)/∂ν. From this, it is straightfor-
ward to estimate the gradients of the lower bound ∇νqL(λ)

and ∇ΣqL(λ) using the score-function method. It is often
much more efficient to use

∇̃ΣqL(λ) = Σq∇ΣqL(λ)Σq (5.7)

instead of ∇ΣqL(λ), which is analogous to the use of the
natural gradient in (5.4). The natural-gradient-like expres-
sion in (5.7) is often found very useful in practice; without
it, it is difficult for the manifold Wishart VB algorithm that
only uses the Euclidean ∇ΣqL(λ) to converge. As Σq lies
on the manifold of symmetric and positive definite matri-
ces, the retraction and vector transport in (5.5) and (5.6)
can be used. To update νq , it is recommended to use some
adaptive learning method such as ADAM or AdaDelta, or
an approximate natural gradient. If we set the correlation
between ∇νq log qλ(V ) and ∇Σq log qλ(V ) to be zero, then
the natural gradient of the lower bound with respect to νq is
approximated by

∇̃νqL(λ) =
(1

4
ψ ′
d

(νq

2

))−1∇νqL(λ) (5.8)
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Table 1 The numbers in brackets show the posterior variances

vi j True VB vi j True VB vi j True VB

v11 0.89 (0.03) 0.91 (0.04) v21 −0.37(0.02) −0.37(0.02) v31 0.39 (0.02) 0.39 (0.02)

v41 −0.32(0.02) −0.33(0.03) v51 0.25 (0.02) 0.26 (0.02) v22 0.83 (0.03) 0.84 (0.03)

v32 −0.39(0.02) −0.39(0.02) v42 0.29 (0.02) 0.30 (0.02) v52 −0.32(0.02) −0.32(0.02)

v33 0.93 (0.04) 0.94 (0.04) v43 −0.50(0.03) −0.50(0.03) v53 0.35 (0.02) 0.35 (0.02)

v44 1.18 (0.06) 1.19 (0.07) v54 −0.73(0.04) −0.74(0.04) v55 0.96 (0.04) 0.97 (0.04)

The manifold Wishart Variational Bayes stopped after 75 iterations, with S = 1000 Monte Carlo samples used for estimating the score-function
gradient of the lower bound. The gradients in (5.7) and (5.8) were used

where ψ ′
d(ν): = ∂ψd(ν)/∂ν.

A numerical example

Data of size n is generated from Nd(0, V ), where the ele-
ments of the true covariance matrix V are vi j = (−0.5)|i− j |.
An inverse-Wishart(ν0, S0) prior is used for V with ν0 = d
and S0 = 0.01Id . It is easy to see that the posterior distri-
bution of V is inverse-Wishart with the degree of freedom
ν = n + d and scale matrix S = S0 + ∑

i yi y
�
i . We run the

manifold Wishart VB algorithm with the inital value νq = n
and Σq = n × Sn , where Sn is the sample covariance matrix
of the yi .

In the first simulation, we consider n = 50 and d = 5.
The estimation result is summarized in Table 1. We consider
the second simulation with n = 500 and d = 50. The lower
bound and aplot of the true posteriormeans of thevi j v.s. their
VB estimates are shown in Fig. 5. These results show that the
manifold Wishart VB algorithm appears to work effectively
and efficiently in this example.

6 Conclusion

We proposed a manifold-based Variational Bayes algorithm
that takes into account both information geometry and geo-
metric structure of the constraint parameter space. The
algorithm is provably convergent for the case when the
objective function either non-convex or strongly retraction-
convex. Our numerical experiments demonstrate that the
proposed algorithm converges quickly, is stable and com-
pares favourably to the existing VB methods. An interesting
research direction is to develop a Manifold VB method for
the Sylvester normalizing flows of Berg et al. (2018). We
leave it as an interesting project for future research.
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Appendix

Proof of Lemma 3.1 By definition, the Riemannian gradient
of L at λ ∈ M, denoted by gradL(λ), is the unique tangent
vector in TλM such that

< gradL(λ), ξλ >= DL(λ)[ξλ], ∀ξλ ∈ TλM.

That is

gradL(λ)� IF (λ)ξλ = ∇λL(λ)�ξλ ∀ξλ ∈ TλM. (6.1)

The natural gradient∇nat
λ L(λ) in (3.2) satisfies (6.1). Indeed,

due to the symmetry of IF (λ), we have

gradL(λ)� IF (λ)ξλ = (I−1
F (λ)∇λL(λ))T IF (λ)ξλ

= ∇λL(λ)�(I−1
F (λ))T (IF (λ)ξλ

= ∇λL(λ)�ξλ.

If ζλ ∈ TλM also satisfies (6.1), then

(
ζλ − gradL(λ)

)�
IF (λ)ξλ = 0 ∀ξλ ∈ TλM

which implies that ζλ = gradL(λ). ��
Proof of Lemma 3.2 Much of our proof is taken from Tagare
(2011). The idea of the proof is that we want to find a vector
in TWM that represents the action of the differential DL(W )

via the natural gradientG. LetW⊥ ∈ Mat(n, n− p) such that
its columns togetherwith the columnsofW formanorthonor-
mal basis for R

n . As [W ,W⊥] is an orthogonal matrix, for
any U ∈ Mat(n, p), there exists a C ∈ Mat(n, p) such that

U = [W ,W⊥]C . Write C =
(
UW

UW⊥

)

with UW the p × p-

matrix formed by the first p rows of C ,UW⊥ the (n− p)× p
matrix formed by the last n− p rows ofC . That is, anymatrix
U ∈ Mat(n, p) can be written as

U = WUW + W⊥UW⊥ ,UW ∈ Mat(p, p),

UW⊥ ∈ Mat(n − p, p).
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If Z = WZW + W⊥ZW⊥ ∈ TWM, then Z�W + W�Z =
0p×p implies that ZW + Z�

W = 0. So TWM is a subset of
the set

{Z = WZW + W⊥ZW⊥ : ZW = −Z�
W ,

ZW⊥ ∈ Mat(n − p, p)}.

It’s easy to check that this set is also a subset of TWM. We
arrive at an alternative representation of the tangent space
TWM

TWM = {WZW + W⊥ZW⊥ : ZW ∈ Mat(p, p),

ZW⊥ ∈ Mat(n − p, p), ZW = −Z�
W }. (6.2)

Wewant to find a vector in TWM that represents the action of
the differentialDL(W ) on TWM, withDL(W ) characterized
byG; i.e. findU = WUW +W⊥UW⊥ ∈ TWM,UW = −U�

W
such that

< U , Z >Euc= DL(W )[Z ], ∀Z ∈ TWM. (6.3)

As the gradient G = gradL(W ) ∈ Mat(n, p), it can be writ-
ten as G = WGW +W⊥GW⊥ . Based on the natural gradient
G,

DL(W )[Z ] = tr(G�Z)

= tr(G�
W ZW ) + tr(G�

W⊥ ZW⊥)

= tr
(
skew(GW )�ZW

) + tr(G�
W⊥ ZW⊥), (6.4)

where we have used the fact that GW = skew(GW ) +
sym(GW ) with sym(GW ) = (GW + G�

W )/2, and that
tr(sym(GW )�ZW ) = 0. We have that

< U , Z >Euc= tr(U�
W ZW ) + tr(U�

W⊥ ZW⊥). (6.5)

Comparing (6.4) and (6.5) gives

U = W skew(GW ) + W⊥GW⊥ .

As GW = W�G and W⊥GW⊥ = G − WGW = (In −
WW�)G,

U = W skew(W�G) + (In − WW�)G.

From (6.3), U is the Riemannian gradient of L. This com-
pletes the proof. ��
Proof of Theorem 1 (i) First, we consider the case L is not
assumed to be convex. Consider the update

λt+1 =Rλt (−Yt ),

Yt+1 =ζΓλt→λt+1(Yt ) + γ∇L(λt+1) + γΔMt+1,
(6.6)

where ζ, γ ∈ (0, 1),ΔMt+1 is amartingale difference. Since
|∇L| + |ΔM | ≤ bL a.s, we have |Yt | ≤ 2γ bL

1−ζ
. This can be

proved as follows. First for the rest of this proof, we use
O(a) to denote vector/scalar with |O(a)| ≤ a. Let Px→y be
a parallel translation. From Lemma 6 Huang et al. (2015a),
there exists a constant a1 > 0 such that

|Γλt→λt+1(Yt ) − Pλt→λt+1(Yt )| = O(a1)|Yt |2, (6.7)

which, together with |Pλt→λt+1(Yt )| = |Yt | implies

|Γλt→λt+1(Yt )| ≤ |Pλt→λt+1(Yt )| + O(a1)|Yt |2
= (1 + O(a1)|Yt |)|Yt |. (6.8)

If we take the norm of the second equation in (6.6), and using
(6.8) we have

|Yt+1| ≤ ζ |Γλt→λt+1(Yt )| + γ (|∇L(λt+1) + |ΔMt+1|)
≤ ζ(1 + O(a1)|Yt |)|Yt | + γ (|∇L(λt+1) + |ΔMt+1|)
≤ (ζ + a1|Yt |)|Yt | + γ bL. (6.9)

With γ <
(1−ζ )2

4a1bL and |Y0| ≤ 2γ bL
1−ζ

if ζ, γ are sufficiently

small, using induction, we can show that |Yt | ≤ 2γ bL
1−ζ

. Indeed

assuming |Yt | ≤ 2γ bL
1−ζ

, using (6.9), we have

|Yt+1| ≤
(

ζ + a1
2γ bL
1 − ζ

)
2γ bL
1 − ζ

+ γ bL

≤
(

ζ + a1
2bL
1 − ζ

(1 − ζ )2

4a1bL

)
2γ bL
1 − ζ

+ γ bL

≤ 1 + ζ

1 − ζ
γ bL + γ bL

≤ 2γ bL
1 − ζ

.

Next, applying the Taylor expansion to the function t �→
L(Rλ(tη)) and using the Lipschitz continuity of ∇L as well
as the smoothness of Rλ(·) in S, there exists a constant L
such that

L(λt+1) = L(λt ) − 〈Yt ,∇L(λt )〉 + O(
L

2
)|Yt |2. (6.10)

From (6.6), squaring both sides of the second equation we
obtain

|Yt+1|2 = ζ 2|Γλt→λt+1(Yt )|2 + 2γ ζ 〈Γλt→λt+1(Yt ), ∇L(λt+1)〉
+ γ 2|∇L(λt+1)|2 + ΔNt + γ 2|ΔMt+1|2, (6.11)

where

ΔNt = 2〈ζΓλt→λt+1(Yt ) + γ∇L(λt+1),ΔMt+1〉.
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From (6.8), with γ small enough so that a1γ bL
1−ζ

≤ 1, we have

|Γλt→λt+1(Yt )|2 = |Yt |2 + O(2a1 + a21 |Yt |)|Yt |3
= |Yt |2 + O(3a1)|Yt |3

= |Yt |2 + O(
6a1bLγ

1 − ζ
)|Yt |2.

Consider the second term without the constant in (6.11), we
have

〈Γλt→λt+1(Yt ),∇L(λt+1)〉
= 〈Pλt→λt+1(Yt ),∇L(λt+1)〉

︸ ︷︷ ︸
(I)

+ 〈Γλt→λt+1(Yt ) − Pλt→λt+1(Yt ),∇L(λt+1)〉
︸ ︷︷ ︸

(II)

.

Recall that Px→y is an isometry, see, for example Absil et al.
(2009). As a result we have

〈Pλt→λt+1(Yt ),∇L(λt+1)〉 = 〈Yt , P−1
λt→λt+1

(∇L(λt+1)〉.

In view of the fundamental theorem of calculus (Huang et al.
2015a, Lemma 8), we have P−1

λt→λt+1
∇L(λt+1) = ∇L(λt )+

O(a2)|Yt | for some constant a2 > 0. Then, for γ ≤ 1−ζ
a2

, we
have

|∇L(λt+1)|2 = |P−1
λt→λt+1

∇L(λt+1)|2

= |∇L(λt )|2 + 2O(a2)|Yt ||∇L(λt )| + O(a2)
2|Yt |2

= |∇L(λt )|2 + O(4a2bL)|Yt | (since |Yt | ≤ γ bL
1 − ζ

≤ 2bL)

= |∇L(λt )|2 + O(
8a2b

2
L

1 − ζ
)γ,

(6.12)

and

(I ) = 〈Yt , P−1
λt→λt+1

(∇L(λt+1)〉
= 〈Yt ,∇L(λt )〉 + 〈Yt , P−1

λt→λt+1
(∇L(λt+1)) − ∇L(λt )〉

= 〈Yt ,∇L(λt )〉 + O(a2)|Yt |2.
(6.13)

For (II), since∇L is a.s bounded by bL, we derive from (6.8)
that

(I I ) = O(a1bL)|Yt |2. (6.14)

As a result of (I) and (II), we have

〈Γλt→λt+1(Yt ),∇L(λt+1)〉 = 〈Yt ,∇L(λt )〉
+ O(a1bL + a2)|Yt |2. (6.15)

Plugging (6.15) into (6.11),

|Yt+1|2 = ζ 2|Yt |2 + 2γ ζ 〈Yt ,∇L(λt )〉
+ γ 2|∇L(λt+1)|2 + O(a3)γ |Yt |2
+ ΔNt + γ 2ΔM2

t+1. (6.16)

where a3 = 6a1bL
1−ζ

+ 2(a1bL + a2)ζ .
Next, using the second equation in (6.6) and (6.15), we have

〈Yt+1, ∇L(λt+1)〉 =
= ζ 〈Γλt→λt+1(Yt ),∇L(λt+1)〉

+ γ |∇L(λt+1)|2 + γ 〈�Mt , ∇L(λt+1)〉
= ζ 〈Yt , ∇L(λt )〉 + O(ζ(a1bL + a2))|Yt |2

+ γ |∇L(λt+1)|2 + γ 〈�Mt , ∇L(λt+1)〉
= 〈Yt , ∇L(λt )〉 − (1 − ζ )〈Yt , ∇L(λt )〉 + γ 〈�Mt , ∇L(λt+1)〉

+ O(ζ(a1bL + a2))|Yt |2 + γ |∇L(λt+1)|2. (6.17)

Multiplying (6.16), (6.17) with A (to be chosen later) and
− 1

1−ζ
respectively and then adding to (6.10) we have

L(λt+1) + A|Yt+1|2 − 1

1 − ζ
〈Yt+1,∇L(λt+1)〉

≤ L(λt ) + A|Yt |2 − 1

1 − ζ
〈Yt , ∇L(λt )〉

−
(

A(1 − ζ 2) − AO(a3)γ − O

(
L

2
+ ζ

a1bL + a2
1 − ζ

))

|Yt |2

+ 2Aγ ζ 〈Yt , ∇L(λt )〉
− γ

1 − ζ
(1−(1 − ζ )γ A)|∇L(λt+1)|2

+ AΔN + γ 2AΔM2
t+1 − 1

1 − ζ
γ 〈�Mt , ∇L(λt+1)〉. (6.18)

Note that,

|2Aγ ζ 〈Yt ,∇L(λt )〉| ≤ |2Aγ 〈Yt ,∇L(λt )〉|

≤ 2Aγ (1 − ζ )|Yt |2 + A
γ |∇L(λt )|2
2(1 − ζ )

≤ 2Aγ (1 − ζ )|Yt |2 + A
γ |∇L(λt+1)|2

2(1 − ζ )

+ AO

(

ζ
8a2b2L

(1 − ζ )2

)

γ 2 by (6.12).
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(In the second inequality above, we have used the fact that

| < p, q > | ≤ p2

2ε + εq2

2 with ε = (1 − ζ )). Plugging back
to (6.18), we obtain

L(λt+1) + A|Yt+1|2 − 1

1 − ζ
〈Yt+1,∇L(λt+1)〉

≤ L(λt ) + A|Yt |2 − 1

1 − ζ
〈Yt ,∇L(λt ) − |Yt |2

(
A(1 − ζ 2)

− 2(1 − ζ )γ A − AO(a3)γ − O
( L

2
+ ζ

a1bL + a2
1 − ζ

))

− γ

1 − ζ

(1

2
− (1 − ζ )Aγ

)
|∇L(λt+1)|2 + γ 2AΔM2

t+1

+ AΔN + Aζ
8a2b2L

(1 − ζ )2
γ 2 − 1

1 − ζ
γ 〈�Mt ,∇L(λt+1)〉.

(6.19)

Now select A = 4
(1−ζ 2)

(
L
2 −ζ

a1bL+a2
1−ζ

)
and let γ satisfy

2(1 − ζ )γ − a3γ

≤ (1 − ζ 2)

4
; (1 − ζ )γ A <

1

4
and γ ≤ 1 − ζ

a2
,

taking the expectation of both sides of (6.19), we have

E

(

L(λt+1) + A|Yt+1|2 − 1

1 − ζ
〈Yt+1,∇L(λt+1)〉

)

≤ E

(

L(λt ) + A|Yt |2 − 1

1 − ζ
〈Yt ,∇L(λt )〉

)

− A(1 − ζ 2)

4
E|Yt |2 − γ

(1 − ζ )
|∇L(λt+1)|2

+ γ 2

(

Ab2L + Aζ
8a2b2L

(1 − ζ )2

)

. (6.20)

Take the sum, we have

T∑

t=1

E(
A(1 − ζ 2)

4
|Yt |2 + γ

(1 − ζ )
|∇L(λt+1)|2)

≤ (L(λ0) − L(λ∗))

− 1

1 − ζ
〈YT+1,∇L(λT+1)〉

+ γ 2

(

Ab2L + Aζ
8a2b2L

(1 − ζ )2

)

T

≤ C(γ 2T + 1).

Then

T∑

t=1

E|∇L(λt+1)|2 ≤ C(γ T + 1

γ
).

Hence

T min
t∈[1,T ] E|∇L(λt+1)|2 =

T∑

t=1

min
t∈[1,T ] E|∇L(λt+1)|2

≤ C(γ T + 1

γ
).

If we choose γ 2 = 1
T , then

min
t∈[1,T ] E|∇L(λt+1)|2 ≤ C√

T
.

(ii) Now we assume that L is strongly retraction convex with

L(λt ) − L(λ∗) ≤ μ̃|∇L(λt )|2, (6.21)

for some μ̃ > 0 (see Remark 4.1). Let ρ := 1 − γ
4μ̃(1−ζ )

>
1+ζ
2 when γ is small. Rewrite (6.17)

〈Yt+1,∇L(λt+1)〉 = ρ〈Yt ,∇L(λt )〉 − (ρ − ζ )〈Yt ,∇L(λt )〉
+ γ 〈�Mt ,∇L(λt+1)〉
+ O(a1bL + a2)|Yt |2 + γ |∇L(λt+1)|2.

(6.22)

Multiplying (6.16), (6.22) with A (to be chosen later) and
− 1

ρ−ζ
respectively and then adding to (6.10) we have

L(λt+1) − L(λ∗) + A|Yt+1|2 − 1

ρ − ζ
〈Yt+1, ∇L(λt+1)〉

≤ L(λt ) − L(λ∗) + Aζ 2|Yt |2 − ρ

ρ − ζ
〈Yt , ∇L(λt )〉

+ 2Aγ ζ 〈Yt , ∇L(λt )〉 + Aγ O(a3)Y
2
t + Aγ 2M2

t

+ O(
L

2
)|Yt |2 + O(

a1bL + a2
ρ − ζ

)|Yt |2 + AΔNt

− 1

ρ − ζ
γ 〈�Mt , ∇L(λt+1)〉

− γ

ρ − ζ
(1 − (ρ − ζ )γ A)|∇L(λt+1)|2

≤ ρ
(
L(λt ) − L(λ∗) + A|Yt |2 − 1

ρ − ζ
〈Yt , ∇L(λt )〉

)

+
(
(1 − ρ)(L(λt ) − L(λ∗))

− 1

ρ − ζ
(1 − (ρ − ζ )γ )|∇L(λt )|2

)
+ AΔNt + Ab2Lγ 2

−
(
A(ρ − ζ 2) − Aγ a3 − L

2
− a1bL + a2

ρ − ζ

)
|Yt |2

+ 2Aγ ζ 〈Yt , ∇L(λt )〉 − 1

ρ − ζ
γ 〈�Mt , ∇L(λt+1)〉.

(6.23)
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We have

|2Aγ ζ 〈Yt ,∇L(λt )〉| ≤ 2Aγ (ρ − ζ )|Yt |2 + A
γ |∇L(λt )|2
2(ρ − ζ )

≤ 2Aγ (ρ − ζ )|Yt |2 + A
γ |∇L(λt+1)|2

2(ρ − ζ )

+ O(
Aa2b2L

(1 − ζ )(ρ − ζ )
)γ 2.

Plugging this into (6.23), we have

L(λt+1) − L(λ∗) + A|Yt+1|2 − 1

ρ − ζ
〈Yt+1,∇L(λt+1)〉

≤ ρ
(
L(λt ) − L(λ∗) + A|Yt |2 − 1

ρ − ζ
〈Yt ,∇L(λt )〉

)

+
(
(1 − ρ)(L(λt ) − L(λ∗))

− 1

ρ − ζ
(
1

2
− (ρ − ζ )γ )|∇L(λt )|2

)
−

(
A(ρ − ζ 2)

− Aγ a3 − L

2
− a1bL + a2

ρ − ζ
− 2Aγ (ρ − ζ )

)
|Yt |2

+ AΔNt − 1

ρ − ζ
γ 〈�Mt ,∇L(λt+1)〉

+
( Aa2b2L
(1 − ζ )(ρ − ζ )

+ Ab2L
)
γ 2.

(6.24)

We deduce from (6.21) that

(1 − ρ)(L(λt ) − L(λ∗)) = γ

4μ̃(1 − ζ )
(L(λt ) − L(λ∗))

≤ γ

4(1 − ζ )
|∇L(λt )|2

≤ 1

4(ρ − ζ )
|∇L(λt )|2. (6.25)

On the other hand due to (6.12) we have

γ

ρ − ζ
|∇L(λt+1)|2

= ργ

ρ − ζ
|∇L(λt+1)|2 + (1 − ρ)γ

ρ − ζ
|∇L(λt+1)|2

= ργ

ρ − ζ
|∇L(λt )|2 + (1 − ρ)γ

ρ − ζ
|∇L(λt+1)|2

+ O(
8a2b2L
1 − ζ

)γ
γρ

ρ − ζ
(6.26)

= ργ

ρ − ζ
|∇L(λt )|2 + (1 − ρ)γ

ρ − ζ
|∇L(λt+1)|2

+ O

(
8a2b2Lρ

(1 − ζ )2(ρ − ζ )

)

γ 2.

Adding (6.24) and (6.26) and using (6.25) we have for

Vt : = L(λt ) − L(λ∗) + A|Yt |2

− 1

ρ − ζ
〈Yt ,∇L(λt )〉 + γ

(ρ − ζ )
|∇L(λt )|2,

that

Vt+1 ≤ ρVt −
( 1

ρ − ζ
(
1

4
− (ρ − ζ )γ )

)
|∇L(λt )|2

− |Yt |2
(
A(ρ − ζ 2) − Aγ a3 − L

2
− a1bL + a2

ρ − ζ

− 2Aγ (ρ − ζ )
)

+
(

Aa2b2L
(1 − ζ )(ρ − ζ )

+ Ab2L + 8a2b2Lρ

(1 − ζ )2(ρ − ζ )

)

γ 2

+ AΔNt − 1

ρ − ζ
γ 〈�Mt ,∇L(λt+1)〉.

(6.27)

SinceL is strongly retraction-convex, there existsμ > 0 such
that |∇L(λ)|2 ≤ L̃2|R−1

λ∗ (λ)|2 ≤ L̃2μ(L(λT )−L(λ∗)). As a
result, if A >

2L̃2μ

(1−ζ )2
>

L̃2μ

2(ρ−ζ )2
then we have from Cauchy’s

inequality that

Vt = A|Yt |2 − 1

ρ − ζ
〈Yt ,∇L(λt )〉 + (L(λT ) − L(λ∗))

≥ 1

2
(L(λT ) − L(λ∗)) .

Let A and γ be such that

A(ρ − ζ 2) − Aγ a3 − 2Aγ (ρ − ζ ) − L

2
− a1bL + a2

ρ − ζ
> 0,

and

A > ρ, A >
2L̃2μ

(1 − ζ )2
,

1

ρ − ζ
(
1

4
− (ρ − ζ )γ ) > 0,

we have

EVt+1 ≤ ρEVt + Cγ 2.

As a result, recall the definition of ρ, we have

EVt ≤ ρtC0 + C

1 − ρ
γ 2 ≤

(

1 − μ̃γ

2(1 − ζ )

)t

C0 + Cγ 2,

where C0 = EV0.
With γ = 1

T ε , we have

EVT ≤
(
(1 − μ̃T 1−ε)T

1−ε
)T ε

+ CT 2ε−2.
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When T is large then

(
(1 − μ̃T 1−ε)T

1−ε
)T ε

≈ e− T ε

μ̃ << T 2ε−2.

Thus for Cε = max{C0,C},

EVT ≤ CεT
2ε−2.

we have

1

L̃2μ
E|∇L(λt )|2 ≤ 1

2
EL(λT ) − L(λ∗) ≤ EVT ≤ CεT

2ε−2.

��
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