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Abstract
Continual learning has attracted increasing re-
search attention in recent years due to its promis-
ing experimental results in real-world applica-
tions. In this paper, we study the issue of calibra-
tion in continual learning which reliably quantifies
the uncertainty of model predictions. Conformal
prediction (CP) provides a general framework for
model calibration, which outputs prediction in-
tervals or sets with a theoretical high coverage
guarantee as long as the samples are exchange-
able. However, the tasks in continual learning are
learned in sequence, which violates the principle
that data should be exchangeable. Meanwhile,
the model learns the current task with limited or
no access to data from previous tasks, which is
not conducive to constructing the calibration set.
To address these issues, we propose a CP-based
method for model uncertainty quantification in
continual learning (CPCL), which also reveals the
connection between prediction interval length and
forgetting. We analyze the oracle prediction inter-
val in continual learning and theoretically prove
the asymptotic coverage guarantee of CPCL. Fi-
nally, extensive experiments on simulated and
real data empirically verify the validity of our
proposed method.

1. Introduction
As vast amounts of data are produced, the number of new
tasks is increasing overwhelmingly (Zou & Liu, 2023b; Liu
et al., 2019; Gong et al., 2023b; Chen & Liu, 2023). Con-
sequently, learning systems are required to rapidly adapt to
the continuously emerging tasks (Gong et al., 2023a; 2021;
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2022; Xu & Liu, 2022; Zou & Liu, 2023a). Continual learn-
ing (CL)—also referred to as lifelong learning (Chen & Liu,
2018; Gao & Liu, 2025b), sequential learning (Aljundi et al.,
2019), and incremental learning (Aljundi et al., 2018)—is
a paradigm that enables a model to learn a large number of
tasks sequentially, where data from previous tasks are no
longer accessible during the training of new tasks. A signifi-
cant challenge in continual learning is catastrophic forget-
ting (Kumaran et al., 2016), where standard deep learning
methods tend to rapidly forget previously acquired knowl-
edge when learning new tasks (Kirkpatrick et al., 2017).
Most works of continual learning have concentrated on mit-
igating this issue. For example, the regularization-based
methods such as EWC (Kirkpatrick et al., 2017) and MAS
(Aljundi et al., 2018) measure the parameter importance and
introduce a regularization term in the loss function to con-
solidate previous knowledge; replay-based methods such as
iCaRL (Rebuffi et al., 2017) and GEM (Lopez-Paz & Ran-
zato, 2017) try to replay the knowledge of previous tasks
by storing samples or generating pseudo-samples, and then
provide these replayed knowledge to the model while a new
task is being learned; parameter isolation methods such as
PackNet (Mallya & Lazebnik, 2018) and HAT (Serrà et al.,
2018) dedicate different model parameters to each task so
as to prevent any possible forgetting. Overall, these works
mitigate catastrophic forgetting of model in continual learn-
ing, which is often reflected as improved accuracy of model
on previous tasks.

However, existing works to date have ignored the issue
of calibration in continual learning. Calibration is often
deemed as important as the standard criterion of accuracy
in statistics and machine learning (Thelen et al., 2022; Park
et al., 2024). A well-calibrated model can reliably quantify
the uncertainty of its prediction (Guo et al., 2017; Hermans
et al., 2021). Model uncertainty quantification is crucial in
many applications of continual learning. For example, in
medical imaging, advancements in technology or changes
in diagnostic procedures result in continuous variations in
image appearance (Hofmanninger et al., 2020; Ghesu et al.,
2021). In this context, the model must provide critical
information to doctors, enabling them to understand the un-
certainty in model predictions and make informed decisions
regarding patient care.
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Among various uncertainty quantification techniques, we
specifically concentrate on conformal prediction (CP) (Vovk
et al., 2005; Ndiaye, 2022; Fisch et al., 2022; Qian et al.,
2024) in this paper. CP provides a general framework for
model calibration, which is model-agnostic, nonparametric
and distribution-free (the coverage guarantee holds for any
distribution). CP takes in three components: a black-box
predictive model, an input feature and a potential output. It
requires the design of a score function to measure how non-
conforming the potential output is and to calculate scores on
a calibration set. In regression tasks, CP outputs prediction
intervals while in classification tasks, it produces prediction
sets. These prediction intervals or sets can theoretically
guarantee high coverage probability as long as the sam-
ples are exchangeable (Shafer & Vovk, 2008)—a weaker
requirement than the standard i.i.d. assumption. However,
uncertainty quantification using CP poses significant chal-
lenges in continual learning. As illustrated in Figure 1, tasks
are learned by a single model in sequence. Some works
have shown that changing the order of tasks significantly af-
fect the performance of model in continual learning (Lange
et al., 2022). This violates the principle of data exchange-
ability. Meanwhile, samples from previous tasks are limited
or inaccessible, resulting in a restricted calibration set for
CP. Therefore, effective use of CP for model uncertainty
quantification in continual learning requires further investi-
gation.

In this paper, we consider the regression setting and con-
struct prediction intervals for continual learning with a
asymptotic coverage guarantee. Our main contributions
can be summarized as follows:

• We propose a CP-based method for model uncertainty
quantification in continual learning, termed CPCL.
CPCL constructs a new dataset which takes the depen-
dencies among original data into count and defines the
prediction interval by a conditional quantile estimator.
Additionally, CPCL reveals the inherent connection
between prediction interval length and forgetting.

• We analyze the oracle prediction interval in continual
learning and provide the asymptotic coverage guaran-
tee of the prediction interval of CPCL.

• Extensive experimental results on simulated and real
data demonstrate the validity of CPCL.

2. Related Work
Continual learning. Continual learning consists of a se-
quence of disjoint tasks that are sequentially learned one
at a time. After sequentially learning all tasks, continual
learning wants the model to perform well on all seen tasks.
Existing research on continual learning focuses primarily on
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Figure 1. A general framework of continual learning.

how to solve the catastrophic forgetting of accuracy. Some
surveys (Parisi et al., 2019; Lesort et al., 2019; Pfülb &
Gepperth, 2019; Farquhar & Gal, 2018) have shown that
existing continual learning works can be broadly divided
into three categories: (i) replay methods, (ii) regularization-
based methods and (ii) parameter isolation methods.

Replay methods generally have two ways to replay in arti-
ficial neural networks: partial replay (PR) and generative
replay (GR) (Hayes et al., 2021; Gao & Liu, 2023). Replay
methods store samples or generate pseudo-samples using a
generative model, and these samples are replayed while a
new task is being learned (Rebuffi et al., 2017; Lopez-Paz
& Ranzato, 2017; Rolnick et al., 2019; Ayub & Wagner,
2021). PR stores either all or a subset of previously learned
inputs in a replay buffer and mixes these inputs with new
samples to train the classifier (Rebuffi et al., 2017; Lopez-
Paz & Ranzato, 2017; Rolnick et al., 2019; Ayub & Wagner,
2021) while GR generates synthetic samples for previous
tasks. For example, iCaRL (Rebuffi et al., 2017) selects
and stores samples (exemplars) closest to the feature mean
of each class by assuming fixed allocated memory; DER
(Buzzega et al., 2020) mixes rehearsal with knowledge dis-
tillation and regularization and matches the network’s logits
sampled throughout the optimization trajectory to promot
consistency with its past; DGR (Shin et al., 2017) uses GAN
to to generate previous samples for data replaying. In addi-
tion to previous task samples, graph-based replay (Tang &
Matteson, 2021) have been proven to be efficient.

Regularization-based methods add an extra regularization
term to the loss function and penalize changes to impor-
tant parameters of model for previous tasks (Kirkpatrick
et al., 2017; Zenke et al., 2017; Aljundi et al., 2018; Lee
et al., 2017; Gao & Liu, 2025a). For example, EWC (Kirk-
patrick et al., 2017) uses the Fisher Information Matrix to
measure the importance of parameters; IMM (Lee et al.,
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2017) estimates Gaussian posteriors for task parameters,
in the same vein as EWC, but inherently differs in its use
of model merging; MAS (Aljundi et al., 2018) measures
the importance according to the gradients of the squared
L2-norm of learned network output function. Other kinds
of regularization-based methods are also efficient, such as
functional regularization (Pan et al., 2020; Benjamin et al.,
2019), node importance (Jung et al., 2020) and uncertainty
regularization (Ahn et al., 2019).

Parameter isolation methods dedicate different model pa-
rameters to each task to prevent any possible forgetting (Xu
& Zhu, 2018; Mallya & Lazebnik, 2018; Serrà et al., 2018).
PackNet (Mallya & Lazebnik, 2018) iteratively assigns pa-
rameter subsets to consecutive tasks by constituting binary
masks. HAT (Serrà et al., 2018) incorporates task-specific
embeddings for attention masking where the per-layer em-
beddings are gated through a Sigmoid to attain unit-based
attention masks in the forward pass.

Conformal prediction. As introduced in Section 1, CP
is a model-agnostic, nonparametric and distribution-free
framework for the calibration of models. It designs a score
function which measures how non-conforming the potential
output is and evaluates these scores on a hold-out calibra-
tion set. CP produces prediction intervals (or sets) where
data is assumed to be exchangeable. Under the assump-
tion of exchangeable data, CP has be successful in many
applications. For example, Wisniewski et al. (2020) focus
on the application of conformal prediction interval estima-
tions to provide financial Market Makers (MMs) with some
“meaningful” forecasts relating to their future short-term po-
sition in a given financial market; (Huang et al., 2023) pro-
pose conformalized GNN, extending conformal prediction
to graph-based models for guaranteed uncertainty estimates;
Gui et al. (2023) adapt the framework of conformal pre-
diction to propose a distribution-free method for predictive
inference in the matrix completion problem. Some works
consider the situations in which the data exchangeability is
not satisfied (Tibshirani et al., 2019; Gendler et al., 2022; Xu
& Xie, 2023a). Tibshirani et al. (2019) show that a weighted
version of conformal prediction can be used to compute
distribution-free prediction intervals for problems in which
the test and training covariate distributions differ. Gendler
et al. (2022) consider that the test data may be adversarially
attacked where the exchangeability assumption is grossly
violated. Xu & Xie (2023a) develop the general framework
for constructing prediction intervals for time series. Com-
pared to time series, continual learning has the following
differences when studying CP. First, in time series, samples
from previous time points are available, while in continual
learning, only samples from the current task are available,
and samples from previous tasks are not accessible. This
means that a complete calibration set can be naturally con-

structed in time series, while the calibration set in continual
learning is limited to the current task. Second, time series fo-
cuses on the model’s performance on data arriving at future
time points, whereas the core concern of continual learn-
ing is the catastrophic forgetting regarding previous tasks.
The connection between the prediction intervals (sets) con-
structed by CP and the catastrophic forgetting in continual
learning requires further research. Overall, it is necessary to
study CP in continual learning.

3. Preliminaries
We mainly follow the continual learning setting of (Delange
et al., 2021) and conformal prediction setting of (Xu &
Xie, 2023b). In this paper, we consider a regression setup.
Given an unknown model, f : Rd → R, each observation
Z = (X,Y ) is generated according to the following model

Y = f(X) + µ (1)

where µ is distributed following a continuous cumulative
distribution function (CDF) F , Y is a continuous scalar
variable, X ∈ Rd denotes the feature and d is the dimension
of the feature vector.

Continual learning. There are Nτ disjoint tasks
(τ1, τ2, ..., τNτ

) that are learned sequentially. The dataset
of task τt is given by {Zt

n = (Xt
n, Y

t
n)}Nn=1, where N is

the number of samples for each task. Each observation
Zt
n = (Xt

n, Y
t
n) for task τt is generated according to Eq.(1)

where µt
n is distributed according to F t. In continual learn-

ing, the model is trained on the current task while access to
data from previous tasks is limited. The goal of continual
learning is to control the statistical risk of the model across
all previously seen tasks:

Nτ∑
t=1

E(Xt,Y t)[ℓ(h(X
t; θ), Y t)] (2)

where ℓ is the loss function and h is the predictor with
parameter θ.

Conformal prediction. In the context of CP, there are
Ncal observable samples {Zi = (Xi, Yi)}Ncal

i=1 which are
generated according to Eq.(1). The goal of CP is to con-
struct a sequence of prediction intervals that are as narrow as
possible while ensuring a certain coverage guarantee. Given
a user-specified prediction algorithm, we use the observed
samples to obtain a trained model represented by f̂ . Sub-
sequently, we construct a prediction interval Ĉα

test for Ytest

of a test sample, where α is the significance level. CP con-
siders two types of coverage guarantees. The conditional
coverage guarantee ensures that the prediction interval Ĉα

test

satisfies:

P (Ytest ∈ Ĉα
test|Xtest) ≥ 1− α. (3)
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The second type is the marginal coverage guarantee:

P (Ytest ∈ Ĉα
test) ≥ 1− α. (4)

It is noteworthy that Eq.(3) is significantly stronger than
Eq.(4). As established by split conformal prediction (SCP)
(Papadopoulos et al., 2007), the marginal coverage guaran-
tee holds whenever data are exchangeable (Definition 1).
Definition 1. (Exchangeability (Shafer & Vovk, 2008)) The
random variables V1, V2, . . . , Vn are exchangeable if for
any permutation γ of integers 1, 2, . . . , n, the variables
V 1, V 2, . . . , V n, where V i = Vγ(i), have the same joint
probability distribution as V1, V2, . . . , Vn.

In this paper, we aim to construct prediction intervals
with a conditional coverage guarantee through CP in con-
tinual learning setting. We consider Nτ disjoint tasks
(τ1, τ2, ..., τNτ ). The dataset for task τt is {Zt

n =
(Xt

n, Y
t
n)}Nn=1. As the goal of continual learning is to con-

trol the statistical risk across all seen tasks (i.e. Eq.(2)),
the test sample should derive from a union task that en-
compasses all knowledge from previous tasks. Our work
replaces the test sample Ztest = (Xtest, Ytest) with Zut =
(Xut, Yut) for convenience, where Zut = (Xut, Yut) repre-
sents the test sample from a union task that contains knowl-
edge from all seen tasks. After sequentially learning all
tasks using any continual learning algorithm (which can
be viewed as the user-specified prediction algorithm), we
obtain a trained model. Given Xut, we quantify the un-
certainty of the trained model by constructing a prediction
interval Ĉα

ut for the output, ensuring that Yut ∈ Ĉα
ut with

probability 1− α. In light of this, some natural challenges
arise:

• The samples from previous tasks are limited when
learning the current task τT . This limitation implies
that the calibration set reserved by typical conformal
prediction methods (such as SCP) is also restricted.

• Some works have shown that changing the order of
tasks significantly affect the performance of model in
continual learning (Lange et al., 2022). Therefore, the
principle that data should be exchangeable is violated
in continual learning. In this case, the courage of typi-
cal conformal prediction methods (such as SCP) cannot
be guaranteed (Zou & Liu, 2024).

To address these challenges, we demonstrate how to quantify
model uncertainty using conformal prediction for continual
learning in Section 4. Additionally, we establish asymptotic
conditional validity of our proposed method in Section 5.

4. Uncertainty Quantification in Continual
Learning

Inspired by Xu & Xie (2023a), we show how to quantify
model uncertainty by CP for continual learning in this sec-

tion. We focus on the current task τT . After sequentially
learning the first T tasks, we obtain a trained model f̂T . For
a given input XT

ut, we mainly construct a prediction interval
Ĉα

ut to effectively qualify the potential prediction.

Calibration set. As discussed in Section 3, the calibration
set is limited at the current task τT (i.e., we only have ac-
cess to data of current task to construct the calibration set).
Inspired by the replay-based methods in continual learning
(Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Rolnick
et al., 2019; Ayub & Wagner, 2021), we try to replay the
samples of previous tasks to construct the calibration set.
For simplicity, we maintain a buffer to store Ncal samples
from each previous task. While other replay techniques
could be considered, we do not develop them in this paper.
Overall, by the replay, we collect the calibration set defined
as

⋃T
t=1{Zt

i = (Xt
i , Y

t
i )}

Ncal
i=1 .

Nonconformity score function. For each observation
Zt
i = (Xt

i , Y
t
i ) in the calibration set, we define the pre-

diction error as

µ̂t
i = Y t

i − f̂T (X
t
i ). (5)

Then we define the nonconformity score function as

s(Xt
i , Y

t
i ) =

1

1 + e−µ̂t
i

(6)

which ensures that the scores range in (0, 1). We intro-
duce this nonconformity score function for two reasons.
First, the range of sigmoid-based nonconformity score func-
tion is (0, 1). Our method is involved with the training of
Quantile Regression Forests which requires to construct
trees. This process asks us to define that the score func-
tion ranges in (0, 1) for rigorous proof. Second, this non-
conformity score function is invertible, which helps us to
rewrite the prediction interval. Details of reasons can be
found in Appendix B. We leverage Eq.(6) to calculate the
non-conformity scores for all observations in calibration set⋃T

t=1{Zt
i = (Xt

i , Y
t
i )}

Ncal
i=1 . This results in the score set⋃T

t=1{St
i}

Ncal
i=1 , where St

i = s(Xt
i , Y

t
i ). It is noteworthy

that the nonconformity score function defined in this paper
is independent of the calibration set. Since observations
in continual learning are not exchangeable, the calibration
set exhibits inherent dependencies among its observations.
Consequently, the scores in

⋃T
t=1{St

i}
Ncal
i=1 should be se-

quentially dependent because of the independence of the
nonconformity score function and the inherent dependen-
cies among calibration observations. To account for these
dependencies in the scores, we train a quantile estimator
Q̂T (x;α) on

⋃T
t=1{St

i}
Ncal
i=1 rather than using the empirical

quantile directly.

Quantile regression forests (QRF) (Meinshausen, 2006).
In this paper, we utilize QRF to achieve the quantile esti-
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mator Q̂T (x;α). Considering the dependencies over scores,
we aim to reconstruct a new dataset based on the score set
to train QRF. In this new dataset, each input should encap-
sulate the knowledge of dependencies over scores and each
prediction should represent the conditional quantile of the
scores from the union task. Specifically, we define the re-
constructed dataset as DR

T = {(XR
i , Y R

i )}Ncal−1
i=1 , where

XR
i = [S1

i , S
2
i , . . . , S

T
i ] and Y R

i is an approximation of the
true score ST

ut of the observation (XT
ut, Y

T
ut) from the union

task which contains knowledge from all seen tasks. It is
noteworthy that XR

i contains T sequential scores which are
effective to predict the condition quantile of true score ST

ut.

We train QRF on the reconstructed dataset
{(XR

i , Y R
i )}Ncal−1

i=1 . After training QRF, we grow
K trees. For each tree with separate parameter ζk, there are
L leaves, where every leaf l is associated with a rectangular
subspace Rl ⊂ B. These subspaces are disjoint and cover
the entire space B, i,.e. for any x ∈ B, there is one and only
one leaf which is denoted as Rl(x,ζk).

Based on the trained QRF, we then leverage XR
Ncal

=

[S1
Ncal

, S2
Ncal

, . . . , ST
Ncal

] to predict the conditional quantile
of ST

ut. Given the reconstructed dataset {(XR
i , Y R

i )}Ncal−1
i=1 ,

the trained QRF and XR
Ncal

∈ B, we can obtain the esti-
mated conditional distribution function F̂ (yRNcal

|XR
Ncal

) as
follows:

pi(X
R
Ncal

, ζk)=
I(XR

i ∈ Rl(XR
Ncal

,ζk))

|{j∈ [Ncal−1]|XR
j ∈Rl(XR

Ncal
,ζk)}|

(7)

pi(X
R
Ncal

)=

K∑
k=1

pi(X
R
Ncal

, ζk)/K (8)

F̂ (yRNcal
|XR

Ncal
) =

Ncal−1∑
i=1

pi(X
R
Ncal

)I(Y R
i ≤ yRNcal

) (9)

where [Ncal− 1] represents the set {1, 2, . . . , Ncal − 1}.
Rl(XR

Ncal
,ζk) is the leaf of tree ζk that contains the input

XR
Ncal

. If this leaf also contains the observation XR
i from

the reconstructed dataset, then I(XR
i ∈ Rl(XR

Ncal
,ζk)) is

equal to 1; otherwise, it is equal to 0. |{j ∈ [Ncal −
1]|XR

j ∈Rl(XR
Ncal

,ζk)}| represents the number of observa-
tions included in this leaf from the reconstructed dataset.
pi(X

R
Ncal

, ζk) measures the weight of observation XR
i ,

while pi(X
R
Ncal

) further measures the weight over K trees.
In practice, we implement the above fitting and prediction
process by Python according to (Meinshausen, 2006).

Prediction interval. Based on the estimated conditional
distribution function F̂ (yRNcal

|XR
Ncal

), we define the condi-
tional quantile estimator Q̂T (x = XR

Ncal
;α) as

Q̂T (x=XR
Ncal

;α)=inf{s∈ (0,1) : F̂ (s|XR
Ncal

)≥α}. (10)

Then the prediction interval with significance level α is

Ĉα
ut={Y T

ut :Q̂T(XR
Ncal

;β̂)≤s≤Q̂T (XR
Ncal

;1−α+β̂)} (11)

where s = s(XT
ut, Y

T
ut). For convenience, we define

Q̂T(XR
Ncal

;α) = ŝα. Recalling the nonconformity score
function in Eq.(6), we can rewrite the prediction interval as

Ĉα
ut=[f̂T (X

t
i )−ln (

1

ŝβ̂
−1),f̂T (Xt

i )−ln (
1

ŝ1−α+β̂

−1)]. (12)

β̂ = argmin
β∈[0,α]

(ln (
1

ŝβ̂
−1)− ln(

1

ŝ1−α+β̂

−1)) (13)

Connection between intervals and forgetting. As the
number of tasks increases, the phenomenon of forgetting
becomes more pronounced. The model’s test error on previ-
ous tasks rises (Eq.(5)), while the error on the current task
remains low. This leads to an increased difference between
our estimated ŝβ̂ and ŝ1−α+β̂ . According to Eq.(12), we can
conclude that the length of the prediction intervals will also
increase, which is verified by Figure 3 in Section 6.2.

Conformal prediction for continual learning. Overall,
we propose a CP-based method for model uncertainty quan-
tification in continual learning, termed CPCL. Specifically,
when learning current task τT , we first obtain a trained
model f̂T using a specific continual learning method. Then
we construct the calibration set by replaying samples of
previous tasks. We collect score set by calculating non-
conformity scores on calibration set. Following that, we
reconstruct a new dataset based on the score set. Since the
union task contains knowledge from all seen tasks, we select
one entry Sj

i of XR
i which is multiplied by a coefficient ω,

and set Y R
i = Sj

i . We then train QRF on this reconstructed
dataset to obtain conditional quantile estimator. Finally,
for any test input XT

ut, we produce the prediction interval
which comprises the conditional quantile estimator. Details
of CPCL are shown in Algorithm 1. In practice, we consider
Ntest test samples and obtain intervals based on these test
samples.

5. Theory Analysis
In this section, we first analyze the oracle prediction interval
in continual learning. Inspired by Meinshausen (2006); Xu
& Xie (2023a), we then demonstrate that the conditional
distribution function estimated by our proposed CPCL (i.e.,
Eq.(9)) converges to true conditional distribution function.
Finally, we prove that this convergence of distribution func-
tion results in the convergence of quantile estimates, indi-
cating asymptotic conditional validity of CPCL. For conve-
nience, we let T = Nτ represent the scenario where all Nτ

tasks in continual learning have been learned.
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Algorithm 1 CP-based method for model uncertainty quan-
tification in continual learning (CPCL).
Input: (τ1, τ2, ..., τNτ

): all training tasks; Nτ : total num-
ber of tasks; {Zt

n = (Xt
n, Y

t
n)}Nn=1: the dataset of task

τt; N : the number of samples for each tasks; T : the
index of current task; Ncal: the number of samples
from each task in the calibration set; CLM : a certain
continual learning method.

1: Initialization: RB = ∅
2: for T ∈ [1, . . . , Nτ ] do
3: Obtain f̂T from a certain continual learning method

CLM .
4: Collect {ZT

n = (XT
n , Y

T
n )}Ncal

n=1 from task τT .
5: RB = RB ∪ {ZT

n = (XT
n , Y

T
n )}Ncal

n=1 .
6: Construct

⋃T
t=1{St

i}
Ncal
i=1 on RB by Eq.(6).

7: Reconstruct DR
T = {(XR

i , Y R
i )}Ncal−1

i=1 .
8: Fit QRF on DR

T and obtain the conditional quantile
estimator by Eq.(10).

9: Construct the prediction interval Ĉα
ut,T for any test

input XT
ut with significance level α by Eqs.(11), (12)

and (13).
10: end for
Output: (Ĉα

ut,1, Ĉ
α
ut,2, . . . , Ĉ

α
ut,Nτ

)

5.1. Oracle Prediction Interval in Continual Learning

Here we discuss the oracle prediction interval in continual
learning, which includes Y Nτ

ut with an exact conditional
coverage of 1 − α. We first define Zt = (Xt, Y t) as the
data originating from task τt. The oracle prediction assumes
perfect knowledge of f in Eq.(1). Given XNτ

ut , and since Nτ

tasks are learned in sequence during continual learning, the
prediction of Y Nτ

ut is conditioned on XNτ
ut and the sequence

ZNτ
1 = [Z1, Z2, . . . , ZNτ ]. Therefore, the goal of CP in

continual learning centers around the CDF of Y Nτ
ut condi-

tioning on XNτ
ut and the sequence ZNτ

1 , which is defined
as:

Fut(y) = P(Y Nτ
ut ≤ y|XNτ

ut ,ZNτ
1 )

= P(µNτ
ut ≤ y − f(XNτ

ut )|ZNτ
1 )

(14)

where Y Nτ
ut = f(XNτ

ut ) + µNτ
ut and µNτ

ut is distributed fol-
lowing FNτ

ut . According to Eqs.(5) and (6), our designed
score function s(·) is dependent of the data sequence ZNτ

1 .
SNτ
1 is defined as the score sequence in which St = s(Zt).

In this case, the dependence among SNτ
1 arises from ZNτ

1 .
Therefore, the conditional CDF in Eq.(14) is equivalent to
the following CDF based on the score sequence

Fut(s|SNτ
1 ) = P(SNτ

ut ≤ s|SNτ
1 ). (15)

We define the true conditional quantile as

QNτ (α) =inf{s : Fut(s|SNτ
1 )≥α}. (16)

For any β ∈ [0, α], we derive that

P(SNτ
ut ∈ [QNτ (β),QNτ (β+1−α)]|SNτ

1 )=1−α. (17)

According to Eq.(6), we define the inverse of the score
function as µ(v) = s−1(v). For any α ∈ [0, 1], we have

yα = f(XNτ
ut ) + µ(QNτ (α)). (18)

Then the oracle prediction interval in continual learning
with the narrowest width is defined as

Cα
ut =[yβ̂ , yβ̂+1−α]. (19)

β̂ = argmin
β∈[0,α]

(µ(QNτ (β + 1− α))− µ(QNτ (β))). (20)

For convenience, above discussion directly assumes that the
score function is the one designed by our work. The above
analysis indicates that the estimated quantile Q̂ and model
f̂ determine how closely the estimated prediction interval
approximates the oracle prediction interval. In continual
learning, f̂ is the output model whose uncertainty we aim
to quantify. So we focus on analyzing the estimated condi-
tional quantile presented in this paper, i.e. Eq.(10). In this
work, we want to seek the asymptotic coverage guarantee
of the prediction interval of CPCL, which is defined as

P(Y Nτ
ut ∈ Ĉα

ut|X
Nτ
ut ,ZNτ

1 ) → 1− α (21)

with Ncal → ∞.Therefore, proving Eq.(21) is equivalent to
prove that for any α ∈ [0, 1], we have

Q̂Nτ (x;α) → QNτ (α) as Ncal → ∞, (22)

where Q̂Nτ (x;α) is the estimated conditional quantile of
CPCL and QNτ (α) is the true conditional quantile. In
Eq.(10), we have x = XR

Ncal
which corresponds to the

score sequence SNτ
1 . In Section 5.2, we prove Eq.(22) for

any x ∈ B.

5.2. Asymptotic Coverage Guarantee

Here we prove that Eq.(22) holds for any α ∈ [0, 1] and
x ∈ B. As stated in (Xu & Xie, 2023b), it is impossible to
prove the conditional coverage guarantee without further
assumptions. We first provide some necessary theoretical
assumptions and briefly explain them.

Assumption 1. The true conditional CDF in Eq.(15) is
Lipschitz continuous with parameter L, i.e. for any x, x′ ∈
B,

sup
s

|F (s|x)− F (s|x′)| ≤ L∥x− x′∥1, (23)

where x, x′ correspond to the score sequence.

Assumption 2. The true conditional CDF F (s|x) is con-
tinuous and strictly monotonously increasing in s, for any
x ∈ B.
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Assumptions 1 and 2 make assumptions on the condi-
tional CDF. The conditional distribution function is assumed
to be Lipschitz continuous in Assumption 1 and strictly
monotonously increasing in Assumption 2. These assump-
tions are reasonably mild and don’t require a particular
parametric.

Assumption 3. For any x ∈ B, pi(x) in Eq.(8) satisfies that
pi(x) = o(1).

Assumption 4. For any x ∈ B, the rectangular subspace
Rl(x,ζk) ⊆ (0, 1)Nτ of leaf l(x, ζk) of tree ζk is defined
by the intervals I(x,m, ζk) ⊆ (0, 1), i.e. Rℓ(x,ζk) =

⊗Nτ
m=1I(x,m, ζk), where ⊗ means direct sum. We assume

that maxm |I(x,m, ζk)| = op(1) for Ncal → ∞. op(1)
indicates that maxm |I(x,m, ζk)| converges in probability
to zero.

Assumptions 3 and 4 focus on the actual construction of
trees. We refer to Meinshausen (2006) and provide two
examples. Assumption 3 represents the case of Example
1. Assumption 4 indicates that the size of each interval is
vanishing for large Ncal and represents the case of Example
2.

Example 1. The minimal number of observations in a
node is growing for large Ncal, i.e., 1/minl,ζk wζk(l) =
o(1), Ncal → ∞..

Example 2. This example consists of three situations. In
situation 1, the proportion of observations in a node, rel-
ative to all observations, is vanishing for large Ncal i.e.,
maxl,ζk wζk(l) = o(Ncal), Ncal → ∞. In situation 2,
when finding a variable for a splitpoint, the probability
that variable m = 1, ..., Nτ is chosen for the splitpoint is
bounded from below for every node by a positive constant.
In situation 3, if a node is split, the split is chosen so that
each of the resulting sub-nodes contains at least a propor-
tion γ of the observations in the original node, for some
0 < γ ≤ 0.5.

Discussion of Examples 1 and 2 can be found in Appendix
C. Based on Assumptions 1 - 4, we prove that for any x ∈ B,
the conditional CDF F̂ (s|x) of CPCL converges in proba-
bility to the true conditional CDF F (s|x) as Ncal → ∞.

Theorem 1. Under Assumptions 1, 2, 3 and 4, for any
s ∈ (0, 1) and x ∈ B, the conditional CDF F̂ (s|x) of CPCL
(Eq.(9)) converges in probability to the true conditional
CDF F (s|x) as Ncal → ∞, i.e.

|F̂ (s|x)− F (s|x)| →p 0 Ncal → ∞ (24)

holds pointwise for any s ∈ (0, 1) and x ∈ B.

The proof of Theorem 1 can be found in Appendix D.

Remark 1. Theorem 1 represents a crucial step toward
establishing the asymptotic coverage guarantee of the pre-
diction interval of CPCL. This theorem demonstrates the

consistency of CPCL, showing that the error between the
approximation of conditional distribution by CPCL and the
true conditional distribution converges uniformly in proba-
bility to zero as Ncal → ∞. Consequently, CPCL serves as
a consistent method for estimating conditional distributions.

Based on Theorem 1, we prove that for any α ∈ [0, 1], the
estimated conditional quantile of CPCL converges to the
true conditional quantile. Theorem 2 shows this theoretical
result. We rewrite QNτ (α) as QNτ (x;α) for convenience.
Theorem 2. Under the same conditions as Theorem 1, for
any α ∈ [0, 1] and x ∈ B, the estimated conditional quan-
tile Q̂Nτ (x;α) of CPCL converges to the true conditional
quantile QNτ (x;α) as Ncal → ∞, i.e.

Q̂Nτ (x;α) → QNτ (x;α) Ncal → ∞ (25)

holds for any α ∈ [0, 1] and x ∈ B.

The proof of Theorem 2 can be found in Appendix E.

Remark 2. Theorem 2 is sufficient to establish the asymp-
totic coverage guarantee of the prediction interval of
CPCL. Specifically, Y Nτ

ut ∈ Ĉα
ut|X

Nτ
ut ,ZNτ

1 is equivalent
to SNτ

ut ∈ [Q̂Nτ (X
′
;β), Q̂Nτ (X

′
;β+1−α)]|SNτ

1 where
X

′
= XNτ

ut . According to Theorem 2, we know that
P(SNτ

ut ∈ [Q̂Nτ (X
′
;β), Q̂Nτ (X

′
;β+1−α)]|SNτ

1 ) con-
verges to P(SNτ

ut ∈ [QNτ (X
′
;β),QNτ (X

′
;β+1−α)]|SNτ

1 )
as Ncal → ∞. Based on Eq.(17), we then conclude that
P(Y Nτ

ut ∈ Ĉα
ut|X

Nτ
ut ,ZNτ

1 ) → 1 − α as Ncal → ∞.
This establishes the asymptotic coverage guarantee of the
prediction interval for CPCL

6. Experiments
In this section, we use simulated and real-world data to
verify the validity of the prediction interval of CPCL. We
consider typical continual learning methods, including SI
(Zenke et al., 2017), EWC (Kirkpatrick et al., 2017), MAS
(Aljundi et al., 2018), DGR (Shin et al., 2017)) and Fine-
tuning on real-world data to explore the effect of continual
learning methods. More details of these continual learning
methods are in Appendix A.

6.1. Simulation

We follow the work of Zou & Liu (2024) to generate simu-
lated data. In our setup, we consider two regression tasks
within the continual learning process, setting X = Rd,
Y = R. Define the oracle linear predictor G : X → Y as
G(x) = ⟨w⋆, x⟩ + b⋆, where w⋆ ∈ Rd and b⋆ ∈ R. We
define the marginal distribution of X for tasks τ1 and τ2 as

F1X = N (u1, σ
2
xId), F2X = N (u2, σ

2
xId), (26)

respectively, where u1, u2 ∈ Rd are the mean vectors,
σ2
x > 0 is a scalar and Id ∈ Rd×d is the identity matrix
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Figure 2. The violin plots illustrate the coverage for 100 experimental runs on the simulated data. The red lines indicate the marginal
coverage guarantees we aim to achieve. In each violin, the white median line represents the median, while the endpoints of the thick line
denote the 0.25 quantile and the 0.75 quantile. We present results for α = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.

of dimension d × d. We define the conditional distribu-
tion Y given X as FY = N (G(x), σ2

y) for both tasks τ1
and τ2. We draw 5000 samples from the above distribu-
tion to construct the train dataset for each task. We define
the trained model as a linear predictor Ĝ(x) = ⟨ŵ, x⟩+ b̂,
where ŵ ∈ Rd and b̂ ∈ R. We draw 1000 samples from the
distribution of task τ1 and another 1000 samples from the
distribution of task τ2 to construct the test dataset. We set
Ncal = 1000 which is the number of samples for each task
to construct the calibration set. After sequentially learning
tasks τ1 and τ2, we quantify the uncertainty of the trained
model Ĝ(x) using CPCL. The evaluation metric is the cover-
age which is the ratio between the number of test examples
such that yi ∈ Ĉα

ut(xi) (Eq.(12)) and the size of the test
dataset.

We set the significance level α to values in
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3} and conduct 100 runs
with different random seeds. Figure 2 shows the results
of experiments on simulated data using CPCL. From the
figure, we observe that the violins for CPCL with different
continual learning methods are over the desired coverage
lines. For example, the coverage results evaluated by
CPCL exceed 0.95% when we use EWC as the continual
learning method and α = 0.05. These experiment
results demonstrate the validity of our proposed CPCL on
simulated data. We further study the effect of continual
learning method with more tasks using real-world data.

6.2. Real-world Data

We conduct experiments using Tiny ImageNet, a subset of
200 classes from ImageNet (Deng et al., 2009), rescaled to
an image size of 64×64. We perform 20 runs with different
random seeds, randomly selecting 5 classes to form 5 tasks
each time. In this case, there are 5 regression tasks in con-
tinual learning process. For each task, we have 500 samples
belonging to one class, subdivided into training (80%) and
calibration sets (20%) along with 50 samples for testing.
We utilize a pretrained AlexNet (Krizhevsky et al., 2012)
(denoted as AN(·), modified by replacing final layer with a
linear layer suitable for regression) to define conditional dis-
tribution Y given X as FY = N (AN(x), σ2

y). The trained
model here is ResNet-18 (He et al., 2016) which is also
modified for regression. After sequentially learning T tasks,
we quantify the uncertainty of the trained model by CPCL.
We evaluate the results by calculating the coverage, utilizing
testing samples from all T previous tasks, as described in
Section 6.1. While calculating the coverage, we also col-
lect the length of each prediction interval and calculate the
average prediction interval length over all seen test samples.

We set the significance level α to values in {0.1, 0.2, 0.3}.
Figure 3 shows the results of experiments on real-world
data using CPCL. From Figures 3(a), 3(b) and 3(c), we
observe that the most swarms with different continual learn-
ing methods are over the desired coverage lines. These
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Figure 3. The swarm and box plots illustrate the coverage and average interval length from the 20 experimental runs on real-world data. In
Figures 3(a), 3(b) and 3(c), the red lines indicate the marginal coverage guarantees we aim to achieve. In Figures 3(d), 3(e) and 3(f), the
median line represents the median, while the two edges of the box correspond to the 0.25 quantile and the 0.75 quantile. Different colors
represent different continual learning methods. We present results for α = {0.1, 0.2, 0.3}.

demonstrate the validity of our proposed CPCL on real-
world data. Figures 3(d), 3(e) and 3(f) show the average
interval length. As the number of learning tasks increases,
we find that the average interval length based on any con-
tinual learning method tends to increase. For example, the
average length of the prediction interval can reach 9 after
learning task 5, while it remains below 8 after learning task
2, when we us EWC as the continual learning method and
α = 0.1. This phenomenon results from catastrophic for-
getting. Although continual learning methods are effective
in mitigating catastrophic forgetting, some forgetting still
occurs as the number of learning tasks increases. Eq.(12)
shows that the prediction interval is based on the resulted
model f̂T . Consequently, an increasing prediction interval
length indicates model forgetting. Therefore, our proposed
CPCL effectively reflects the phenomenon of forgetting and
measures the performance of continual learning methods.

7. Conclusion
In this paper, we propose a CP-based method for model un-
certainty quantification in continual learning, termed CPCL.
CPCL collects the calibration set through replay and de-
signs a nonconformity score function to construct a score

set, where scores are sequentially dependent. It accounts for
these dependencies by reconstructing a new dataset based on
score set. CPCL trains QRF using reconstructed dataset and
defines the prediction interval by the conditional quantile es-
timator derived from the trained QRF. Then we analyze the
oracle prediction interval in continual learning and provide
the asymptotic coverage guarantee for the prediction inter-
val of CPCL. Finally, extensive experiments on simulated
and real data empirically verify the validity of CPCL.
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A. Additional Experimental Setting
Here, we provide more information about continual learning methods. There are five methods in our paper. We give some
descriptions of these baselines.

SI: The synaptic state tracks the past and current parameter value, and maintains an online estimate of the synapse’s
importance toward solving problems encountered in the past.

MAS: Redefines the parameter importance measure to an unsupervised setting and obtains gradients of the squared L2-norm
of the learned network output function.

EWC: EWC introduces network parameter uncertainty in the Bayesian framework; the true posterior is estimated using a
Laplace approximation with precision, determined by the Fisher Information Matrix (FIM), which shows equivalence to the
positive semi-definite second order derivative of the loss near a minimum.

DGR: DGR consists of a deep generative model (“generator”) and a task solving model (“solver”). DGR trains a deep
generative model in the generative adversarial networks (GANs) framework to mimic previous data. Generated data are
then paired with corresponding response from the previous task solver to represent old tasks. Called the scholar model, the
generator-solver pair can produce fake data and desired target pairs as much as needed, and when presented with a new task,
these produced pairs are interleaved with new data to update the generator and solver networks.

Finetuning: Finetuning greedily trains each task without considering previous task performance—hence introducing
catastrophic forgetting—and represents the minimum desired performance.

B. Discussion of Nonconformity Score Function
We introduce the sigmoid-based nonconformity score function for two reasons. (1) The range of sigmoid-based noncon-
formity score function is (0, 1). We train QRF on the reconstructed dataset DR

T = {(XR
i , Y R

i )}Ncal−1
i=1 , where each entry

St
i in XR

i is the calculated score. The training of QRF requires to construct trees. This process involves the intervals
I(x,m, ζk) ⊆ (0, 1). The interval I(x,m, ζk) is used to determine whether XR

i is in the node corresponding to I(x,m, ζk),
i.e., if Sm

i ∈ I(x,m, ζk), then XR
i is in the corresponding node. Since I(x,m, ζk) ⊆ (0, 1), we need to define that the

score function ranges in (0, 1) for rigorous proof. (2) Sigmoid-based nonconformity score function is invertible. In Eq.(11)
we present the prediction interval in terms of scores. The invertible function helps us to rewrite the prediction interval which
is shown in Eq.(12). A typical score function in CP is s(Xt

i , Y
t
i ) = |µ̂t

i| where µ̂t
i = Y t

i − f̂T (X
t
i ). It is not invertible and

the corresponding range is not (0, 1). Therefore, it is not suitable in this paper.

C. Examples
We refer to Meinshausen (2006) and provide two examples. Assumption 3 represents the case of Example 1. Assumption 4
indicates that the size of each interval is vanishing for large Ncal and represents the case of Example 2.

For each tree with separate parameter ζk, there are L leaves, where every leaf l is associated with a rectangular subspace
Rl ⊂ B. These subspaces are disjoint and cover the entire space B, i,.e. for any x ∈ B, there is one and only one leaf which
corresponds to Rl(x,ζk). Denote the node-sizes of the leaves l of a tree by wζk(l) = ∥
i ∈ {1, . . . , Ncal − 1} : Xi ∈ Rl(x,ζk)∥. Xi ∈ (0, 1)Nτ is the observation to train QRF.

We discuss Assumption 3 by Example 1: The minimal number of observations in a node is growing for large Ncal, i.e.,
1/minl,ζk wζk(l) = o(1), Ncal → ∞.. Recalling pi(x) =

∑K
k=1 pi(x, ζk)/K, we have 0 ≤ pi(x) ≤ 1/minl,ζk wζk(l) =

o(1), which means that pi(x) = o(1) for any x ∈ B. Therefore, Assumption 3 represents the case of Example 1.

We discuss Assumption 4 by Example 2 which consists of three situations. In situation 1, the proportion of observations in
a node, relative to all observations, is vanishing for large Ncal i.e., maxl,ζk wζk(l) = o(Ncal), Ncal → ∞. In situation 2,
when finding a variable for a splitpoint, the probability that variable m = 1, ..., Nτ is chosen for the splitpoint is bounded
from below for every node by a positive constant. In situation 3, if a node is split, the split is chosen so that each of the
resulting sub-nodes contains at least a proportion γ of the observations in the original node, for some 0 < γ ≤ 0.5.

As any x ∈ B is dropped down a tree, several nodes are passed. Denote by S(x,m, ζk) the number of times that these
nodes contain a splitpoint on variable m. The total number of nodes that x passes through is denoted by S(x, ζk) =
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m=1 S(x,m, ζk). Using situation 3, the maximal number of observations in any leaf, maxl wζk(l) is bounded (for every
tree) from below by Ncalγ

Smin(ζk) where Smin(ζk) = minx∈B S(x, ζk). Using situation 1, maxl wζk(l) is on the other
hand bounded from above by an o(Ncal)-term. Putting together, we conclude that γSmin(ζk) = o(1) for Ncal → ∞. Hence
there exists a sequence sNcal

with sNcal
→ ∞ for Ncal → ∞ such that Smin(ζk) ≥ sNcal

. As the probability of splitting
on variable m = 1, ..., Nτ is bounded from below by a positive constant, by situation 2, there exists a sequence gNcal

with
gNcal

→ ∞ for Ncal → ∞ such that P{minm S(x,m, ζk) > gNcal
} → 1 Ncal → ∞. Using situation 3, we obtain

that |{i ∈ {1, . . . , Ncal − 1} : Xi,m ∈ I(x,m, ζk)}|/(Ncal − 1) ≤ (1− γ)S(x,m,ζk). Putting together, we conclude that
maxm |{i ∈ {1, ..., Ncal − 1} : Xi,m ∈ I(x,m, ζk)}|/(Ncal − 1) = op(1) which indicates maxm |I(x,m, ζk)| = op(1)
for Ncal → ∞. Therefore, Assumption 4 represents the case of Example 2.

D. Proof of Theorem 1
Theorem 1 shows that the conditional CDF F̂ (s|x) of CPCL converges in probability to the true conditional CDF F (s|x) as
Ncal → ∞. We recall Theorem 1 and prove it.
Theorem 1. Under Assumptions 1, 2, 3 and 4, for any s ∈ (0, 1) and x ∈ B, the conditional CDF F̂ (s|x) of CPCL
converges in probability to the true conditional CDF F (s|x) as Ncal → ∞, i.e.

|F̂ (s|x)− F (s|x)| →p 0 Ncal → ∞ (D.1)

holds pointwise for any s ∈ (0, 1) and x ∈ B.

Proof. For each observation in {(XR
i , Y R

i )}Ncal−1
i=1 , we define

Ui = F (Y R
i |XR

i ) (D.2)

as the quantile of the i-th empirical score Y R
i (corresponding to s in CDF). We replace Y R

i with SR
i for convenience in this

proof. It is noteworthy that Ui ∼ Unif[0, 1] due to the assumption of continuous distribution function in Assumption 2. We
then derive the point-wise difference between the conditional CDF F̂ (s|x) of CPCL and the true conditional CDF F (s|x).

F̂ (s|x)− F (s|x) =
Ncal−1∑
i=1

pi(x)I(SR
i ≤ s)− F (s|x) (D.3)

Under Assumption 2, we know that {SR
i ≤ s} is identical to {Ui ≤ F (s|XR

i )}. Therefore, we derive that

F̂ (s|x)− F (s|x) =
Ncal−1∑
i=1

pi(x)I(Ui ≤ F (s|XR
i ))− F (s|x)

=

Ncal−1∑
i=1

pi(x)I(Ui ≤ F (s|x))− F (s|x) +
Ncal−1∑
i=1

pi(x)(I(Ui ≤ F (s|XR
i ))− I(Ui ≤ F (s|x)))

(D.4)
Taking the absolute value of both sides of Eq.(D.4), we derive that

|F̂ (s|x)− F (s|x)| ≤ |
Ncal−1∑
i=1

pi(x)I(Ui ≤ F (s|x))− F (s|x)|+ |
Ncal−1∑
i=1

pi(x)(I(Ui ≤ F (s|XR
i ))− I(Ui ≤ F (s|x)))|

(D.5)
The first term of right side of Eq.(D.5) is a variance-type part, while the second term of that reflects the change in the
underlying distribution. For the first term, we derive the expectation:

E[
Ncal−1∑
i=1

pi(x)I(Ui ≤ F (s|x))] =
Ncal−1∑
i=1

pi(x)E[I(Ui ≤ F (s|x))] (D.6)

Due to Ui ∼ Unif[0, 1], we conclude that E[I(Ui ≤ F (s|x))] = F (s|x)). According to Eq.(8) of Section 4, we know that∑Ncal−1
i=1 pi(x) = 1. Therefore, we derive that

E[
Ncal−1∑
i=1

pi(x)I(Ui ≤ F (s|x))] =
Ncal−1∑
i=1

pi(x)F (s|x) = F (s|x) (D.7)
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Based on Eq.(D.7), we rewrite the first term of right side of Eq.(D.5) as

|
Ncal−1∑
i=1

pi(x)I(Ui ≤ F (s|x))− F (s|x)| = |
Ncal−1∑
i=1

pi(x)I(Ui ≤ F (s|x))− E[
Ncal−1∑
i=1

pi(x)I(Ui ≤ F (s|x))]| (D.8)

By Chebyshev inequality, for any ϵ > 0, we have

P(|
Ncal−1∑
i=1

pi(x)I(Ui ≤ F (s|x))− F (s|x)| ≥ ϵ)

= P(|
Ncal−1∑
i=1

pi(x)I(Ui ≤ F (s|x))− E[
Ncal−1∑
i=1

pi(x)I(Ui ≤ F (s|x))]| ≥ ϵ)

≤ V ar(

Ncal−1∑
i=1

pi(x)I(Ui ≤ F (s|x)))/ϵ2

(D.9)

Due to the way of constructing {(XR
i , Y R

i )}Ncal−1
i=1 , we let Ui for i = 1, . . . , Ncal − 1 independent. Therefore, we have

V ar(

Ncal−1∑
i=1

pi(x)I(Ui ≤ F (s|x)))

=

Ncal−1∑
i=1

pi(x)
2V ar(I(Ui ≤ F (s|x)))

=

Ncal−1∑
i=1

pi(x)
2(E[I(Ui ≤ F (s|x))]− E[I(Ui ≤ F (s|x))]2)

=

Ncal−1∑
i=1

pi(x)
2(F (s|x)− F 2(s|x))

<

Ncal−1∑
i=1

pi(x)
2.

(D.10)

By Assumption 3 and Eq.(8), we have 0 < pi(x) = o(1) and
∑Ncal−1

i=1 pi(x) = 1. Therefore, for any x ∈ B, we derive that

Ncal−1∑
i=1

pi(x)
2 → 0 Ncal → ∞. (D.11)

Combining Eqs.(D.9), (D.10) and (D.11), we derive that the first term of right side of Eq.(D.5) converges to 0 as Ncal → ∞,
i.e.

|
Ncal−1∑
i=1

pi(x)I(Ui ≤ F (s|x))− F (s|x)| →p 0 Ncal → ∞. (D.12)

holds for any s ∈ (0, 1) and x ∈ B. Then we turns attention to the second term of right side of Eq.(D.5). We define H(Ui)
as

H(Ui) =

Ncal−1∑
i=1

pi(x)(I(Ui ≤ F (s|XR
i ))− I(Ui ≤ F (s|x))). (D.13)
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Due to all Ui are uniform over [0,1], it holds that

E[H(Ui)] = E[
Ncal−1∑
i=1

pi(x)(I(Ui ≤ F (s|XR
i ))− I(Ui ≤ F (s|x)))]

=

Ncal−1∑
i=1

pi(x)E[I(Ui ≤ F (s|XR
i ))− I(Ui ≤ F (s|x))]

=

Ncal−1∑
i=1

pi(x)[F (s|XR
i )− F (s|x)]

(D.14)

By Chebyshev inequality, for any ϵ > 0, we have

P(|H(Ui)− E[H(Ui)]| ≥ ϵ) ≤ V ar(H(Ui))/ϵ
2. (D.15)

Similar to the proof process of Eq.(D.10), we derive that

V ar(H(Ui)) = V ar(

Ncal−1∑
i=1

pi(x)(I(Ui ≤ F (s|XR
i ))− I(Ui ≤ F (s|x))))

=

Ncal−1∑
i=1

pi(x)
2V ar(I(Ui ≤ F (s|XR

i ))− I(Ui ≤ F (s|x)))

=

Ncal−1∑
i=1

pi(x)
2(E[I(Ui ≤ F (s|XR

i ))− I(Ui ≤ F (s|x))]− E[I(Ui ≤ F (s|XR
i ))− I(Ui ≤ F (s|x))]2)

=

Ncal−1∑
i=1

pi(x)
2(F (s|XR

i )− F (s|x)− (F (s|XR
i )− F (s|x))2)

≤
Ncal−1∑
i=1

pi(x)
2

(D.16)
Combining Eqs.(D.11) and (D.16), we derive that H(Ui) →p E[H(Ui)] as Ncal → ∞. Therefore, we have

|
Ncal−1∑
i=1

pi(x)(I(Ui ≤ F (s|XR
i ))− I(Ui ≤ F (s|x)))| →p |

Ncal−1∑
i=1

pi(x)(F (s|XR
i )− F (s|x))| as Ncal → ∞.

(D.17)
According to Assumption 1, we derive that

|
Ncal−1∑
i=1

pi(x)(F (s|XR
i )− F (s|x))| ≤

Ncal−1∑
i=1

pi(x)|F (s|XR
i )− F (s|x)|

≤
Ncal−1∑
i=1

pi(x) sup
s

|(F (s|XR
i )− F (s|x))|

≤
Ncal−1∑
i=1

pi(x)L∥XR
i − x∥1

(D.18)

By Assumption 4, we have maxm |I(x,m, ζk)| = op(1) for Ncal → ∞ and any x ∈ B, which suffices to show that

Ncal−1∑
i=1

pi(x)L∥XR
i − x∥1 = op(1). (D.19)

We therefore conclude that the second term of right side of Eq.(D.5) converges to 0 as Ncal → ∞. Overall, we prove
that under Assumptions 1, 2, 3 and 4, for any s ∈ (0, 1) and x ∈ B, the conditional CDF F̂ (s|x) of CPCL converges in

16



Model Uncertainty Quantification by Conformal Prediction in Continual Learning

probability to the true conditional CDF F (s|x) as Ncal → ∞, i.e.

|F̂ (s|x)− F (s|x)| →p 0 Ncal → ∞ (D.20)

holds pointwise for any s ∈ (0, 1) and x ∈ B. Xu & Xie (2023a) provide a similar proof which can also be referred to.

E. Proof of Theorem 2
Theorem 2 shows that the estimated conditional quantile Q̂Nτ (x;α) of CPCL converges to the true conditional quantile
QNτ (x;α) as Ncal → ∞. We recall Theorem 2 and prove it.

Theorem 2. Under the same conditions as Theorem 1, for any α ∈ [0, 1] and x ∈ B, the estimated conditional quantile
Q̂Nτ (x;α) of CPCL converges to the true conditional quantile QNτ (x;α) as Ncal → ∞, i.e.

Q̂Nτ (x;α) → QNτ (x;α) Ncal → ∞ (E.21)

holds for any α ∈ [0, 1] and x ∈ B.

Proof. Proving Eq.(E.21) is identical to prove that

|Q̂Nτ (x;α)−QNτ (x;α)| → 0 Ncal → ∞ (E.22)

holds for any x ∈ B and α ∈ [0, 1]. Recall that

QNτ (x;α) = inf{s : F (s|x)≥α}. (E.23)

By Assumption 2, we know that F (s|x) is continuous and strictly monotonously increasing in s. We consider a small
perturbation of QNτ (x;α), which results in the changes of the conditional distribution function, i.e. |F (QNτ (x;α)−ϵ|x)−α|
and |F (QNτ (x;α)+ ϵ|x)−α|. We define this changes as δ = min(|F (QNτ (x;α)− ϵ|x)−α|, |F (QNτ (x;α)+ ϵ|x)−α|).
Therefore, we consider the estimated quantile Q̂Nτ (x;α) as the perturbation of QNτ (x;α). When the |Q̂Nτ (x;α) −
QNτ (x;α)| > ϵ, the change of F (s|x) is more than δ, i.e. |F (Q̂Nτ (x;α)− α| > δ. Then we derive that

P(|Q̂Nτ (x;α)−QNτ (x;α)| > ϵ) = P(|F (Q̂Nτ (x;α)− α| > δ)

= P(|F (Q̂Nτ (x;α)− F̂ (Q̂Nτ (x;α)| > δ)
(E.24)

According to the consistency in Theorem 1, we have

P(|F (Q̂Nτ (x;α)− F̂ (Q̂Nτ (x;α)| > δ) → 0 as Ncal → ∞. (E.25)

Combining Eqs.(E.24) and (E.25), we derive that

P(|Q̂Nτ (x;α)−QNτ (x;α)| > ϵ) → 0 as Ncal → ∞. (E.26)

This means that
|Q̂Nτ (x;α)−QNτ (x;α)| → 0 as Ncal → ∞. (E.27)

Overall, we prove that the estimated conditional quantile Q̂Nτ (x;α) of CPCL converges to the true conditional quantile
QNτ (x;α) as Ncal → ∞.
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