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ABSTRACT

The reliance on implicit point matching via attention has become a core bottleneck
in drag-based editing, resulting in a fundamental compromise on weakened inver-
sion strength and costly test-time optimization (TTO). This compromise severely
limits the generative capabilities, suppressing high-fidelity inpainting and text-
guided creation. In this paper, we introduce LazyDrag, the first drag-based image
editing method for Multi-Modal Diffusion Transformers, which directly elimi-
nates the reliance on implicit point matching. In concrete terms, our method gen-
erates an explicit correspondence map from user drag inputs as a reliable reference
to boost the attention control. This reliable reference opens the potential for a sta-
ble full-strength inversion process, which is the first in the drag-based editing task.
It obviates the necessity for TTO and unlocks the generative capability of models.
Therefore, LazyDrag naturally unifies precise geometric control with text guid-
ance, enabling complex edits that were previously out of reach: opening the mouth
of a dog and inpainting its interior, generating new objects like a “tennis ball”, or
for ambiguous drags, making context-aware changes like moving hands into pock-
ets. Moreover, LazyDrag supports multi-round edits with simultaneous move and
scale operations. Evaluated on DragBench, our method outperforms baselines in
drag accuracy and perceptual quality, as validated by mean distances, VIEScore
and user studies. LazyDrag not only sets new state-of-the-art performance, but
also paves a new way to editing paradigms. Here is the project website.

1 INTRODUCTION

Drag-based editing in diffusion models remains fundamentally challenging. To preserve object iden-
tity during editing, prior methods often perform implicit point matching via attention. A common
strategy, introduced by MasaCtrl (Cao et al., 2023)), shares key and value tokens during attention.
However, this strategy allocates more attention weights to spatially nearby regions instead of seman-
tically related ones (Wang et al., 2025b; [Feng et al.l [2025]), which leads to unstable and degrading
edits. Rather than tackling this fundamental cause, as a compromise, many methods rely on test-
time optimization (TTO) or weakened inversion strength. These compromises mask the mismatch
and incur costs, including unreliable inpainting, suppressed text guidance, and distorted edits.

Instead of the compromise, we take a principled alternative: replace implicit attention-based match-
ing with an explicit correspondence map and inject it directly into the generation process. With this
reliable map, editing under full-strength inversion becomes stable without TTO, enabling faithful
inpainting and text-guided generation. Beyond addressing the fundamental issue, the choice of net-
work architecture remains crucial for editing. The recent transition from U-Nets (Rombach et al.,
2022)) to Multi-Modal Diffusion Transformers (MM-DiT) (Esser et al.,[2024) provides an ideal foun-
dation for this shift, because MM-DiTs offer tighter vision—text fusion, which improves inversion
robustness and raises the ceiling for attention control. As shown by ColorCtrl (Yin et al.,[2025b), this
architecture supports stronger semantic consistency and controllability, allowing attention control to
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“sand castle on the left” N/A N/A

Figure 1: (a) Top: Comparison between our method and two baselines. The leftmost image
shows the input image with multiple drag instructions, each indicated by a different color. The text
below each result indicates the additional prompt used for generation. “N/A” means no additional
prompt. TTO denotes test-time optimization, where the method requires fine-tuning per image and
multi-step latent optimization per drag instruction. Notably, our method successfully opens the
mouth of the dog and inpaints its interior. Furthermore, with prompt guidance, we can generate
diverse results even under ambiguous drag inputs without fine-tuning. (b) Bottom: Multi-round
editing results using our approach. Our method supports not only sequential drag operations but
also simultaneous actions like movement and scaling, maintaining visual coherence throughout.

be applied across all single-stream attention (SS-Attn) layers without manual selection of specific
layer indexes like that in U-Nets. We exploit these advantages by building our method on MM-DiTs.

Unlike in U-Nets, identity preservation in MM-DiTs is non-trivial. Simply sharing key and value
tokens, as in DiTCtrl (Cai et al.}[2025)), does not reproduce the identity-preserving behavior achieved
by MasaCtrl with U-Nets (Cao et al., |2023). Recently, CharaConsist (Wang et al., 2025b) showed
that re-encoding and injecting semantically aligned tokens can preserve identity in MM-DiTs. How-
ever, its point matching relies on the average of attention similarity, which is fragile under full-
strength inversion and often yields unsuitable edits. In contrast, drag instructions naturally define a
field that maps handle points to target points, forming a deterministic correspondence map. We turn
this explicit map into attention controls. This explicit correspondence—driven preservation resolves
the root issue, stabilizes edits under full-strength inversion without TTO. As a result, it enhances in-
painting and text guidance ability, delivering higher fidelity and controllability than prior methods.

In this work, we present LazyDrag, a training-free method that uses an explicit correspondence
map to drive attention controls in MM-DiTs. By resolving the core instability of implicit attention
mappings, LazyDrag stabilizes edits under full-strength inversion without TTO, unlocking the full
generation ability. Concretely, (i) the drag instructions are converted into an explicit correspondence
map, and (ii) identity and background are preserved using attention controls with the map. Together,
these components deliver edits under full-strength inversion without TTO, retaining inpainting capa-
bility and enabling text-guided edits under ambiguous instructions. As shown in Fig.[I] this allows
our method to execute complex edits where prior works fail: it can open the mouth of the dog and
inpaint its interior, or even generate a “tennis ball” via text guidance, which is impossible for meth-
ods constrained by low inversion strength (see Fig.[2). Furthermore, it exhibits a deep understanding
of scene context. For example, when dragging a hand using drag instructions alone, the ambiguity
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Figure 2: Effect of inversion strength. Examples of LazyDrag under different inversion strengths.
The additional prompt is “a red apple in the mouth”.

of the task, whether the hand should be placed behind a back or into a pocket, can be resolved
through text guidance, allowing users to make precise and meaningful edits. Extensive experiments
demonstrate that LazyDrag achieves state-of-the-art (SOTA) performance while requiring no test-
time optimization. To the best of our knowledge, LazyDrag is the first drag-based editing method
built with MM-DiTs and the first to adopt full-strength inversion across all sampling steps, which
enables natural inpainting and precise text-guided control. Our contributions are threefold:

* We propose LazyDrag, the first to achieve full-strength inversion in drag-based editing with
MM-DiTs. It is accomplished by an explicit correspondence-driven attention controls that
eliminates the need for TTO and resolves the core instability of previous works.

* We resolve the ambiguity of drag instructions by coupling the explicit correspondence map
with text guidance, enabling natural inpainting and semantically consistent edits.

* We resolve the ambiguity of drag instructions by coupling the explicit correspondence map
with text guidance. This correspondence-driven method preserves identity and background,
while enabling natural inpainting and semantically consistent modifications.

* Extensive experiments demonstrate that LazyDrag significantly outperforms all existing
methods on Drag-Bench in both quantitative metrics and human preference.

2 RELATED WORK

Text-to-image and video generation. GAN-based models (Reed et al.l 2016} |Yu et al., 2023;
Wang et al., 2023) have been largely replaced by diffusion models with U-Net backbones (Ho et al.,
2020; Rombach et al. 2022)) due to better fidelity and stability. However, U-Nets scale poorly,
prompting a shift toward Diffusion Transformers (DiT) (Peebles & Xie, |2023)). Among them, MM-
DiT (Esser et al.,2024) has become the backbone of choice in recent state-of-the-art systems (Esser;
et al.| [2024; ALl 2024} Labs, [2024; [Yang et al., 2024} [Kong et al., 2024} Liu et al.,[2025a)), including
FLUX (Labs, |2025). We are the first to introduce a drag-based editing method within MM-DiTs.

Text-based editing. Training-free text-guided editing methods use pre-trained diffusion models
without fine-tuning, offering strong flexibility. Prompt-to-Prompt (Hertz et al.l 2023)) edits attention
maps for localized control, with extensions to images and videos (Wang et al., 2025a; [Liu et al.,
2024b; |Cao et al., 2023; Rout et al., 2025; Xu et al., 20255 [Ju et al., 2024; Yin et al., 2025a). Recent
work explores attention control in MM-DiTs: DiTCtrl (Cai et al., 2025)) for long video generation,
ColorCtrl (Yin et al., [2025b) for light-consistent color edits, and CharaConsist (Wang et al., 2025b))
for preserving character identity. Modern approaches such as Stepl1X-Edit (Liu et al., 2025b) and
GPT-40 (OpenAl 2025) have gained popularity due to their efficiency. However, all rely solely on
text, which limits spatial precision. We instead introduce a more intuitive and controllable drag-
based method.

Drag-based editing. Drag-based editing enables users to specify explicit spatial transformations
by defining source and target points. Existing methods can be divided into two categories: those
requiring test-time optimization (TTO), and those that do not. Most prior works fall into the for-
mer, beginning with DragGAN (Pan et al.,[2023)), and expanding to diffusion-based approaches (Shi
et al., [2024b; Mou et al., [2024atb; [Liu et al.| [2024a; Hou et al., 2024} |Shin et al.| [2024; [Zhou et al.,
2025; ILing et al.,2024; Zhang et al., [2025; [Shi et al., 2024a). RegionDrag (Lu et al.l 2024) extends
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Figure 3: Pipeline of LazyDrag. (a) An input image is inverted to a latent code z7. Our corre-
spondence map generation then yields an updated latent2p, point matching map, and weights a.
Tokens cached during inversion are used to guide the sampling process for identity and background
preservation. (b) In attention input control, a dual strategy is employed. For background regions
(gray color), Q, K, and V tokens are replaced with their cached originals. For destination (red
and blue colors) and transition regions ( color), the K and V tokens are concatenated with
re-encoded (K only) source tokens retrieved via the map (c) Attention output refinement performs
value blending of attention output. ® and & denotes element-wise product and addition.

the interface to support region-level editing. Some methods (Jiang et al.,[2025};[Choi et al.},[2025)) in-
corporate textual prompts to improve semantic understanding, but still suffers from complex instruc-
tions. FastDrag is one of only two notable TTO-free methods, achieving faster
inference but still falling short of the quality delivered by TTO-based methods. Inpaint4Drag
is the other TTO-free method that build on an inpainting model rather than generative
model with inversion. However, directly pasting a warped image to fill the edited region introduces
strong unnatural warping artifacts. Also, its strong sensitivity to the input mask leads to frequent
boundary artifacts and blurring, even with assistance from modern mask generators (e.g., SAM
2023)). Therefore, we adopt a widely used generative model approach with inversion,
rather than an inpainting formulation. Additionally, all prior approaches with inversion rely on low
inversion strength, which degrades inpainting quality and limits semantic generation. In contrast,
we introduce the first drag-based method for MM-DiTs that leverages full-strength inversion and
text-guided attention mechanisms, achieving SOTA performance without any per-image tuning.

3 METHOD

Our goal is to achieve identity-preserving edits with precise drag control, text guidance, and natural
inpainting. To this end, we introduce LazyDrag, a training-free method built with MM-DiTs un-
der full-strength inversion property. Our approach replaces the fragile, implicit point matching of
prior work with a robust, explicit correspondence map derived from user input during attention con-
trol, stabilizing the inversion process without test-time optimization. We first review foundational
concepts in Sec.[3.1} Then detail our two-stage approach: first, how to generate the explicit corre-
spondence map from drag instructions (Sec.[3.2), and second, how this map drives a novel two-part
attention control for identity and background preservation (Sec. [3.3). Fig. [3]shows the pipeline.

3.1 PRELIMINARIES

LazyDrag builds upon insights from training-free drag-based editing methods in U-Nets (Sec. [3.1.1)
and identity preservation in MM-DiTs (Sec. [3.1.2)), addressing core limitations of both (Sec. [3.1.3).
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3.1.1 TRAINING-FREE DRAG EDITING IN U-NETS: FASTDRAG.

FastDrag (Zhao et al., 2024) is the first training-free method for drag-based editing, with U-Net
models. It has two parts: (1) it computes a displacement field from drag instructions to create an ini-
tial latent 27, filling exposed regions via interpolation, and (2) it applies a MasaCtrl-like (Cao et al.,
2023) key and value token replacement during self-attention to preserve object identity. However,
beyond the implicit locality bias of self-attention, a central trade-off arises: we want handle points
to reach their targets while surrounding regions inpaint naturally. Yet after latent initialization, the
cue specific to handles is lost, and all moved points are treated uniformly. Forcing exact positional
accuracy yields warp artifacts, whereas enforcing naturalness reduces positioning accuracy. Thus,
editing accuracy and visual fidelity are in inherent tension. Moreover, its fusion of multiple instruc-
tions is brittle: when drags are antagonistic (for example, opening a mouth by moving the upper
lip upward and the lower lip downward), averaging the displacements cancels motion near the seam
and the mouth fails to open. Moreover, the interpolation used to fill newly exposed regions further
replicates nearby textures, producing repeated artifacts in large uncovered areas, as shown in Fig.

3.1.2 IDENTITY PRESERVATION IN MM-DITs: CHARACONSIST.

In parallel, CharaConsist (Wang et al.,|2025b)) introduces identity preservation in MM-DiTs, though
it is not an editing method. To enforce identity preservation, it controls attention by concatenating
corresponding source tokens into the key (re-encoded) and value tokens and by blending attention
outputs. However, its point matching mechanism is critically flawed: it relies on attention similarity
to identify matching points between images, a process that is computationally expensive (requir-
ing additional denoising steps) and inherently unstable. Under full-strength inversion, even minor
mismatches in the correspondence map can lead to significant visual artifacts, as proved in Tab. 3]

3.1.3 LAZYDRAG: BRIDGING THE GAP.

Naively extending FastDrag from U-Nets to MM-DiTs and combining it with the attention control
methods of CharaConsist exposes and amplifies their respective weaknesses, yielding unusable re-
sults, as shown in Fig.[§|and Tab.[3] LazyDrag resolves these weaknesses with a unified solution: an
explicit correspondence map derived from drag instructions. This map provides stable, precise atten-
tion control throughout the generation process, enabling high-quality, accurate edits while avoiding
the pitfalls of attention-similarity matching and the trade-offs inherent in FastDrag.

3.2 GENERATING THE EXPLICIT CORRESPONDENCE MAP

We first compute an explicit correspondence map from the user drag instructions and the inverted
source latent noise zr. The map comprises a matching point function M and a weight function A,
which provides explicit guidance. Guided by this map, we generate the initial latent noise 2.

Displacement field calculation via winner-takes-all (WTA). Let Q) denote the latent grid, and
let P = {p; };":1 C () be the editable regions (the bright area in Fig. , sampled as feature points.

Let the drag instructions be D = {(s;, e;)}_,, where s; and e; are the handle and target points of
the ¢-th instruction. We illustrate two modes for computing the displacement field. In drag mode,
we adopt the elasticity-based per-instruction displacement v;- for each p; under the i-th instruction
as in|Zhao et al|(2024); in move mode, we use standard translation and scaling. To avoid failures
of averaging under opposing drags, we use a robust winner-takes-all (Aurenhammer, 1991) fusion:
each p; is uniquely assigned to its nearest handle, inducing a Voronoi partition (Aurenhammer,
1991). The final displacement v; and weight «; are determined solely by the winning instruction.

oi = Ipi=silla’s i # s,
7 0, otherwise, 1)

i x i
aj =aj;, where "= argmaxaj.

J
Here, ||-||2 denotes the Euclidean Lz-norm distance. Thus, V = {v;}"2; is defined as the displace-
ment field. This approach preserves the full magnitude of opposing drags, enabling complex edits
like opening a mouth, which is impossible with simple averaging. Details are in Appendix
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Initial latent construction and map formalization (Latent Init). With the displacement field
V established, we construct the initial latent 27. This process defines our explicit deterministic
correspondence map (M, .A) and partitions the latent grid into distinct regions for targeted control.
First, we define the set of discrete destination coordinates P* = {II(p; +v;) | p; € P}, where II(-)
projects to the grid. By resolving collisions where multiple source points map to a single destination
x € P* (using winner-takes-all), we get the winner index j*(x) = arg max ;. (p;+v,)—== ¢ and
formalize our correspondence map: Matching point map, M(x) = p; (). Matching weight
map, A(x) = min(1, a;.(4)). Next, we partition the latent space 2 into four disjoint sets based
on the geometry of the warp. These sets correspond directly to the colored regions in Fig. 3| (a):
Background RP® (gray) that must remain unchanged, Destinations R (red and blue, a.k.a., P* )
where moved content is rendered with identity preserved, Inpainting RI™ ( ) initialized from
noise, and Transition R*™*% (green) that blends boundaries smoothly. With these regions clearly
defined, the updated latent 2 is constructed by applying a specific replacement rule to each region:

zr(M(z)), ifxe RS,
2r(x) = | e(x), if x € RI"P, (2)
zr(x), if x € RPe U RUans,

where € ~ N(0,1I). Crucially, replacing the BNNI interpolation used in FastDrag with Gaussian
noise in R'"™P is essential. Unlike the uniform noise compared in Zhao et al. (2024)), this approach
aligns with the diffusion prior, prevents repetitive artifacts as shown in Fig. [[1] and enables the
ability of high-fidelity, text-guided inpainting discussed in the introduction.

3.3 CORRESPONDENCE-DRIVEN PRESERVATION

Having established the explicit correspondence map, we now detail a two-part mechanism operating
at the input (Sec.[3.3.1) and output (Sec.[3.3.2) of the attention calculation in single-stream attention
layers only (Yin et al.l 2025bj Deng et al., [2025). Using this map, the mechanism provides fine-
grained control that preserves identity and background, ensuring robust full-strength inversion.

3.3.1 ATTENTION INPUT CONTROL VIA TOKEN REPLACEMENT AND CONCATENATION

To preserve the background and identity, the first part modifies the attention inputs of different re-
gions. Let (Q, K, V) denote the current attention tokens at position  in a given layer and step,
and (Q,, Kz, V) the tokens cached without positional encoding during the previous inversion
process. Let RoPE,(+) re-encode tokens with the rotary embedding at position & (Su et al., 2024).

Background preservation via replacement (BG Pres.). For the background region R, the pur-
pose of absolute untouched is achieved by hard-replacing the attention tokens with their cached
originals at every step and every single-stream layer, similar to ColorCtrl (Yin et al., 2025b):

(Qz,Ka, Vi) < (RoPEL(Q,), RoPE,(K3), Vy), Va € R, (3)

Identity preservation via concatenation (ID Pres.). For the destination and transition regions
(R®UWRTS), where identity must be preserved while allowing for coherent adaptation, we use token

concatenation. Define a unified source point map, M (), which selects correspondence sources:

~ {./\/l(m), if x € RYY @

M(.’B) - x, if & € Ruans,

For any position € R U R we form an augmented key K7, and value V, by concatenating
the cached tokens from its designated source M (x):

K/, = concat (K, RoPEm(KM(m))), (5)

V., = concat (Vg, V./\;l(a:))' (6)

This provides a strong, correspondence-driven signal to the attention calculation, robustly preserving
identity while allowing for smooth blending at the boundaries.
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3.3.2 ATTENTION OUTPUT REFINEMENT VIA GATED MERGING (ATTN REFINE)

The second part refines the attention output so that it cooperates with the above token concatenation
(following|Wang et al.|(2025b))), improving visual quality and emphasizing the importance of handle
points over others. Let y, be the attention output at  and ¥, be the cached output. For = € RIt,

Yo < (1 = Yat) Yo + Vet Y M) )
where the blending factor v, ; is gated by our pre-computed matching weight from the map A:

Va,t = hy - A($)7 ®

where ¢ indexes the timestep and h; € [0, 1] is a factor that decays over time. This correspondence-
driven gated merge eliminating the extra denoising steps required by CharaConsist, and addressing
the instability of attention-similarity matching and scaling under full-strength inversion. By making
the weight strongest at the handle points (where A(x) is maximal), it ensures precise control where
it matters most, removing the need for multi-step latent optimization in previous methods (Zhang
et al.,[2025; [Shi et al.| 2024b)), while allowing for natural relaxation in surrounding regions.

4 EXPERIMENTS

4.1 SETUP

Baselines. We compare against eight baselines: DragDiffusion (Shi et al.,2024b)), DragNoise (Liu
et al.| [20244), FreeDrag (Ling et al.,[2024), DiffEditor (Mou et al.| [2024a)), GoodDrag (Zhang et al.,
2025)), DragText (Choi et al.| 2025 FastDrag (Zhao et al., [2024)), and Inpaint4Drag (Lu & Han)
20235)). Notably, all baselines are U-Net-based, whereas ours is the first MM-DiT-based method.

Implementation details. Unless otherwise noted, all baselines are run with their official imple-
mentations and default hyperparameters. For Inpaint4Drag (Lu & Han| [2025), we adopt the refined
masks and point pairs provided by the authors at inference, and replace distilled models with original
models. Our method is built on FLUX.1 Krea-dev (Labs| [2025)), adopting the inversion method of
UniEdit-Flow (Jiao et al., [2025) while replacing the editing strategy with our approach. Following
CharaConsist (Wang et al.l [2025b), we activate ID Pres. and Attn Refine (Sec. @ for the first 40
denoising steps, referring to the last activate timestep as the activation timestep. For a fair compar-
ison, the number of denoising steps is fixed to 50 for all methods. More details are in Appendix [A.T]

Benchmark and evaluation protocol. We evaluate on DragBench (Shi et al.,2024b)), which con-
tains 205 images with 349 handle and target point pairs. Our primary accuracy metric is MD (mean
distance) (Pan et al., 2023). Although IF (image fidelity) (Kawar et al., 2023), typically computed
with LPIPS (Zhang et al., 2018), is widely used, we do not report IF. Previous work (Choi et al.,
2025} Lu et al.,|2024) shows that successful drag edits necessarily change the image, often increasing
LPIPS, whereas an unchanged image trivially attains the best score. Hence, IF can be misleading for
drag editing. To obtain a complementary, perceptually grounded view, we adopt the VIEScore (Ku
et al., |2024) metrics from GEdit-Bench (Liu et al., 2025b): SC (Semantic Consistency): whether
the intended edit has been achieved. PQ (Perceptual Quality): the naturalness of the result and ab-
sence of artifacts. O (Overall): the overall performance defined in|Liu et al.|(2025b). In our setting,
the “intended edit” is specified by the dragging instruction rather than a natural-language instruc-
tion, but the scoring criteria remain unchanged. Each score ranges from 0 to 10 (higher is better)
and is produced by the state-of-the-art MLLM evaluator, GPT-4c| (Hurst et al., 2024). To mitigate
stochasticity in evaluation, we run every evaluation metrics three times and report both the mean and
standard deviation. We additionally report a binary TTO-Req (Test-Time Optimization Required)
flag indicating whether a method requires per-edit test-time optimization (e.g., LoRA fine-tuning or
multi-step latent optimization) during inference. More evaluation details are in Appendix[A.3]

!Since DragText is a plug-and-play method, we evaluate it in conjunction with best-performing GoodDrag.
2API access as of August 2025
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Table 1: Quantitative results compared with baselines on Drag-Bench.

Method | TTO-Req | MD | | SC 1 PQ 1 o 1

DragNoise (Liu et al.|[2024a) v 37.87 £023 | 7.793 £004  8.058 £ 0.01 7.704 £ 0.01
DragDiffusion (Shi et al.[|2024b) v 34.84 £030 | 7.905 +£001  8.325+002 7.798 £0.03
FreeDrag (Ling et al.[[2024) v 34.09 £0.60 | 7.928 £0.02  8.281 £0.03 7.816 £0.02
DiffEditor (Mou et al.[[2024a) v 26.95 +£024 | 7.603 £ 0.01 8.266 +£0.01  7.715 +0.01
GoodDrag (Zhang et al.|[2025) v 22.17 £ 016 | 7.834+003 8318 £001  7.795 +0.01
DragText (Choi et al.|[2025) v 21.51 +£0.21 7.992 +0.02 8227 +£0.03  7.886 +0.01
FastDrag (Zhao et al.|[2024) X 31.84 £096 | 7.935+£009 8278 £0.01  7.904 £0.06
Inpaint4Drag (Lu & Han/|2025) X 23.68 £0.05 | 7.802 £006 7.961 £0.04 7.615 £ 0.06
Ours \ X | 21.49 £004 | 82054003 8.395+003  8.210 +0.03

User Input Ours Inpaint4Drag FastDrag DragText GoodDrag DiffEditor FreeDrag DragDiffusion DragNoise

Figure 4: Qualitative results compared with baselines on Drag-Bench. Best viewed with zoom-in.

4.2 QUANTITATIVE EVALUATION

Tab. [I] presents the benchmark results on DragBench. Despite not requiring LoRA fine-tuning or
multi-step latent optimization for each image and drag operation, our method consistently outper-
forms existing approaches in all metrics, especially in terms of drag accuracy and the perceptual
quality of the generated images. Notably, our approach achieves SOTA performance out-of-the-box,
without the need for test-time optimization, making it both efficient and effective. Specifically, In-
paint4Drag (Lu & Han, 2025) often produces boundary artifacts and color shifts between edited and
unedited regions. Consequently, the LLM evaluator assigns lower scores under its over-editing rule.
This indicates that, even with additional optimization of masks and point pairs, mask sensitivity of
inpainting models degrades results. By contrast, our full-strength inversion method with attention
controls attains strong performance while being more robust to the choice of masks and point pairs.

4.3 QUALITATIVE EVALUATION

Fig. @] qualitatively demonstrates the superiority of our method over existing baselines. In the first
example, only our method correctly lift the arm with background maintained, while others intro-
duce artifacts, such as distorted hands (e.g., DragText (Choi et al., [2025))) or unintended background
changes (e.g., DragNoise (Liu et al.}[2024a))). In the second example, most baselines fail to preserve
the front structure of the vehicle, whereas our approach maintains it faithfully while applying the
desired transformation. Specifically, Inpaint4Drag (Lu & Han, [2025) generates artifacts in the back-
ground. The third case shows that only our method successfully modifies the sofa geometry while
preserving the integrity of pillows. In the fourth example, our approach correctly interprets hand
proximity as intent to insert it into the pocket, while other baselines introducing artifacts. Finally, in
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Table 2: User study on Drag-Bench.

User Input

Method | Preference (%)
DragNoise (Liu et al.|[2024a) 6.64 £38 g
DragDiffusion (Shi et al.||2024b) 6.25 +38 E,
FreeDrag (Ling et al.|[2024) 6.64 +7 a8
DiffEditor (Mou et al.|[2024a) 234 14 £
GoodDrag (Zhang et al.||2025) 5.86 +5 B
DragText (Chot et al.|[2025) 273 +4 s
FastDrag (Zhao et al.|[2024) 234 +5 §
Inpaint4Drag (Lu & Han|[2025) 3.13 +4 2
Ours | 63.67+16 °

Figure 5: Comparison between drag and move
mode on Drag-Bench.

the fifth example, only our approach and DragText successfully rotates the head of the tiger to the
right without compromising overall image quality. These results are consistent with our quantita-
tive evaluations and highlight the robustness and generality of our method, even without per image
tuning or per instruction multi-step latent optimization. More results are shown in Appendix B}

4.4 USER STUDY

A total of 32 expert participants evaluated comparisons between methods on 32 cases randomly sam-
pled from DragBench. For each comparison, method order positions were randomized and method
identities were anonymized. Participants selected the preferred result according to predefined cri-
teria (edit success, naturalness, and background preservation). Overall, LazyDrag was preferred in
61.88% of comparisons, outperforming all baselines (Tab.[2). More details are in Appendix [A.4]

4.5 COMPARISON BETWEEN DRAG AND MOVE MODES

We evaluate LazyDrag with both drag and move modes on Drag-Bench, with qualitative results
shown in Fig. 5] The move mode tends to better preserve identity, as seen in the last two cases,
rather than performing edits involving rotation or extension, as in the second and third examples.
In contrast, the drag mode enables natural geometric transformations, including 3D rotations and
extensions, albeit with a slight degradation in detail texture preservation. Both of two modes can
generate reasonable results. These findings highlight the flexibility of our explicit correspondence
map when paired with our correspondence-driven preservation strategy. Future work may explore
more matching strategies, such as 2D rotation, to further enhance diversity and controllability.

4.6 ABLATION STUDY

Effect of each component. We conduct an ablation study in which components are progressively
removed from the full method. To keep functionality comparable when a component is absent,
we adopt controlled replacements: (i) Without WTA and Latent Init (Sec. [3.2) we revert to latent
warpage optimization of FastDrag (Zhao et al.l 2024) as the latent initialization. (ii) Without ID
Pres. and Attn Refine (Sec. [3.3) we switch to the attention-similarity matching and scaling intro-
duced in CharaConsist (Wang et al.| 2025b). Fig. [6]and Tab. 3| report benchmark results on Drag-
Bench. Removing WTA and Latent Init increases MD and slightly reduces PQ and O, indicating
that our initialization with the winner-takes-all fusion strategy and random initialization for inpaint-
ing regions suppresses repetitive artifacts and improves inpainting quality as proven in the figure.
Further disabling background preservation causes additional drops in SC and O due to color shift-
ing and artifacts in the background. Finally, replacing our correspondence-driven preservation with
attention-similarity control leads to a sharp degradation, highlighting the sensitivity of full-strength
inversion to mismatched attention alignment. The full method achieves the best performance.

Effect of activation timesteps. We conduct an ablation study on the effect of activation timesteps
by varying the activation timestep to 20, 40, and 50, as shown in Fig.[7]and Tab.[4] From the results,
we observe that increasing the number of the activation timestep leads to more accurate destination
points for dragging, though it may introduce more warping artifacts. Conversely, reducing the acti-
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Table 4: uantitative ablation of activation
Drag-Bench. Rows remove one component rela- Q

tive to the row above. When WTA and Latent Init

timesteps on Drag-Bench.

are removed we use latent init in FastDrag. When Method | MDI _scr Pt Of
. Ours (40 as activation timestep) \ 21.49 o004 8.205+003 8.395+003 8210 +003
ID Pres. and Attn Reﬁne are removed we SWltCh 3423 029 7.036 003 8.788 £oo1  7.605 +0.02

21.81 026  8.298 +0.03

+ 20 as activation timestep
8.072 £001  8.087 +0.03

+ 50 as activation timestep

to CharaConsist attention-similarity control.

vation timestep results in more natural outputs, but may cause slight variations in identity or motion.
More results are given in Appendix For benchmark evaluations, we use 40 as a balanced value.

Additional results. Appendix [B|presents additional evaluations on Drag-Bench, ablation studies
with U-Nets, effects of text guidance, runtime analysis, and limitations.

5 CONCLUSION

We presented LazyDrag, the first training-free method for drag-based editing with MM-DiTs under
full-strength inversion. We begin by identifying the fundamental cause of instability in drag-based
editing: the unreliability of implicit attention-based point matching. This diagnosis explains why
prior methods adopted compromises such as test-time optimization or weakened inversion strength,
which suppress text guidance, harm inpainting, and limit generative ability. Our approach directly
solves this core issue by replacing fragile implicit point matching with an explicit correspondence
map that drives attention controls during generation. This correspondence-driven preservation en-
ables robust edits under full-strength inversion without TTO. As a result, LazyDrag preserves iden-
tity and background, supports faithful inpainting, and leverages text guidance to resolve ambiguity
in drag instructions. Extensive experiments show that LazyDrag achieves state-of-the-art perfor-
mance, unifying precise control with text guidance to execute complex semantic edits. By revealing
that the perceived stability—quality compromise is an artifact of flawed point matching, LazyDrag
establishes a more powerful and principled foundation for future research and marks a concrete step
toward intuitive, Al-native creative workflows and more sophisticated generative control.
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ETHICS STATEMENT

The development of advanced image editing technologies inevitably raises important ethical con-
cerns. Although our method enhances editing precision through text and drag-based controls, it
also introduces potential risks, including the creation of misleading or harmful visual content. To
address this, we emphasize the importance of using such tools responsibly, with clear attention to
transparency and user consent in practical deployments. In addition, the underlying pre-trained
models may encode and reproduce societal biases, which could influence the outputs in unintended
ways. We view this as an open research challenge and encourage future work aimed at bias detection
and mitigation. All human evaluation participants were fully informed of the purpose of the study
and provided consent before participation.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of LazyDrag. Detailed descriptions of the
inference procedure and evaluation settings are provided in Sec. |3] Sec. and Appendix |Al All
source code will be released to the public upon acceptance of this paper, enabling researchers to
fully replicate and build upon our results.
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A IMPLEMENTATION DETAILS

A.1 INFERENCE SETTINGS

For all baselines, we use their official code with default hyperparameters for inference. The number
of denoising steps is set to 50, and classifier-free guidance (CFG) (Ho & Salimans, 2021) is set
to 1. All images on Drag-Bench are generated at their original resolution, while other images are
generated at 1024 x 1024. All generations are performed on a single NVIDIA H800 GPU.

EasyDrag (Hou et al., |2024) and CLIPDrag (Jiang et al., 2025) are excluded from comparison
because their released implementations either fail to execute reliably or do not reproduce the re-
sults reported in the papers. DragGAN (Pan et al) 2023)) is also excluded due to its inferior per-
formance and slower processing speed compared to diffusion-based methods, as demonstrated in
GoodDrag (Zhang et al., [2025)).

For Inpaint4Drag, we remove the LCM (Luo et al., 2023)) LoRA and fix the number of denoising
steps to 50. We also replace the distilled VAE (Kingma & Welling, 2013)) with the original VAE
to improve reconstruction and generation quality. These settings are chosen to obtain the strongest
editing performance rather than to optimize for speed.

For our inversion process, we adopt the official inversion method of UniEdit-Flow (Jiao et al.| [2025))
but replace the editing component with our proposed strategy. We apply our correspondence-driven
preservation (Sec. only to the single-stream attention layers in FLUX.1 Krea-dev (Labs|, 2025)).
Since additional manipulation in dual-stream attention layers does not lead to noticeable improve-
ments (Deng et all 2025} [Yin et al [2025b; [Wang et al., [2025a), we adopt a more efficient and
concise design by limiting modifications to single-stream layers only.

A.2 IMPLEMENTATION DETAILS OF DISPLACEMENT FIELD CALCULATION

Per-instruction displacement. Following the principles of elasticity (Naylor, [1969; |Zhao et al.,
2024), the influence of an external force decays inversely with distance from the force origin, and
the direction of the induced displacement aligns with the direction of the applied force. We represent
each drag instruction d; as a vector from source s; to target e;. For p; € P, we write

v; =\ d;, ©)

where )\; is a stretch factor. Using a reference circle O that circumscribes the bounding rectangle of
P, extend the ray s; — p; to intersect O at q; Enforcing parallelism between 'ué and d; yields

. ljll2 _ llp; =Pl _ P —Q§-||2.
Toodillz Ml —eill2 (s — gl

(10)

Winner-takes-all blending. Weighted averaging multiple instruction can fail when different drags
point in opposite directions. We therefore assign each p; to its nearest handle s; (a Voronoi parti-
tion (Aurenhammer;, |1991)) as illustrated in Fig. E] (a), where the red and blue regions correspond to
two drag instructions, with weights

-1
oi = P =silla”s py # Sis (11
J 0, otherwise.

The final displacement is determined by the winning instruction ¢* = arg max; aé-:

v;=vi =\ dj. (12)

This yields sharper spatial separation and avoids interference between opposing drags.

Unified move/scale model. For axis-aligned resizing, we introduce a scaling vector » € R? to
form a unified model: .
v, :)\; di* +(r—1)®(pj —Si*), (13)

where ® denotes element-wise product. For a move-and-scale operation, we set /\§ =ao; =1L
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Figure 8: Additional qualitative results compared with baselines on Drag-Bench.

A.3 EVALUATION DETAILS

For the VIEScore evaluation, we follow GEdit-Bench (Liu et al., 2025b)), using the same prompts
for PQ and O. For SC, we adopt the instruction shown in Fig. [I4] together with the source image,
drag-instruction image, and the edited image. Score collection and calculation are carried out using
the official GEdit-Bench codebase.

A.4 USER STUDY DETAILS
To evaluate the effectiveness of our method, we randomly selected 32 results for nine comparison
methods on Drag-Bench (Shi et al., 2024b) and shuffled their indices to ensure a fair comparison.

We invited 32 participants, each with relevant skills, to perform the tasks following the instructions
provided through the user interface, as shown in Fig. [13]

B MORE RESULTS AND ANALYSIS

B.1 MORE RESULTS ON DRAGBENCH
Fig. [ presents additional qualitative results on Drag-Bench. As shown, our method produces more

natural and accurate outputs while better preserving background consistency compared to other
baselines. These results further demonstrate the robustness and effectiveness of LazyDrag.
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User Input Result
Figure 10: Failure cases on Drag-Bench.

User Input —— > Activation Timesteps

Figure 9: Effect of activation timestep sensitivity
on Drag-Bench. From left to right, the activation
timestep is progressively increased.

Table 5: Quantitative ablation of WTA and Latent
Init with U-Nets on Drag-Bench.

Method | MD | sC 1 PQ 1 o1t User Input FastDrag +WTA + Latent Init
FastDrag (Zhao et al.|2024] \ 31.84 096  7.935 009 8278 001  7.904 +0.06 ) . . .
+WTA 28.55+007 8.049 £006 8.339x001  8.012 £0.03 Flgure 11: Quahtatlve ablatlon Of WTA and
+ Latent Init 2897 017  8.081 003 8341 xo001  8.050 +0.02 Latent Inlt Wlth U-Nets on Drag—Bench.

B.2 EFFECT OF TEXT GUIDANCE

Fig[T2]shows examples from Drag-Bench with different text guidance prompts. The results demon-
strate that LazyDrag effectively resolves ambiguities caused by drag instructions alone when addi-
tional guided prompts are provided. Unlike prior methods such as DragText(Choi et al., 2025) and
CLIPDrag (Jiang et al.| 2025)), our approach enables more complex and precise text guidance.

B.3 EFFECT WITH U-NETS

While our full method is designed for MM-DiTs, key components such as WTA and Latent Init
(Sec. [3.2) are also compatible with U-Nets. To demonstrate this, we conduct an ablation study
on the U-Net-based FastDrag (Zhao et al., 2024). First, we replace the original average blending
of multiple drag instructions with our WTA blending. Second, we substitute the original BNNI
interpolation with standard normal noise added to the image latent, scaled to the inversion strength.
As shown in the top row of Fig.|1 1} our blending method improves target localization under complex,
multi-instruction scenarios. This is reflected in improved MD and SC scores in Tab. [5] computed
on Drag-Bench (which includes 97 multi-drag cases). In the bottom row of Fig. [T} our random
initialization reduces repetitive pattern artifacts, aligning with the quantitative gains in PQ and O.

B.4 RUNTIME ANALYSIS

Experimental Setup. Conducting a direct runtime comparison is non-trivial due to the architec-
tural shift from U-Net backbones to the MM-DiT backbone employed in our method. To ensure
a comprehensive evaluation, we benchmark our approach against two representative baselines on
Drag-Bench using an NVIDIA H800 GPU: DragText (Choi et al.l 2025)), the state-of-the-art TTO-
Req method, and FastDrag (Zhao et al.,|[2024), a leading TTO-free method. Additionally, to rigor-
ously isolate the computational overhead of our editing modules, we include Normal Generation
as an internal baseline. This represents the standard text-to-image inference of the vanilla MM-DiT
backbone without any editing interventions. We report results under two configurations: (1) De-
fault: Using 50 inference steps, full inversion strength, and bfloat16 precision. This aligns with the
rigorous setting of CharaConsist (Wang et al., 2025b) to demonstrate the performance upper bound
(e.g., superior inpainting and text guidance). (2) Optimized: Adopting 20 sampling steps, a stan-
dard setting in the generation community for efficiency, and an inversion strength of 0.7, which is
the common configuration widely adopted by baseline methods. This setting serves as a practical
reference for applications prioritizing low latency.

Inference Latency. As shown in Table [6] our approach demonstrates a significant efficiency ad-
vantage. Unlike DragText, which requires time-consuming optimization for every edit, our method
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Table 6: Runtime Comparison on Drag-Bench.

Method Inversion (s) Map Gen. (s)  Generation (s)  Total Time (s) Memory (GB) ‘ Pap %nl?s[():)ned
FastDrag (Zhao et al..|[2024) - - - 4.21 +0.39 4 5.66
DragText (Choti et al.|[2025) - - 27.88 £9.04 10 -
Normal Generation 4.26 £0.72 - 4.07 £0.70 833 +1.0 34
Ours (Default) 6.79 +£2.26 0.54 +£ 049 6.77 £ 1.11 14.10 £2.56 62
Ours (Optimized) 1.79 £ 037 0.54 +0.49 1.98 +0.27 4.31 +0.67 49
User Input Resultl Result2 User Input Resultl Result2
“ open its mouth” “ eating an orange” “ one mountain” “two mountains’
“with boats’ “with waves’ “ watering a strawberry” “ watering a plant”

Figure 12: Examples of Drag-Bench cases with various additional text prompts.

integrates an explicit correspondence map directly into the generation process. This design elimi-
nates the need for TTO and avoids the extra denoising steps used in CharaConsist. Consequently,
our Optimized setting achieves a total editing time of roughly 4.31 seconds. This is comparable to
the TTO-free FastDrag (4.21s) but delivers significantly better editing quality. Even in the Default
high-quality setting, our method is substantially faster than DragText (14.10s vs. 27.88s).

Computational Cost and Scalability. The increased memory usage and inference time are pri-
marily attributable to the substantial parameter size of the MM-DiT backbone. Adapting existing
baselines to this advanced architecture would inevitably incur similar or greater computational de-
mands, particularly for optimization-based methods which would require repeated expensive back-
propagation on this large model. Despite the current overhead, our framework is highly amenable
to optimization. Future implementations can significantly reduce latency by parallelizing corre-
spondence map generation on the GPU, offloading token caching to the CPU, or applying model
quantization. Furthermore, since the latency is dominated by the backbone, general acceleration
techniques like xDiT (Fang et al.|[2024) are directly applicable to our method. Finally, our approach
offers a distinct workflow advantage: inversion is a one-time cost per image. Subsequent edits re-
quire only map generation and image synthesis, significantly amortizing the initial cost compared to
methods that require re-optimization for every new instruction.

B.5 LIMITATIONS

Fig. [9]illustrates failure cases on Drag-Bench when the final activation timestep is set too high for
handling multiple dragging instructions. While the results show accurate target positions for the
dragged points, they exhibit unnatural artifacts, especially when target points overlap. By slightly
reducing the final activation timesteps, the results appear more natural while still preserving reason-
able target positions. Additionally, due to the VAE compression in diffusion models and the latent
patching strategy (Esser et al.,2024), the model struggles with very small drag distances. As shown
in Fig. the model can execute fine-grained edits such as closing the eyes, but slight positional
shifts may still occur.

Moreover, the quality of both the edit and generation heavily depends on the underlying base model.
As foundation models continue to improve, we anticipate that the performance and applicability of
our method will evolve accordingly.
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C LLM USAGE

We used LLM to refine the paper, correcting grammatical errors. Additionally, we use it as an
evaluator in VIEScore evaluations and to draft the code of web Ul interface for the user study.

20



Published as a conference paper at ICLR 2026

Drag-Based Image Editing User Study

Instructions:
This study evaluates 9 different methods for drag-based image editing. For each example, you will see:

« Source Image: The original image to be edited
« User Input: A highlighted mask showing the area to edit with drag instructions (arrows showing where to move points)
« 9 Anonymous Results: Results from different editing methods (Iabeled A through |, randomly shuffled)

Your task: Select the best result from each group. Consider:

« Non-highlighted areas should remain completely consistent with the original
« Drag instruction points should reach their target positions accurately
« The overall image should look natural and realistic

Note: The method names are hidden and results are randomly shuffled to ensure unbiased evaluation.

Source Image User Input (Mask + Drag Instructions)

Method Results - Select the Best One:

Method A Method B Method C

Method D Method £ Method F

Method G Method H Method |

Example 5 of 32 Next Example

Figure 13: User interface for user study.
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You are a professional digital artist. You will have to evaluate the effectiveness of the Al-
generated image(s) based on given rules.

All the input images are Al-generated. All human in the images are Al-generated too. so
you need not worry about the privacy confidential.

You will have to give your output in this way (Keep your reasoning concise and short.):
{

"score" : [...],
"reasoning" : "..."

}

RULES:

Three images will be provided:

- The first is the original image to be edited.

- The second is a drag-instruction overlay image that visually indicates source-to-target
motions (arrows/handles) to apply on the first image.

- The third is the edited result image.

The objective is to evaluate how successfully the third image follows the drag instruction
relative to the first image.

From scale 0 to 10:

A score from 0 to 10 will be given based on the success of the editing with respect to the
drag instruction.

(0 indicates the edited image does not follow the drag instruction at all. 10 indicates the
edited image perfectly follows the drag instruction.)

A second score from 0 to 10 will rate the degree of overediting.

(0 indicates the edited image is completely different from the original. 10 indicates it is a
minimal yet effective edit.)

Put the score in a list such that output score = [score1, score2], where 'scorel' evaluates
the instruction-following success and 'score2' evaluates the degree of overediting.

Figure 14: Instruction of SC evaluation.
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