
1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3144250, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 1

Graph Transfer Learning via Adversarial Domain
Adaptation with Graph Convolution

Quanyu Dai, Xiao-Ming Wu, Jiaren Xiao, Xiao Shen, and Dan Wang

Abstract—This paper studies the problem of cross-network node classification to overcome the insufficiency of labeled data in a single
network. It aims to leverage the label information in a partially labeled source network to assist node classification in a completely
unlabeled or partially labeled target network. Existing methods for single network learning cannot solve this problem due to the domain
shift across networks. Some multi-network learning methods heavily rely on the existence of cross-network connections, thus are
inapplicable for this problem. To tackle this problem, we propose a novel graph transfer learning framework AdaGCN by leveraging the
techniques of adversarial domain adaptation and graph convolution. It consists of two components: a semi-supervised learning
component and an adversarial domain adaptation component. The former aims to learn class discriminative node representations with
given label information of the source and target networks, while the latter contributes to mitigating the distribution divergence between
the source and target domains to facilitate knowledge transfer. Extensive empirical evaluations on real-world datasets show that
AdaGCN can successfully transfer class information with a low label rate on the source network and a substantial divergence between
the source and target domains.

Index Terms—Graph/Nework Transfer Learning, Node Classification, Graph Convolution, Domain Adaptation, Adversarial Learning.

F

1 INTRODUCTION

NODE classification [1] is a central task in graph (or
network1) analysis. It is an important building block of

numerous real-world applications, such as product recom-
mendation in e-commerce websites, advertisement distribu-
tion in social networks, and protein function identification
for disease diagnosis. Many research efforts have been made
to develop reliable and efficient methods for node classifica-
tion in networked data.

In the era of big data, massive amount of raw data
in information networks is produced everyday. However,
labeled data is significantly expensive and slow to acquire
due to the high cost and long time of human annotations,
making it difficult to train a well-generalized classifier [2].
Moreover, in some newly-formed networks, there may be
no labels at all. It would be impossible to classify nodes
with only the information of the network itself. To tackle
these issues, a promising approach is to utilize class infor-
mation from other similar or related networks to assist in
classification, i.e., transfer learning on networked data [3],
[4]. For example, given a newly formed social network
that is short of labels, to classify the users into different
groups based on their interests, there is a need to utilize the
abundant class information in some well-developed social

• Xiao Shen (corresponding author) is with the School of Computer Science
and Technology, Hainan University, Haikou, China.
Email: shenxiaocam@163.com

• Quanyu Dai is with Huawei Noah’s Ark Lab, Shenzhen, China.
Email: quanyu.dai@connect.polyu.hk

• Xiao-Ming Wu and Dan Wang are with the Department of Computing,
The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong.
Email: {csxmwu, csdwang}@comp.polyu.edu.hk

• Jiaren Xiao is with with the Department of Mechanical Engineering, The
University of Hong Kong, Pokfulam 999077, Hong Kong.
Email: xiaojr@connect.hku.hk

1. In this paper, the terms graph and network are used interchange-
ably to denote graph-structured data.

networks. Moreover, in a newly collected protein-protein
interaction network, to classify the proteins into different
function categories, it would be beneficial to leverage the
class information in a well-established protein database.
Similarly, the class information in an early citation database
can also be transferred to assign research topics for a newly
constructed citation network.

In this paper, we consider a cross-network node classi-
fication problem that aims to leverage a partially labeled
source attributed network to facilitate node classification
in another completely unlabeled or partially labeled target
attributed network (Figure 1). The challenges lie in several
aspects. First, there may be a significant domain divergence
between the source and target networks and they may not
have many attributes in common. Second, there are no cross-
network edges to propagate knowledge from the source
network to the target network. Third, only a small portion
of nodes in the source network are labeled.

Existing network embedding methods [5], [6], [7] are
insufficient to address these challenges. They first learn com-
pact node representations to preserve network structural
information, and then train a classifier with the learned
representations for node classification. Most of these meth-
ods learn node representations in an unsupervised man-
ner, and are often less effective than graph-based semi-
supervised learning methods for node classification. More-
over, topology-only embedding methods cannot be eas-
ily generalized to cross-network problems due to lack of
a similarity preserving component to push nodes of the
same category from two networks close in the embedding
space [8].

Graph-based semi-supervised learning methods [9], [10]
have been demonstrated highly effective for node clas-
sification in a single network with only a few labeled
nodes. The recently proposed graph convolutional networks

Authorized licensed use limited to: Hainan University. Downloaded on February 17,2022 at 10:02:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3144250, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 2

Transfer

Learning

Source Network

?

?

?

?

?

?

Target Network

Class 1

Class 2

Labeled

Unlabeled

Attributes

Fig. 1. Cross-network node classification. We aim to transfer knowledge
from a partially labeled source attributed network to assist the classifica-
tion task in a completely unlabeled or partially labeled target attributed
network. Here we use an unlabeled target network for illustration.

(GCN) [10] and follow-up works such as GraphSAGE [11]
and GAT [12], naturally integrate network topology, node
attributes and observed node labels into an end-to-end
learning framework, and achieve superior performance on
node classification. However, these methods are designed
for learning tasks in a single network domain and will in-
herently have difficulties in generalizing to another network
domain that may have a substantially different attribute set.

There are some methods [3], [13] proposed to leverage
the relationship between multiple networks to improve
learning performance. Both EOE [14] and DMNE [13] learn
embeddings for multiple networks simultaneously, but they
heavily rely on the existence of cross-network connections,
making them inapplicable for our problem. Currently there
is little exploration of knowledge transfer across different
networks for learning tasks such as node classification.

Domain adaptation utilizes the knowledge of relevant
source domain(s) to assist the same learning task in the
target domain [15], [16]. Although there are many existing
domain adaptation methods for vector-based data such as
images and texts (bag-of-words) [17], [18], they are not
applicable for graph-structured data, as entities in a graph
are highly correlated with each other which violates the
assumption of independent and identically distributed (IID)
data samples in each individual domain. Little research has
been conducted on domain adaptation for graph-structured
data. CDNE [4] is the only attempt to our best knowledge,
which learns transferable node embeddings for cross net-
work learning tasks by minimizing the maximum mean
discrepancy (MMD) loss. However, it cannot jointly model
network structures and node attributes, which might limit
its modeling capacity. Besides, it heavily relies on the pre-
processing of the adjacency matrix with the positive point-
wise mutual information (PPMI) matrix, which makes the
sparse adjacency matrix denser and thus aggravates com-
putational complexity due to the autoencoder-based model
architecture.

To address the challenges for cross-network node clas-
sification, we propose a novel graph transfer learning
framework AdaGCN that is based on adversarial domain
adaptation with graph convolutional networks. The idea is
to learn class discriminative node representations via graph
convolutional networks and learn domain invariant node
representations via adversarial learning. Hence, AdaGCN
consists of a semi-supervised learning component and an
adversarial domain adaptation component.

On one hand, the semi-supervised component is ded-
icated to learning discriminative node representations for

classification with the available labeled data from both the
source and target networks. GCN enables training a well-
behaved classifier with even only a small set of labeled
nodes in the source network (as shown in Section 5.2.1).
However, the original GCN layer only conducts Laplacian
smoothing on nearby nodes’ features within one hop, and
it requires stacking many layers to increase the smoothing
level, which will greatly increase the number of trainable
parameters and result in overfitting. To alleviate this issue,
we propose to use an improved GCN layer designed with a
smoothing strength hyperparameter [19], which makes the
model more efficient.

On the other hand, the adversarial domain adaptation
component is aimed at mitigating the distribution shift
between the source and target domains to encourage knowl-
edge transfer by learning domain invariant representations
via adversarial learning. Specifically, we model the do-
main adaptation process as a two-player game similar to
GANs [20], where the representation learner GCN acts as
the generator for learning domain invariant node represen-
tations while a domain critic as the discriminator is opti-
mized to distinguish node representations from the source
and target networks. By combining the two components,
AdaGCN can learn both class discriminative and domain
invariant node representations for transferring class infor-
mation across networks.

Extensive experiments on real attributed networks show
that AdaGCN can work in both unsupervised setting (i.e.,
completely unlabeled target network) and semi-supervised
setting (i.e., scarcely labeled target network). Besides, it has
low dependence on the common attributes shared by the
source and target networks. The main contributions of this
paper can be summarized as follows:
• We pioneer in studying a challenging graph transfer learn-

ing problem under a realistic setting, where a partially
labeled source network is utilized to assist node classifica-
tion in a completely unlabeled or partially labeled target
network.

• We develop a novel and principled framework for graph
transfer learning by efficiently integrating techniques of
adversarial domain adaptation and graph convolution.

• We conduct extensive experiments on real-world informa-
tion networks to verify the effectiveness of our model,
which demonstrates its superior performance compared
with state-of-the-art baselines, impressive label efficiency,
and good model robustness against distribution discrep-
ancy.

The organization of this paper is as follows. We review
the literature in Section 2. We formulate the research prob-
lem in Section 3. In Section 4, a detailed description of
the proposed methods is presented. Then, the experimental
results and analysis are provided in Section 5. Finally, a short
summary with the contributions and possible directions of
future work are included in Section 6.

2 RELATED WORK

2.1 Single Network Learning

Network embedding [21], [22], [23] is aimed at learning
compact node representations based on network topology

Authorized licensed use limited to: Hainan University. Downloaded on February 17,2022 at 10:02:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3144250, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 3

only or with side information in an unsupervised man-
ner to facilitate a range of learning tasks, such as node
classification and network visualization. For topology-only
embedding methods, most of existing works focused on
preserving network structures and properties in embed-
ding vectors through various techniques such as negative
sampling approach [5], [6], [7], matrix factorization tech-
nique [24], [25] and deep learning models [26], [27], [28],
[29], [30]. Most recently, regularization methods based on
generative adversarial networks or adversarial training are
exploited to handle noisy and incomplete networked data
to improve generalization ability [31], [32], [33], [34]. Aside
from topology-only methods, many models are proposed to
incorporate side information such as node attributes [32],
[35], [36], [37]. For example, ANRL [35] optimizes both
network structure preserving loss and feature reconstruc-
tion loss based on stacked autoencoder. LANE [38] further
incorporates label information in the attributed network
embedding process.

The unsupervised learning methods don’t specially tai-
lor the latent vectors for node classification, which makes
them inferior to some customized models. Semi-supervised
learning methods, including those using network topology
and observed labels [39] and those combining network
structures with available labels and node attributes [9], [10],
[11], [12], [40], [41], achieve state-of-the-art performance.
Planetoid [9] optimizes a supervised loss and a context-
preserving loss. GCN [10] is a deep convolutional learning
paradigm for graph-structured data which nicely integrates
local node attributes and graph topology in convolutional
layers. It further inspires lots of research work [11], [12],
[42]. For example, GraphSAGE [11] is a variant of GCN
which designs different aggregation methods for feature
extraction. GAT [12] improves GCN by leveraging attention
mechanism to aggregate features from the neighbors of a
node with discrimination.

While these methods can be modified to cross-network
learning, the distribution drift between different network
domains severely hampers knowledge transfer, especially
for the topology-only methods [8].

2.2 Multi-Network Learning

A branch of work aims to leverage the relationship between
multiple networks to facilitate learning, including those
relying on inter-network edges [13], [14], those focusing
on identifying common nodes across networks [43], [44],
and those managing to transfer knowledge from the source
network(s) to the target network(s) [3], [4], [45], [46], [47].

Both EOE [14] and DMNE [13] learn embeddings for
multiple networks simultaneously. Specifically, EOE intro-
duces a harmonious embedding matrix to model inter-
network node similarities, while DMNE adapts autoencoder
for multi-network embedding with a co-regularized loss to
model cross-network relationships. However, these meth-
ods heavily rely on the existence of cross-network con-
nections, which makes them inapplicable for our problem.
Another line of related research is network alignment [43],
[44], which aims to identify the node correspondence across
networks with/without cross-network edges. It differs from
our problem in the assumption of common nodes across

networks and the research goal of finding common nodes
across networks.

There is also some literature focusing on transferring
knowledge from the source network(s) to the target net-
work(s) for various tasks, such as social ties inference [45],
positive/negative link prediction [48], and node classifica-
tion [3], [49], [50]. In this paper, we aim to utilize knowledge
in the source network to assist classification in the target net-
work as [3], [4], [49], [50]. In [3], non-negative matrix factor-
ization is jointly applied on the label propagation matrices of
both the source and target networks so as to learn transfer-
able structure features. However, it suffers from expensive
computation in the matrix decomposition process, and it
cannot jointly model the relationships among structural
information, node attributes and node labels, which might
cause negative transfer. CDNE [4] is closely related to our
work. It first learns node embeddings for multiple networks
with different stacked autoencoders and mitigates the dis-
tribution shift of node representations between networks by
minimizing the MMD loss, and then trains a node classifier
with the learned node representations. NES-TL [50] studies
node popularity prediction on networks with multi-source
transfer learning. It obtains node representations through
feature engineering and employs an instance-based domain
adaptation technique to reduce domain divergence. Our
work differs from NES-TL in both the research problem and
the techniques used. In this paper, we focus on solving the
cross-network node classification problem by transferring
information from a single source domain with graph convo-
lution and adversarial domain adaptation techniques.

2.3 Domain Adaptation

Domain adaptation is a subtopic of transfer learning, which
aims to mitigate the harmful effect of domain drift when
transferring knowledge from source to target [15], [16].
Approaches for domain adaptation can be classified into
three groups, including the instance-based methods [51],
parameter-based methods [52], and feature-based meth-
ods [53], [54]. Among them, deep feature-based domain
adaptation methods have attracted a lot of attention in
recent years due to its effectiveness. They can be cate-
goried into three branches, i.e., discrepancy-based meth-
ods [53], [55], reconstruction-based methods [56], [57], and
adversarial-based methods [17], [18], [58], [59], [60].

In this paper, we are interested in adversarial-based
methods for domain adaptation, which are motivated by
the theory in [61] and [62]. It suggests that when the di-
vergence between the representations of a source domain
and a target domain is minimized, such representations
would be good for knowledge transfer. The pioneering
work DANN [17] learns domain invariant representations
by formulating the problem as a minimax game similar to
GANs [20]. Specifically, a representation extractor, acting as
the generator, is optimized to learn invariant representations
for samples from the source and target domains. Mean-
while, a domain classifier, serving as the discriminator, is
trained to tell apart the source and target representations by
minimizing the domain classification loss. Domain invariant
representations can be obtained when the model converges
and domain divergence is minimized. To improve upon

Authorized licensed use limited to: Hainan University. Downloaded on February 17,2022 at 10:02:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3144250, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 4

TABLE 1
Notations

Notation Description
G = (V,A,X) A weighted attributed network
V Node set of G
A Weighted adjacency matrix of G
X Feature matrix of G
Gs = (V s, As, Xs) Source network
Gt = (V t, At, Xt) Target network
V sl Set of all labeled nodes in Gs

Y sl Label matrix of V sl

X s, X t Sets of node attributes of Gs and Gt

X Set of node attributes of both Gs and Gt

Y Label set of both Gs and Gt

ns, nt # of nodes in Gs and Gt

nsl # of labeled nodes in Gs

cs, ct # of node attributes in Gs and Gt

c # of node attributes in X
L # of categories in label space Y
fg , fc, fd Representation learner, label classifier, and

domain critic
θg , θc, θd Sets of model parameters in fg , fc, and fd
Hs

g , Ht
g Source and target node representations

λ Domain adaptation coefficient
γ Gradient penalty coefficient
nd Domain critic training step per iteration
nI Smoothing parameter of the IGCN layer
α1, α2 Learning rates of domain critic, and

representation learner and label classifier

DANN, WDGRL [18] employs the Wasserstein distance to
quantify domain divergence, which leads to better gradient
property and generalization bound. Besides, MADA [59]
and CDAN [60] manage to leverage discriminative infor-
mation from the label classifier to align the multi-modal
distributions of representations from different domains. In
this paper, we leverage adversarial-based techniques for
domain adaptation on graph-structured data. The main
difference is that the majority of previous methods are
proposed for vector-based data such as image and text with
the assumption of independent and identically distributed
samples within each domain, whereas we investigate do-
main adaptation for graph-structured data with complicated
correlations among data entities.

3 PROBLEM DEFINITION

In this paper, we study domain adaptation for networked
data, i.e., leveraging the information of a source network
to assist node classification in a completely unlabeled or
partially labeled target network. The source network can
be either partially labeled or fully labeled. In this section,
we formally define the research problem and introduce
notations used in the paper as summarized in Table 1.

Denote by Gs = (V s, As, Xs) the source network, where
V s is the node set (ns = |V s|), As ∈ Rns×ns

is the weighted
adjacency matrix with As

ij quantifying the strength of con-
nection between nodes i and j, and Xs ∈ Rns×cs is the
feature matrix with cs as the number of node attributes in
Gs and the i-th row of Xs as the feature vector associated
with node i. Denote by V sl the set of labeled nodes in Gs

and Y sl ∈ Rnsl×L the label matrix of V sl, where Y sl
ik = 1

if node i ∈ V sl is associated with label k and Y sl
ik = 0

otherwise.
Similarly, the target network is represented as Gt =

(V t, At, Xt), where V t is the node set (nt = |V t|), At ∈
Rnt×nt

is the weighted adjacency matrix, and Xt ∈ Rnt×ct

is the feature matrix with ct as the number of node attributes
in Gt. The target network Gt can be either completely
unlabeled or partially labeled. Here, we assume that it is
completely unlabeled for simplicity, but our method can be
straightforwardly extended to the partially labeled setting
and we have conducted experiments for both scenarios in
Section 5.2 and 5.3.

The source network and the target network may contain
different attributes. Denote by X s and X t the set of node
attributes in Gs and Gt respectively. We construct a new
attribute set X = X s ∪ X t, where c = |X | represents the
total number of attributes. We then reformulate the feature
matrix of both Gs and Gt to make them include all the
attributes in X . With a slight abuse of notation, we still use
Xs ∈ Rns×c and Xt ∈ Rnt×c to represent the newly formed
feature matrices of Gs and Gt. In particular, Xr

ik (r ∈ {s, t})
is the value of the k-th attribute associated with node i in
Gr and Xr

ik = 0 means that it is not associated with node i.
Define a network domain as D = {G, f(G)}, which

includes an attributed network G and a function f(G)
for the node classification task. Then, the source network
domain and the target network domain can be represented
by Ds = {Gs, f(Gs)} and Dt = {Gt, f(Gt)}, respectively.
The problem considered in this paper is similar to the
conventional domain adaptation problem as in [15], [16].
Specifically, there exists a domain divergence between the
source and target networks, i.e., Ds 6= Dt, but the label
space Y = {1, · · · , L} is the same, and our goal is to learn
a classifier f to accurately classify the nodes in the target
network with the assistance of the partially labeled source
network.

4 PROPOSED METHOD

4.1 An Overview of Model Architecture
To solve cross-network node classification problem, two
major challenges need to be addressed. Firstly, how to
fully exploit the available data information including graph
structures, node attributes and observed node labels to
learn useful node representations for the two networks?
Secondly, how to overcome the serious domain divergence
between two networks to facilitate knowledge transfer with
the absence of cross network edges and only a few common
node attributes across networks?

To address the first challenge, we leverage graph con-
volution to integrate network topology and node attributes
in a semi-supervised learning model, which is capable of
learning discriminative node representations with available
node labels. To tackle the second challenge, we manage
to mitigate distribution discrepancy between two networks
with the technique of adversarial domain adaptation. In
particular, we propose a graph transfer learning frame-
work AdaGCN by naturally combining the techniques of
adversarial domain adaptation and graph convolution. The
model architecture is shown in Figure 2. It consists of
two components: a semi-supervised learning component,

Authorized licensed use limited to: Hainan University. Downloaded on February 17,2022 at 10:02:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3144250, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 5

Source Input Layer Target Input Layer

Supervised Loss () Domain Adaptation Loss ()

Dense Layers

Domain Prediction

Dense Layers

Label Prediction

Hidden
Layers

Hidden
Layers

Parameter
Sharing

Parameter
Sharing

Source Representations

θg

θc θd

θg

Target Representations

R
ep

re
se

n
ta

ti
o

n
Le

a
rn

er

La
be

l C
la

ss
if

ie
r

D
o

m
ai

n
 C

ri
ti

c

c d

(m
ax

im
iz

e

) d
(m

in
im

iz
e

) d

Fig. 2. Model architecture of AdaGCN. The representation learner com-
putes representations for nodes in the source and target networks.
The node representations are then fed to the label classifier and the
domain critic for label predictions and domain predictions, respectively.
The domain adaptation process is modeled as a minimax game between
the representation learner and the domain critic.

which includes a representation learner and a label classifier,
and an adversarial domain adaptation component, which is
composed of the representation learner and a domain critic.
Therefore, the representation learner is shared by these
two components. With the cooperation of them, AdaGCN
can learn both class discriminative and domain invariant
node representations, thus enabling classifying nodes in the
target network with only a few labeled nodes in the source
network. Note that our model is also applicable for the semi-
supervised scenario with a partially labeled target network.

4.2 Network Representation Learning

We propose to use graph convolution to jointly model
network structures and node attributes for learning net-
work representations, which has recently been demon-
strated highly effective in various learning tasks such as
node classification [10], graph clustering [63] and social
recommendation [64].

Graph convolution is an operation that applies a linear
graph convolutional filter [65], [66] Â ∈ Rn×n on a graph
signal h ∈ Rn and outputs a new signal h̄ ∈ Rn (n is the
number of nodes in the underlying graph):

h̄ = Âh. (1)

The graph filter Â is a matrix designed by manipulating the
spectrum of the underlying graph. The graph signal h is a
real-valued function defined on the nodes of the graph, i.e.,
each node is associated with a real number. For example, a
column of the node feature matrix X can be considered as a
graph signal.

Graph convolution provides a principled way to com-
bine graph structures and node features for learning useful
node representations. For the graph convolutional networks

(GCN) proposed in [10], the graph filter is a renormal-
ized adjacency matrix, which actually performs Laplacian
smoothing that updates the features of each node with
a weighted average of its own and neighbors’ to obtain
smooth embeddings [67]. Further, it was shown in [19] that
to produce smooth embeddings for nodes in the same clus-
ter, the graph filter Â needs to be low-pass. With a proper
low-pass graph filter, graph convolution will generate useful
representations that help to ease knowledge transfer across
networks and node classification in the target network.

In this paper, we propose two methods for learning
network representation with graph convolution. The first
one is based on the layer-wise propagation rule of GCN.
Specifically, the hidden representations of the k-th convolu-
tional layer in the feature extractor are learned by:

H(k)
g = σ(ÂH(k−1)

g W (k)
g), (2)

where Â is a renormalized adjacency matrix with a self-
loop at each node, H(k−1)

g is the output of the previous
layer (H0

g = X), W (k)
g is a projection matrix with trainable

parameters, and σ(·) is the activation function. As illustrated
in Figure 2, we use two GCNs for learning node represen-
tations for the source and target networks respectively, but
they share a common set of trainable parameters (W (k)

g) so
as to help transfer knowledge across networks. For simplic-
ity of notation, we denote a GCN as fg(A,X;θg), which
takes the graph adjacency matrixA and the feature matrixX
as input, and θg represents the trainable parameters. Then,
we can obtain the output node representations of the source
and target networks as:

Hr
g = fg(Ar, Xr;θg), r ∈ {s, t}, (3)

where [Hr
g]i as the i-th row of Hr

g is the representation of
node i.

However, with the GCN layer defined as in Eq. (2), one
has to stack multiple layers to increase the strength of fea-
ture smoothing, which will also increase model complexity
because of the accompanied trainable parameters in each
layer, and thus can easily cause overfitting, especially for
learning tasks with low source training rates. To address
this issue, we propose to use an improved GCN (IGCN)
layer proposed in [19] to improve the strength of the graph
convolutional filter for learning better representations. Then,
for our second method, the hidden representations of the k-
th convolutional layer are obtained with:

H(k)
g = σ(ÂnIH(k−1)

g W (k)
g), (4)

where nI is the exponent of Â, i.e., the smoothing parameter.
By setting an appropriate nI , we can easily control the
smoothing strength of graph convolution to facilitate knowl-
edge transfer and classification while avoiding overfitting.
As suggested in [19], normally, larger nI should be used
with lower source training rates.

4.3 Semi-Supervised Learning
In AdaGCN, the node representations of the source and
target networks learned by GCNs will be fed to a classi-
fier for label prediction, and together they form the semi-
supervised learning component. The classifier could be a

Authorized licensed use limited to: Hainan University. Downloaded on February 17,2022 at 10:02:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3144250, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 6

single layer logistic regression classifier or a multi-layer
perceptron. We denote the classifier as fc(H;θc), where
H represents the node representations as input and θc
represents the trainable parameters. We then denote the
prediction scores of nodes in the source and target networks
as:

Ŷ r = fc(H
r
g ;θc), r ∈ {s, t}, (5)

where Hr
g are the node representations generated by GCNs

and Ŷ r
ik (r ∈ {s, t}) represents the prediction score for node

i in class k. One can conduct multi-class or multi-label clas-
sification by changing the activation function of the output
layer in the classifier fc(·). For multi-class classification, the
activation function can be the softmax function. For multi-
label classification, the activation function is the sigmoid
function. We use the cross-entropy loss over all the labeled
nodes in the source network as the objective for multi-label
classification:

Lc = − 1

nsl

nsl∑
i=1

L∑
k=1

[
Y sl
ik log(Ŷ sl

ik) +
(

1− Y sl
ik

)
log
(

1− Ŷ sl
ik

)]
,

(6)
where Ŷ sl is the prediction score matrix of the labeled
nodes V sl in the source network. Note that our method
can be easily extended to the semi-supervised setting by
incorporting available target labels into the above loss.

4.4 Adversarial Domain Adaptation
The domain adaptation theory in [61] and [62] suggests
that, when the divergence between the representations of
the source domain and those of the target domain is mini-
mized, it is possible to transfer knowledge from the source
network to the target network. In AdaGCN, we leverage
the adversarial domain adaptation method [17], [18] to
achieve this. Specifically, we model the domain adapta-
tion process as a two-player game similar to GANs [20],
where a representation learning network fg(A,X;θg) is
acting as the generator for learning network invariant node
representations, while a domain critic acting as the dis-
criminator is optimized to distinguish node representations
from the source and target networks. After adversarial
training, the representation learning network is expected to
generate similar representations for the source and target
networks. Therefore network invariant representations can
be obtained, and class information can be transferred from
the source network to the target network. This is empirically
validated by experimental results in Section 5, where the
proposed method AdaGCN demonstrates superiority over
GCN, its counterpart without domain adaptation.

In the original GANs [20], the domain critic is a binary
classifier, and the generator and the discriminator fight
against each other over a log likelihood objective. However,
directly formulating the problem as a binary classification
problem and leveraging cross-entropy loss for model opti-
mization may suffer from training instability such as mode
collapse [68], [69]. To improve learning stability, we instead
minimize the Wasserstein-1 distance between the source
and target distributions of node representation as suggested
in [18], [68], [69].

We set the domain critic as a fully-connected neural
network that takes a node representation as input and

returns a real number. Denote by fd(h;θd) the domain
critic, where h = [fg(A,X;θg)]v is the representation of
node v generated by a GCN with X as the input node
feature matrix, and θd represents the trainable parameters.
The first Wasserstein distance between the source and target
distributions of node representation Phs and Pht can be
computed using the Kantorovich-Rubinstein duality [70]:

W1(Phs ,Pht) = sup
‖fd‖Lc≤1

EPhs [fd(h;θd)]− EPht [fd(h;θd)],

(7)
where ‖ fd ‖Lc

≤ 1 is the Lipschitz continuity constraint. It
can be interpreted as the minimum cost of transporting mass
for transforming one distribution into another with the cost
defined as the mass times the transport distance [68]. We can
further approximate the empirical Wasserstein distance un-
der the 1-Lipschitz assumption by maximizing the following
domain critic loss with respect to θd:

Ld = 1
ns

ns∑
i=1

fd([fg(As, Xs;θg)]i;θd)

− 1
nt

nt∑
i=1

fd([fg(At, Xt,θg)]i;θd).

(8)

To enforce the Lipschitz constraint, we add a gradient
penalty Lgrad for the parameters θd of the domain critic
as suggested in [69]:

Lgrad(ĥ) = (‖ ∇ĥfd(ĥ;θd) ‖2 −1)2, (9)

where the representation ĥ can be the source representa-
tions, the target representations, and the random points
along the straight line between the source and target repre-
sentation pairs. It can help avoid the capacity underuse and
gradient vanishing/exploding problems of weight clipping
methods [68] for 1-Lipschitz enforcement.

Hence, we solve the following minimax problem for
learning network invariant node representations:

min
θg

max
θd

{Ld − γLgrad}, (10)

where γ is the gradient penalty coefficient, which should be
set to 0 when optimizing the generator. The optimization
problem suggests that the domain critic fd(·) should be first
trained to be optimal and then parameters in the generator
fg(·) are updated to minimize the Wasserstein distance
between the source and target node representations.

Note that our proposed AdaGCN is very flexible, and
some other adversarial-based domain adaptation meth-
ods [59], [60] can also be integrated into our framework.

4.5 Overall Loss and Model Training
The overall loss of the proposed model AdaGCN is as
follows:

min
θg,θc

{Lc + λmax
θd

[Ld − γLgrad]}, (11)

where λ is the coefficient for balancing semi-supervised
learning and domain adaptation. We summarize the train-
ing procedure for AdaGCN in Algorithm 1. Note that here
we do a full-batch training with gradient descent, but some
existing methods can be applied to train the model in a
mini-batch manner [71], [72]. First, as presented in line 4-10,
we optimize the parameters θd of the domain critic fd(·)

Authorized licensed use limited to: Hainan University. Downloaded on February 17,2022 at 10:02:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3144250, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 7

Algorithm 1: Training Algorithm of AdaGCN

Input : source data {Gs = (V s, As, Xs), Y sl}, target
data {Gt = (V t, At, Xt)}, domain critic
training step nd, coefficients γ, λ, learning
rates α1, α2

1 Initialize parameters θg for representation learner fg ,
θc for label classifier fc, and θd for domain critic fd;

2 while not converge do
3 // Optimize domain critic
4 for t = 1, . . . , nd do
5 Hs

g ← fg(A
s, Xs;θg), Ht

g ← fg(A
t, Xt;θg);

6 N ← min{Ns, N t};
7 Construct H = {hi}Ni=1 with

hi ← εhs + (1− ε)ht, where ε is a random
number sampled from U [0, 1], hs and ht are
sampled from Hs

g and Ht
g , respectively;

8 Ĥ ← {Hs
g , H

t
g, H};

9 θd ← θd + α1 · ∇θd{Ld − γLgrad(Ĥ)};
10 end
11 // Optimize representation learner and label

classifier
12 θ ← {θg,θc};
13 θ ← θ − α2 · ∇θ{Lc + λLd};
14 end

via gradient descent with other model parameters fixed.
Then, as shown in lines 12 and 13, we fix θd, and update
the parameters θg of the generator fg(·) and θc of the
classifier fc(·) by minimizing the classification loss Lc and
the domain adaptation loss Ld simultaneously. When the
model converges, we can obtain class discriminative and
domain invariant node representations. To classify nodes in
the target network, one can simply feed the learned node
representations to the trained classifier fc(·).

4.6 Time Complexity Analysis

The computational complexity of the model mainly con-
sists of three parts: the GCN layers (Eq. (2)), the label
classifier (Eq. (5)), and the domain critic (Eq. (7)). It takes
O((|Es|+ |Et|)w1w2) (suppose that Es and Et are the edge
sets of the source and target networks respectively, and
W

(k)
g ∈ Rw1×w2) to compute the hidden representations

with a single GCN layer for both the source and target
networks through Eq. (2), which is linear to the number of
edges. Note that the IGCN layer can ensure linearity with
only an additional constant scale factor nI added to the
complexity through left multiplying H

(k)
g by Â repeatedly

for nI times in Eq. (4). Obviously, the time complexity of the
label classifier or the domain critic is linear to the number
of nodes. Thus, the overall complexity of the proposed
methods is linear to the size of the networks.
5 EXPERIMENTS

In this section, we aim to answer the following research
questions (RQ) via experiments:
RQ1 How do the proposed methods perform compared

with state-of-the-art methods?
RQ2 How do the training rates of the source and target

networks, i.e., the ratio of labeled nodes in Gs and Gt,
affect the performance of transfer learning?

TABLE 2
Statistics of the real-world network datasets

Dataset #Nodes #Edges #Attributes #Union Attributes #Labels

DBLPv7 5,484 8,130 4,412
6,775 5Citationv1 8,935 15,113 5,379

ACMv9 9,360 15,602 5,571

RQ3 How does the distribution discrepancy between the
source and target networks affect the results of transfer
learning?

RQ4 How does the strength of graph convolution affect the
domain adaptation performance?

RQ5 How do the hyper-parameters affect the performance
of the proposed methods?

We also visualize the learned node embeddings from rep-
resentation learner to provide an intuitive understanding of
our proposed methods.

5.1 Experiment Setup

5.1.1 Datasets
We conduct experiments on three real-world attributed
networks constructed by [4] based on datasets provided
by ArnetMiner [73]. Some statistics of the experimental
datasets are displayed in Table 2. DBLPv7, Citationv1 and
ACMv9 are three paper citation networks from different
original sources, i.e., DBLP, Microsoft Academic Graph and
ACM respectively, and contain papers published in different
periods, i.e., between years 2004 and 2008, before year 2008,
and after year 2010, respectively. Here we consider them as
undirected networks with each edge representing a citation
relation between two papers. Each paper belongs to some of
the following five categories according to its research top-
ics, including “Databases”, “Artificial Intelligence”, “Com-
puter Vision”, “Information Security”, and “Networking”.
Besides, the keywords extracted from the title of each paper
were utilized as its attributes in the form of bag-of-words
vector. We evaluate our proposed methods by conducting
multi-label classification on these three network domains
through six transfer learning tasks including C→D, A→D,
D→C, A→C, D→A, and C→A, where D, C, A denote
DBLPv7, Citationv1 and ACMv9, respectively.

5.1.2 Baselines
We select baselines from several related research lines in-
cluding single network embedding methods, graph-based
semi-supervised learning methods, deep domain adaptation
methods, and transfer learning methods for networked data.
The descriptions of them are listed as follows:
• DeepWalk [5], node2vec [7]: They are single network

embedding methods using network structure only. Both
DeepWalk and node2vec first transform network topology
into node sequences, and then use skip-gram model to
learn node representations.

• ANRL [35], LANE [38]: They are attributed network em-
bedding methods. ANRL is a deep model adapted from
autoencoder, and we use its best variant ANRL-WAN.
LANE jointly projects an attributed network and its node
labels into a unified embedding space by eigenvector
decomposition.

Authorized licensed use limited to: Hainan University. Downloaded on February 17,2022 at 10:02:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3144250, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 8

• GCN [10], GraphSAGE [11]: They can be used for semi-
supervised learning and representation learning.GCN is
a deep convolutional network for graph-structured data,
which integrates network topology, node attributes and
observed labels into an end-to-end learning framework.
GraphSAGE is a variant of GCN with different aggrega-
tion methods.

• DNNs, WDGRL [18]: These two deep models only utilize
node attributes. DNNs is a multi-layer perceptron. WD-
GRL is a state-of-the-art adversarial domain adaptation
method with the assumption of IID vector-based inputs
in each domain.

• NetTr [3], CDNE [4]: These are transfer learning methods
for networked data. NetTr learns transferable representa-
tions based on network topology only. CDNE is adapted
from autoencoder by adding MMD loss across networks
for domain adaptation.

We denote our methods with regular GCN layers (Eq. (2)) as
AdaGCN and improved GCN layers (Eq. (4)) as AdaIGCN.

5.1.3 Implementation Details

We implement our proposed methods using Tensorflow
with Adam optimizer. For all transfer learning tasks, we use
the same set of parameter configurations unless otherwise
specified. We first describe the settings of AdaGCN. The
GCNs of both the source and target networks contain three
hidden layers with structure as 1000-100-16. The dropout
rate for each GCN layer is set to 0.3. The classifier fc(·) is
a logistic regression model with sigmoid output layer for
multi-label classification. The domain critic fd(·) contains
only one hidden layer with 16 units. A l2-norm regulariza-
tion term is imposed on model parameters except those of
fd(·) with the regularization coefficient as 5 × 10−5. The
domain adaptation coefficient λ, gradient penalty coefficient
γ, and domain critic training step nd are set to 1, 10 and
10, respectively. The learning rates for both components
of our method are set to 1.5 × 10−3. We train the model
for 1000 epochs, and perform a learning rate decaying by
multiplying a decaying factor 0.8 per 100 epochs after the
first 500 epochs to stabilize training. For AdaIGCN, it has
similar configurations as AdaGCN with the only difference
in the representation learner, which consists of only one
IGCN layer and two additional fully connected layers. nI
is set to 10 for all tasks. GCN and AdaGCN have the same
settings for common hyper-parameters and model structure.

For single network embedding methods, including
DeepWalk, node2vec, and ANRL, node representations are
first learned and then a one-vs-rest logistic regression clas-
sifier is trained with labeled nodes of both networks. For
fair comparison, the dimension of node representations for
these methods are all set to 128. LANE and GraphSAGE are
implemented based on the source codes provided by the
authors. For GraphSAGE, we adapt it to the transductive
setting for better utilization of linkage information of the
two networks, and use its best variant GraphSAGE-LSTM
for comparison. Since these methods are designed for single
network, we simply combine two networks into one and
then conduct experiments as single network learning. In
such combined networks, there are no any edge connections
between source and target networks.

DNNs have similar parameter settings with GCN, and
WDGRL have similar parameter settings with AdaGCN. We
have also tried to improve the input features of DNNs and
WDGRL by augmenting the feature matrix of graph with
the learned embedding vectors from DeepWalk, but found
it deteriorates performance, which is explainable since the
learned embeddings of the source and target networks from
DeepWalk are not comparable. Experiments for NetTr and
CDNE are conducted following the original papers.

5.2 Performance Comparison (RQ1)

The training rate of a network is defined asRl = |V l|
|V | , where

V l represents the set of labeled nodes in the network. Differ-
ent settings of Rl are constructed by randomly sampling V l

from V while ensuring nodes in V l covering all labels. In
this section, we conduct multi-label classification on three
datasets with six transfer learning tasks. We consider two
settings, an unsupervised setting with only the source net-
work partially labeled, and a semi-supervised setting where
both the source and target networks are partially labeled.

5.2.1 Unsupervised Setting: Partially Labeled Source Net-
work and Completely Unlabeled Target Network
In the unsupervised setting, we conduct experiments with
the source training rate as 10% while the target network is
completely unlabeled. The experimental results are shown
in Table 3. It can be easily observed that our proposed
method AdaGCN outperforms all the baselines in five out
of six tasks, and has comparable results with the best
baseline CDNE on the sixth task Citationv1→ACMv9. It
demonstrates the effectiveness of our proposed AdaGCN
model for cross-network node classification. Specifically,
there is a 4.41% relative performance improvement in Micro-
F1 score and a 5.81% in Macro-F1 score over the best baseline
CDNE on average across all transfer tasks. AdaIGCN can
further improve AdaGCN, and outperforms all the baselines
consistently in all learning tasks.

GCN and GraphSAGE have comparable performance.
The proposed AdaGCN method adapts GCN for cross-
network learning by combining it with domain adaptation
technique. It achieves significant 13.54% and 19.03% rel-
ative gains in Micro-F1 and Macro-F1 scores respectively
over GCN, which suggests that the adversarial domain
adaptation component can effectively mitigate the distribu-
tion divergence of two domains and enables a successful
knowledge transfer. The proposed AdaIGCN model further
achieves significant 4.83% and 4.28% relative improvements
in Micro-F1 and Macro-F1 scores respectively over AdaGCN
on average, which shows that IGCN can learn better node
representations to facilitate knowledge transfer.

We noticed that both DeepWalk and node2vec have poor
performance in all transfer learning tasks as shown in Ta-
ble 3. The reason is that node representations used for multi-
label classification are trained independently for the source
and target networks since no connections between them
exist. This makes the learned representations incomparable
across networks, and thus the learned classifier based on
source labeled data can not generalize to the target domain.
Similar observations have also been made in [8]. There-
fore, single network embedding methods with only net-

Authorized licensed use limited to: Hainan University. Downloaded on February 17,2022 at 10:02:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3144250, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 9

TABLE 3
Multi-label classification with source training rate as 10%

Source Target DeepWalk node2vec ANRL LANE GraphSAGE DNNs WDGRL NetTr CDNE GCN AdaGCN AdaIGCN

Micro-F1

(%)

C
D

24.67 21.73 49.37 53.30 67.42 28.71 29.05 48.32 70.80 67.00 70.89 75.14

A 25.96 27.70 48.41 50.37 65.95 33.88 32.86 48.24 62.94 65.92 69.32 74.85

D
C

31.05 21.78 40.47 47.86 59.23 16.36 21.63 44.47 71.34 63.47 77.77 79.34

A 25.34 23.48 46.55 49.57 66.49 27.33 28.82 47.60 72.10 69.02 78.83 78.97

D
A

27.85 26.24 39.99 47.02 53.08 9.64 16.90 42.42 66.79 53.32 67.92 71.43

C 28.98 19.39 44.22 51.01 61.05 24.63 28.02 44.73 71.02 64.33 68.30 74.48

Average 27.31 23.39 44.84 49.86 62.20 23.43 26.21 45.96 69.17 63.84 72.17 75.70

Macro-F1

(%)

C
D

22.02 15.32 43.19 45.41 62.03 28.14 29.27 42.63 68.62 64.28 69.75 72.53

A 21.90 23.53 40.11 41.87 61.66 31.95 31.79 41.78 60.87 62.24 68.46 72.29

D
C

25.14 16.50 34.13 40.32 52.13 16.61 21.33 39.66 70.47 59.76 76.42 77.95

A 20.94 19.70 40.58 42.77 61.54 26.83 28.36 42.88 70.29 65.10 77.45 77.53

D
A

25.86 20.90 33.32 38.37 45.85 10.11 17.17 36.17 65.72 50.12 69.31 72.26

C 23.85 14.38 38.94 43.95 52.98 24.43 27.39 40.78 70.16 61.35 67.83 75.04

Average 23.29 18.39 38.38 42.12 56.03 23.01 25.89 40.65 67.69 60.48 71.54 74.60
* D: DBLPv7, C: Citationv1, A: ACMv9. The top 2 classification f1-scores are highlighted in bold for each task.

TABLE 4
Multi-label classification with source training rate as 10% and target training rate as 5%

Source Target DeepWalk node2vec ANRL LANE GraphSAGE DNNs WDGRL NetTr CDNE GCN AdaGCN AdaIGCN

Micro-F1

(%)

C
D

53.10 59.17 55.97 56.73 70.42 32.41 33.59 50.74 73.69 71.25 71.90 75.25

A 48.02 57.67 52.55 55.89 69.13 40.18 30.73 48.31 69.61 70.29 75.18 75.95

D
C

66.57 69.13 53.91 58.12 68.99 28.03 23.33 50.28 78.93 73.09 79.66 80.33

A 61.56 66.91 54.42 58.76 71.92 34.60 32.73 49.98 77.86 75.28 81.45 82.00

D
A

58.85 64.23 49.37 54.52 64.64 27.57 21.76 45.24 77.38 71.51 75.15 78.18

C 57.58 62.60 51.39 55.56 69.20 35.17 33.43 46.26 77.10 72.84 74.51 77.14

Average 57.61 63.29 52.94 56.60 69.05 32.99 29.26 48.47 75.76 72.38 76.31 78.14

Macro-F1

(%)

C
D

47.48 53.11 48.54 48.58 66.24 31.71 33.63 44.12 71.96 70.02 71.71 73.66

A 42.60 51.25 44.01 47.52 65.13 38.14 30.41 42.03 66.73 68.29 73.57 74.87

D
C

62.63 64.49 47.27 51.52 63.78 28.21 23.66 45.41 77.24 71.44 77.92 78.18

A 56.44 62.20 48.34 52.87 67.77 34.22 32.63 45.37 75.90 73.16 79.44 80.09

D
A

58.92 64.43 43.91 48.90 64.00 27.90 21.65 41.09 77.22 71.69 75.66 78.65

C 56.85 63.10 46.91 50.84 67.60 35.07 33.11 42.83 77.44 73.13 74.70 76.90

Average 54.15 59.76 46.50 50.04 65.75 32.54 29.18 43.48 74.42 71.29 75.50 77.06
* D: DBLPv7, C: Citationv1, A: ACMv9. The top 2 classification f1-scores are highlighted in bold for each task.

work topology as input are not directly suitable for multi-
network learning. ANRL, as an attributed network embed-
ding method, has much better performance compared with
DeepWalk and node2vec, which benefits from the shared
node attributes between the source and target networks.
However, it is inferior to GCN by a large margin, not to
mention the proposed AdaGCN method. The reasons lie in
two aspects: firstly, ANRL is an unsupervised embedding
method, so node classification can only be conducted after
node representations have been learned, while GCN can
perform semi-supervised learning in an end-to-end manner;
secondly, ANRL suffers from the distribution shift between
the source and target domains, while AdaGCN addresses
this issue by introducing an adversarial domain adapta-
tion component. Another attributed network embedding
method LANE also outperforms ANRL, since it incorporates
label information in the embedding learning process.

Both DNNs and WDGRL cannot leverage network topol-
ogy information. It can be observed that the performances
of DNNs and WDGRL are poor, although more available
labeled nodes can help improve their performances. Besides,
we noticed that WDGRL performs worse than DNNs in
some tasks, which means that the domain adaptation com-

ponent of WDGRL results in negative transfer. The reason
might be that the distribution divergence between node
attributes of two domains are too large for the adversarial
domain adaptation method to work. Overall, it suggests that
existing domain adaptation methods can not handle cross-
network node classification problem due to their inability
in leveraging network structure information. In contrast,
our proposed AdaGCN method jointly models network
structures and node attributes with graph convolution. The
Laplacian smoothing on node features with graph convolu-
tion in the representation learner enables an easy knowledge
transfer across networks.

NetTr and CDNE are two transfer learning methods for
cross-network node classification. Our methods outperform
NetTr by a large margin. Specifically, AdaGCN achieves
remarkable 57.28% and 76.46% relative improvements over
NetTr in Micro-F1 and Macro-F1 scores, respectively. One
important reason is that NetTr learns transferable rep-
resentations based on network topology only. Our pro-
posed methods also produce a significant improvement over
CDNE on average as mentioned before. Particularly, the
relative performance gain of AdaGCN over CDNE reaches
the desirable 12.47% and 10.14% in Micro-F1 and Macro-

Authorized licensed use limited to: Hainan University. Downloaded on February 17,2022 at 10:02:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3144250, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 10

F1 scores respectively on ACMv9→DBLPv7. The advan-
tages of our methods over CDNE can be summarized into
two aspects: firstly, graph convolution enables a natural
combination of node attributes and network structures for
representation learning, while CDNE only leverages net-
work structures to extract features; secondly, the adversarial
domain adaptation method is shown to be more effective
compared with MMD in the literature [18].

5.2.2 Semi-Supervised Setting: Partially Labeled Source
and Target Networks
In the semi-supervised setting, both of the source and target
networks are partially labeled with 10% and 5% training
rates, respectively. The results are shown in Table 4.

Due to the additional available labeled data in the tar-
get network, all models achieve better classification perfor-
mance compared with the unsupervised setting as shown in
Tables 3 and 4. There are many similar findings in both the
unsupervised and semi-supervised scenarios, and we only
highlight some new insights. Firstly, both DeepWalk and
node2vec perform significantly better even though only 5%
additional labeled nodes in the target network are available.
It shows the effectiveness of the learned node embeddings
in the target network. Both GraphSAGE and GCN have bet-
ter results compared with DeepWalk and node2vec because
of the proper utilization of both node attributes and network
topology in learning tasks and a certain level of knowledge
transfer due to the shared weights in the representation
learner. AdaGCN consistently outperforms GCN across all
learning tasks by a large margin, which can be attributed
to the successful knowledge transfer from the source to the
target network thanks to the domain adaptation component.
Similarly, AdaIGCN further improves over AdaGCN with
2.40% and 2.04% relative gains in Micro-F1 and Macro-F1
scores respectively because of the improved GCN layer for
alleviating overfitting. It also produces 3.14% and 3.55%
relative improvements in Micro-F1 and Macro-F1 scores
respectively over the best baseline CDNE.

Overall, the empirical results demonstrate that our pro-
posed methods achieve state-of-the-art cross-network node
classification performance in both the unsupervised and
semi-supervised settings. To make our results more con-
vincing, we also consider combining the source and tar-
get networks into a single network by randomly adding
η ∈ {0, 10−5%, 10−3%} cross-network edges and doing
training and inference on the combined network with GCN.
The results reported in Table 5.2.2 show that even a very
small number of artificial edges can lead to performance
degradation, and our AdaGCN has a clear advantage.

5.3 Effect of Training Rate (RQ2)
In this section, we study the effect of training rate Rl of the
source and target networks on model performance.

5.3.1 Effect of Source Training Rate
We conduct experiments with the training rate of source
network ranging from 5% to 90% while the target network
is completely unlabeled. The experimental results are dis-
played in Figure 3. Note that only some of the baselines are
selected for comparison to ensure clear presentations, and

TABLE 5
Comparison with GCN on a combined network.

Settings Methods C→D A→D D→C A→C D→A C→A

U

GCN (10−3%) 64.93 61.78 56.08 67.67 52.96 58.12

GCN (10−5%) 67.40 65.20 59.68 70.52 55.22 62.65

GCN (0) 67.00 65.92 63.47 69.02 53.32 64.33

AdaGCN 70.89 69.32 77.77 78.83 67.92 68.30

S

GCN (10−3%) 70.87 67.38 72.02 75.46 70.79 70.50

GCN (10−5%) 71.84 69.03 73.11 75.97 71.70 71.53

GCN (0) 71.25 70.29 73.09 75.28 71.51 72.84

AdaGCN 71.90 75.18 79.66 81.45 75.15 74.51
* U: Unsupervised, S: Semi-supervised, D: DBLPv7, C: Citationv1, A: ACMv9. The

best classification score in Micro-F1 (%) is highlighted in bold for each task.

only the results on tasks with DBLPv7 and Citationv1 as
targets are presented here to avioid repetition. We have the
following observations:
• Our proposed methods, including AdaGCN and

AdaIGCN, consistently outperform all the baselines on
these four tasks for all training rates, which demon-
strates their effectiveness for knowledge transfer across
networks. AdaIGCN performs better than AdaGCN, es-
pecially when the source training rate is low. It validates
that the utilization of IGCN layer can help alleviate the
overfitting issue and facilitate knowledge transfer.

• For almost all baselines except DeepWalk, the perfor-
mance first improves, and then becomes stable with the in-
crease of source training rate. For our proposed AdaIGCN,
it shows remarkably good performance even with only
5% labeled nodes in the source network, which suggests
its high label efficiency.

• We noticed that the performance of DeepWalk decreases
as the source training rate increases. It actually further
confirms our finding that single network embedding
methods based on topology only are not applicable for
cross-network learning due to the incomparable node
representations for two networks. Similar results can also
be observed for node2vec which are not shown here.

5.3.2 Effect of Target Training Rate
We investigate the effect of target training rate by varying it
from 1% to 10% while fixing source training rate as 10%.
We only show the Micro-F1 scores in Figure 4 on learn-
ing tasks Citationv1→DBLPv7 and DBLPv7→Citationv1 for
succinct presentation. We have the following observations.
Firstly, AdaGCN significantly and consistently outperforms
GCN on both learning tasks for all target training rates,
which means that the adversarial domain adaptation com-
ponent can successfully mitigate the distribution discrep-
ancy between two domains and help knowledge transfer
across networks. Specifically, AdaGCN exhibits an impres-
sive 5.08% relative improvement over GCN on average.
Secondly, AdaIGCN further achieves improvements upon
AdaGCN consistently, and the gap is more significant with
low target training rate. In particular, it produces a 3.90%
relative gain over AdaGCN on Citationv1→DBLPv7 when
the target training rate is 1%. It proves that the improved
GCN layer can make a good balance between the strength
of Laplacian smoothing and model complexity. Overall, it
demonstrates the effectiveness of our proposed methods for
graph transfer learning in the semi-supervised setting.

Authorized licensed use limited to: Hainan University. Downloaded on February 17,2022 at 10:02:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3144250, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 11

5 10 50 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
icr

o-
F1

Citationv1 DBLPv7

5 10 50 90
Source Training Rate (%)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ac

ro
-F

1

5 10 50 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
ACMv9 DBLPv7

5 10 50 90
Source Training Rate (%)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 50 90
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

DBLPv7 Citationv1

5 10 50 90
Source Training Rate (%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5 10 50 90
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

ACMv9 Citationv1

5 10 50 90
Source Training Rate (%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

DeepWalk ANRL NetTr WDGRL CDNE GCN AdaGCN (ours) AdaIGCN (ours)

Fig. 3. Multi-label classification with varying source training rates.

1% 3% 5% 10%
Target Training Rate (%)

0.60

0.65

0.70

0.75

0.80

M
icr

o-
F1

Citationv1 DBLPv7

1% 3% 5% 10%
Target Training Rate (%)

0.60

0.65

0.70

0.75

0.80

0.85 DBLPv7 Citationv1
GCN AdaGCN AdaIGCN

Fig. 4. Multi-label classification with varying target training rates.

10 20 30 40 50

0.2

0.4

0.6

0.8

M
icr

o-
F1

DBLPv7 Citationv1

GCN
AdaGCN
AdaIGCN

10 20 30 40 50
Common Attribute Rate (%)

0.2

0.4

0.6

0.8

M
ac

ro
-F

1

GCN
AdaGCN
AdaIGCN

10 20 30 40 50

0.2

0.4

0.6

0.8

ACMv9 Citationv1

GCN
AdaGCN
AdaIGCN

10 20 30 40 50
Common Attribute Rate (%)

0.2

0.4

0.6

0.8

GCN
AdaGCN
AdaIGCN

Fig. 5. Multi-label classification on Citationv1 with varying common
attribute rates of the source and target networks.

5.4 Effect of Distribution Discrepancy (RQ3)
In this section, we explore the effect of distribution dis-
crepancy between the source and target networks on do-
main adaptation. We define common attribute rate between
the source and target networks as Ra = |X s∩X t|

|X s∪X t| . When
calculating Ra, the number of union attributes is fixed
to be the one provided in Table 2, that is, 6775. In the
experiments, we vary Ra by randomly deleting some of the

common attributes of two networks. LowerRa means larger
distribution discrepancy. We conduct multi-label classifica-
tion under unsupervised setting, with the source training
rate set as 10%. GCN, AdaGCN, and AdaIGCN are eval-
uated in transfer tasks where Citationv1 serves as the tar-
get network. In transfer tasks, “DBLPv7→Citationv1” and
“ACMv9→Citationv1”, the initial common attribute rates
are 55.84% and 63.25%, respectively.

Figure 5 displays the experimental results when Ra

ranges from 10% to 50%. Both AdaGCN and AdaIGCN con-
sistently outperform GCN across all common attribute rates
for both transfer tasks. More specifically, AdaGCN achieves
22.88% and 24.93% relative gains on Micro-F1 and Macro-
F1 scores respectively over GCN for DBLPv7→Citationv1,
and 9.02% and 14.56% for ACMv9→Citationv1. It demon-
strates that the adversarial domain adaptation component
contributes to the classification performance even when
the source and target networks only share a very small
proportion of attributes. Besides, AdaIGCN performs better
than AdaGCN consistently, which further confirms that
the IGCN layer can learn better node representations for
domain adaptation. In summary, the proposed methods are
very robust and can work well with large distribution shifts
between the source and target networks, which enables their
applications for a wide range of real-world problems.

5.5 Effect of Graph Convolution (RQ4)

In this section, we vary the smoothing parameter nI of
the IGCN layer in AdaIGCN from 1 to 25 to study the
effect of graph convolution on domain adaptation. Note that
AdaIGCN can be reduced to WDGRL when nI = 0, i.e., no
smoothing on node features. The experiments are conducted
in the unsupervised setting with source training rate as 10%.
We present the experimental results on DBLPv7→Citationv1
in Figure 6(a). We can observe that graph convolution
on node features brings extraordinary improvements to
node classification performance on the target network, since
there is a remarkable 26.62% relative improvement when

Authorized licensed use limited to: Hainan University. Downloaded on February 17,2022 at 10:02:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3144250, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 12

0 1 5 10 15 20 25
Smoothing parameter nI

0.55

0.60

0.65

0.70

0.75

0.80

M
icr

o-
F1

(a) Parameter nI .

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Domain adaptation coefficient

0.60

0.65

0.70

0.75

0.80

M
icr

o-
F1

(b) Coefficient λ.

1 5 10 15 20
Gradient penalty coefficient

0.60

0.65

0.70

0.75

0.80

M
icr

o-
F1

(c) Coefficient γ.

5 10 15 20 25
Domain critic training step nd

0.60

0.65

0.70

0.75

0.80

M
icr

o-
F1

(d) Training step nd.

Fig. 6. Impact of hyper-parameters.

increasing nI from 0 to 1. When varying nI from 1 to 25,
the classification accuracy first increases and then slightly
drops. It shows that appropriate setting of nI can help
further facilitate knowledge transfer, but too large nI can
result in over-smoothing of node features and thus harm the
transfer performance. Specifically, features of neighborhood
nodes become similar with Laplacian smoothing in the
graph convolutional layer, and a large smoothing parameter
can make them converge to very similar value and blur the
class boundaries. On the whole, graph convolution plays
a crucial role for the successful knowledge transfer across
networks in our proposed framework.

5.6 Parameter Sensitivity (RQ5)

In this section, we perform sensitivity analysis of AdaGCN
on domain adaptation coefficient λ, gradient penalty coeffi-
cient γ, and domain critic training step nd. The experiments
are conducted in the unsupervised setting with source train-
ing rate as 10%. It is expected to shed some lights on how to
configure these hyper-parameters. Here we only present the
Micro-F1 score for Citationv1→DBLPv7 to avoid repetition,
and similar tendency can be observed in other tasks. Note
that when studying one hyper-parameter, we fix all others
with default settings mentioned in Section 5.1.3.

λ is a coefficient for balancing the semi-supervised loss
and domain adaptation loss. We can find that the perfor-
mance slightly improves with the increase of λ from 0.4
to 1.2, and then drops quickly afterwards as shown in
Figure 6(b). It suggests that it is important to maintain the
balance between the two parts so as to learn both class
discriminative and domain invariant representations. γ is
a hyper-parameter for controlling the weight of gradient
penalty when training the discriminator of the adversarial
domain adaptation component. From Figure 6(c), it can be
observed that the best result is obtained when γ is set
to 10, and smaller or larger configurations might result
in performance degradation, which is consistent with the
finding in [69], and thus 10 would be a recommended
setting. Theoretically, the domain critic network fd(·) should
be trained to optimality by optimizing its own parameters
while fixing those of other components, and thus the train-
ing step nd should be set to a large enough number for this

80 60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

(a) GCN.

75 50 25 0 25 50 75

100

75

50

25

0

25

50

75

(b) IGCN.

80 60 40 20 0 20 40 60
80

60

40

20

0

20

40

60

80

(c) AdaGCN.

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

(d) AdaIGCN.

Fig. 7. Visualization of the learned node representations from
ACMv9→Citationv1. Each point represents one paper. Gray and orange
points are from the source network, and red and green points are from
the target network. Gray and red: “Databases”. Orange and green:
“Computer Vision”. These plots are best viewed in color.

purpose. From Figure 6(d), it can be noticed that the Micro-
F1 score shows apparent increase when increasing nd from
5 to 10, and then becomes stable, which is consistent with
our theoretic analysis.

5.7 Visualization of Node Representations

Figure 7 visualizes the node representations generated by
GCN, IGCN, AdaGCN and AdaIGCN in the unsupervised
setting for ACMv9→Citationv1 using t-SNE [74] where the
source network is fully labeled. We only visualize nodes
from “Databases” and “Computer Vision” for clear pre-
sentation. The gray and orange points represent papers
of “Databases” and “Computer Vision” respectively from
ACMv9, while red and green points represent papers of
“Databases” and “Computer Vision” from Citationv1.

On one hand, the domain adaptation component helps
mitigate domain divergence and benefits knowledge trans-
fer. Specifically, from Figures 7(a) and 7(b), it can be ob-
served that both the GCN and IGCN models suffer from
distribution shift between different networks, since nodes
from different categories, e.g., green and gray points, are
mixed together. In contrast, from Figures 7(c) and 7(d), we
can find that gray and red points are clustered together,
while orange and green nodes are clustered together. It
demonstrates that the adversarial domain adaptation suc-
cessfully mitigates the distribution divergence between the
source and target networks, since papers from the same
categories of both domains are well clustered together.
Besides, the boundary between these two clusters are quite
clear, which means that the learned node representations
are discriminative. On the other hand, the IGCN layer also
brings two significant advantages. Firstly, the IGCN layer
allows adjusting the smoothing strength on node features
without increasing model complexity, and an appropriate
smoothing of node features helps to learn more compact
node representations within the same category as shown in
Figures 7(b) and 7(d), thus contributes to the classification
task. Furthermore, it makes the domain adaptation process

Authorized licensed use limited to: Hainan University. Downloaded on February 17,2022 at 10:02:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3144250, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 13

easier, which is confirmed by the visualization results that
AdaIGCN aligns the source and target node representations
better than AdaGCN as shown in Figures 7(c) and 7(d).

6 CONCLUSION

In this paper, we successfully address the cross-network
node classification problem by proposing a novel graph
transfer learning framework AdaGCN, which leverages the
techniques of adversarial domain adaptation and graph
convolution. It can learn both class discriminative and
network invariant node representations with the help of
a semi-supervised learning (SSL) component and an ad-
versarial domain adaptation (ADA) component. The SSL
component is capable of learning a well-generalized node
classifier with graph convolutional layers for representation
learning, while the ADA component ensures successful
knowledge transfer from the source network to the target
network through adversarial learning. Together they enable
AdaGCN to work well in real-world attributed networks
under a realistic setting.

The research of transfer learning on networked data is
still in an early stage, and much more effort is needed. This
paper serves as a step further in this direction. Future work
will include investigating knowledge transfer from multiple
source networks to a target network and exploring condi-
tional adversarial domain adaptation for better alignment
of multimodal data distribution.

ACKNOWLEDGMENTS

This research was partially supported by National Natu-
ral Science Foundation of China (No. 62102124), HK ITF
UIM/363 and the grants 1-ZVJJ and G-YBXV funded by the
Hong Kong Polytechnic University.

REFERENCES

[1] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classifica-
tion in social networks,” in Social Network Data Analytics, 2011.

[2] J. Shu, Z. Xu, and D. Meng, “Small sample learning in big data
era,” CoRR, vol. abs/1808.04572, 2018.

[3] M. Fang, J. Yin, and X. Zhu, “Transfer learning across networks for
collective classification,” in ICDM, 2013, pp. 161–170.

[4] X. Shen, Q. Dai, S. Mao, F.-l. Chung, and K.-S. Choi, “Network
together: Node classification via cross-network deep network
embedding,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, no. 5, pp. 1935–1948, 2021.

[5] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning
of social representations,” in KDD, 2014, pp. 701–710.

[6] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:
large-scale information network embedding,” in WWW, 2015.

[7] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in KDD, 2016, pp. 855–864.

[8] M. Heimann and D. Koutra, “On generalizing neural node em-
bedding methods to multi-network problems,” in KDD MLG
Workshop, 2017.

[9] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” in ICML, 2016.

[10] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR, 2017.

[11] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representa-
tion learning on large graphs,” in NIPS, 2017.

[12] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” CoRR, 2017.

[13] J. Ni, S. Chang, X. Liu, W. Cheng, H. Chen, D. Xu, and X. Zhang,
“Co-regularized deep multi-network embedding,” in WWW, 2018.

[14] L. Xu, X. Wei, J. Cao, and P. S. Yu, “Embedding of embedding
(EOE): joint embedding for coupled heterogeneous networks,” in
WSDM, 2017, pp. 741–749.

[15] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., 2010.

[16] M. Wang and W. Deng, “Deep visual domain adaptation: A
survey,” Neurocomputing, vol. 312, pp. 135–153, 2018.

[17] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. S. Lempitsky, “Domain-
adversarial training of neural networks,” JMLR, 2016.

[18] J. Shen, Y. Qu, W. Zhang, and Y. Yu, “Wasserstein distance guided
representation learning for domain adaptation,” in AAAI, 2018,
pp. 4058–4065.

[19] Q. Li, X. Wu, H. Liu, X. Zhang, and Z. Guan, “Label efficient semi-
supervised learning via graph filtering,” in CVPR, 2019.

[20] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. C. Courville, and Y. Bengio, “Generative
adversarial nets,” in NIPS, 2014, pp. 2672–2680.

[21] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network
embedding,” IEEE Transactions on Knowledge and Data Engineering,
vol. 31, no. 5, pp. 833–852, 2019.

[22] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning
on graphs: Methods and applications,” IEEE Data Eng. Bull.,
vol. 40, no. 3, pp. 52–74, 2017.

[23] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A survey on
knowledge graphs: Representation, acquisition, and applications,”
IEEE Transactions on Neural Networks and Learning Systems, 2021.

[24] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations
with global structural information,” in CIKM, 2015, pp. 891–900.

[25] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” in AAAI, 2017, pp. 203–209.

[26] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning
graph representations,” in AAAI, 2016, pp. 1145–1152.

[27] D. Wang, P. Cui, and W. Zhu, “Structural deep network embed-
ding,” in KDD, 2016, pp. 1225–1234.

[28] X. Shen and F. Chung, “Deep network embedding with aggregated
proximity preserving,” in ASONAM, 2017, pp. 40–43.

[29] X. Shen and F.-L. Chung, “Deep network embedding for graph
representation learning in signed networks,” IEEE Transactions on
Cybernetics, vol. 50, no. 4, pp. 1556–1568, 2020.

[30] P. Jiao, X. Guo, X. Jing, D. He, H. Wu, S. Pan, M. Gong, and
W. Wang, “Temporal network embedding for link prediction via
vae joint attention mechanism,” IEEE Transactions on Neural Net-
works and Learning Systems, pp. 1–14, 2021.

[31] Q. Dai, Q. Li, J. Tang, and D. Wang, “Adversarial network embed-
ding,” in AAAI, 2018.

[32] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adver-
sarially regularized graph autoencoder for graph embedding,” in
IJCAI, 2018.

[33] Q. Dai, X. Shen, L. Zhang, Q. Li, and D. Wang, “Adversarial
training methods for network embedding,” in WWW, 2019.

[34] S. Pan, R. Hu, S. Fung, G. Long, J. Jiang, and C. Zhang, “Learning
graph embedding with adversarial training methods,” IEEE Trans.
Cybern., vol. 50, no. 6, pp. 2475–2487, 2020.

[35] Z. Zhang, H. Yang, J. Bu, S. Zhou, P. Yu, J. Zhang, M. Ester, and
C. Wang, “ANRL: attributed network representation learning via
deep neural networks,” in IJCAI, 2018, pp. 3155–3161.

[36] L. Xu, X. Wei, J. Cao, and P. S. Yu, “On exploring semantic
meanings of links for embedding social networks,” in WWW, 2018.

[37] Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, “Anomaly
detection on attributed networks via contrastive self-supervised
learning,” IEEE Transactions on Neural Networks and Learning Sys-
tems, pp. 1–15, 2021.

[38] X. Huang, J. Li, and X. Hu, “Label informed attributed network
embedding,” in WSDM, 2017, pp. 731–739.

[39] C. Tu, W. Zhang, Z. Liu, and M. Sun, “Max-margin deepwalk:
Discriminative learning of network representation,” in IJCAI, 2016.

[40] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep
network representation,” in IJCAI, 2016, pp. 1895–1901.

[41] J. Liang, P. Jacobs, J. Sun, and S. Parthasarathy, “Semi-supervised
embedding in attributed networks with outliers,” in SDM, 2018.

[42] M. Wu, S. Pan, L. Du, and X. Zhu, “Learning graph neural
networks with positive and unlabeled nodes,” ACM Trans. Knowl.
Discov. Data, vol. 15, no. 6, pp. 101:1–101:25, 2021.

[43] L. Liu, W. K. Cheung, X. Li, and L. Liao, “Aligning users across
social networks using network embedding,” in IJCAI, 2016.

Authorized licensed use limited to: Hainan University. Downloaded on February 17,2022 at 10:02:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3144250, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 14

[44] M. Heimann, H. Shen, T. Safavi, and D. Koutra, “REGAL: repre-
sentation learning-based graph alignment,” in CIKM, 2018.

[45] J. Tang, T. Lou, and J. M. Kleinberg, “Inferring social ties across
heterogenous networks,” in WSDM, 2012, pp. 743–752.

[46] X. Shen, F. Chung, and S. Mao, “Leveraging cross-network in-
formation for graph sparsification in influence maximization,” in
SIGIR, 2017.

[47] X. Shen, S. Mao, and F.-l. Chung, “Cross-network learning with
fuzzy labels for seed selection and graph sparsification in influ-
ence maximization,” IEEE Transactions on Fuzzy Systems, vol. 28,
no. 9, pp. 2195–2208, 2020.

[48] J. Ye, H. Cheng, Z. Zhu, and M. Chen, “Predicting positive and
negative links in signed social networks by transfer learning,” in
WWW, 2013.

[49] J. Lee, H. Kim, J. Lee, and S. Yoon, “Transfer learning for deep
learning on graph-structured data,” in AAAI, 2017, pp. 2154–2160.

[50] C. Fu, Y. Zheng, Y. Liu, Q. Xuan, and G. Chen, “Nes-tl: Network
embedding similarity-based transfer learning,” IEEE Transactions
on Network Science and Engineering, vol. 7, no. 3, pp. 1607–1618,
2019.

[51] B. Tan, Y. Zhang, S. J. Pan, and Q. Yang, “Distant domain transfer
learning,” in AAAI, 2017, pp. 2604–2610.

[52] A. Rozantsev, M. Salzmann, and P. Fua, “Beyond sharing weights
for deep domain adaptation,” CoRR, vol. abs/1603.06432, 2016.

[53] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning transferable
features with deep adaptation networks,” in ICML, 2015.

[54] B. Sun and K. Saenko, “Deep CORAL: correlation alignment for
deep domain adaptation,” in ECCV, 2016, pp. 443–450.

[55] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep
domain confusion: Maximizing for domain invariance,” CoRR,
vol. abs/1412.3474, 2014.

[56] F. Zhuang, X. Cheng, P. Luo, S. J. Pan, and Q. He, “Supervised rep-
resentation learning: Transfer learning with deep autoencoders,”
in IJCAI, 2015, pp. 4119–4125.

[57] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to
discover cross-domain relations with generative adversarial net-
works,” in ICML, 2017, pp. 1857–1865.

[58] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial
discriminative domain adaptation,” in CVPR, 2017, pp. 2962–2971.

[59] Z. Pei, Z. Cao, M. Long, and J. Wang, “Multi-adversarial domain
adaptation,” in AAAI, 2018, pp. 3934–3941.

[60] M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Conditional adver-
sarial domain adaptation,” in NeurIPS, 2018, pp. 1647–1657.

[61] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, “Analysis of
representations for domain adaptation,” in NIPS. MIT Press, 2006.

[62] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. W. Vaughan, “A theory of learning from different domains,”
Machine Learning, vol. 79, no. 1-2, pp. 151–175, 2010.

[63] X. Zhang, H. Liu, Q. Li, and X. Wu, “Attributed graph clustering
via adaptive graph convolution,” in Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, 2019, pp. 4327–4333.

[64] W. Fan, Y. Ma, Q. Li, Y. He, Y. E. Zhao, J. Tang, and D. Yin, “Graph
neural networks for social recommendation,” in WWW, 2019.

[65] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other
irregular domains,” IEEE Signal Processing Magazine, vol. 30, no. 3,
pp. 83–98, 2013.

[66] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Processing, 2013.

[67] Q. Li, Z. Han, and X. Wu, “Deeper insights into graph convolu-
tional networks for semi-supervised learning,” in AAAI, 2018.

[68] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative
adversarial networks,” in ICML, 2017, pp. 214–223.

[69] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, “Improved training of wasserstein gans,” in NIPS, 2017.

[70] C. Villani, Optimal transport: old and new. Springer-Verlag Berlin
Heidelberg, 2008, vol. 338.

[71] J. Chen, J. Zhu, and L. Song, “Stochastic training of graph convo-
lutional networks with variance reduction,” in ICML, 2018.

[72] J. Chen, T. Ma, and C. Xiao, “Fastgcn: Fast learning with graph
convolutional networks via importance sampling,” in ICLR, 2018.

[73] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
extraction and mining of academic social networks,” in KDD, 2008.

[74] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,”
JMLR, vol. 9, pp. 2579–2605, 2008.

Quanyu Dai is currently a researcher at Huawei
Noah’s Ark Lab. He received the B.Eng. degree
in information engineering from Shanghai Jiao
Tong University, in 2015, and the Ph.D. degree at
the Department of Computing, The Hong Kong
Polytechnic University, in 2020. His research in-
terests include machine learning, data mining
and recommender systems. He has publications
appeared in the top-tier journals and confer-
ences, such as TKDE, TNNLS, IJCAI, AAAI,
WWW and KDD.

Xiao-Ming Wu is currently an assistant profes-
sor at the Department of Computing, The Hong
Kong Polytechnic University. She obtained her
PhD degree from the Department of Electrical
Engineering, Columbia University in 2016. Prior
to that, she obtained her MPhil degree from the
Chinese University of Hong Kong and her bach-
elor’s and master’s degrees from Peking Uni-
versity. Her research interests include machine
learning and applications of artificial intelligence
in computer vision, natural language processing,

and search and recommendation.

Jiaren Xiao received the B.Eng. degree in me-
chanical engineering from Xi’an Jiaotong Univer-
sity, Xi’an, China, in 2015, and the M.Eng. de-
gree in mechanical engineering from Shanghai
Jiao Tong University, Shanghai, China, in 2018.
He is now a Ph.D. candidate at the Department
of Mechanical Engineering, The University of
Hong Kong, Hong Kong, China. His research
interests include graph representation learning
and transfer learning.

Xiao Shen received the double B.Sc. degrees
from Beijing University of Posts and Telecommu-
nications and Queen Mary University of London
in 2012, the M.Phil. degree from University of
Cambridge in 2013, and the Ph.D. degree from
Department of Computing, Hong Kong Polytech-
nic University, in 2019. She was a Postdoc Fel-
low at Hong Kong Polytechnic University. She is
now an Associate Professor with Hainan Univer-
sity, China. She received the Hong Kong PhD
Fellowship. Her research interests include fea-

ture representation learning, deep learning, transfer learning and data
mining in complex networks.

Dan Wang is currently an associate professor
at Department of Computing, The Hong Kong
Polytechnic University. He is an expert in com-
puter networking, and he is recently working in
the inter-discipline domains of smart energy sys-
tems, industry 4.0. He publishes extensively in
top networking conferences, such as ACM SIG-
COMM, ACM SIGMETRICS, IEEE INFOCOM
and in top inter-discipline conference, such as
ACM e-Energy, ACM Buildsys. He won the Best
Paper Award of ACM e-Energy 2018, the Best

Paper Award of ACM Buildsys 2018. He will serve as the TPC co-
Chair of ACM e-Energy 2020. Dan Wang received his B.Sc degree from
Peking University, China, his M.Sc degree from Case Western Reserve
University, Cleveland, Ohio, and his Ph.D. degree from Simon Fraser
University, Canada, all in computer science.

Authorized licensed use limited to: Hainan University. Downloaded on February 17,2022 at 10:02:07 UTC from IEEE Xplore. Restrictions apply.

