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Abstract
The explosion of visual content available online
underscores the requirement for an accurate ma-
chine assessor to robustly evaluate scores across
diverse types of visual contents. While recent
studies have demonstrated the exceptional poten-
tials of large multi-modality models (LMMs) on
a wide range of related fields, in this work, we
explore how to teach them for visual rating align-
ing with human opinions. Observing that human
raters only learn and judge discrete text-defined
levels in subjective studies, we propose to em-
ulate this subjective process and teach LMMs
with text-defined rating levels instead of scores.
The proposed Q-ALIGN achieves state-of-the-
art accuracy on image quality assessment (IQA),
image aesthetic assessment (IAA), as well as
video quality assessment (VQA) under the origi-
nal LMM structure. With the syllabus, we further
unify the three tasks into one model, termed the
ONEALIGN. Our experiments demonstrate the
advantage of discrete levels over direct scores on
training, and that LMMs can learn beyond the
discrete levels and provide effective finer-grained
evaluations. Code and weights will be released.

1. Introduction
There is always a need to score an image. From the early
focus on factors related to compression, transmission, and
image processing (Sheikh et al., 2005), to directly address-
ing user-generated content (Tu et al., 2021a) (e.g. photos
and videos taken with smartphones (Fang et al., 2020)), and
moving on to the recently popular AI-generated content (Li
et al., 2023), at every stage, accurately evaluating visual con-
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Figure 1. The Q-ALIGN (training LMMs with text-defined levels)
in comparison with its baseline (training LMMs with scores) and
existing state-of-the-arts, showing exceptional improvements espe-
cially on cross-set settings. Metrics are (SRCC+PLCC)/2.

tent remains an indispensable need to the computer vision
field. To address this need, from handcraft approaches (Mit-
tal et al., 2013; 2012) to deep-neural-network-based meth-
ods (Talebi & Milanfar, 2018; Zhang et al., 2020; Ke et al.,
2021), the endeavor to improve the accuracies of visual
evaluators never stops. Nevertheless, while existing meth-
ods can already achieve remarkable accuracies on specific
datasets by regressing from the mean opinion scores (MOS),
the complicated factors that affect the final score in contrast
with the limited capacity of these methods have resulted in
their poor out-of-distribution (OOD) generalization abilities.
This makes them struggle to accurately score novel types of
content. Moreover, they usually experience compromised
performance while handling different scoring scenarios (e.g.
mixing multiple datasets) together, making it challenging to
train a unified model for different situations.

In contrast, recently emerging large multi-modality models
(LMMs) have shown very strong background knowledge
on a wide range of visual and language disciplines. They
can well understand high-level visual contents (Liu et al.,
2023a; Ye et al., 2023a), and effectively perceive low-level
visual attributes (Zhang et al., 2023a), and more importantly
possess reasoning ability benefited from their strong lan-
guage decoder (Liu et al., 2023c). While these abilities are
proved fundamental to a more accurate and robust visual
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Figure 2. The syllabus of Q-ALIGN. Based on the general principle to teach LMMs with text-defined rating levels, we generate the
instruction-response pairs by converting existing score labels in image quality assessment (IQA), image aesthetic assessment (IAA) and
video quality assessment (VQA) datasets. During inference, by simulating the process of collecting mean opinion scores (MOS) from
annotators, we extract the close-set probabilities of rating levels and perform weighted average to obtain the LMM-predicted score.

scorer, existing studies (Wu et al., 2023f) have proven that
they still fall short on accurately predicting scores that are
consistent with human preferences. Therefore, in our study,
we investigate the important one last mile for them:

How to teach LMMs to predict scores aligned with human?

To design the most effective syllabus, we reviewed the stan-
dard process for collecting MOS from human (itu, 2000):
First, organizers need to define several rating levels (e.g.
‘excellent’, ‘fair’, ‘bad’) and select examples for each level,
aligning human annotators to the standards of each level.
Referring to these levels, humans mark their ratings either
through a choice button or a grade-guided slider. In other
words, human annotators never learns or marks a spe-
cific score (e.g. 3.457 in range [1,5]). Instead, these final
scores are derived from the distributions of human ratings.

Meanwhile, as observed by recent explorations (Wu et al.,
2023f), LMMs have similar behaviour patterns to humans
while instructed to score: they prefer to respond with text-
defined levels (good/poor); even while explicitly requested
to predict numerical scores, the accuracy is significantly
lower compared to deriving from levels. Therefore, it might
not be optimal to directly tune LMMs to output scores.

Given the above observations, we propose a human-
emulating syllabus to teach LMMs for visual scoring (the
Q-ALIGN), as shown in Fig. 2. During training, simulat-
ing the process of training human annotators, we convert
the MOS values to five text-defined rating levels (itu, 2000)
(excellent/good/fair/poor/bad), which are further formatted
into instruction-response pairs, to conduct visual instruction

tuning (Liu et al., 2023b) on LMMs. During inference,
simulating the strategy to collect MOS from human ratings,
we extract the log probabilities on different rating levels,
employ softmax pooling to obtain the close-set probabilities
of each level. Finally, we get the LMM-predicted score from
a weighted average on the close-set probabilities.

While the proposed syllabus requires only existing scores
and uses even less information, it has proved far better per-
formance than using scores as learning targets. It reaches
state-of-the-art performance on 12 datasets of three rep-
resentative visual scoring tasks with notable improvements:
image quality assessment (IQA), image aesthetic assessment
(IAA), and video quality assessment (VQA), with especially
significant improvements on unseen (OOD) datasets.

Besides achieving state-of-the-art, the proposed Q-ALIGN
also have two exciting characteristics: 1) Data Efficiency.
It can be competitive with current state-of-the-arts with only
1/5 (IQA) or even 1/10 (IAA) data used. This could be espe-
cially useful as data collection is rather expensive for visual
scoring tasks. 2) Free Combination of Datasets. With the
strong capacity of LMMs, unlike existing methods that usu-
ally face performance drop while mixing datasets (Zhang
et al., 2023b), it can freely combine different datasets for
training even from different tasks (i.e. IQA and VQA), and
receive positive performance gain. With this characteristic,
we propose the ONEALIGN, which combines IQA, IAA
and VQA datasets for training. The ONEALIGN is excep-
tionally capable on all three tasks under one unified model,
with further enhanced generalization on unseen datasets.
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Our core contributions can be summarized as three-fold:

• An effective syllabus to teach LMMs to score. Emu-
lating from human experience, the proposed syllabus
to train with discrete levels is notably more effective
than scores (+10%). Moreover, LMMs can effectively
provide finer-grained evaluations under the syllabus.

• A family of more capable visual assessors. The pro-
posed Q-ALIGN achieves state-of-the-art accuracy and
generalization ability on multiple visual assessing tasks.
It also proves competitive performance with fewer data
used, and can converge with fewer training iterations.

• A unified model for visual scoring. With IQA, IAA,
and VQA effectively learned independently under the
same structure, we further propose ONEALIGN, that
unifies all three tasks under one model. We hope this
may open a new paradigm for visual scoring tasks.

2. Related Works
Image Quality Assessment (IQA). Image quality assess-
ment (IQA) mainly focuses on the impact of distortions and
other quality issues in images on human perception. Early
IQA algorithms usually operate on handcraft features fol-
lowing the prior knowledge of statistics disciplines (Wang
et al., 2004; Mittal et al., 2012; 2013). As distortion di-
versifies and visual content becomes more complex, data-
driven end-to-end deep neural networks are increasingly
applied in the IQA field, as represented by NIMA (Talebi
& Milanfar, 2018), DBCNN (Zhang et al., 2020), and Hy-
perIQA (Su et al., 2020). Following this path, MUSIQ
(Ke et al., 2021) designs a multi-scale input structure that
advances the accuracy on IQA via transformers. In recent
years, several methods have investigated the vision-language
correspondence embedded in CLIP (Radford et al., 2021)
to improve generalization ability in IQA. Among them,
CLIP-IQA+ (Wang et al., 2022) designs a few-shot learning
scheme via CoOp (Zhou et al., 2022), and LIQE (Zhang
et al., 2023b) further develops a multitask learning scheme
based on CLIP. Nevertheless, they typically rely on visual-
text similarity to predict quality scores, which limits their
performance to be slightly inferior compared with pure vi-
sual methods. Instead, the proposed Q-ALIGN can signif-
icantly advance state-of-the-arts on IQA, while simultane-
ously further improving OOD generalization ability.

Image Aesthetic Assessment (IAA). In comparison with
IQA, image aesthetic assessment (IAA) (Murray et al., 2012)
is a more complicated task for visual scoring. While visual
quality is also considered influential to visual aesthetics,
the higher-level visual attributes, such as content, lighting,
color, composition (Kong et al., 2016) are considered more
important for IAA. As a result, deep-neural-network-based

methods predominate IAA, such as NIMA and MLSP (Hosu
et al., 2019). Similar as IQA, VILA (Ke et al., 2023) ad-
vances IAA performance by learning vision-language corre-
spondence between images and aesthetic comments (Ghosal
et al., 2019) through a joint constrastive and captioning pre-
training (Yu et al., 2022). Based on LMMs with rich prior
knowledge, the proposed Q-ALIGN can remarkably outper-
form CLIP-based approaches without extra pre-training.

Video Quality Assessment (VQA). Named as video qual-
ity assessment (VQA), the focus of this task is also kind of
complicated, that several studies have claimed that scores
are not only affected by quality issues, but also contents (Li
et al., 2019), and even aesthetics (Wu et al., 2023e). Simi-
lar as IQA, while traditional approaches on VQA are typi-
cally based on handcraft features, e.g. TLVQM (Korhonen,
2019), VIDEVAL (Tu et al., 2021a), and RAPIQUE (Tu
et al., 2021b), recent deep-learning-based methods, such
as VSFA (Li et al., 2019), BVQA (Li et al., 2022), Dis-
CoVQA (Wu et al., 2023b) and SimpleVQA (Sun et al.,
2022), have shown much better performance and more ro-
bust OOD generalization. These efforts are further explored
by FAST-VQA (Wu et al., 2022; 2023a), which proposes
efficient end-to-end training to further advance VQA perfor-
mance. Nevertheless, while the goal of VQA is similar to
IQA (or IAA), the need to input videos has hindered methods
to tackle this task with the same modeling structure as image
scoring approaches. A typical example is the CLIP-based
attempts: as CLIP is image-based, though it can achieve
good zero-shot VQA capabilities through a frame-by-frame
inference (Wu et al., 2023c), training CLIP-based methods
on VQA datasets is extremely challenging (Wu et al., 2023d)
and performs worse than specially-designed VQA models.
In the proposed Q-ALIGN, we utilize the language decoder
to assemble videos as sequences of frames, so as to unify
VQA with IQA/IAA under one structure, outperforming
complicated specifically-designed architectures.

LMMs for Visual Scoring. Some recent investigations
have discussed the possibilities for adopting Large Multi-
modality Models (LMMs) for visual scoring. Namely, the
Q-Bench (Wu et al., 2023f) proposes a binary softmax strat-
egy, enabling LMMs to predict quantifiable quality scores
by extracting the softmax pooling result on logits of two
frequent tokens (good/poor). Based on this strategy, the Q-
Instruct (Wu et al., 2023g) notices that fine-tuning with text
question-answering on related low-level queries can also
improve visual scoring abilities of LMMs. Given insights
from these studies, we design the Q-ALIGN syllabus to sys-
tematically emulate the human rating and post-processing
in visual scoring. Moreover, we demonstrate that the bi-
nary softmax strategy in Q-Bench is a simplified version
equivalent to the collection process of MOS values from
human ratings. Our experiments prove that with appropriate
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Figure 3. [Insight 1] HOW DO HUMANS RATE? Typically, it include three stages: (1) Training human raters with text-defined rating levels.
Simulating this, we propose the rating-level-based syllabus for LMMs. (2) Collecting human ratings. Human raters choose levels (Type 1)
or toggle level-guided sliders to score (Type 2), without directly inputting the score in either way. (3) Converting initial ratings to MOS
via weighted average. Following this stage, we propose the probability-based inference for LMMs to predict final scores.

alignment strategies, LMMs can be more capable and robust
visual scorers with the same (and even less) data used.

3. The Q-ALIGN

In this section, we elaborate on the Q-ALIGN. We start
with our methodology to teach LMMs with rating levels
(Sec. 3.1), and then discuss the proposed conversion strategy
between rating levels and scores (Sec. 3.2). Finally, we
discuss its unified structure (Sec. 3.3) for images and videos.

3.1. Methodology

3.1.1. [Insight 1] HOW DO HUMANS RATE?

To design the syllabus on training LMMs to score, we first
review the process of collecting human opinions (Fig. 3). In
general, the collection includes three stages as follows:

Stage 1: Training Human Raters. As the standard process
for collecting human opinions (itu, 2000), the training pro-
cess on human raters with the rating rules is vital, including
aligning human raters with one or more examples for each
rating level (Fig. 3 left, we take LSVQ (Ying et al., 2021)
as an example). During this process, precise quality scores
of the examples were not displayed to human raters.

Stage 2: Collecting human ratings. After training human
raters, the core stage is to collect initial human ratings (Fig. 3
center). In general, human raters may provide their opinions
in two types: 1) Directly choose rating levels. 2) Toggle the
slider to generate a score. In either way, human raters do not
need to directly input the scores to provide their opinions.

Stage 3: Converting human ratings to MOS. As in Fig. 3
right, initial ratings are averaged into MOS in visual scoring
datasets. Human raters do not participate in this stage.

Table 1. [Insight 2] HOW DO LMMS RATE? Responses of LMMs
on “Rate the quality of the image” from 1168 images in LIVE
Challenge. LMMs prefer to respond with qualitative adjectives.

Model / Frequency Qualitative Adjectives Numerical Ratings
Adapter-V2 (Gao et al., 2023) 96% (1120/1168) 4% (48/1168)
LLaVA-v1.5 (Liu et al., 2023a) 100% (1168/1168) 0% (0/1168)
mPLUG-Owl-2 (Ye et al., 2023b) 100% (1168/1168) 0% (0/1168)
InstructBLIP (Dai et al., 2023) 99% (1156/1168) 1% (12/1168)
Shikra (Chen et al., 2023) 100% (1168/1168) 0% (0/1168)

During all three stages, human raters are neither trained,
nor instructed to predict a score. This process is adopted
because, in everyday life, when asked for an evaluation,
people tend to respond with qualitative adjectives (for ex-
ample, fine, poor, excellent) rather than numerical ratings
(e.g. 8.75, 1.08, 6.54). Thus, conducting the visual scoring
tasks with rating levels utilizes this innate ability of humans
(providing qualitative adjectives) to minimize their cogni-
tive load, and improve the outcomes of subjective studies.

3.1.2. [Insight 2] HOW DO LMMS RATE?

After analyzing the human opinion collection process, we
further discover the “innate ability” of LMMs. Theoretically,
fundamentally designed to understand and generate human-
like text, LMMs should share similar behaviour patterns
with humans. To validate this, we prompt five LMMs1 on
the instruction as follows, and count their response statistics:

<img> Rate the quality of the image.

As results shown in Tab. 1, before specific alignment, LMMs
predominantly respond with qualitative adjectives. Thus,
with scores as the learning targets for LMMs, they need to
first formally learn to output scores, and then learn how to
score accurately. To avoid this additional cost, we choose
rating levels instead as the targets of Q-ALIGN. We study

1None of them are explicitly trained for any visual rating tasks.
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its advantage than directly training with scores in Tab. 11.

3.2. Conversion between Rating Levels and Scores

Based on the general methodology to teach LMMs with
rating levels, we further discuss how to convert the scores in
the existing datasets to discrete rating levels during training,
and how to obtain scores from LMMs during inference.

3.2.1. [Training] SCORES → RATING LEVELS.

Equidistant Interval Partition. During the training pro-
cess, we convert the scores into discrete rating levels. Since
adjacent levels in human rating are inherently equidistant (ei-
ther Type 1 or Type 2, see Fig. 3), we also adopt equidistant
intervals to convert scores into rating levels. Specifically,
we uniformly divide the range between the highest score
(M) and lowest score (m) into five distinct intervals, and
assign the scores in each interval as respective levels:

L(s) = li if m+
i− 1

5
×(M−m) < s ≤ m+

i

5
×(M−m)

(1)
where {li|5i=1} = {bad, poor, fair, good, excellent} are the
standard text rating levels as defined by ITU (itu, 2000).

Table 2. Precision of training conversion (Score → Rating Levels)
on the 5 training datasets for Q-ALIGN. Metrics are SRCC/PLCC.
Conversion KonIQ SPAQ KADID AVA LSVQ
Scores → Levels 0.952/0.961 0.969/0.968 0.979/0.982 0.920/0.930 0.940/0.944

Precision of the Conversion. As the conversion mapping
L discussed above is a multi-to-one mapping, it unavoidably
slightly compromises the ground truth precision. In Tab. 2,
we record the conversion precision on 5 datasets used for
training Q-ALIGN, that all conversion retains around 0.95
linear correlation (PLCC) with the scores. In Appendix
Sec. B.2.1, we demonstrate that the Q-ALIGN is capable of
capturing finer-grained differences within each level, even
if only the easier coarse levels are used for training LMMs.

3.2.2. [Inference] RATING LEVELS → SCORES.

After training, we need to convert the rating levels back to
scores. Primarily, simulating the post-processing on human
ratings (Fig. 3 right), we first define the reverse mapping G
from text-defined rating levels back to scores, as follows:

G : li → i (2)

For instance, fair is converted back to score 3, and bad to 1.

In human opinion collection (Type 1), the MOS values are
calculated via the weighted average of the converted scores
and frequencies fli for each level: MOS =

∑5
i=1 fliG(li).

Similarly, for LMMs, we substitute the fli with the LMM-
predicted probabilities for each level. Given that the pre-
dicted <LEVEL> token of LMMs is the probability distribu-
tion (denoted as X ) on all possible tokens of the language

Visual Encoder

Images ( )N = 1

Videos ( )N ≥ 2

…
1024

…
1024

…… ……
1024 * N

64

64 * N

64…… ……

Large Language Model

Language Instruction

- Can you evaluate the quality of the image?
Image Quality Assessment (IQA):

Image Aesthetic Assessment (IAA):
- Can you evaluate the aesthetics of the image?

Video Quality Assessment (VQA):
- Can you evaluate the quality of the video?

Tokenizer

Embedding

Response

Label

The quality of the image is <LEVEL>. 

The quality of the image is excellent.                
CrossEntropyLoss(IQA as example.)

Visual Abstractor

Figure 4. Unified structure of the Q-ALIGN. By reducing tokens
per image to 64 through the visual abstractor, it unifies images and
videos (as sequences of images) under one general structure.

model, we conduct a close-set softmax on {li|5i=1} to get
the probabilities pli for each level (pli for all li sum as 1):

pli =
eXli∑5
j=1 e

Xlj

(3)

and the final predicted scores of LMMs are denoted as

SLMM =

5∑
i=1

pliG(li) = i× eXli∑5
j=1 e

Xlj

(4)

The inference conversion is theoretically equivalent to the
MOS collection process from a set of human ratings in
levels. Moreover, it represents the general expression form
of the binary softmax strategy (SQ-Bench = eXgood

eXgood+eXpoor
) as

proposed by Wu et al. (2023f), which can be considered as
a simplified version of Eq. 4 with only two rating levels.

3.3. Model Structure

The model structure of the Q-ALIGN (Fig. 4) is based on
the recently-published open-source LMM, mPLUG-Owl-
2 (Ye et al., 2023b), which has proven exceptional visual
perception ability as well as good language understanding
ability. In the adopted structure, despite the visual encoder
to convert images into embeddings, an additional visual
abstractor further significantly reduces the token numbers
per image (1024 → 64). Under the 4096 context length
for LLaMA2 (Touvron et al., 2023), we can feed as much
as 61 images (3 without the abstractor) together during
supervised fine-tuning (SFT). This allows us to input a video
as a sequence of images to LMM, and unify image (IQA,
IAA) and video (VQA) scoring tasks under one structure.
The Q-ALIGN uses common GPT (Radford et al., 2019)
loss, i.e. cross-entropy between labels and output logits.
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Table 3. Q-ALIGN and FEWSHOT-Q-ALIGN performance on image quality assessment (IQA). We adopt KonIQ and SPAQ (both
in-the-wild photography) as training set and evaluate on a wide range of test sets. The cross-set evaluations are labeled with CROSS.

Training Set: KonIQtrain →Testing Set: KonIQtest SPAQCROSS LIVE ChallengeCROSS AGIQA-3KCROSS KADID-10kCROSS

Method #Training SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC
NIMA (TIP 2018) 7K (70%) 0.859 0.896 0.856 0.838 0.771 0.814 0.654 0.715 0.535 0.532
DBCNN (TCSVT 2020) 7K (70%) 0.875 0.884 0.806 0.812 0.755 0.773 0.641 0.730 0.484 0.497
HyperIQA (CVPR 2020) 7K (70%) 0.906 0.917 0.788 0.791 0.749 0.772 0.640 0.702 0.468 0.506
MUSIQ (ICCV 2021) 7K (70%) 0.929 0.924 0.863 0.868 0.830 0.789 0.630 0.722 0.556 0.575
CLIP-IQA+ (AAAI 2023) 7K (70%) 0.895 0.909 0.864 0.866 0.805 0.832 0.685 0.736 0.654 0.653
LIQE (CVPR 2023) 7K (70%) 0.928 0.912 0.833 0.846 0.870 0.830 0.708 0.772 0.662 0.667
FEWSHOT-Q-ALIGN (Ours) 2K (20%) 0.903 0.901 0.871 0.860 0.840 0.845 0.740 0.791 0.607 0.589
Q-ALIGN (Ours) 7K (70%) 0.940 0.941 0.887 0.886 0.860 0.853 0.735 0.772 0.684 0.674
Training Set: SPAQ →Testing Set: KonIQtest

CROSS SPAQ LIVE ChallengeCROSS AGIQA-3KCROSS KADID-10kCROSS

Method #Training SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC
NIMA (TIP 2018) 8.8K (80%) 0.733 0.788 0.907 0.910 0.733 0.785 0.534 0.630 0.399 0.480
DBCNN (TCSVT 2020) 8.8K (80%) 0.731 0.758 0.908 0.913 0.702 0.748 0.459 0.518 0.490 0.508
Fang et al. (CVPR 2020) 8.8K (80%) 0.714 0.742 0.908 0.909 0.798 0.762 0.570 0.649 0.381 0.448
MUSIQ (ICCV 2021) 8.8K (80%) 0.753 0.680 0.917 0.921 0.813 0.789 0.564 0.675 0.349 0.429
CLIP-IQA+ (AAAI 2023) 8.8K (80%) 0.753 0.777 0.881 0.883 0.719 0.755 0.577 0.614 0.633 0.638
LIQE (CVPR 2023) 8.8K (80%) 0.826 0.847 0.922 0.919 0.805 0.866 0.672 0.722 0.639 0.627
FEWSHOT-Q-ALIGN (Ours) 2.2K (20%) 0.792 0.826 0.909 0.911 0.823 0.834 0.702 0.772 0.685 0.678
Q-ALIGN (Ours) 8.8K (80%) 0.848 0.879 0.930 0.933 0.865 0.873 0.723 0.786 0.743 0.740

3.4. Conversation Formats

In this section, we define the conversation formats for each
task. Denote the image token as <img>, the converted
level for the image or video as <level>, the exemplar
conversation formats for each task are as follows:

Image Quality Assessment (IQA)
#User: <img> Can you evaluate the quality of the image?
#Assistant: The quality of the image is <level>.
Image Aesthetic Assessment (IAA)
#User: <img> How is the aesthetics of the image?
#Assistant: The aesthetics of the image is <level>.
Video Quality Assessment (VQA)
#User: <img> Rate the quality of the video.
#Assistant: The quality of the video is <level>.

The user queries are randomly chosen from a group of para-
phrases to avoid biases, which shows negligible influence
on the final performance. Following Zheng et al. (2023),
only the LMM responses (after #Assistant:) are supervised.

4. Experiments
4.1. Experimental Settings

In experiments, we set batch sizes as 64 for all IQA/VQA
datasets, 128 on IAA datasets, and 256 on ONEALIGN. The
learning rate is set as 2e−5, and we train for 2 epochs for all
variants, except for FEW-SHOT settings, where we train for
4 epochs to make the models fully converge. All reported
performance of Q-ALIGN are evaluated on the final weights
after training. We conduct training on 4*NVIDIA A100 80G
GPUs, and report inference latency on one RTX3090 24G
GPU. For images, they are first padded to square and then
resized to 448× 448. For videos, we sample at rate 1fps.

4.2. Datasets

IQA datasets. We choose the KonIQ-10k (in-the-wild),
SPAQ (11K, in-the-wild), and KADID-10k (synthetic) as
training sets to train the Q-ALIGN on IQA. Despite evalu-
ating on the test sets on the three training datasets, we also
evaluate on four unseen datasets: LIVE Challenge (1.1K,
in-the-wild), AGIQA-3K (AI-generated), LIVE and CSIQ
(both synthetic) to examine its OOD generalization ability.

IAA datasets. We choose the well-recognized AVA (Murray
et al., 2012) dataset to evaluate the aesthetic rating ability
of Q-ALIGN. Following Hou et al. (2023), we conduct
experiments on the OFFICIAL train-test split of AVA.

VQA datasets. We choose the largest in-the-wild VQA
dataset, LSVQ, with 28K training videos to train the Q-
ALIGN on VQA. Similar as IQA, we test on two official test
sets of LSVQ (LSVQtest and LSVQ1080P), and two unseen
datasets, KoNViD-1k and MaxWell for OOD evaluation.

4.3. Results on Individual Tasks

4.3.1. IMAGE QUALITY ASSESSMENT (IQA)

For IQA, we first compare the conventional setting where
models are trained on a single dataset. As shown in Tab. 3,
while CLIP-based methods (CLIP-IQA+ and LIQE) show
only comparable or even worse performance on intra-dataset
settings than the visual-only state-of-the-art, MUSIQ, the
proposed Q-ALIGN can notably achieve better accuracy
than all visual-only approaches. On cross-dataset settings
(OOD generalization), Q-ALIGN significantly improves
visual-only methods by more than 10%, and CLIP-IQA+
and LIQE by 8% and 4% respectively. In summary, LMM-
based Q-ALIGN is more competitive under the same data.
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Table 4. MIX-DATA experiments for Q-ALIGN on image quality assessment (IQA). We label intra-dataset testing sets for each training set
combination with gray background, with rest as cross-set settings. Mixing datasets notably improves unseen dataset performance on IQA.

Testing Set: KonIQtest SPAQ KADID-10k LIVE Challenge AGIQA-3K LIVE CSIQ
Training Set: SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC
None (mPLUG-Owl2, Before Q-ALIGN) 0.552 0.489 0.729 0.625 0.572 0.566 0.526 0.538 0.648 0.616 0.521 0.641 0.412 0.393
KonIQ 0.940 0.941 0.887 0.886 0.684 0.674 0.860 0.853 0.735 0.772 0.867 0.838 0.700 0.759
SPAQ 0.848 0.879 0.930 0.933 0.743 0.740 0.865 0.873 0.723 0.786 0.861 0.822 0.733 0.781
KonIQ + SPAQ 0.940 0.943 0.931 0.933 0.708 0.692 0.879 0.883 0.727 0.795 0.859 0.827 0.767 0.795
KADID 0.668 0.665 0.860 0.854 0.919 0.918 0.702 0.744 0.711 0.712 0.809 0.791 0.756 0.784
KonIQ + SPAQ + KADID 0.938 0.945 0.931 0.933 0.934 0.935 0.883 0.887 0.733 0.788 0.870 0.840 0.845 0.876

Table 5. Q-ALIGN performance on video quality assessment (VQA). All methods are trained on the same dataset (LSVQtrain) and
evaluated on two intra-dataset (LSVQtest and LSVQ1080p) and two cross-dataset (KoNViD-1k and MaxWelltest) test sets.

Training Set: LSVQtrain →Testing Set: LSVQtest LSVQ1080p KoNViD-1kCROSS MaxWelltest
CROSS

Method IQA Pre-training? SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC
TLVQM (TIP 2019) ✗ 0.772 0.774 0.589 0.616 0.732 0.724 – –
VSFA (ACMMM 2019) ✗ 0.801 0.796 0.675 0.704 0.784 0.794 – –
VIDEVAL (TIP 2021) ✗ 0.794 0.783 0.545 0.554 0.751 0.741 – –
PVQ (CVPR 2021) ✓ 0.827 0.828 0.711 0.739 0.791 0.795 0.618 0.634
BVQA (TCSVT 2022) ✓ 0.852 0.854 0.772 0.788 0.839 0.830 0.675 0.673
DisCoVQA (TCSVT 2023) ✗ 0.859 0.850 0.734 0.772 0.851 0.853 0.704 0.687
SimpleVQA (ACMMM 2022) ✗ 0.867 0.861 0.764 0.803 0.840 0.834 0.720 0.715
FAST-VQA (ECCV 2022) ✗ 0.876 0.877 0.779 0.814 0.859 0.855 0.720 0.728
Q-ALIGN (Ours) (1fps) ✗ 0.883 0.882 0.797 0.830 0.865 0.877 0.780 0.782
— Ensemble-based Approaches (separately-trained sub-models)
DOVER (aesthetic branch + FAST-VQA, ICCV 2023) ✗ 0.886 0.887 0.795 0.830 0.883 0.884 0.748 0.755
Q-ALIGN (Ours) (1fps) + FAST-VQA ✗ 0.899 0.899 0.818 0.850 0.895 0.897 0.779 0.784

Table 6. Q-ALIGN performance on image aesthetic assessment
(IAA). All methods are trained under the OFFICIAL split setting.

Training Set: AVAtrain →Testing Set: AVAtest

Method #Training Extra Data? SRCC PLCC
NIMA (TIP 2018) 236K (92%) ✗ 0.612 0.636
MLSP (CVPR 2019) 236K (92%) ✗ 0.756 0.757
MUSIQ (ICCV 2021) 236K (92%) ✗ 0.726 0.738
MaxViT (ECCV 2022) 236K (92%) ✗ 0.708 0.745
CLIP-IQA+ (AAAI 2023) 236K (92%) ✗ 0.619 0.586
Aesthetic Predictor (2023) 236K (92%) ✗ 0.721 0.723
LIQE (CVPR 2023) 236K (92%) ✗ 0.776 0.763
VILA (CVPR 2023) 236K (92%) ✓ 0.774 0.774
FEWSHOT-Q-ALIGN (Ours) 26K (10%) ✗ 0.776 0.775
Q-ALIGN (Ours) 236K (92%) ✗ 0.822 0.817

We further validate that the Q-ALIGN can achieve high
accuracy with even less data. Denoted as FEWSHOT-Q-
ALIGN in Tab. 3, it reaches comparable performance with
existing SOTA IQA approaches by using only 20% images
for training, suggesting that the proposed rating-level based
approach effectively activates LMM’s inherent knowledge.

We further evaluate the mix-dataset scenario for Q-ALIGN
on IQA in Tab. 4, demonstrating that it can retain and
even improve the accuracy on each individual dataset while
mixing datasets with different contents (synthetic and in-
the-wild) via simple concatenation, paving the way for the
ONEALIGN (Sec. 4.4) that unifies different visual scoring
tasks. Moreover, each training set combination can improve
accuracy on unseen datasets than the pre-alignment baseline.

4.3.2. IMAGE AESTHETIC ASSESSMENT (IAA)

In Tab. 6, we list the results of the Q-ALIGN and existing
state-of-the-arts on IAA. Compared with IQA, IAA is much

more complicated, and the Q-ALIGN exhibits far larger
advantages with its larger model capacity. It can outperform
LIQE by 7%, Aesthetic Predictor (LAION, 2023) by 10%.
It even significantly improves VILA, which is addition-
ally pre-trained by AVA-Captions, by a notable 6% margin.
Moreover, similar as IQA, the FEWSHOT-Q-ALIGN is able
to outperform existing IAA methods with only 10% of AVA
dataset used for training, further proving the data efficiency
of the proposed syllabus on aligning LMMs for scoring.

4.3.3. VIDEO QUALITY ASSESSMENT (VQA)

As listed in Tab. 5, with only sparse frames (1fps) as in-
puts, the Q-ALIGN is able to outperform specially-designed
VQA approaches with complicated temporal modules and
all frames fed into their models. Similar as IQA, it ex-
hibits excellent OOD generalization and surpasses FAST-
VQA by 6% on cross-dataset evaluation from LSVQtrain to
MaxWelltest dataset. While Q-ALIGN alone can already
reach comparable accuracy with DOVER, an approach that
ensembles a sparse-frame aesthetic branch with FAST-VQA,
its similar ensemble with FAST-VQA proves over 1% advan-
tage to DOVER on all four evaluation datasets. All results
suggest that the Q-ALIGN can master on VQA with fewer
frames as input and no specific design, and still has potential
to improve if aligned to rate on more frames in the future.

4.4. The ONEALIGN

Previous evaluations have revealed two exciting abilities
of Q-ALIGN. First, it reaches state-of-the-art with no-
table improvements on IQA, IAA, and VQA under one
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Table 7. Results of ONEALIGN as one unified model for IQA, IAA and VQA, in comparison with single task experts (IQA, IAA, VQA)
and partly multi-task experts (IQA+IAA, IQA+VQA, IAA+VQA). LIVE-C abbreviates for LIVE Challenge. Metrics are SRCC/PLCC.
Training / Testing Set KonIQ SPAQ KADID LIVE-C AGIQA LIVE CSIQ AVA LSVQtest LSVQ1080P KoNViD MaxWell
Before Q-ALIGN (Ye et al., 2023b) .552/.489 .729/.625 .572/.566 .526/.538 .648/.616 .521/.641 .412/.393 .352/.328 .422/.434 .443/.445 .552/.489 .524/.490
IQA(KonIQ + SPAQ + KADID) .938/.945 .931/.933 .934/.935 .883/.887 .733/.788 .870/.840 .845/.876 .208/.228 .755/.757 .680/.718 .799/.806 .682/.694
VQA(LSVQ) .731/.788 .841/.819 .659/.651 .715/.727 .780/.834 .826/.797 .755/.814 .289/.323 .883/.882 .797/.830 .865/.877 .780/.782
IAA(AVA) .574/.603 .662/.653 .536/.547 .685/.636 .750/.792 .770/.740 .527/.596 .822/.817 .624/.600 .515/.511 .717/.681 .659/.648
IQA + VQA .944/.949 .931/.934 .952/.953 .892/.899 .739/.782 .874/.846 .852/.876 .197/.222 .885/.883 .802/.829 .867/.880 .781/.787
IQA + IAA .940/.947 .931/.933 .945/.945 .862/.868 .782/.824 .895/.864 .865/.883 .822/.819 .785/.785 .700/.730 .831/.829 .716/.728
IAA + VQA .640/.664 .740/.732 .626/.632 .703/.669 .769/.819 .794/.769 .558/.628 .822/.819 .886/.885 .800/.834 .874/.884 .776/.781
All (ONEALIGN) .941/.950 .932/.935 .941/.942 .881/.894 .801/.838 .887/.856 .881/.906 .823/.819 .886/.886 .803/.837 .876/.888 .781/.786

Table 8. Epochs to converge for different methods, on KonIQ-10k
dataset (IQA). Metrics are (SRCC+PLCC)/2.
Method best (↑) Ep1 (↑) Ep1 - best (↑) #Epochs for best (↓)
NIMA (TIP 2018) 0.870 0.650 -0.220 15
CLIP-IQA+ (AAAI 2023) 0.903 0.825 -0.078 12
LIQE (CVPR 2023) 0.920 0.887 -0.033 9
Q-ALIGN (Ours) 0.942 0.931 -0.011 2

unified structure. Second, it shows good mix-dataset learn-
ing capacity. Moreover, in Tab. 7, we validate that aligning
with one task can usually improve on the other tasks (ex-
cept IQA/VQA→IAA, see Sec. D for more discussions).
Given these abilities, we further combine training datasets
for the three tasks to train the ONEALIGN, the all-in-one
visual scorer. As evaluated in Tab. 7, all multi-task variants
have shown improved performance than single-task variants.
Moreover, the ONEALIGN remarkably improves OOD gen-
eralization on several unseen datasets: AGIQA+6.8%SRCC,
CSIQ+3.6%SRCC, LIVE+1.7%SRCC, KoNViD+1.1%SRCC. We
hope that the ONEALIGN can be widely applied to real-
world scenarios, pioneering the paradigm shift in this field.

4.5. Cost Analysis

4.5.1. TRAINING COST

As compared in Tab. 8, the Q-ALIGN can converge with
fewer iterations than existing IQA methods (bs = 64 for all),
including CLIP-based methods. While existing methods
usually need about 10 epochs to reach the best result, the
Q-ALIGN can outperform all existing methods with only
one epoch, and obtain its best results in 2 epochs. With
4*A100 80G GPU, it requires only 9 minutes to converge
on dataset with 10K images, which is highly affordable as it
costs less than 2 USD from most cloud GPU providers.

Table 9. Inference latency and throughput of the Q-ALIGN on
images on RTX3090. Larger batch sizes (>64) will cause OOM.
Batch Size 1 2 4 8 16 32 64
Latency (ms) 101 154 239 414 757 1441 2790
Throughput (image/sec) 9.90 12.99 16.74 19.32 21.14 22.21 22.94

Table 10. Latency and throughput on videos. As videos have vari-
able lengths, we set batch size as 1 for them to avoid padding cost.

Video Length (sec) 5 7 8 9 10 11 12
Latency (ms) 236 315 350 377 430 463 514
Throughput (video/sec) 4.24 3.17 2.86 2.65 2.33 2.16 1.95

4.5.2. INFERENCE LATENCY

In Tab. 9 and Tab. 10, we discuss the inference latency of Q-
ALIGN on images and videos. In one second, it can predict
scores on up to 23 images, 4.2 5s-duration videos, or 1.9
12s-duration videos on a single RTX3090 GPU. Moreover,
we also validate in Appendix Tab. 13 that 4-BIT inference
on Q-ALIGN has almost identical accuracy. It costs only
5.4GB vRAM and allows broader application of the scorer.

Table 11. Q-ALIGN compared with the variant that use scores (in
.2f format) as training objective. Metrics are (SRCC+PLCC)/2.
Training Set: KonIQ
Testing Set: KonIQ SPAQCROSS LIVE-CCROSS AGIQACROSS KADIDCROSS

Existing SOTA 0.926 0.865 0.850 0.740 0.665
- Training with Scores 0.921 0.858 0.793 0.731 0.524
Q-ALIGN (Ours) 0.941 0.887 0.857 0.754 0.679
Improvement +2.2% +3.4% +8.1% +3.1% +29.6%
Training Set: SPAQ
Testing Set: SPAQ KonIQCROSS LIVE-CCROSS AGIQACROSS KADIDCROSS

Existing SOTA 0.921 0.836 0.835 0.697 0.633
- Training with Scores 0.918 0.813 0.813 0.657 0.485
Q-ALIGN (Ours) 0.932 0.863 0.869 0.755 0.741
Improvement +1.5% +6.2% +6.9% 14.9% +52.8%

4.6. Ablation Studies

Q-ALIGN vs training with scores. In Tab. 11, we compare
the Q-ALIGN with the variant that directly instructs the
LMM to output scores during training. Using the proposed
level-based syllabus can lead to in-average 10% improve-
ments on cross-dataset (OOD) evaluations (especially 40%↑
from SPAQ/KonIQ (in-the-wild) to KADID (synthetic)) than
the score-based syllabus, suggesting that instructing LMMs
with their original output styles better inherits their innate
visual evaluation potentials. Conversely, the accuracies of
score-based alignment cannot even surpass existing state-
of-the-art on any settings, unable to effectively inherit the
powerful capabilities from the pre-trained LMMs.

Furthermore, we validate that inferring with probabilities
helps finer-grained distinction (Fig. 5) and improves final ac-
curacy by 6% (Tab. 14). More details in Appendix Sec. B.2.

4.7. Qualitative Analysis

In Tab. 12, we visualize the IQA and IAA prediction results
of the ONEALIGN on two real-world images. Despite the
basic ability to judge that (A) > (B) in both quality and
aesthetics, we notice that it can further capture subtle dif-
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Table 12. ONEALIGN predictions on real-world images, from log-
its to probabilities, and finally to scores. More in Appendix Sec. C.

(A) (B)

<img>

li excellent good fair poor bad excellent good fair poor bad
X li

IQA 18.03 18.38 14.63 11.60 9.477 8.953 11.37 15.31 18.06 16.59
pliIQA 0.409 0.577 0.014 0.000 0.000 0.000 0.001 0.050 0.772 0.178
SLMM, IQA 4.3926 (Range: [1,5]) 1.8740 (Range: [1,5])
X li

IAA 16.63 18.17 15.77 12.13 10.77 9.594 13.13 16.95 17.67 14.91
pliIAA 0.163 0.766 0.069 0.002 0.000 0.000 0.007 0.312 0.641 0.040
SLMM, IAA 4.0879 (Range: [1,5]) 2.2861 (Range: [1,5])

ferences. Though trained with only discrete levels, its 2nd
highest level (underlined) can provide finer-grained evalu-
ations, that the aesthetics of (B) is between fair and poor,
while its quality lies between poor and bad. Moreover, the
ONEALIGN never predicts 1st and 2nd highest logits on
non-adjacent levels (e.g. good&poor), suggesting that the
model can inherently understand the ordinals on the levels.

5. Conclusion
In conclusion, our paper marks a significant stride in the
realm of visual scoring by instructing Large Multi-modality
Models (LMMs) with discrete text-defined levels (e.g., good,
poor) rather than direct scores (e.g., 3.45, 1.77). This syl-
labus, named the Q-ALIGN, achieves remarkable improve-
ments over state-of-the-art IQA, IAA and VQA approaches
under one general structure, with exceptional data efficiency.
It further unifies all the three tasks under one single model,
the ONEALIGN. The Q-ALIGN unlocks the potential of
LMMs in predicting accurate and robust visual scores, pio-
neering a promising direction for future explorations.

Impact Statement
Aligning to human opinion bias is a general potential impact
for all learning-based rating systems. In cross-evaluation
settings, Q-ALIGN is more generalizable than existing sys-
tems, implying that Q-ALIGN potentially be less impacted
by training data bias. Still, it cannot eliminate this impact,
and we will keep focusing on it in the future.
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Table 13. 4-BIT and 8-BIT inference, in comparison with original fp16 ONEALIGN. CR: unseen datasets. Metrics are SRCC/PLCC. The
vRAM cost is for single image. For a 8-sec video, the cost is 5816MB (4-BIT) and 10042MB (8-BIT) respectively.
Testing Set: vRAM↓ KonIQ SPAQ KADID LIVE-CCR AGIQACR LIVECR CSIQCR AVA LSVQtest LSVQ1080P KoNViDCR MaxWellCR

4-BIT (bitsandbytes) 5396MB .937/.947 .931/.933 .939/.939 .886/.897 .801/.838 .886/.853 .877/.904 .821/.817 .884/.884 .798/.834 .877/.888 .778/.785
8-BIT (bitsandbytes) 8944MB .936/.947 .931/.934 .941/.941 .882/.894 .801/.836 .886/.855 .877/.902 .821/.816 .885/.885 .801/.835 .875/.886 .777/.786
w/o Quantization (fp16) 16204MB .941/.950 .931/.934 .941/.942 .881/.894 .801/.838 .887/.856 .881/.906 .823/.819 .886/.886 .803/.837 .876/.888 .781/.786

A. Additional Modeling Details
A.1. Conversation Formats

In this section, we discuss the details on the conversation formats for each task. Denote the image token as <img>, the
converted level for the image or video as <level>, the exemplar conversation formats for each task are as follows:

Image Quality Assessment (IQA)
#User: <img> Can you evaluate the quality of the image?
#Assistant: The quality of the image is <level>.
Image Aesthetic Assessment (IAA)
#User: <img> Can you evaluate the aesthetics of the image?
#Assistant: The aesthetics of the image is <level>.
Video Quality Assessment (VQA)
#User: <img><img><img><img><img><img><img><img> Can you evaluate the quality of the video?
#Assistant: The quality of the video is <level>.

The user queries are randomly chosen from a group of paraphrases (e.g. Rate the quality of the image., How would you rate
the aesthetics of the image?, How is the quality of the video?) to avoid biases, which shows negligible influence on the final
performance. Following Zheng et al. (2023), only the LMM responses (after #Assistant:) are supervised.

A.2. Formulation on Model Structure

Following mPLUG-Owl-2, the model includes a CLIP-ViT-Large visual encoder Ev with 304M parameters, a visual
abstractor Êv with 82M parameters, and the LLaMA2-7B LLM D on top of the visual modules with 7.8B (with the
additional multi-way modules from mPLUG-Owl2) parameters. The input image is first padded to square, and then resized to
448×448. Denote the text embedding layer as Et, input image as <img>, text prompt as t, the model can be formulated as:

hv = Êv(Ev(<img>)) (5)
ht = Et(t) (6)
h = concatenate(hv,ht) (7)
o = D(h) (8)

As we do not need the generation method of the LMM, the formulation above, where the output logits o are the final
outputs, can define both the training and inference processes for the Q-ALIGN. Specifically, during inference, only the
input texts before the <level> word are fed into the LMM, and henceforth the last position of o is the desired probability
distributions2, i.e. X = oN−1 (where N is total output length). The final output score is obtained as in Eq. 4.

B. Extended Experimental Analysis
B.1. Effects of Quantization (4-BIT&8-BIT)

In Tab. 13, we discuss the impacts of using quantization during inference on the ONEALIGN. We notice that even 4-BIT
inference only leads to overall 0.2% performance degradation (and even improves by 0.4% on LIVE-C), but reduces
the vRAM consumption to infer with bs=1 from 16.2GB to 5.4GB. The reduced memory cost without almost identical
performance has greatly broadened the application scenarios of the ONEALIGN, that the more powerful and robust
LMM-base scorer can be deployed locally on laptops with RTX3060 GPUs, or even a MacBook.

2In causal language models (Radford et al., 2019), the oi is the prediction for the (i+ 1)-th token.
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(a) KonIQ (b) SPAQ (c) KADID (d) LIVE-CCR

(e) AGIQACR (f) LIVECR (g) CSIQCR (h) AVA

(i) LSVQtest (j) LSVQ1080P (k) KoNViDCR (l) MaxWellCR

Figure 5. Finer-grained distinction abilties of ONEALIGN. By grouping its predictions w.r.t. max-probability token on <level> in 12
evaluation sets, we demonstrate that though trained with as discrete classification, the final predicted score (via Eq. 4) of the ONEALIGN
can obviously positively correlate with human opinions among finer-grained images/videos even they are “classified” as the same level.

Table 14. ONEALIGN compared with the variant that use direct levels as inference strategy. CR: unseen datasets. Metrics are SRCC/PLCC.
Testing Set: KonIQ SPAQ KADID LIVE-CCR AGIQACR LIVECR CSIQCR AVA LSVQtest LSVQ1080P KoNViDCR MaxWellCR

- Inference with Levels .881/.903 .897/.896 .920/.921 .828/.841 .777/.812 .861/.834 .841/.871 .748/.751 .818/.824 .717/.761 .808/.821 .725/.733
Inference w/ Eq. 4 (Ours) .941/.950 .931/.934 .941/.942 .881/.894 .801/.838 .887/.856 .881/.906 .823/.819 .886/.886 .803/.837 .876/.888 .781/.786
Improvement +6.0% +4.0% +2.3% +6.4% +3.1% +2.8% +4.4% +9.5% +7.9% +11.0% +8.3% +7.5%

B.2. Effects of the Inference Strategy

B.2.1. FINER-GRAINED DISTINCTION

In Fig. 5, we discuss the finer-grained distinction ability of the proposed ONEALIGN. Specifically, we group the test set
samples into five groups, where each group includes samples with highest-probability <level> token as the level, i.e.

“classified” as the respective level. While we do not explicitly train the LMM to distinguish beyond the five levels in the
Q-ALIGN syllabus, the predicted scores shows strong finer-grained alignment with human opinions (within the same group).

B.2.2. CONTRIBUTION OF FINER-GRAINED DISTINCTION ON OVERALL ACCURACY

In Tab. 14, we further compare the overall accuracy between ONEALIGN and the variant that directly takes the G(li) from
the highest-probability level as the output score during inference (i.e. ignoring its finer-grained prediction). We prove that
inferring with probabilities (as in Eq. 4) can significantly improve accuracy on every test set (in average 6%). Together
with evidences in Fig. 5, it suggests that the Q-ALIGN syllabus can activate LMM’s innate ability to catch finer-grained
difference on visual scoring with only discrete rating levels as supervision.
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Table 15. Extended ONEALIGN predictions on image quality assessment (IQA), from logits to probabilities, and finally to scores. The
first eight images ((A) - (H)) are in-the-wild images, while others ((I) - (P)) are images with synthetic distortions. Zoom in to view details.

(A) (B) (C) (D)

<img>

li excellent good fair poor bad excellent good fair poor bad excellent good fair poor bad excellent good fair poor bad
X li

IQA 7.043 10.289 15.852 18.688 16.766 6.7500 13.117 18.969 19.062 13.984 9.211 16.188 19.188 17.047 11.586 10.086 16.125 18.859 16.734 11.891
pliIQA 0.000 0.000 0.049 0.830 0.121 0.000 0.001 0.474 0.521 0.003 0.000 0.043 0.856 0.101 0.000 0.000 0.055 0.844 0.101 0.001
SLMM, IQA 1.9277 2.4746 2.9414 2.9531

(E) (F) (G) (H)

<img>

li excellent good fair poor bad excellent good fair poor bad excellent good fair poor bad excellent good fair poor bad
X li

IQA 12.500 17.594 18.406 15.227 11.008 14.781 19.359 17.609 13.172 9.117 15.547 19.969 17.297 12.477 8.648 20.562 18.093 10.992 9.5088 8.055
pliIQA 0.002 0.298 0.672 0.028 0.000 0.009 0.843 0.146 0.002 0.000 0.011 0.924 0.064 0.001 0.000 0.922 0.078 0.000 0.000 0.000
SLMM, IQA 3.2734 3.8594 3.9453 4.9219

(I) (J) (K) (L)

<img>

li excellent good fair poor bad excellent good fair poor bad excellent good fair poor bad excellent good fair poor bad
X li

IQA 9.820 10.055 9.070 16.016 25.062 7.047 8.375 10.867 16.531 19.656 5.559 8.914 15.930 20.078 16.516 9.805 13.289 16.781 17.750 14.172
pliIQA 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.042 0.958 0.000 0.000 0.015 0.958 0.027 0.000 0.008 0.267 0.705 0.020
SLMM, IQA 1.0000 1.0420 1.9873 2.2656

(M) (N) (O) (P)

<img>

li excellent good fair poor bad excellent good fair poor bad excellent good fair poor bad excellent good fair poor bad
X li

IQA 10.883 17.516 19.062 15.156 9.203 11.469 17.031 18.375 15.391 10.586 15.758 18.609 16.641 12.977 9.188 18.547 17.625 13.766 11.258 8.781
pliIQA 0.000 0.173 0.811 0.016 0.000 0.001 0.199 0.762 0.039 0.000 0.048 0.833 0.116 0.003 0.000 0.711 0.283 0.006 0.000 0.000
SLMM, IQA 3.1582 3.1621 3.9258 4.7031

C. Extended Qualitative Analysis
In Tab. 15, we visualize more qualitative results on IQA (logits, probabilities and scores) from ONEALIGN, on both
in-the-wild images ((A)-(H)) and images with synthetic distortions ((I)-(P)). Under one single model (instead of separately
trained for in-the-wild and synthetic images), it can distinguish both common in-the-wild degradation, e.g. under-exposure
(A,B), low sharpness/resolution (A,D), realistic noise (C), as well as the synthetic distortions such as artificial blur (I),
artifacts (J), gaussian noises (K). It can also distinguish distortion levels (e.g. strong gaussian noise on (K) vs weak gaussian
noise on (M)). We hope that the ONEALIGN can work as a robust quality scorer in real-world scenarios.
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D. Relations among IQA, IAA, and VQA
In Tab. 7, we notice that single-task fine-tuned model variants present different impacts on other tasks, discussed as follows:

1. Both image-based (IQA, IAA) variants can notably improve accuracy on VQA, suggesting that the image-related issues
(clarity, brightness, noises) are highly influential in VQA. This conclusion aligns with the observed non-negligible mix-
task gain of the ONEALIGN on all four VQA evaluation sets: LSVQ+0.4%PLCC

test , LSVQ+0.8%PLCC
test , KoNViD+1.1%PLCC,

MaxWell+0.5%PLCC, in comparison with Q-ALIGN-VQA.

2. While the aesthetic (IAA) variant can generally improve accuracy on quality evaluation (IQA/VQA), the IQA/VQA in
turn degrades the aesthetic evaluation ability of the LMM. This relation might suggest that quality evaluation considers
only subset of issues (clarity, color, brightness) that are considered in aesthetic evaluation, while there are still many
aesthetic-related factors not considered in IQA (composition, theme, etc). While it does not affect the rationality of
multi-tasking between quality and aesthetic evaluation, we believe this is an interesting finding to point out.

E. Further Clarifications
E.1. Novelty of Q-ALIGN

While the Q-ALIGN architecture is based on existing models, we would like to emphasize our technical contributions as
follows:

1. It broadens the scope of LMMs. While alignment studies for LMMs mainly focuses on situations with text outputs, this
work presents the first attempt for them to quantitatively score/evaluate. While no extra plugin structure required, the
alignment could be seamlessly merged into general LMM fine-tuning.

2. It presents an alternative methodology for scoring tasks. Q-Align is a rare method to use classification instead
of regression as training objective for scoring tasks, and proves its effectiveness against existing regression-based
approaches.

E.2. What does the Q of Q-ALIGN refer to?

The Q here mainly refers to Quantitative Evaluation, as it is a study to align LMMs to provide quantitative evaluation
(scores, instead of text outputs). It also implies the broad quality assessment task (a long-existing domain for visual scoring,
and the main task Q-ALIGN tackles with).

E.3. Social Impact

Aligning to human opinion bias is a general potential impact for all learning-based rating systems. In cross-evaluation
settings, Q-ALIGN is more generalizable than existing systems, implying that Q-ALIGN potentially be less impacted by
training data bias. Still, it cannot eliminate this impact, and we will keep focusing on it in the future.

F. Open-Source Commitments
The Q-ALIGN does not contain any additional human subjective studies. Henceforth, to promote the open-source community
to expand this syllabus to more related tasks, we will open-source all training data (converted from existing datasets),
training and inference code, and pre-trained weights under MIT License, upon the acceptance of our manuscript.
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