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ABSTRACT

Accelerating scientific discoveries holds significant potential to address some of
the most pressing challenges facing society, from mitigating climate change to
combating public health crises, such as the growing antibiotics resistance. The
vast and complex nature of design parameter spaces makes identifying promising
candidates both time-consuming and resource-intensive, rendering conventional
exhaustive searches impractical. However, recent advancements in data-driven
methods, particularly within the framework of "active learning," have led to more
efficient strategies for scientific discovery. By iteratively identifying and labeling
the most informative data points, these methods function in a closed loop, guiding
experiments or simulations to accelerate the identification of optimal candidates
while reducing the demand for data labeling. Despite these advancements, the
lack of standardized benchmarks in this emerging field of autonomous scientific
discovery impedes progress and limits its potential translational impact. To address
this, we introduce BALSA: a comprehensive benchmark specifically designed for
evaluating various search algorithms applied in autonomous laboratories within
the active learning framework. BALSA offers a standardized evaluation protocol,
provides a metric to characterize high-dimensional objective functions, and includes
reference implementations of recent methodologies, with a focus on minimizing
the data required to reach optimal results. It provides not only a suite of synthetic
functions or controlled simulators but also real-world active learning tasks in
biology and materials science — each presenting unique challenges for autonomous
laboratory tasks.1

1 INTRODUCTION

Designing proteins or materials with specific properties—ranging from antibiotic resistance to
superconductivity—represents a crucial frontier in addressing critical scientific and societal challenges
(Hamidieh, 2018; Varmus et al., 2003; Merchant et al., 2023). Traditionally, scientists have approached
these design processes by generating hypotheses based on prior knowledge and past data. These
hypotheses are then tested using experimental protocols within constrained budgets. However, this
approach is often inefficient, time-consuming, and limited by human ingenuity and errors. In recent
years, the integration of data-driven methods with automated laboratory setups has accelerated
discovery across various fields, ranging from the design of proteins or DNA sequences in biology or
the discovery of functional materials (Coley et al., 2019; Rao et al., 2022; Szymanski et al., 2023;
Rapp et al., 2024).

One of the most promising innovations in this field is the self-driving laboratories (SLs), which
leverage active learning (AL) algorithms to autonomously guide experimentation and accelerate
scientific discovery (Häse et al., 2019; Kang et al., 2019; Abolhasani & Kumacheva, 2023). Advances
in AL offer the potential to significantly enhance the exploration of larger regions within the expansive
search space, thus improving efficiency and effectiveness in experimental designs and optimization
processes, as shown in Figure 1a. Given that the underlying model of objective function (or the
validation source) is often intractable, and only limited data are available, a typical approach is to
develop a surrogate model to approximate the distribution of objective function. This surrogate model

1Our code can be found at https://github.com/anonymized
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is then used iteratively to optimize the design, serving as a stand-in for the objective function in the
optimization process. The key components of SLs (or AL pipelines) are illustrated in Figure 1b.

Despite significant progress, many strategies to explore the search spaces, including exact and
heuristic approaches, often struggle to adapt and scale to high-dimensional and non-linear scenarios
found in many science applications (Frazier, 2018). Bayesian Optimization (BO) and its variants
(Shahriari et al., 2016; Bubeck et al., 2011; Springenberg et al., 2016), have emerged as popular
alternatives that learn a Bayesian model of the objective function and sample the best candidates
using an uncertainty-based technique such as Thompson sampling (Shahriari et al.). While these
approaches perform well in low-dimensional spaces, their effectiveness diminishes in more complex,
higher-dimensional settings (Frazier, 2018). More recently, tree search methods, which are the key
component of many revolutionary AI algorithms such as AlphaGo (Silver et al., 2016), have been
applied to design problems. These methods iteratively partition the search space (Kim et al., 2020a)
and employ local surrogate models to approximate the promising search subspace (Eriksson et al.,
2019). However, their success is often contingent on the quality of these local models, and they also
struggle with the curse of dimensionality (Wang et al., 2020b).

Moreover, the intricate interplay between surrogate models and search strategies within AL pipelines,
coupled with the growing number of scientific applications, has made it increasingly difficult to
compare and track progress effectively. Different methods are often proposed and evaluated on
distinct tasks with varying evaluation protocols, leading to inconsistent benchmarks. To the best
of our knowledge, no unified benchmark or systematic investigation currently exists to evaluate
and compare these algorithms across AL strategies. This paper addresses this gap by proposing a
standardized benchmark that enables a fair comparison of state-of-the-art AL strategies, ensuring
more consistent progress in scientific discovery.

Our contributions We conduct a systematic evaluation of the key algorithmic components and their
interactions within AL pipelines. Our main contributions are summarized as follows:

• We propose an AL pipeline specifically tailored for real-world self-driving laboratory
environments. The pipeline is designed with the following key objectives: (i) to emulate
the iterative, step-by-step process characteristic of real-world self-driving tasks; (ii) to
leverage surrogate models for the efficient approximation of complex systems in data-scarce
scenarios; and (iii) to address the unique challenges associated with low-data regimes,
ensuring robust performance under limited data availability.

• We introduce a suite of 6 standardized synthetic tasks and 11 baseline methods to sys-
tematically evaluate a broad range of current AL pipelines and the respective surrogate
models.

• We design and implement four real-world tasks to evaluate the proposed pipeline: (i) neural
network architecture search to optimize model performance; (ii) the lunar landing problem,
simulating complex control dynamics; (iii) a biology task utilizing AlphaFold2 as a virtual
simulator for protein design, demonstrating applications in computational biology; and (iv) a
materials science task focused on resolution optimization of scanning transmission electron
microscopes, leveraging professional open-source simulation software for advanced imaging
applications.

• Through a systematic investigation and a large-scale empirical study, we introduce a novel
metric that quantifies the characteristics of objective landscapes across diverse design
problems. This metric offers valuable insights into the behavior and performance of AL
methods, enabling a more nuanced understanding of their effectiveness in complex settings.

• Based on these empirical findings, we highlight three critical areas for advancing self-
driving labs within the AL pipeline: (i) understanding the interplay between surrogate model
and search strategy in relation to the objective landscape, (ii) ensuring reproducibility of
algorithmic performance across a wide variety of synthetic and real-world tasks, and (iii)
developing methods that handle the optimization problems with limited data availability.

2 PROBLEM STATEMENT

The goal of SL tasks is to iteratively identify and label the most informative data points, discovering
optimal candidates while minimizing labeling efforts. Figure 1b illustrates the general protocol of
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Figure 1: Overview of key components in active learning for self-driving labs. (a) Active learning can
address problems with large search space and expensive data acquisition. (b) The goal of the active
learning task is to iteratively and autonomously improve solutions. Beyond synthetic functions, the
proposed BALSA utilizes i) AlphaFold2 as a simulator for biology applications and ii) open-source
scanning transmission electron microscopes (STEM) simulators for materials science applications.

an active learning algorithm, which comprises four components: (i) database, (ii) surrogate model
that accurately represents the complex relationships in the data, (iii) search model that utilizes the
surrogate model to guide the search for an optimal single state, and (iv) validation source which can
provide the ground-truth.

Without loss of generality, assuming that we search for global minima of a function f without explicit
formulation and its specific solution x∗ :

x∗ = argmin
x∈X

f(x) (1)

where x is the input vector and X is defined as the search space, typically Rn, and n is the dimension.
f is the deterministic function that maps the input x to the label, which can either be an exact function
that provides ground-truth labels or a data-driven surrogate model f̂ learned through the dataset
D = {(xi, yi)}Ni , in which N is the number of labels and yi is the label of xi. It is noteworthy that
this function is not limited to single-objective problems, it can be a product of multiple functions as
long as it solely depends on x, which makes it a multi-objective task.

3 RELATED WORK

Self-driving labs There has been a surge of interest in developing SLs across various applications
in all areas of science. Ranging from organic small molecules and compounds (Li et al., 2015; Coley
et al., 2019) to synthetic biology (Martin et al., 2023) and drug discovery (Saikin et al., 2019) to
chemistry (Jablonka et al., 2024) including multi-step chemistry (Epps et al., 2020; Seifrid et al.,
2022; Boiko et al., 2023; Volk et al., 2023), reaction optimization (Torres et al., 2022; Angello et al.,
2022), copolymer (Reis et al., 2021) or chemical synthesis (Manzano et al., 2022) synthesis as well
as and material science (Szymanski et al., 2023; Merchant et al., 2023) including solid state materials
(Szymanski et al., 2023), clean energy (Tabor et al., 2018) or thin films (Ludwig, 2019). Due to
the rapid pace of development and interest across various disciplines, we can only include a limited
selection.

A curated and up-to-date list across application areas and a broad overview of SLs including ap-
plications, software packages, or hardware is provided by the Canadian Acceleration Consortium
(Consortium).

Benchmarks Different Benchmarks have been proposed for black-box optimization. Design
bench Trabucco et al. (2022) proposed a benchmark for offline model-based optimization. Further
benchmarks include robotics systems (Ginsburg et al., 2023) or simple multi-tool motion platforms
(jub). Other works developed codebases for optimization algorithms and libraries without downstream
tasks or datasets (Rapin & Teytaud, 2018). The traditional optimization benchmark primarily focuses
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Figure 2: Objective landscapes of different synthetic functions with distinct topological characteristics.
Visualization of 2D objective landscapes with (a) Ackley, (b) Rosenbrock, (c) Schwefel, and (d)
Michalewicz in their 2D forms. Histograms (frequency distributions) of Laplacian of function s for (e)
Ackley, (f) Rosenbrock, (g) Schwefel, and (h) Michalewicz, where each function is in 10-dimension
with 1 million samples uniformly sampled from the parameter space. Joint plots of the ground truth
function values (x-axis) and the surrogate model predictions (y-axis) for (i) Ackley, (j) Rosenbrock,
(k) Schwefel, and (l) Michalewicz, where r denotes the Pearson correlation coefficient. Note that
some of the functions are re-scaled to achieve better fitting (see Supplementary S.3 for more details.)

on minimizing the number of function evaluations required to reach the global optimum and the
objective often focuses on the optimization of trajectory planning,Our benchmark suite employs the
same synthetic function but with a distinct objective. By leveraging synthetic functions with known
global optima, our goal is to evaluate the number of data points required by an AL algorithm to
converge to these optima. This approach provides an inexpensive means of assessment, offering
critical insights into the algorithm’s efficiency and effectiveness in optimization tasks across diverse
contexts.

4 SYNTHETIC BENCHMARKS

Our benchmark suite includes 6 carefully selected functions: Ackley, Rastrigin, Rosenbrock,
Griewank, Schwefel, and Michalewicz. The primary objective for these synthetic functions is
to identify their global minima with a minimum number of sample acquisitions. Unlike traditional
optimization algorithms, which are often parallelizable and primarily focus on minimizing the num-
ber of function evaluations required to reach the global optimum, our benchmark study uses these
synthetic functions to mimic the complex data distributions generated by various validation sources.
The process is iterative, with each iteration allowing only 20 data points to be sampled from the
synthetic function tasks. This constraint necessitates the development of an effective learning-based
surrogate model. These synthetic functions can serve as valuable test cases for understanding the
properties of real-world SL tasks across diverse conditions using different search algorithms with
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surrogate models within the AL pipeline. We explore a statistical feature to characterize different
objective landscapes that may pose challenges for the AL algorithms. Here, we focus on four key
functions: Ackley, Rosenbrock, Schwefel, and Michalewicz, as these functions are characterized by
their distinct objective landscapes.

Landscape characterization Understanding the topology of an objective function is crucial for
evaluating the performance of learning-based surrogate models within the AL pipeline. For instance,
a machine learning model often exhibits a less-satisfactory performance on a flat landscape of an
objective function, for which most of the values are at the same level, making it difficult for the model
to learn and generalize. A poorly performing surrogate model may mislead the search methods,
ultimately resulting in sub-optimal outcomes. Figure 2 (a-d) visualizes the objective landscapes
of the corresponding synthetic functions in their 2D forms. Ackley shows a rugged but funneled
topology, while Rosenbrock exhibits a long valley with numerous local minima. Schwefel presents a
complex multi-funnel topology, whereas Michalewicz has sharp drops on a rather flat landscape (The
mathematical formula can be found in Supplementary S.1).

However, characterizing high-dimensional objective functions poses additional challenges due to
their inherent sparsity and non-convexity. To better understand the relationship between the landscape
of the objective function and the performance of the surrogate model, we introduce a landscape
flatness. This metric uses random sampling and discrete Laplacian operator to quantify the flatness of
the objective landscape. While the metric provides valuable empirical insights, we acknowledge its
limitations in theoretical rigor and aim to explore a more comprehensive analysis in future work.

Laplacian of function Let x = [x1, ..., xi, ..., xn] be a n-dimensional input of the function. The
discrete Laplacian operator at a high-dimensional position x can be defined as:

sx =

n∑
i=1

∂2f

∂x2
i

≈
n∑

i=1

f(xi + ϵ) + f(xi − ϵ)− 2f(xi)

ϵ2
(2)

where ϵ is the step size and is set to 0.01 partition of the interval between upper bound and lower
bound. The Laplacian of function s is expected to be positive for a locally convex landscape in
many of the ith dimensions and to be negative for a locally concave landscape in many of the ith

dimensions. A near-zero Laplacian of the function s indicates that the objective function has a rather
flat distribution, and there is no gradient on the landscape in many of the ith dimensions.

Figure 2 (e-h) demonstrate the frequency distributions of s and the corresponding mean µ and standard
deviation σ, where we uniformly sampled 1 million inputs from the individual parameter spaces (in
10D) of the functions. Ackley shows a positively skewed distribution with µ close to 0 and σ of 9.18,
suggesting a moderate fluctuation in concavity across all dimensions with some more convex areas
(Figure 2e). Rosenbrock shows both large µ of 9.18×104 and σ of 2.70×104, indicating a landscape
that is heavily convex anywhere in the landscape domain, with highly anisotropic concavity across all
dimensions (Figure 2f). In contrast, Schwefel shows near-zero values for both µ and σ, implying a
landscape that is generally flat with a rather small, isotropic concavity across all dimensions (Figure
2g). Interestingly, Michalewicz shows a µ close to 0 and an abnormally large σ, implying that the
landscape is flat with some small areas being dramatically concave or convex (Figure 2h).

Figure 3: Correlation between Pearson
correlation coefficient (r) and flatness
(ω).

Landscape flatness To quantitatively measure the flat-
ness of the landscape, we introduce a metric landscape
flatness ω based on the mean µ and variance σ of the
frequency distributions of s, which is defined as:

ω =

√
σ

|µ|
. (3)

Ackely-10 and Rosenbrock-10 have ω of 3.62 and 0.54,
respectively, whereas ω of Schwefel-10 and Michalewicz-
10 are 37.07 and 54.47, respectively, indicating that the
overall landscape is rather flat. Indeed, Figure 3 suggests
that the flatness ω is highly correlated to the performance
of the surrogate model, the functions with lower ω are
easier to be learned than those with higher ω.
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Figure 4: Evaluation of sampling efficiency for Ackley, Rastrigin, Rosenbrock in 100-dimension. No
single method demonstrates consistent superiority across all scenarios.

Surrogate model training A key challenge for AL methods with surrogate models is to learn a
good approximator of the objective function with only a few samples. Figure 2 (i-l) presents the
correlations of the ground truth function values and the surrogate model (i.e. neural network in
this case) predictions for different functions (all in their 10D forms). Each surrogate model f̂ was
trained on a dataset D = {(xi, f(xi)} of inputs xi and the corresponding function value f(xi) (see
Supplementary S.3 for more details.) It can be observed that surrogate models generalize better on
landscapes with gradients (i.e., Ackley and Rosenbrock), and worse on flat landscapes (i.e., Schwefel
and Michalewicz.). It is likely that a surrogate model requires many more samples to generalize in
the low ω scenario.

Data sampling efficiency Figure 4 shows the history of the AL performance to evaluate the
sampling efficiency of the algorithms. Here, 11 methods are benchmarked against the current
minimum across different data acquisition scenarios. The results reveal that no single method
consistently outperforms others across all situations. Notably, TuRBO5 achieves the best performance
on the Ackley-100 and Rastrigin-100 tasks, while CMA-ES excels in the Rosenbrock-100 task.

5 REAL-WORLD BENCHMARK TASKS

Many real-world tasks can be treated as VLs, where high-fidelity simulators are combined with
learning models, automatically optimizing designs to achieve better mechanical, physical, or chemical
properties within a virtual environment. VLs are essential across a multitude of complex real-world
systems, particularly when experiments are associated with prohibitive costs and extensive design
spaces. The virtual tasks included in VLs can be framed as typical AL problems. In this work, we
focus on four benchmark tasks within SLs: neural network architecture search, lunar landing problem,
cyclic peptide design and optimization of electron ptychography reconstruction. These benchmark
tasks are selected because (i) they are supported by accurate high-fidelity simulators, (ii) they address
optimization problems with single or multiple objectives in the fields of materials science and biology,
and (iii) they can be executed within reasonable time and computational resources.

Neural network architecture search NAS is an automated approach for identifying optimal
neural network architectures by systematically exploring and evaluating a wide range of network
configurations to achieve superior performance on a specific task. Detailed experimental setups and
methodologies are provided in Supplementary S.5.

Lunar landing problem The Lunar Lander problem is a widely recognized benchmark environment
in the OpenAI Gym toolkit, frequently utilized in reinforcement learning research to evaluate control
strategies. The task involves controlling a simulated lunar module to achieve a safe landing on
the moon’s surface. The environment provides four discrete action options: (i) do nothing, (ii)
fire the left engine, (iii) fire the main engine, and (iv) fire the right engine. While this problem is
traditionally framed as a trajectory planning task with cumulative objectives, we reformulate it into
a non-cumulative optimization problem by fixing the initial conditions. The goal is to design an
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Figure 5: Pipelines of two chosen real-world tasks: (a) cyclic peptide design and (b) electron
ptychography.

optimal sequence of 100 discrete actions to maximize the reward, where the action space includes 0
(do nothing), 1 (fire left engine), 2 (fire main engine), and 3 (fire right engine). To ensure consistency,
the environment reset seed is fixed at 42 to generate a consistent initial state. Further details on the
experimental setup can be found in Supplementary S.6.

5.1 CYCLIC PEPTIDE DESIGN

Background Cyclic peptides are a class of compounds that have garnered significant attention as
therapeutic agents due to their enhanced stability, high specificity, and excellent membrane permeabil-
ity. These properties make them particularly effective in targeting traditionally "undruggable" protein
surfaces (Vinogradov et al., 2019). The amino acids (AAs) in cyclic peptides are interconnected by
amides or other chemically stable bonds, which can be chosen from the 20 standard AAs or various
non-standard ones, creating a high-dimensional and complex sequence design space (Zorzi et al.,
2017). Here, the task is more specific than general protein design: it involves designing a specialized
type of protein with therapeutic applications. This protein is required to exhibit stronger interactions
with its target, such as higher binding affinity. Such a task can be framed as an optimization problem.
However, even for a relatively simple 16-residue sequence, the combinatorial search space includes
1620possible configurations. The intricate and nonlinear relationship between protein sequence and
functional properties further complicates the challenge, making it a suitable benchmark for testing
advanced methodologies. An additional advantage of this setup is the availability of natural binders
as a reference for comparison. Traditionally, one often needs to conduct high-throughput wet lab
experiments, synthesizing thousands of cyclic peptides before discovering one that can specifically
bind to a desired protein (Gang et al., 2018). VL can accelerate this discovery process by narrowing
the potential candidates to a few dozen, drastically reducing the cost.

Optimization target The optimization target of cyclic peptide design is defined as follows:

Target = SC · dSASA (4)

The SC value ranges from 0 to 1, referring to how well the surfaces of two proteins fit geometrically
together at their interface; dSASA measures the size of the interface (in units of Å2). a larger
dSASA reflects a more extensive interface area. Further details regarding the dataset and simulation
settings can be found in Supplementary S.7.

5.2 ELECTRON PTYCHOGRAPHY

Background Electron ptychography is a phase-contrast imaging technique capable of resolving
nanostructures at a sub-angstrom resolution. Electron ptychography is widely used for specimens
thicker than a monolayer (Cowley & Moodie, 1957) and sensitive materials vulnerable to beam-
induced damage (Song et al., 2019). However, electron ptychography relies on a careful selection
of various reconstruction parameters, such as physical, optimization, and experimental parameters,
which affect the quality and accuracy of the retrieved transmission function. The parameter space
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Table 1: Evaluations of AL methods on synthetic functions with the usage of surrogate model, where
the values with bold texts denote the best optimization result across all the methods. Results are
averaged over 5 trials, and ± denotes the standard deviation.

Ackley-20 Ackley-100 Rastrigin-20
(×102)

Rastrigin-100
(×103)

Rosenbrock-20
(×104)

Rosenbrock-100
(×104)

Schwefel-20
(×103) Michalewicz-20

f(x∗) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -19.63

Random 7.59 ± 0.17 9.23 ± 0.13 2.18 ± 0.15 1.47 ± 0.016 2.380 ± 0.119 64.60 ± 0.936 5.50 ± 0.11 -6.11 ± 0.42
TuRBo5 0.37 ± 0.14 1.73 ± 0.18 0.52 ± 0.04 0.40 ± 0.034 0.003 ± 0.000 0.127 ± 0.066 2.84 ± 0.79 -11.34 ± 1.20
LaMCTS 1.96 ± 0.75 5.05 ± 0.73 0.80 ± 0.30 0.82 ± 0.044 0.008 ± 0.005 0.652 ± 0.098 3.32 ± 0.33 -7.66 ± 0.44
CMA-ES 0.75 ± 0.09 2.85 ± 0.04 0.78 ± 0.03 0.97 ± 0.017 0.006 ± 0.004 0.037 ± 0.004 5.28 ± 0.44 -6.38 ± 0.33
Diff-Evo 6.43 ± 0.16 8.13 ± 0.19 1.88 ± 0.12 1.30 ± 0.032 0.797 ± 0.115 28.30 ± 2.690 5.10 ± 0.17 -6.05 ± 0.73
DA 0.00 ± 0.00 3.28 ± 0.19 1.29 ± 0.06 0.53 ± 0.039 0.005 ± 0.003 0.908 ± 0.088 2.38 ± 0.39 -10.03 ± 0.77
Shiwa 4.43 ± 0.07 5.78 ± 0.52 2.48 ± 0.02 1.19 ± 0.047 2.266 ± 0.146 0.240 ± 0.022 5.49 ± 0.32 -6.65 ± 1.13
MCMC 0.00 ± 0.00 4.79 ± 0.16 0.89 ± 0.27 0.73 ± 0.038 0.011 ± 0.006 0.088 ± 0.036 2.11 ± 0.86 -9.74 ± 1.18
DOO 7.17 ± 0.37 9.44 ± 0.09 2.22 ± 0.14 1.50 ± 0.044 1.640 ± 0.456 72.22 ± 2.700 5.56 ± 0.29 -6.13 ± 0.28
SOO 7.75 ± 0.18 9.40 ± 0.17 2.24 ± 0.08 1.54 ± 0.027 2.760 ± 0.744 76.30 ± 2.700 2.89 ± 2.18 -6.34 ± 1.17
VOO 2.44 ± 0.49 5.23 ± 0.17 1.03 ± 0.13 0.92 ± 0.028 0.006 ± 0.000 2.107 ± 0.324 5.38 ± 0.08 -7.98 ± 0.79

All benchmark tasks here involve minimization objectives.
The asterisk (*) represents the global minimum of the function.

is vast and complex, and the optimal choice depends on the specific configuration of dataset and
measurement conditions. Although some algorithms have been applied to this task (such as Bayesian
optimization using Gaussian process (Cao et al., 2022)), the parameter selection process still strongly
relies on expert knowledge and trial-and-error, which limits the efficiency and applicability of electron
ptychography.

Optimization target The goal of this task is to optimize the reconstruction parameters within the
electron ptychography algorithm to retrieve the best quality of phase of the transmission function
within the atomic lattice. This requires solving a non-convex problem in a 15D parameter space in
our case (see Supplementary S.8 for details). Specifically, the objective function is the normalized
mean square error (NMSE) between the positive square-root of the measured diffraction pattern IM
and the modulus of the Fourier-transformed simulated exit-wave Ψ, which can be formulated as:

1

N

N∑
i

∣∣∣√IM(i)(u)− |F [Ψi(r)]|
∣∣∣2 (5)

where r and u denote the real- and reciprocal-space coordinate vectors, respectively, N is the total
number of the measured diffraction patterns, and the operator F represents a Fourier transform.
Further details regarding the dataset, simulation settings and evaluation metrics can be found in
Supplementary S.8.

6 BENCHMARK RESULTS

6.1 SYNTHETIC FUNCTION TASKS

We benchmark 11 state-of-the-art search methods (including Random Search) alongside neural net-
work as the surrogate model on synthetic function tasks within the AL pipeline. These methods span
a wide range of algorithm categories, including Dual Annealing (DA (Pincus, 1970)), Evolutionary
Algorithm (CMA-ES (Hansen et al., 2003), Differential Evolution (Diff-Evo (Storn & Price, 1997)),
Shiwa (Liu et al., 2020)), Bayesian Optimization (BO (Gardner et al., 2014), TuRBO (Eriksson et al.,
2020)), Monte Carlo Tree Search (LaMCTS(Wang et al., 2020a), DOO (Munos, 2011), SOO (Munos,
2011), and VOO (Kim et al., 2020b)). The implementation settings of each AL algorithm can be
found in Supplementary S.4. Our evaluation covers all functions in their 20D forms, as well as the
Ackley, Rastrigin, and Rosenbrock functions in both 20D and 100D forms. The results led to two
key insights. First, these methods are more effective with lower-dimensional functions, but their
performance diminishes as dimensionality increases. Second, search methods tend to work better on
functions that have well-fitting surrogate models (i.e., Ackley and Rosenbrock), while they perform
less well or even not better than random sampling with poorer surrogate model fittings (i.e. Schwefel
and Michalewicz, as shown in Figure 2). The observed variance primarily arises from data sparsity
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Figure 6: Benchmarks of sampling efficiency for Neural Architecture Search (NAS) in 21-dimension
and lunar landing problem in 100-dimension. Note that both problems involve maximization objec-
tives.

Table 2: Evaluations on two real-world tasks. Shape complementarity (SC) and the change in Solvent
Accessible Surface Area (dSASA) are used for cyclic peptite design, and normalized mean square
error, object reconstriction error and probe reconstriction error are used for ptychographic recon-
struction on the MoS2 dataset. Uppward arrow (↑) and downward arrow (↓) indicate maximization
and minimization tasks, respectively. Results are averaged over 3 trials, and ± denotes the standard
deviation.

Cyclic peptide design Electron ptychography

4kel-SC ↑ 4kel-dSASA ↑ 4kel-Target ↑ 7j2k-SC ↑ 7j2k-dSASA ↑ 7j2k-Target ↑ NMSE ↓ Object recon. error ↓ Probe recon. error ↓
(×10−3)

Reference* 0.77 1505 1156 0.67 865 582 0.079 0.048 0.35
Diff-Evo 0.72 ± 0.05 1464 ± 65 1046 ± 69 0.66 ± 0.04 923 ± 72 613 ± 61 0.283 ± 0.005 0.102 ± 0.008 2.96 ± 0.34
DA 0.70 ± 0.03 1556 ± 32 1096 ± 48 0.65 ± 0.04 894 ± 59 570 ± 19 0.313 ± 0.005 0.118 ± 0.011 3.05 ± 0.27
TuRBO 0.71 ± 0.03 1501 ± 37 1059 ± 55 0.63 ± 0.01 904 ± 42 572 ± 17 0.275 ± 0.000 0.104 ± 0.001 2.60 ± 0.08
BO 0.72 ± 0.02 1431 ± 14 1035 ± 22 0.60 ± 0.03 908 ± 56 546 ± 57 0.300 ± 0.000 0.097 ± 0.000 3.28 ± 0.00

*Reference denotes "native" for cyclic peptide design and "expert reconstruction result" for electron ptychography.

associated with high dimensionality. Within our active learning pipeline, we train a surrogate model
that serves as the basis for exploration and optimization by search algorithms. Notably, the search
algorithm operates without direct access to ground truth labels, making the random initialization of
the surrogate model’s training dataset a critical factor influencing the outcomes. Variations in these
initializations yield distinct surrogate models, which in turn contribute to increased variance across
trials. This effect is particularly pronounced in high-dimensional problems, where greater variance is
anticipated due to the exacerbated sparsity.

6.2 REAL-WORLD TASKS

For the NAS and lunar landing problem, we benchmark the results using six to nine different AL
methods. For biology and materials science tasks, we evaluate the performance of four selected AL
methods: Diff-Evo, DA, TuRBO5, and BO. Each task is subjected to three independent trials to
ensure robust results, with each AL method having a fixed number of oracle function evaluations.

Neural Architecture Search and Lunar Landing Problem Figure 6 shows benchmark results of
both real-world problems. As for NAS, We benchmark the problem with six optimization algorithms:
Random Search, MCMC, CMA-ES, DA, LAMCTS, and TuRBO5, where MCMC dominates and
rapidly reaches 0.941 with 500 data acquisitions. Regarding the lunar landing, we evaluate this
problem using nine algorithms: Random Search, DOO, SOO, VOO, Shiwa, CMA-ES, Diff-Evo, DA,
and MCMC.

Cyclic peptide design Table 2 presents the results of the AL methods for different metrics. In the
cyclic peptide design task, global optima is unknown, and therefore any method that yields the target
value exceeding the native complex (denoted as "Reference" in Table 2) can be considered a ’success’.
According to this criterion, none of the tested AL methods succeeded in finding a better binder for
protein (pdbid: 4kel), and only Diff-Evo achieved a better design for protein 7j2k. However, it is
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Figure 7: Benchmarking the electron ptychography task: visualization of the reconstructed phases (of
the object transmission functions) with parameters obtained from the corresponding AL methods. No
single method achieves results comparable to the ground truth.

noteworthy that in this type of design task, native does not represent the best designs. Figure S2
illustrates the complex with the highest target value optimized by the AL method for protein 4kel.
All these complexes contain hydrophobic residues that fit into the protein pocket, contributing to the
high target values. More detailed settings about AL methods can be found in Supplementary S.7

Electron ptychography Table 2 summarizes the performance of AL methods on ptychographic
reconstructions of the MoS2 dataset, where "Reference" denotes the expert reconstruction results for
a single-layer MoS2 dataset with the same aberration settings. It is observed that all AL methods do
not achieve the optimal reconstruction of both object and probe functions. However, TuRBO5 and
Diff-Evo can attain lower NMSE values and have generally more physically sensible reconstructions
for the phases of the object transmission functions. As shown in Figure 7, despite not being perfect,
both AL methods (Diff-Evo and TuRBO5) can resolve the atomic contrasts of heavy Molybdenum
(brighter) atoms and light Sulfur atoms (darker). On the other hand, DA and BO present higher
NMSE values and are considered worse in ptychographic reconstruction. We note that although not
able to fully resolve atomic contrasts from different atoms, BO has the lowest object reconstruction
error and can retrieve an object transmission function with general atomic signals. More detailed
analyses are included in Supplementary S.8.

7 DISCUSSION

Biology and material science applications represent exciting application areas with tremendous
potential for the development of self-driving labs. However, the absence of standardized benchmarks
and evaluation protocols has hindered the accurate tracking of progress. To address this, we design
an active learning pipeline that tailors to self-driving lab settings, including (i) iterative process,
(ii) use of surrogate models and(iii) low-data regime. Our benchmark BALSA is a comprehensive
resource that includes (i) a codebase, (ii) a suit of synthetic tasks, and (iii) two complex tasks with
controlled simulators and two real-world applications in biology and materials science. It features a
large-scale empirical evaluation, providing a template for reproducible research and for systematically
advancing the performance of algorithms across disciplines. Virtual labs and high-fidelity simulators
have the potential to reduce the need for costly and time-consuming real-world experiments. Our
extensive evaluation highlights current limitations and indicates promising directions for future
research, including developing methods for hyperparameter selection with network-based surrogate
models and scaling approaches to very high dimensions.
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S SUPPLEMENTARY MATERIALS

S.1 SYNTHETIC FUNCTIONS

The synthetic functions are designed to evaluate and analyze computational optimization approaches.
In total, six of them are selected based on their physical properties and topologies. The Ackley
function can be written as:

f(x) = −a · exp(−b

√√√√1

d

d∑
i=1

x2
i − exp(

1

d

d∑
i=1

cos(cxi)) + a+ exp(1), (6)

where a = 20, b = 0.2, c = 2π, and d is the dimension.

The Rosenbrock function can be written as:

f(x) =

d−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2]. (7)

The Rastrigin function can be written as:

f(x) = 10d+

d−1∑
i=1

[x2
i − 10 cos(2πxi)]. (8)

The three functions are evaluated on the hypercube xi ∈ [−5, 5], for all i = 1, . . . , d with a discrete
search space of a step size of 0.1.

The Schwefel function can be written as:

f(x) = 418.9828d−
d∑

i=1

xi sin(
√

|xi|), (9)

where d is the dimension. The function is evaluated on the hypercube xi ∈ [−500, 500], for all
i = 1, . . . , d with a discrete search space of a step size of 1.

The Griewank function can be written as:

f(x) =

d∑
i=1

x2
i

4000
−

d∏
i=1

cos(
xi√
i
) + 1, (10)

where d is the dimension. The function is evaluated on the hypercube xi ∈ [−600, 600], for all
i = 1, . . . , d with a discrete search space of a step size of 1.

The Michalewicz function can be written as:

f(x) = −
d∑

i=1

sin(xi) sin
2m(

ix2
i

π
), (11)

where d is the dimension. The function is evaluated on the hypercube xi ∈ [0, π], for all i = 1, . . . , d
with a discrete search space of a step size of 10−4.

S.2 DATA SAMPLE EFFICIENCY

Figure S1 shows the history of the active learning performance to evaluate the sampling efficiency of
the algorithms with 20-dimension. Similar to Figure 4, 11 methods are evaluated against the current
minimum across different data acquisition scenarios. Consistent with obversation in high dimensional
problems, no single method demonstrates consistent dominance across all tasks. For the Ackley-20
function, DA and MCMC demonstrate rapid convergence to the global minimum of f(x). In the
Rastrigin-20 function, TuRBO5 and DA outperforms other approaches. Interestingly, search methods
such as TuRBO5 constantly achieves lower values, whereas others, e.g. Diff-Evo, appear to become
trapped in local minima.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure S1: Evaluation of sampling efficiency for Ackley, Rastrigin, Rosenbrock in 20-dimension. No
single method demonstrates consistent superiority across all scenarios.

S.3 SURROGATE MODEL SETUPS

Training details We used 1D convolutional neural networks (1D-CNN) as the surrogate model to
fit the synthetic functions. We initiated each surrogate model training with 2,000 uniformly sampled
data points from the parameter space of the corresponding synthetic function to train the surrogate
model, where 1,600 samples were used for the training set and 400 samples for the testing set. Adam
Optimizer was employed with a learning rate of 0.001, and the activation function utilized is the
Exponential Linear Unit (ELU). The loss function is the mean square error (MSE) for all synthetic
functions except Rastrigin where we used mean absolute percentage error (MAPE). The 1D-CNN
model is trained for 500 epochs with early stopping patience of 30 and a batch size of 64. Additionally,
the outputs for some of the functions are transformed to avoid the scaling problem for surrogate
model training, the corresponding transformation (if applied) is defined in the corresponding sections
as follows.

Ackley The 1D-CNN comprises 5 convolutional layers with filter sizes of 128, 64, 32, 16, and 8
respectively, each using a kernel size of 3. It also includes 2 max-pooling layers with a pooling size
of 2, 2 dropout layers with a dropout rate of 0.2, followed by a flatten layer, 2 fully connected layers
with 128 and 64 units respectively, and an output layer. To obtain a better fitting, we employed a
transformation of 100/(f(x) + 0.01) to the output of the Ackley function f(x).

Rastrigin The 1D-CNN consists of 6 convolutional layers with filter sizes of 256, 128, 64, 32, 16,
and 8 respectively. The kernel sizes are 5, 5, 3, 3, 3, and 3 respectively, with strides of 1, 2, 2, 1, 1,
and 1 respectively. Following these convolutional layers is a flatten layer, 2 fully connected layers
with 128 and 64 units respectively, and an output layer.

Rosenbrock The 1D-CNN comprises 6 convolutional layers with filter sizes of 128, 64, 32, 16,
8, and 4 respectively, each using a kernel size of 3. Additionally, there are 3 max-pooling layers
with a pooling size of 2, 2 dropout layers with a dropout rate of 0.2, followed by a flatten layer, 1
fully connected layer with 64 units, and an output layer. To obtain a better fitting, we employed
a transformation of 100/(f(x)/100d+ 0.01) to the output of the Rosenbrock function f(x) in its
d-dimensional form.

Griewank The model architecture is the same as Rosenbrock. We employed the transformation
10/(f(x)/d+ 0.001) to the output of the Griewank function f(x) in its d-dimensional form.

Schwefel The 1D-CNN consists of 7 convolutional layers with filter sizes of 256, 128, 64, 32, 16,
8, and 4 respectively. The kernel size is set to 5 with a stride of 1 for all layers. These are followed by
a flatten layer, 6 fully connected layers with 128, 64, 32, 16, and 8, respectively, and an output layer.
We re-scaled the output of the Schwefel function f(x) with a factor of 0.01.

Michalewicz The 1D-CNN comprises 5 convolutional layers with filter sizes of 128, 64, 32, 16, and
8 respectively, each using a kernel size of 3 with a stride of 1. Additionally, there are 3 max-pooling
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layers with a pooling size of 2, 2 dropout layers with a dropout rate of 0.2, followed by a flatten layer,
1 fully connected layer with 64 units, and an output layer.

S.4 AL ALGORITHMS SETUPS

For the benchmark of synthetic function tasks, the AL algorithms were conducted without information
on the ground truth oracle functions. The implementations of VOO, SOO, and DOO were sourced
from an established repository 1, while the methods including CMA-ES, Differential Evolution
(Diff-Evo), and Dual Annealing (DA) were derived from the Scipy optimize module, and Shiwa
was obtained from Nevergrad 2. The implementation of Bayesian Optimization is from 3. The
implementation of TuRBO5 is from 4. The implementation of LAMCTS is from 5. All algorithms
were employed with the default setting in the reference implementation.

S.5 ADDITIONAL NEURAL NETWORK ARCHITECTURE SEARCH DETAILS

Dataset and optimization target To benchmark the efficacy of AL algorithms in optimizing neural
network structures within the context of active learning, we choose the NAS-Bench-101 dataset
(Ying et al., 2019), which contains over 400,000 unique convolutional neural networks along with
their corresponding performance metrics, trained on the CIFAR-10 dataset (Hinton et al., 2012).
Each neural network is represented by a 7×7 upper-triangular adjacency matrix with up to 9 edges,
where nodes represent specific operations and edges denote the connection relationships between
these operations. The first operation represents the input, and the last represents the output, while
the remaining five components can be selected from 3×3 convolution, 1×1 convolution, or 3×3
max-pooling. The objective of the NAS task is to identify an optimized neural network structure that
achieves the highest classification accuracy on the test set (test acc).

Neural network architecture encoding We adopt a truncated 40-bit path-based encoding scheme
(White et al., 2021) to represent the neural network structure, where each bit corresponds to a specific
path from the input layer to the output layer, incorporating various operators along the way. For
optimization algorithms like CMA-ES, Dual Annealing, LAMCTS, and TuRBO5, which require a
well-defined search domain, we parameterize the neural network structure into a 36-dimensional
vector within the continuous [0, 1] space, as adopted from prior work (Letham et al., 2020). The first
21 entries correspond to the adjacency matrix, where the largest values set the respective elements in
the matrix to 1. The remaining 15 entries represent the one-hot encoding of 5 components, each with
three possible operations. For MCMC and Random Search, optimization is performed directly at the
adjacency matrix level.

Surrogate model We train a 1D-CNN model to map the path encoding into the test acc. The
1D-CNN consists of 5 convolutional layers with filter sizes of 128, 64, 32, 16, and 8, respectively,
each using a kernel size of 3. It also includes 2 max-pooling layers with a pooling size of 2, 2 dropout
layers with a dropout rate of 0.2, followed by a flatten layer, 2 fully connected layers with 128 and 64
units, respectively, and a final output layer. The loss function used is mean square error (MSE).

AL algorithm srtups The optimization process begins by generating 200 random initial data points
from NAS-Bench-101, which are used to train the initial surrogate model. In the active learning
loop, optimization algorithms then sample 20 optimized successors by refining the surrogate model,
expanding the dataset. The updated surrogate model is subsequently used in the next iteration of the
loop, continually improving the optimization process.

• MCMC: The acceptance rate is defined as exp(−δ/T ), where δ represents the difference
between the proposal point and the current best point. If δ > 0, indicating the proposal point
is better than the current best, the proposal is accepted outright; otherwise, it is accepted

1https://github.com/beomjoonkim/voot
2https://github.com/facebookresearch/nevergrad
3https://github.com/bayesian-optimization/BayesianOptimization
4https://github.com/uber-research/TuRBO
5https://github.com/facebookresearch/LaMCTS
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with the calculated acceptance rate. The temperature parameter, T, decreases exponentially
with each iteration, starting at an initial value of 0.01, with a half-life of 200 iterations.

• CMA-ES: 0.25 sigma0, 300 maxfevals, with other parameters using default settings.

• DA: 5 maxiter, 300 maxfun, with other parameters using default settings.

• LAMCTS: 40 ninits, 0.1 Cp, 100 iterations, with other parameters using default settings.

• TuRBO5: 50 n_init, 300 max_evals, 5 n_trust_regionsm, 10 batch_size, 2000
max_cholesky_size, 50 n_training_steps, with other parameters using default settings.

S.6 ADDITIONAL NEURAL NETWORK ARCHITECTURE SEARCH DETAILS

Search algorithms The setups of the search algorithms in the AL pipelines are as follows:

• Random: Random seed is set to 42.

• DOO: 0.1 explr_p with other parameters using default settings.

• SOO: Default settings.

• VOO: 1 explr_p with other parameters using default settings.

• Shiwa: Default settings.

• CMA-ES: Default settings.

• DA: Default settings.

• MCMC: Default settings.

S.7 ADDITIONAL CYCLIC PEPTIDE DESIGN DETAILS

Dataset Two protein and canonical cyclic peptide complexes, PDBID: 4kel and PDBID: 7k2j, are
sourced from the Protein Data Bank (PDB). The former is a 14-amino acid serine protease inhibitor
targeting human kallikrein-related peptidase 4 (KLK4) (Riley et al., 2019), while the latter is a cyclic
7-mer peptide interacting with Kelch-like ECH-Associated Protein-1 (KEAP1) (Ortet et al., 2021).
For simplicity, we only consider standard amino acids. Therefore, each cyclic peptide is represented
as a sequence of integers ranging from 0 to 19, with each number corresponding to a distinct type of
standard amino acid, making this a discrete optimization task.

Pipeline The pipeline for cyclic peptide VL consists of three components: (1) AlphaFold2 with
cyclic offsets to predict the structure of protein-cyclic peptide complexes (Kosugi & Ohue, 2023); (2)
ProteinMPNN to ensure the diversity of designed cyclic peptide sequences (Dauparas et al., 2022);
and (3) Rosetta’s interface analyzer to evaluate the quality of the designed interface (Leaver-Fay
et al., 2011). Given the structure of the desired protein and the corresponding interaction hotspot,
the pipeline begins with an optimization method that iteratively searches for the sequence yielding
the highest AlphaFold2 pLDDT (predicted Local Distance Difference Test) score, which indicates
the confidence level of the predicted structure. The optimized sequence is fed into ProteinMPNN to
generate a pool of diverse sequences. Finally, the product of two Rosetta binding metrics—shape
complementarity (SC) and the change in Solvent Accessible Surface Area (dSASA)—is used to filter
the output sequences, with the best-fit design likely to have high SC and dSASA values (Muratspahić
et al., 2023).

Simulation Settings The structure of the protein and cyclic peptide complex is predicted using
AlphaFold2-multimer with cyclic offsets, as implemented in ColabDesign (Kosugi & Ohue, 2023).
ProteinMPNN is also employed in ColabDesign with a batch size of 128. The SC and dSASA
values for the predicted structure of the protein and cyclic peptide complex are computed using the
PyRosetta Interface Analyzer (Chaudhury et al., 2010).

AL algorithm setups To ensure a fair comparison across AL methods, we limited the number of
oracle function evaluations to approximately 1000. The specific settings are detailed as follows.

• Diff-Evo: a population size of 15 with a maximum of 1000 function evaluations.
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Figure S2: Benchmarking the cyclic peptide design task: visualization of protein 4kel yielded
complex results, with the highest target value observed across three trials, where SC and dSASA
denotes shape complementarity and change in Solvent Accessible Surface Area, respectively. The
left inset illustrates the cyclic peptide sequence, while the right inset presents the interaction map for
each method: (a) Diff-Evo, (b) DA, (c) TuRBO5, and (d) BO.

• DA: 50 iterations with a maximum of 1000 function evaluations.
• TuRBO5: 20 initial samples with 5 trust regions, followed by up to a maximum of 1000

evaluations in batches of 5.
• BO: 50 initial samples followed by 950 iterations.

S.8 ADDITIONAL ELECTRON PTYCHOGRAPHY DETAILS

Dataset The dataset is a 4D datacube, comprising 2D grid of positions, each of which records a
2D diffraction pattern by a converged electron probe. Here, we utilized abTEM (Madsen & Susi,
2021) to simulate the dataset: 10-layer-stacked molybdenum disulfide (MoS2), an emergent two-
dimensional semiconductor that demonstrates strong potential to exceed the fundamental limits of
silicon electronics (Li et al., 2024). The MoS2 dataset is simulated with intentionally exaggerated
probe aberrations to pose challenges for the optimization algorithms.

Simulation settings The MoS2 dataset uses an 80 kV probe energy, a 20 mrad probe-forming
semi-angle, a set of probe aberration coefficients of defocus -130 Å, two-fold astigmatism (C12)
20 Å, two-fold astigmatism angle (Phi12) 0.785, three-fold astigmatism (C23) 15 Å, three-fold
astigmatism angle (Phi23) 0.295, axial coma (C21) 30 Å, axial coma angle (Phi21) 0.534, spherical
aberration (C30) −2× 104 Å. The dataset consists of 51 diffraction patterns with a 0.312 Å scanning
step size in the real space. In addition, all diffraction patterns in both datasets were corrupted with
Poisson noise of 10,000 e/Å2 for this task. The ptychographic reconstruction is performed with a
multi-slice approach using py4DSTEM (Savitzky et al., 2021), a comprehensive open-source package
for different modes of 4D-STEM data analysis.

Evaluation metrics In addition to the NMSE score, we evaluate the quality of electron ptycho-
graphic reconstruction using two extra metrics: probe and object reconstruction errors. First, the
probe reconstruction error calculates the normalized mean square error between the reconstructed and
the simulated probes in the real space. While the ptychographic algorithm itself does not have the
access to the ground truth probe function, a successful ptychographic reconstruction must accurately
retrieve both the probe function and the object transmission function. As we deliberately exaggerated
the aberrations of the probe in the MoS2 dataset, this metric can act as another useful metric to
evaluate the reconstruction. Second, the object reconstruction error computes the normalized mean
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Table S1: Optimized reconstruction parameters by different AL methods for the MoS2 dataset.

semiangle cutoff
(mrad)

energy
(kV ) number of

iterations step size identical
slices iteration

slice thicknesses
(Å)

number of
slices

defocus
(Å)

C12
(Å)

phi12
(rad)

C30
(Å)

C21
(Å)

phi21
(rad)

C23
(Å)

phi23
(rad)

Ground truth 20.0 80 - - - - - -130 20 0.79 -2.0×104 30 0.53 15 0.29
Diff-Evo 23.4 73 20 0.65 4 4.6 16 -185 6.0 0.95 -9.4×104 95 0.06 84 1.00
DA 22.0 269 18 0.87 33 5.4 21 -118 50.0 0.61 -4.1×104 62 0.15 47 0.87
TuRBO5 18.0 242 20 0.57 2 18.1 29 -8 4.0 0.60 -5.6×104 42 0.57 19 0.54
BO 22.4 254 10 0.71 2 34.4 17 -166 16.0 0.83 -5.4×104 89 0.3 16 0.03

Figure S3: Optimization history of AL methods on the MoS2 dataset.

square error between the median-angle-annular-dark-field signal (without added noise) and the phase
of the object transmission function. This metric directly demonstrates the quality of the retrieved
object transmission function.

Hyper-parameter settings We used 20 samples for initialization of all AL methods. We set the
independent trust regions to 5 for TuRBO. The rest hyper-parameters take the default values for the
individual AL methods.

Optimization results The optimization history (Figure S3) shows that TuRBO achieves the lowest
NMSE after 500 samples, while other methods are trapped into local minima. Table S1 summarizes
the reconstruction parameters for each AL method. Figure S4 visualizes the reconstructed amplitude
of the probe functions with different AL methods.

Figure S4: Visualization of amplitude (of the probe functions) reconstructed using parameters
obtained from the corresponding AL methods. The second row visualizes the normalized mean
square error between the ground truth and the reconstructed amplitude values.
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